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2
INTRODUCTION

“It ain’t what you don’t know that gets you into trouble. It’s what you know
for sure that just ain’t so.” (On-screen quote attributed to Mark Twain in
the movie “The Big Short” )

The fact that I am now working in the area of discrete geometry would come as
a big surprise to my high-school self. In high school, geometry did not intrigue me
as much as the other mathematical areas. What converted me to this beautiful area
was a free summer during my undergraduate studies, the excellent book [BR15], and
Matthias Beck’s support. Over the course of this summer, I learned that lattice polytopes
are ubiquitous and beautiful objects. While being interesting objects in their own
right, they and their unbounded analogues have applications to algebraic geometry
and commutative algebra [BH93, CLS11, Sta96], optimization [BP03, Stu96], number
theory [BBK+15, BK14, Pom93], combinatorics [BR15, Sta96], and — for Chapter 3
most importantly — to proper graph colorings [BZ06]. What personally got me excited
was the connection to number theory. Parts of Example 2.1.1 are a relict of this time.

In Section 2.1, I want to convince you of the beauty of lattice polytopes and discrete
geometry by giving three explicit examples of how lattice polytopes relate to other areas.
In Section 2.2, we will introduce the basics of lattice polytopes and Ehrhart theory.
Most prominently, we will state Ehrhart’s theorem that the Ehrhart function of a lattice
polytope is a polynomial and the related reciprocity result by Ehrhart and Macdonald,
see Theorem 2.2.1 and Theorem 2.2.6. In Section 2.3, we introduce the relevant basics of
combinatorial commutative algebra. In particular, we introduce the Gorenstein and the
level property, see Definition 2.3.9. In Section 2.4, we review proper graph colorings, the
deletion-contraction formula, and a transfer-matrix method to count walks in graphs.

Equipped with these basics, we turn to the main parts of this thesis. There are
four main parts. Chapter 3 examines proper k-colorings of Cartesian graph products
of the form G × Pn and G × Cn. Here G is any simple graph and Pn and Cn are the
path and cycle graph on n vertices, respectively. It is important to note that both k
and n are treated as variables, so the size of the graphs is not fixed. We will combine
transfer-matrix methods with Ehrhart theory and, in particular, inside-out polytopes
to tackle this problem. Using the underyling symmetries will be a main ingredient.
Chapter 4 is devoted to an examination of level posets, i.e., posets whose order polytope
is level in the sense of Definition 2.3.9. This will be done by examining the Ehrhart
ring of the associated order polytopes. We use the Bellman–Ford algorithm [Bel58] to
test levelness and to make statements about the complexity class. Furthermore, we
study the more general class of alcoved polytopes and see when they are level, i.e., when
their associated Ehrhart rings are level algebras. In Chapter 5, the level property of
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s-lecture hall polytopes will be at the center of our attention. Moreover, we will have a
closer look at the Gorenstein property, which has desirable implications for an associated
generating series. The Gorenstein property and the level property of lattice polytopes are
closely related to semigroups and their associated semigroup ring. The subtle difference
between the associated Ehrhart ring and the associated toric ring lies in the properties
of the underlying semigroup. Affine semigroups and their holes will be object of study
in Chapter 6. In the course of this project, Yanxi Li, Johannes Rauh, Ruriko Yoshida,
and I developed a mathematical software called HASE. This software is available at
http://ehrhart.math.fu-berlin.de/People/fkohl/HASE/. Chapter 7 can be seen as a brief
manual of HASE. The source code of HASE can be found in Chapter 8.

2.1 the ubiquity of lattice polytopes

Lattice polytopes can be described as the solution set of finitely many linear inequalities,
and hence integer points in polytopes correspond to integral solutions to these inequalities.
It is of special interest how many integral solutions there are. Therefore, for a (lattice)
polytope P ⊂ Rd, we define the counting function ehrP : Z≥1 → Z≥0

ehrP (t) := #tP ∩ Zd.

This function is called the Ehrhart function of P . Ehrhart famously proved that ehrP is
a polynomial in t. The complexity of computing this function for 3-dimensional lattice
polytopes is related to number theory:

Example 2.1.1 (Connections to number theory [BK14, BR15]). Richard Dedekind, in
the 1880’s [Ded53], defined what we now call Dedekind sums. For positive integers a, b,
we call

s(a, b) =

b−1∑
k=0

((
ka

b

))((
k

b

))
,

the Dedekind sum of a, b, where

((x)) :=

x− bxc − 1
2 if x /∈ Z,

0 if x ∈ Z.

