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Arbuscular mycorrhizal (AM) fungal communities are now known to vary with depth in

arable land. Here we use two previously published high-throughput Illumina sequencing

data sets, and compare a 52 year long chronosequence of recultivated agriculture fields

after a topsoil and subsoil mixing event, with a set of undisturbed topsoil and subsoil

samples from a similar field. We show that AM taxa identified as subsoil indicators are

exclusively present in early stages of the chronosequence, whereas topsoil indicator taxa

can be found across the chronosequence, and that similarities from the chronosequence

fields to the subsoil communities decrease with time. Our results provide evidence on the

ecological specialization of certain AM fungal taxa to deep soil layers.
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INTRODUCTION

Arbuscular mycorrhizal (AM) fungi belong to the monophyletic subphylum Glomeromycotina
(Spatafora et al., 2016) and form a symbiotic relationship with most land plants (Brundrett and
Tedersoo, 2018). These fungi can increase plant productivity (Lekberg and Koide, 2005), enhance
nutrient uptake (Smith and Smith, 2011), promote soil aggregation (Leifheit et al., 2014), boost
pathogen protection (Veresoglou and Rillig, 2012), and are therefore considered important factors
in agriculture. AM fungal communities in arable land have been characterized both with spore
identification techniques (e.g., Antunes et al., 2012; Köhl et al., 2014) and molecular methods (e.g.,
Alguacil et al., 2008; Van Geel et al., 2017) but with few exceptions, existing information is limited
to the first 30 cm of the soil profile. Subsoil (i.e., beneath the plow layer) AM fungal communities,
however, differ from those in topsoil in diversity, species composition and community structure
(Oehl et al., 2005; Muleta et al., 2008; Yang et al., 2010) and even exhibit contrasting patterns of
distribution at higher taxonomic levels (Sosa-Hernández et al., 2018). We hypothesize that these
differences are caused by Grinellian ecological specialization (Devictor et al., 2010), i.e., top- and
sub-soil represent two different environments to which particular AM taxa have adapted.

A recent study by Roy et al. (2017) used high-throughput Illumina sequencing to analyze
AM fungal communities in a series of agricultural fields in western Germany forming a
re-cultivation chronosequence (hereafter referred to as “chronosequence fields”). In short,
following mining operations, pits were closed and restored with local soil and after a 3-year
period of alfalfa (Medicago sativa) cultivation, reconverted to conventional agriculture. The
restoration was carried out with a mixture of former agricultural soil and loess parent
material from various depths. Therefore, we assume that directly after conversion AM
fungal communities from different depths experience a community coalescence event (Rillig
et al., 2015), i.e., taxa from different depths are mixed in the newly deposited top layers.
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This event provides excellent opportunity to trace the fate
of subsoil-specific AM fungal taxa along the re-cultivation
chronosequence, which allows testing our hypothesis of
ecological specialization of certain AM fungal taxa to deep
soil layers. In a recent study, we characterized AM fungal
communities in an agricultural field both in top- (10–30 cm
deep) and sub-soil (60–75 cm deep) (Sosa-Hernández et al.,
2018), hereafter referred to as “unmixed field.” We identified
subsoil and topsoil indicator AM fungal taxa. Here, we
traced those taxa along the chronosequence fields. According
to our hypothesis, (i) AM fungal taxa identified as subsoil
indicators would decrease in abundance in the topsoil along the
chronosequence as a function of time since the mixing event
occurred, while taxa identified as topsoil indicators will maintain
their abundance, and ii) the early mixed community would
resemble subsoil communities and this similarity would decrease
through time.

MATERIALS AND METHODS

Study Sites
Both study sites are located in the southwest of the state
of North Rhine-Westphalia, Germany, and in both, soil has
been characterized as Haplic Luvisol (FAO/ISRIC/ISSS, 1998).
The distance from the unmixed field to the area where
the chronosequence fields are located is roughly 55 km. The
chronosequence fields (Roy et al., 2017) consist of a re-cultivation
chronosequence after open mining, comprising 10 fields each
approximately 6 ha in size. The newly deposited soil profile is
about 2m deep and consists of a mixture of the previous soil
(1m deep) and loess substrate in a 1:5 ratio. For the first 3 years
after the mixing event fields are covered permanently with alfalfa
(hereafter referred to as phase 1), for the 2 following years barley
(Hordeum vulgare) was cultivated (hereafter referred to as phase
2) and after the fifth year conventional agriculture was resumed,
with a sugar beet (Beta vulgaris vulgaris var. altissima)—winter
wheat (Triticum aestivum) crop rotation (hereafter referred to as
phase 3). From these chronosequence fields five samples per field
were taken at a 0–10 cm depth, adding up to a total of 50 samples.
In the unmixed field (approximately 1 ha in size), nine samples
each were taken at depths from 10–30 to 60–75 cm as described
in Uksa et al. (2014), adding up to a total of 18 samples. Chicory
(Cichorium intybus) was grown on this field for the third year.