Historically, Dedekind sums first appeared in the study of the transformation properties
of η(z) := eπiz/12

∏
n≥1

(
1− e2πinz

)
under SL2(Z). While Dedekind sums have been the

object of extensive research in analytic [Alm98, Die59] and algebraic number theory
[Mey57, Sol98], they have also appeared in topology [HZ74, MS79], combinatorics [Bri88,
Pom93], and in algorithmic complexity [Knu81]. Furthermore, they form one of the
building blocks of the Ehrhart polynomials in dimension 3:
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Theorem 2.1.2 ([BR15, Thm 8.11]). Let P be the tetrahedron with vertices (0, 0, 0),
(a, 0, 0), (0, b, 0), and (0, 0, c), where a, b, c ∈ Z≥1 are pairwise relatively prime. Then

ehrP (t) =
abc

6
t3 +

ab+ ac+ bc+ 1

4
t2 +

(
3

4
+
a+ b+ c

4

1

12

(
bc

a
+
ca

b
+
ab

c
+

1

abc
− s(bc, a)− s(ac, b)− s(ab, c)

))
t+ 1.

This theorem tells us that understanding Dedekind sums leads to an understanding of the
Ehrhart polynomial of P . In particular, using that Dedekind sums satisfy a reciprocity
theorem of the form s(a, b) + s(b, a) = const(a, b) for coprime a, b, where const(a, b)
denotes an explicit constant only depending on a and b, one can efficiently compute ehrP .
This reciprocity theorem can also be proven and generalized using and understanding
the integer points in a 2-dimensional fan [BK14, Thm. 4] and [BHM08, Thm. 1].

The next example shows how geometry can be used to count the number of proper
k-colorings of a graph. Proper k-colorings and the chromatic polynomial (see Def. 2.4.1)
will be defined in Section 2.4. Loosely speaking, a proper k-coloring is a labeling of the
vertices with labels from {1, 2, . . . , k} such that connected vertices have different labels.
The chromatic polynomial counts the number of such k-colorings.

Example 2.1.3 (Connections to combinatorics [BZ06]). Let G = ({1, 2, . . . , n}, E) be
a simple graph, i.e., a graph without multiple edges and loops. The number of proper
k-colorings agrees with a polynomial in k, see Theorem 2.4.2. Beck and Zaslavsky showed
that counting proper colorings is that same as counting integer points in dilates of what
is called inside-out polytopes. Following [BZ06], we define the hyperplane arrangement

HG = {xi = xj : {i, j} ∈ E}.

This hyperplane arrangement subdivides P = [0, 1]n into full-dimensional closed regions
R1, R2, . . . , Rm. The pair (P,HG) is called an inside-out polytope. Now we set

ehr◦P ◦,HG
(k) :=

m∑
i=0

ehrR◦i (k), (2.1)

where Q◦ denotes the topological interior of a compact set Q and where ehrR◦i (t) =
#tR◦i ∩ Zn. Now every integer point counted by (2.1) is in bijection with a proper
k − 1-coloring of G. This implies:

Theorem 2.1.4 ([BZ06, Thm. 5.1]). With the notation from above:

ehr◦P ◦,HG
(t) = χG(t− 1).

This geometric set-up has a lot of theoretical consequences and will be extensively used in
Chapter 3. These consequences include the polynomiality of χ, that the leading coefficient
is always 1, and it gives a geometric proof of Stanley’s famous reciprocity theorem for
chromatic polynomials, see Proposition 2.4.3.

3



In general, it is extremely challenging to compute the Ehrhart polynomial of a given
lattice polytope. However, if the lattice polytope has a unimodular triangulation, then
one can infer the Ehrhart polynomial from the combinatorics of this triangulation, see
Theorem 2.2.5. We will give a precise definition in the next section (see Definition 2.2.3),
but for now we will only say that a unimodular triangulation is a very desirable subdivision
of a lattice polytope. In fact, it is so desirable that most lattice polytopes don’t seem to
have one. However:

Example 2.1.5 (Connections to algebraic geometry [KKMSD73, Ch. 3]). This theorem
is due to Knudsen and Mumford, and one of the key steps in the proof is due to Alan
Waterman.

Theorem 2.1.6. Every lattice polytope P has a constant factor c ∈ Z≥1 such that
the dilated polytope cP has a unimodular triangulation.

The proof relies on what is called semi-stable reduction, see [KKMSD73, Ch. 3]. This is
a beautiful example of how algebraic geometric methods give rise to a powerful theorem
in discrete geometry. Moreover, there is a close connection between toric varieties and
lattice polytopes, see for instance [CLS11]. This connection gives rise to a dictionary
with which one can translate properties of toric varieties to properties of polytopes and
vice versa.