Sequencing
DNA was extracted from the chronosequence fields’ samples
using the PowerSoil DNA isolation kit (MoBio Laboratories Inc.,
Carlsbad, CA, USA) following the manufacturer’s protocol, as
for the unmixed field samples, DNA was extracted using the
FastDNA Spin Kit for Soil (MPBiomedicals, Eschwege, Germany)
following the manufacturer’s protocol. In both studies AM fungal
communities were characterized with primers targeting the large
ribosomal subunit LSU including the variable D1-D2 region,
using similar protocols [see Roy et al. (2017) and Sosa-Hernández
et al. (2018) for details]. In short, after DNA extraction, PCR
was carried out using AM fungal specific primer sets described
in Krüger et al. (2009). The product of this amplification was

used as a template in a follow up PCR using the general fungal
primers LR3 and LR2rev (Hofstetter et al., 2002). Amplicons
from the two different studies were sequenced independently but
with identical protocols on an Illumina MiSeq platform at the
Berlin Center for Genomics in Biodiversity Research (BeGenDiv,
Berlin, Germany).

Bioinformatics Processing of Amplicon
Sequences
A total of 2,377,171 raw sequences from the chronosequence
experiment and 1,876,440 raw sequences from the unmixed
experiment were processed separately as follows: Paired-end
sequences were merged and quality filtered (maximum error
rate of 1) using USEARCH v8.1.1861 (Edgar, 2010). Sequences
were dereplicated and singletons were removed. Further quality
filtering was performed by aligning those sequences to an AM
fungal ribosomal DNA reference database (Krüger et al., 2012)
using mothur v.1.38.1 (Schloss et al., 2009), this process also
eliminated the primer sequence. Sequences not overlapping the
region were discarded.

Quality filtered and dereplicated sequences from the
chronosequence experiment (58,686 sequences) and from the
unmixed experiment (53,595 sequences) were pooled together
and clustered into operational taxonomic units (OTUs) at a 97%
similarity level using UPARSE (Edgar, 2013), which includes
internal chimera removal. OTU centroids were identified and
non-dereplicated filtered sequences from both experiments
including previously discarded singletons, were mapped to those
OTUs centroids at a 97% similarity level. Various format editing
steps such as sequence counting were performed with OBITools
1.2.9 (Boyer et al., 2016). Representative sequences of these
OTUs have been deposited at ENA under accession numbers
LT993068-LT993221.

Taxonomic assignment of the OTUs was carried out using
BLAST+ (Camacho et al., 2009) against Glomeromycotina
reference sequences published in Krüger et al. (2012) and against
the EMBL nucleotide database (Kanz et al., 2005). Alignments
below 70% similarity and/or shorter than 300 bp were discarded.
Results from both databases were checked for consistency and
matches contained in Krüger et al. (2012) were used to assign
the OTUs. We decided to favor matches in Krüger et al. (2012)
over EMBL, due to the often imprecise description of the match
in the latter (e.g., “soil fungus,” “uncultured Glomeromycota”).
When the taxonomic resolution of the match was sufficient, we
followed a similar approach to that used in Martínez-García
et al. (2015) for SSU sequences, and assigned OTUs with ≥97%
similarity match to a species, ≥90% to a genus, ≥80% to a
family and ≥70% to the subphylum. In cases with insufficient
resolution in the match description, the OTUs were assigned
to the closest available taxonomic level. A species level match
refers to how confidently we assign a name to our OTU based
on known sequences, and does not imply that these OTUs are to
be considered equivalent to those species.

Statistical Analysis
All subsequent analyses were performed with R version 3.3.1
(R Core Team, 2016). Community analyses were performed
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with the package “vegan” (Oksanen et al., 2017). Before
conducting the statistics, five samples belonging to the 45-
year old samples in the chronosequence experiment, were
excluded from any subsequent analysis due to very low
numbers of AM fungal sequence reads. After this removal,
the lowest amount of reads in a sample was determined
as 559 and all samples were normalized to this number by
random subsampling without replacement with the function
“rrarefy.” Rarefaction curves and OTU accumulation curves
were generated with the functions “rarecurve” and “specaccum,”
respectively.

Using the sequences retrieved from the unmixed field samples
we identified sub- and top-soil indicator OTUs using the function
multipatt() in the package “indicspecies” (Cáceres and Legendre,
2009) and traced their fate in the chronosequence since the
coalescent event.