2.2 lattice polytopes and ehrhart theory

In this section, we want to give a brief introduction to Ehrhart theory and lattice polytopes.
For a more detailed account of Ehrhart theory and (general) polytopes, we refer the
reader to [BR15, Zie95]. A lattice Λ is a discrete, additive subgroup of Rd. A basis of a
lattice is a set of linearly independent vectors a1, a2, . . . , am, ai ∈ Λ, that generate Λ
over Z. A lattice polytope P ⊂ Rd is the convex hull of finitely many points in Λ, i.e.,

P = conv{v1,v2, . . . ,vr : vi ∈ Λ} :=

{
r∑
i=1

λivi : λi ≥ 0,
r∑
i=1

λi = 1

}
.

The inclusion-minimal set {vi1 ,vi2 , . . . ,vis} such that P = conv {vi1 ,vi2 , . . . ,vis} is
called the vertex set of P and its elements are called the vertices. Similarly, a rational
polytope P ⊂ Rd is the convex hull of finitely many points in Qd, i.e.,

P = conv
{
v1,v2, . . . ,vr : vi ∈ Qd

}
:=

{
r∑
i=1

λivi : λi ≥ 0,
r∑
i=1

λi = 1

}
.

The dimension of P is defined to be the dimension of its affine span, and if P has
dimension d, we say that P is a d-polytope. A d-simplex ∆ = conv{v0,v1, . . . ,vd},
vi ∈ Λ, is called unimodular if v1 − v0, v2 − v0, . . . , vd − v0 generate the lattice Λ. We
will mostly be concerned with the case Λ = Zd.
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Given a lattice polytope P , we recall that the Ehrhart polynomial ehrP is defined as

ehrP (t) := #
(
tP ∩ Zd

)
.

Ehrhart proved the following:

Theorem 2.2.1 ([BR15, Thm 3.8]). If P is a lattice d-polytope, then ehrP is a
polynomial of degree d with leading coefficient vol(P ), where vol(P ) is the Euclidean
volume of P .

This also implies that the formal generating function

EhrP (z) := 1 +
∑
k≥1

ehrP (k)zk =
h∗0 + h∗1z + · · ·+ h∗dz

d

(1− z)d+1

is a rational function with denominator (1−z)d+1 and that the degree of the numerator is
at most d, see [BR15, Lem 3.9]. We call EhrP the Ehrhart series of P and the numerator
is called the h∗-polynomial of P . If we want to emphasize the corresponding polytope P ,
we will write h∗P . The coefficient vector (h∗0, h

∗
1, . . . , h

∗
d) is called the h∗-vector. Moreover,

we define the degree of P , denoted deg(P ), to be deg(P ) := deg h∗(z), and the codegree
of P , denoted codeg(P ) to be codeg(P ) := d + 1 − deg(P ). Instead of studying the
Ehrhart polynomial, it is often times more convenient to work with the Ehrhart series of
a polytope. This is essentially due to the following result by Richard Stanley:

Theorem 2.2.2 ([BR15, Thm. 3.12]). Let P ⊂ Rd be a d-dimensional lattice polytope.
Then

EhrP (z) =
h∗0 + h∗1z + · · ·+ h∗dz

d

(1− z)d+1

and the coefficients h∗i are non-negative integers.

We have previously hinted at a way of determining the Ehrhart polynomial from a
unimodular triangulation, provided such a triangulation exists. To make this more
precise, we first need to define what a unimodular triangulation is:

Definition 2.2.3. A triangulation of a lattice polytope is a subdivision into lattice
simplices such that the intersection of any two simplices is a (possibly empty) face of
both. A unimodular triangulation is a triangulation into simplices, where every full-
dimensional simplex is unimodular. Let fi be the number of i-dimensional simplices
in a given triangulation T . Then the f-vector of a triangulation T is the vector fT :=
(f−1, f0, . . . , fd), where we set f−1 = 1.

Remark 2.2.4. We note that every lattice polytope has a triangulation. However, most
lattice polytopes do not seem to have a unimodular triangulation. We refer the interested
reader to [HPPS14] for a state-of-the-art account of positive results .
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Sometimes it is more convenient to encode the face structure of a triangulation T in
the h-polynomial

hT (z) :=

d−1∑
k=−1

fkz
k+1(1− z)d−1−k.

Given the notation, the attentative reader might have already guessed that the h∗-vector
might be related to the h-vector of a triangulation. This is indeed (sometimes) the case.