Compositional changes between samples were measured
with Bray and Curtis (1957) and Jaccard (1912) dissimilarities
with the function “vegdist” and visualized with a non-
metric multidimensional scaling (NMDS) using the function
“metaMDS.” Additionally, we compared these Bray-Curtis
and Jaccard distances between unmixed topsoil or unmixed
subsoil samples to the samples from the chronosequence
to test for changes in multivariate distances over time.
Comparisons between dissimilarities in different phases were
performed with pairwise Mann–Whitney tests with correction
for multiple testing, as implemented with the function “pairwise.
wilcox.test.”

RESULTS

After taxonomic assignment and normalization, we identified
a total of 136 AM fungal OTUs. Details on the taxonomic
assignment of each OTU can be found in Table S1. The
chronosequence fields yielded a richness of 123 OTUs and
the unmixed fields a richness of 73 OTUs. Between the two
experiments 60 OTUs were shared, representing 44.12% of the
total richness but 93.49% of the reads in “unmixed” fields and
76.53% of the reads in “chronosequence” fields. Both rarefaction
curves (Figure S1) and OTU accumulation curves (Figure S2)
were past the linearity point, indicating that the sequencing
depth and number of samples were appropriated to capture the
majority of the diversity.

We identified three subsoil indicator OTUs (Table 1), and
we detected two of these subsoil indicator OTUs in topsoil
from chronosequence fields with time since the mixing event
up to 5 years (Figure 1A). However, we did not detect these
OTUs in chronosequence fields older than 5 years, neither in the
rarefied nor in the non-normalized raw OTU tables. Similarly we
identified nine topsoil indicator OTUs (Table 1). Those topsoil
indicators could be detected in all chronosequence fields and they
showed a tendency to increase in relative abundance after the first
2 years since the mixing event (Figure 1B). A complete table with
relative abundances of each OTU can be found in Table S1.

AM fungal communities in recently restored chronosequence
fields (i.e., shortly after the mixing event) are more similar

TABLE 1 | Identified sub- and top-soil indicators.

OTU Taxonomic assignment Stat p-value

SUBSOIL INDICATORS

OTU_1 Claroideoglomus sp. 0.937 0.005

OTU_7 Claroideoglomeraceae 0.878 0.035

OTU_4 Claroideoglomus sp. 0.877 0.01

TOPSOIL INDICATORS

OTU_316 Diversispora sp. 0.955 0.005

OTU_5 Diversispora sp. 0.953 0.005

OTU_225 Diversispora sp. 0.947 0.005

OTU_224 Diversispora sp. 0.943 0.005

OTU_18 Funneliformis constrictus 0.933 0.005

OTU_13 Claroideoglomus sp. 0.841 0.02

OTU_14 Funneliformis caledonius 0.836 0.02

OTU_12 Diversispora sp. 0.824 0.05

OTU_96 Diversispora sp. 0.816 0.015

to unmixed subsoil communities, and with increasing time
since mixing, chronosequence communities show increasing
dissimilarity to unmixed subsoil communities (Figure 2).

Bray-Curtis distances from chronosequence fields to the
unmixed subsoil samples increase with time, forming two
significantly different groups (phase 1 + phase 2, and phase
3; Figure 3A, for statistics see Table S2). Analogous results are
obtained when considering Jaccard distances (Figure S3A, for
statistics see Table S2). Bray-Curtis distances to the unmixed
topsoil communities follow a unimodal trend with intermediate
values in phase 1, minimum values in phase 2, and maximum
dissimilarity values in phase 3 (Figure 3B, for statistics see Table
S2). Similarly, Jaccard distances to unmixed topsoil follow a
unimodal trend with minimum values in phase 2, but phases 1
and 3 are not significantly different (Figure S3B, for statistics see
Table S2).

DISCUSSION

We show that (i) AM fungal taxa identified as subsoil indicators
are present only in young fields (1–3 year since the mixing event),
while taxa identified as topsoil indicators are present across
the entire chronosequence and (ii) early mixed communities
from the chronosequence resembled to some extent unmixed
subsoil communities and this similarity decreased with time after
the mixing event. These results strongly suggest the inability
of subsoil-specific AM fungal OTUs to persist in topsoil after
a subsoil-topsoil mixing event. AM fungal richness in the
chronosequence fields follows a unimodal trend with highest
values during phase 2 (Roy et al., 2017); however, the detection
of topsoil indicators through the entire chronosequence suggests
that the observed loss of subsoil indicators was specific to subsoil
phylotypes rather than a generalized diversity loss due to soil
treatment during initial deposition or subsequent management.
The fact that the three identified subsoil OTUs were all assigned
to the family Claroideoglomeraceae is in line with previous
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FIGURE 1 | Sub- and Topsoil indicators over time. Number of reads detected in the chronosequence fields, for each of the subsoil (A) and topsoil (B) indicators

identified in the unmixed field. Horizontal axis represents the time since the recultivation started, in years. Different indicator OTUs are coded by color.