Theorem 2.2.5 ([BR15, Thm. 10.3]). If P is an integral d-polytope that admits a
unimodular triangulation T , then

EhrP (z) =
hT (z)

(1− z)d+1
.

In other words, the h∗-polynomial of the Ehrhart series is given by the h-polynomial of
the triangulation T .

Moreover, the h∗-polynomial encodes important algebraic information about the poly-
tope. The Gorenstein property, and thus reflexivity, is completely characterized in terms
of the h∗-vector. For the definitions of the Gorenstein and reflexive properties, we refer
the reader to Definition 2.3.9. For the characterization of these properties in terms of
the h∗-vector, we refer the reader to Theorem 2.3.16. Many additional properties are
known about Ehrhart h∗-polynomials (see e.g [BR15, Hib92]). In fact, classifying the set
of h∗-vectors is one of the most important open problems in Ehrhart theory. Therefore,
inequalities for the coefficients are of special interest, see [Hib90, Sta91, Sta09, Sta16].
Hofscheier, Katthän, and Nill prove a structural result about h∗-vectors, see [HKN16,
Thm. 3.1], where they show that if the integer points of a lattice polytope span the integer
lattice, then h∗ cannot have internal zeros. There are even some universal inequalities
for h∗-vectors, i.e., there are relations among the coefficients that are true independent
of the degree and the dimension of the polytope, see [BH17].

For simplices, there is an easily-stated geometric interpretation for the coefficients of h∗.
Suppose that P is a simplex with vertex set {v0, · · · ,vd}. The (half-open) fundamental
parallelepiped, ΠP , of P is the bounded region

ΠP :=

{
d∑
i=0

ηi(vi, 1) : 0 ≤ ηi < 1

}
.

For simplicies, we can use the fundamental parallelepiped to compute the Ehrhart
h∗-polynomial. In particular, the coefficients are given by

h∗i (P ) = #
{

(v, i) ∈ ΠP ∩ Zn+1
}
,

that is the number of lattice points at height i in ΠP . For more details and exposition,
the reader should consult [BR15].

The polynomiality of ehr has another interesting consequence. A priori, the Ehrhart
function ehr is defined as a counting function with domain Z≥1. However, since ehr
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agrees with a polynomial, we can extend the domain to R (or C). This raises the
question whether other evaluations have nice combinatorial or geometric interpretations.
The following result was conjectured by Ehrhart, but first proven in full generality by
Macdonald.

Theorem 2.2.6 (Ehrhart-Macdonald reciprocity, [BR15, Thm 4.1]). Let P be a
d-dimensional lattice polytope. Then

ehrP (−t) = (−1)d ehrP ◦(t), (2.2)

where ehrP ◦(t) counts the number of integer points in the interior of tP .

Remark 2.2.7. There are generalizations of Theorem 2.2.1 and Theorem 2.2.6 to rational
polytopes, but since we will only work with lattice polytopes, we omit the precise
statements and instead refer the reader to [BR15, Thm. 3.23, Thm. 4.1].

2.3 lattice polytopes and commutative algebra

In this section, we will see how commutative algebra can be used to capture interesting
aspects of lattice polytopes. This section is based on [BG09, Ch. 6]. Let P ⊂ Rd be
a lattice d-polytope with vertex set V (P ) and let k be an algebraically closed field of
characteristic zero. We define the cone over P as

cone(P ) := spanR≥0
{(v, 1) : v ∈ V (P )} ⊂ Rd × R.

The set

M(P ) :=

{
x : x =

∑
i∈I

λi(vi, 1), for vi ∈ P ∩ Zd and λi ∈ Z≥0, ∀i ∈ I

}
of integral linear combinations of integer points in (P, 1) forms an additive semigroup, i.e.,
a set that is closed under addition with a neutral element, where addition is associative.
We remark that some authors would call this set a monoid, since they don’t require
semigroups to contain the neutral element. Let M =M(P ) be such a semigroup. We
call an element x ∈M \ {0} irreducible if x = z + y implies that either y = 0 or z = 0.
The Hilbert basis H(M) is the unique set of irreducible elements of this semigroup. The
integer points in (P, 1) also generate a lattice Λ

Λ := ΛP :=

{
x : x =

∑
i∈I

λi(vi, 1), for vi ∈ P ∩ Zd and λi ∈ Z, ∀i ∈ I

}
.

We say that P has the integer-decomposition property (IDP) if M(P ) = cone(P ) ∩ Zd+1,
and we say that P is normal ifM(P ) = cone(P )∩Λ. As not every polytope is normal, it
is natural to defineM(P ) := cone(P )∩Λ and CZ(P ) := cone(P )∩Zd+1. We remark that
if P has a unimodular triangulation, then P automatically has the IDP. Furthermore,
we define the affine semigroup ring of P to be

k[P ] := k[CZ(P )] := k[xp · ym : (p,m) ∈ CZ(P )] ⊂ k[x±1
1 , . . . , x±1

n , y].
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Remark 2.3.1. A few comments are in order, since this definition differs from parts of
the literature. Often times, one considers the ring k[M(P )] which is a normal semigroup
ring by [MS05, Prop. 7.25]. However, we want to use commutative algebra to count
lattice points in dilates of P , so it is more convenient to work with the normal, affine
semigroup CZ(P ). In this context, k[P ] is sometimes called the Ehrhart ring of P .

The ring k[P ] is also a finitely generated k-algebra of Krull dimension d + 1, which
inherits a natural Z≥0-grading given by the y-degree. Therefore, we can write it as

k[P ] =
⊕
i∈Z≥0

k[P ]i,

where k[P ]i is the k-vector space generated by the degree i monomials. Next, we define
a graded version of locality:

Definition 2.3.2 ([BG09, Def. 6.15]). Let R be a Z≥0-graded ring. Then we say that
R is ∗local with ∗maximal ideal m if the homogeneous nonunits of R generate the proper
ideal m.

Remark 2.3.3. For any lattice polytope P , the graded ring k[P ] is ∗local with ∗maximal
ideal m =

⊕
i≥1 k[P ]i.

We can consider the Hilbert function hilb : Z≥0 → Z≥0 given by

hilb(t) := dimk k[P ]t.

As with the Ehrhart function, it makes sense to examine the formal power series

Hilb (k[P ]; z) :=
∑
t≥0

hilb(t)zt,

which we call the Hilbert series of k[P ]. This Hilbert series is in fact a rational function:

Theorem 2.3.4 ([BG09, Thm. 6.39, 6.40]). Let P be a lattice d-polytope. Then the
Hilbert series of k[P ] is of the form

Hilb (k[P ]; z) =
n(z)

(1− z)d+1
,

where n is a polynomial with non-negative, integral coefficients.

The reader might have noticed that ehrP (t) = hilbP (t) and thus EhrP (z) = Hilb (k[P ]; z),
a fact that is used in [MS05, Sec. 12.1] to prove the polynomiality of ehrP .

The non-negativity of the coefficients in Theorem 2.3.4 is a consequence of k[P ] being
Cohen–Macaulay. We will now follow [BG09, Sec. 6.A] to describe the basics of Cohen–
Macaulay rings. For more about Cohen–Macaulay rings, we refer the reader to the
excellent book [BH93].

Let R be a ring and let M be an R-module. Elements x1, x2, . . . , xr ∈ R form a
(regular) M -sequence if

8



1. M/(x1, x2, . . . , xr)M 6= 0,

2. and xi is a non-zero divisor of M/(x1, x2, . . . , xi−1)M for all i ∈ {1, 2, . . . , r}.

It is a consequence of Rees’s theorem [BG09, Thm. 6.1] that if R is a noetherian ring,
then all maximal M -sequences have the same, finite, length.

In what follows, we will always assume that R is a ∗local , noetherian ring of Krull
dimension d with ∗maximal ideal m and thatM is a finitely generatedR-module. Elements
x1, x2, . . . , xd ∈ m are called a system of parameters if m = Rad(x1, x2, . . . , xd), or
equivalently, dimR/(x1, . . . , xd) = 0. A system of parameters of M is a sequence x1, x2,
. . . , xe ∈ m such that dimM/(x1, x2, . . . , xe)M = 0, where e = dimM . We note that
the dimension of an R-module M is defined as the Krull dimension of R/Ann(M) where
Ann(M) := {x ∈ R : xM = 0}.

There is a graded analogue of this definition, namely a homogeneous system of param-
eters. Let R be a finitely generated, positively graded k-algebra of Krull dimension d,
i.e., R =

⊕
i≥0Ri, where R0 = k, and set m =

⊕
i>0Ri. Then homogeneous elements

x1, x2, . . . , xd form a homogeneous system of parameters if Rad(x1, x2, . . . , xd) = m. In
this setting, there always exists a homogeneous system of parameters x1, x2, . . . , xd.
Moreover, if R is generated in degree 1 and k is infinite, then such x1, x2,. . . , xd can be
chosen to be of degree 1 [BG09, Thm. 6.3].