FIGURE 2 | Community ordination of AMF over time. Non-metric multidimensional scaling (NMDS) of a Bray-Curtis pairwise dissimilarity of the AMF communities.

The OTU table was rarefied to 559 reads, the minimum amount of reads per sample and includes all chronosequence samples and subsoil samples from the unmixed

field. Time since start of the recultivation is coded by color. The polygons encompass all samples from that group. Subsoil = 60–75 cm, n = 9. Phase 1: 1–3 years,

n = 15. Phase 2: 4–5 years, n = 10. Phase 3: 10–52 years, n = 20.

results where this family showed a significant increase in
relative abundance (Sosa-Hernández et al., 2018) or sporulated
predominantly (Oehl et al., 2005; Yang et al., 2010) in deeper soil
layers.

There are essentially two, not mutually exclusive hypotheses
to explain this inability to coexist in the topsoil: abiotic filtering
and biotic interactions (Vályi et al., 2016). Possible abiotic
filters to subsoil AM fungal taxa in topsoil layers include
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FIGURE 3 | Dissimilarities to Sub- and Topsoil over time. Bray-Curtis distances (i.e., dissimilarities in both community composition and relative abundances) between

chronosequence fields and (A) subsoil communities and (B) topsoil communities. Dotted lines link the means, bars represent the standard error. Different phases are

coded by color, significant differences between phases are represented by different letters. Details on the statistics are presented in Table S2. Phase 1: 1–3 years, n =

135. Phase 2: 4–5 year, n = 90. Phase 3: 10–52 years, n = 180.

disturbance in the form of tillage (Kabir, 2005) and greater
diurnal and seasonal variations in temperature and moisture
(Fierer et al., 2003). Alternatively, possible biotic filters are
competitive exclusion by topsoil AM fungal taxa, increased
grazing pressure or differential partner selection by the plant
due to different nutrient availability. Particularly interesting is
the notion that plants might demand different services from
AM fungal communities at different depths. By allocating carbon
selectively to the desired phylotypes (Werner and Kiers, 2015)
plants may shape the observed vertical distribution in AM fungal
taxa. It is not clear what the relative importance of abiotic
filtering and biotic interactions in driving this species loss is,
that is to say, whether subsoil is for this AM taxa a fundamental
or a realized niche (Devictor et al., 2010). Equally unknown
is whether the subsoil phylotypes established in topsoil of the
chronosequence fields and disappeared after a period of time
or if they never did establish and the sequences we detect
represent dormant inoculum or relic DNA (Carini et al., 2016).
We believe that patterns in dissimilarity from “chronosequence”
fields to the unmixed topsoil and subsoil communities with
time can be interpreted as indirect evidence of the fate of
these respective communities across the chronosequence. The
slow increase in dissimilarities to unmixed subsoil with time
may point at an inactivity and/or slow decline of these OTUs
in topsoil, regardless of the host plants or the management.
Nonetheless, the observed pattern could as well be explained

by the presence and slow decay of relic DNA, as mentioned
above. In contrast, the dissimilarities to unmixed topsoil are
more responsive to the changes in management in the different
phases, suggesting that the members of these communities
were active and their populations were part of dynamic
turnovers.

Overall, our results support our hypothesis of an ecological
specialization of certain AM fungal taxa to deep soil layers.
Identifying the specific mechanisms driving the observed
patterns will require experimental approaches such as
greenhouse reverse transplant experiments or in vitro
competition trials. Nonetheless, our results provide a first
snapshot of the outcome of top- and sub-soil community
coalescence events. They show that AM fungal taxa found in
subsoils are not able to persist in topsoil layers for longer periods
of time. Some deep tillage practices, including deep plowing or
deep mixing, can have positive effects on yield under particular
scenarios (Schneider et al., 2017); however, our results suggest
that any practice inverting the soil profile has the potential for
deleterious effects on AM fungal diversity. Therefore, we suggest
that such practices should only be considered as extraordinary
measures in soils with root-restricting layers that meet the
criteria for potential benefits of deep tillage (Schneider et al.,
2017). Whenever possible, subsoiling (i.e., deep ripping) should
be preferred over any practice that inverts or mixes the soil
profile. With growing awareness of the potential role of AM
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fungi in sustainable agriculture (Thirkell et al., 2017) acquiring
fine-tuned knowledge about the response of particular AM
fungal phylotypes to tillage and soil mixing events is crucial
if we are to exploit the potential of mycorrhizal technology
(Rillig et al., 2016). Caution is needed while handling subsoil
AM fungal communities if we are to not irrevocably alter
them even before unearthing their ecology and functional
potential.
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