Example 2.3.5. Let ∆ = conv{v0,v1, . . . ,vd} be a lattice d-simplex with the integer-
decomposition property. Let’s consider the case R = k[∆] =

⊕
i≥0 k[∆]i for an infinite

k. Then there is a natural choice for a homogeneous system of parameters given by
the monomials x0, x1, . . . , xd corresponding to the integer points (v0, 1), (v1, 1), . . . ,
(vd, 1). This is indeed a homogeneous system of parameters, as the quotient contains only
finitely many equivalence classes, which are given by the integer points in the half-open
fundamental parallelepiped Π∆ and thus dimR/(x0, . . . , xd) = 0.

Furthermore, we define depth(M) to be the length of a maximal M -sequence in m.
We say that M is Cohen–Macaulay if depth(M) = dimM . A noetherien ring R is called
Cohen–Macaulay if it is Cohen–Macaulay as a module over itself. To relate this definition
to homogeneous systems of parameters, we mention the following result:

Theorem 2.3.6 ([Sta96, Thm. 5.9]). LetM have a homogeneous system of parameters.
Then M is Cohen–Macaulay if and only if

1. every homogeneous system of parameters is a regular sequence, if and only if

2. M is a finitely-generated and free k[x1, . . . , xd]-module for some (equivalently for
every) homogeneous system of parameters x1, x2, . . . , xd.

As mentioned above, in our case, there always exists a homogeneous system of parameters.
We will now give an example of a ring which is not Cohen–Macaulay illustrating the
previous theorem.

Example 2.3.7 ([ILL+07, Ex. 10.6, Ex. 10.12]). Let R = k[s4, s3t, st3, t4]. Then R has
Krull dimension 2 and there is a homogeneous system of parameters given by s4 and t4.
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We know that R is a domain and thus s4 is not a zero divisor. However, t4 is a zero
divisor in R/s4R, since

t4(s3t)2 = s4(st3)2

and (s3t) /∈ s4R. Hence, R is not Cohen–Macaulay. Another way to see this is noticing
that R is a finitely generated module over k[s4, t4]. The minimal generating set is given
by 1, s3t, st3, s6t2, s2t6. However, this module is not free, since we have the following
relation between the generators

t4(s3t)2 = s4(st3)2 ⇐⇒ t4s6t2 = s4s2t6.

We now want to relate the rather abstract notion of Cohen–Macaulay rings/modules
to our geometric setting. Let P ⊂ Rd be a lattice d-polytope and let k[P ] be defined as
above. By a seminal result of Melvin Hochster [Hoc72], k[P ] is Cohen–Macaulay:

Theorem 2.3.8 ([BG09, Thm. 6.10]). Let M be a normal, affine semigroup. Then
k[M ] is Cohen–Macaulay for every field k.

From now on we will hence always assume that R is Cohen–Macaulay. Several important
properties of k[P ] can be stated in terms of the canonical module ωk[P ], which is also
known as the dualizing module.

Definition 2.3.9. The canonical module of R, ωR, is the unique module (up to isomor-
phism) such that ExtdR(k, ωR) = k and ExtiR(k, ωR) = 0 when i 6= d. We say that R is
Gorenstein if ωR ∼= R as an R-module, or equivalently if ωR is generated by a single
element. Moreover, we say that R is level if ωR as an R-module is generated by elements
of the same degree. A lattice polytope P is Gorenstein (level) if k[P ] is Gorenstein (level).
We say that P is reflexive if it is Gorenstein and has an interior lattice point.

Definition 2.3.9 will be illustrated in Example 2.3.13 and in Example 2.3.14. We will
mostly be concerned with semigroup rings k[P ] arising from lattice polytopes P . In this
case, the canonical module has a particularly nice description, which is why we omit a
proper definition of the Ext-functor:

Theorem 2.3.10 (Danilov,Stanley, [BG09, Thm. 6.31]). Let the notation be as above.
Then the ideal generated by the monomials corresponding to interior integer points,
cone(P )◦ ∩ Zd+1, is the canonical module of k[P ].

Motivated by this theorem, we make the following definition:

Definition 2.3.11. We say that x ∈ cone(P )◦ ∩ Zd+1 is minimal if the corresponding
monomial is a minimal generator of ωk[P ].

Remark 2.3.12. Theorem 2.3.10 implies that k[P ] being Gorenstein is equivalent to saying
that there exists c ∈ Zd+1 such that

c+ (cone(P ) ∩ Zd+1) = cone(P )◦ ∩ Zd+1,

and c is called the Gorenstein point of cone(P ).
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We illustrate these definitions and results in the following example:

Example 2.3.13 (Gorenstein). Let P = [0, 1]2 be the unit square. Then the cone over
the polytope is

cone(P ) = {λ1(0, 0, 1) + λ2(1, 0, 1) + λ3(0, 1, 1) + λ4(1, 1, 1) : λi ≥ 0}.

x1

x2

x3

P

2P

3P

Figure 2.1: The unit square P and its dilates 2P and 3P (green), the cone over P (gray) and the
(conical hull of the) canonical module (blue).

The semigroup is generated (over Z) by the points (0, 0, 1), (1, 0, 1), (0, 1, 1), and
(1, 1, 1). There are exactly (t + 1)2 many monomials of degree t and thus hilb(t) =
dimk[P ]t = (t+ 1)2. Figure 2.1 shows the monomials of degree less than four. Hence,
the Hilbert series Hilb (k[P ]; z) equals

Hilb (k[P ]; z) = 1 +
∑
t≥1

(t+ 1)2zt =
1 + z

(1− z)3
.

Thus [0, 1]2 is a polytope of degree 1 with codegree 2. The canonical module is generated
by the interior lattice points of cone(P ). There is a unique interior lattice point of lowest
degree, namely (1, 1, 2). As it can be seen, this point has lattice distance one to all facets
showing that it indeed is a Gorenstein point, see [BG09, Thm. 6.33].

Example 2.3.14 (Level). Let P := [0, 2]× [0, 1]. Then the cone over the polytope is

cone(P ) = {λ1(0, 0, 1) + λ2(0, 1, 1) + λ3(2, 0, 1) + λ4(2, 1, 1) : λi ≥ 0}.
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x1

x2

x3

P

Figure 2.2: The box P and its dilate 2P , the cone over P (gray) and the (conical hull of the) canonical
module (blue).

The semigroup is generated (over Z) by the points (0, 0, 1), (2, 0, 1), (0, 1, 1), and
(2, 1, 1). There are exactly (t+ 1)(2t+ 1) many monomials of degree t and thus hilb(t) =
dimk[P ]t = (t+ 1)(2t+ 1). Figure 2.2 shows the monomials of degree less than three.
Hence, the Ehrhart series EhrP (z) equals

EhrP (z) = 1 +
∑
k≥1

(k + 1)(2k + 1)zk =
1 + 3z

(1− z)3
.

Thus P is a polytope of degree 1 with codegree 2. The canonical module is generated by
the three interior integer points of lowest degree (marked red), namely (1, 1, 2), (2, 1, 2),
and (3, 1, 2). This shows that P is level.

An equivalent formulation of the level property is often more fruitful for computational
purposes. For any R-module M , the socle of M is soc(M) := {u ∈M : mu = 0} where
m is the unique ∗maximal ideal of R. It is equivalent to say that R is level if for any
homogeneous system of parameters x1, . . . , xd of R, all the elements of the graded vector
space soc(R/(x1, . . . , xd)) are of the same degree (see [Sta96, Chapter III, Proposition
3.2]).

We have seen that the canonical module encodes interesting algebraic properties. To
examine the canonical module, ωk[P ], of the canonical module, it is natural to think about
the Hilbert series of ωk[P ]. Richard Stanley proved the following.
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Theorem 2.3.15 ([BG09, Thm. 6.41]). With the notation from above, we have:

Hilb
(
ωk[P ]; t

)
= (−1)d+1Hilb

(
k[P ]; t−1

)
,

where d = dimP .

This implies the following result:

Theorem 2.3.16 ([Sta78, Thm. 4.4]). A lattice polytope P is Gorenstein if and only
if h∗(z) is palindromic. Moreover, the Gorenstein index is given by the codeg(P ), i.e.,
the dilated polytope codeg(P ) · P is reflexive.

Remark 2.3.17. In Example 2.3.13, we saw that the cone over the polytope [0, 1]2

was indeed Gorenstein. Furthermore, we computed the corresponding h∗-polynomial
h∗(z) = 1 + z, which in fact is palindromic as predicted by Theorem 2.3.16. Similarly,
the h∗-polynomial of [0, 2]× [0, 1] is given by h∗(z) = 1 + 3z, which is not palindromic.

2.4 lattice polytopes and graph theory

Given a graph G = (V,E), we say that a function c : V → {1, 2, . . . , k} is a k-coloring.
Furthermore, if it also satisfies c(u) 6= c(v) for all {u, v} ∈ E, we call c a proper k-coloring
of G. When we are talking about proper graph colorings, we will always assume that our
graph is simple, i.e., it does not have any loops or multiple edges. Historically, most of the
early results about proper colorings of graphs deal with planar graphs, i.e., graphs that
can be embedded into R2 such that no two edges intersect except for at the nodes. The
four-color conjecture stated that every planar has a proper 4-coloring. This conjecture was
proven by Appel and Haken using extensive computer calculations, see [AHK77]. In an
attempt to prove the four-color conjecture, Georg Birkhoff introduced for planar graphs
what is now known as the chromatic polynomial. Whitney generalized this definition to
arbitrary graphs, see [Whi32].

Definition 2.4.1. Let G = (V,E) be a simple graph. For k ∈ Z≥1, we define the
counting function

χG(k) := #proper k-colorings of G.

The function χG is called the chromatic polynomial of G.

As the name suggests, χ agrees with a polynomial.

Theorem 2.4.2 ([Whi32]). Let G be a simple graph on n vertices. Then χG is a
monic polynomial in k of degree n.

This statement has a beautiful proof based on deletion-contraction. Given a graph
G = (V,E) and an edge e = {u, v} ∈ E, we define that deletion of G with respect to e
as G\e := (V,E \ {e}). The contraction G/e of G along e is obtained by identifying the
nodes u and v and removing all edges between them. Deletion-contraction now says

χG\e(k) = χG(k) + χG/e(k). (2.3)
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Equation (2.3) is based on the simple observation that there are two types of proper
colorings of G\e, namely proper colorings c where c(u) = c(v) and proper colorings where
c(u) 6= c(v). Colorings, where c(u) = c(v), are in bijection with proper colorings of G/e
and colorings, where c(u) 6= c(v), are in bijection with proper colorings of G.

e

u v

G G\e

u v

G/e

u ∼ v

Figure 2.3: Deletion-contraction along e.

We now list some basic facts about the chromatic polynomial, which all except for the
second can be proven with methods described in Chapter 3. Let G be a simple graph on
n vertices.

� The chromatic polynomial χG is a polynomial of degree n with leading coefficient 1.

� The coefficients of χG alternate in sign and they form a log-concave sequence, see
[Huh12, Cor. 27].

� The second highest coefficient equals −#E.

� The chromatic polynomial is a product of the chromatic polynomials of the connected
components of the graph.

The last remark implies that in order to understand the chromatic polynomial, it is
enough to focus on the connected components of the graph. Therefore, we will always
assume that our graphs are connected unless otherwise stated. As was the case with
the Ehrhart polynomial, the polynomiality of χ extends the domain from Z≥1 to R.
This again raises the question whether we can find an interpretation for values at (say)
negative integers. This question was answered by Richard Stanley [Sta73], where he
famously showed that chromatic polynomials satisfy a reciprocity theorem by relating it
to acyclic orientations. An acyclic orientation of a graph G is an orientation of the edges
such that the directed graph does not contain any cycles, see Figure 2.4

Figure 2.4: G, an acyclic orientation of G, and a cyclic orientation of G.

Given an acyclic orientation α of a graph G and given a (not necessarily proper)
k-coloring c, we say that (α, c) are compatible if ci ≥ cj , where cl := c(l), whenever the
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orientation of the edge {i, j} is (i, j). We give Beck’s and Zaslavsky’s reformulation of
[Sta73, Theorem 1.2]:

Proposition 2.4.3. [BZ06, Cor. 5.5] The number of pairs (α, c) consisting of an
acyclic orientation of a simple graph G and a compatible k-coloring equals (−1)nχ(−k),
where n is the number of vertices of G. In particular, (−1)nχ(−1) equals the number
of acyclic orientations of G.

Again, this result can be proven using inside-out polytopes and Ehrhart theory, see
Section 3. We will prove a version of this theorem, where we partially color an induced
subgraph, see Theorem 3.4.13.

Example 2.4.4. Let G = C3 be the cycle graph on 3 vertices, see Figure 2.4. Then
χG(k) = k(k − 1)(k − 2), since every node is connected to all of the other nodes. Now
the evaluation χG(−1) = −6 indicates that there are 6 acyclic orientations of the edges.
There are 23 = 8 possible orientations of the edges and only 2 give rise to a cyclic
orientation illustrating Proposition 2.4.3.

The previous results were mainly about proper colorings of graphs. Now we will shift
gears and talk about counting the number of walks in a graph. This can be done using a
transfer-matrix method. We will follow [Sta12, Sec. 4.7] to introduce this method, which
we will revisit in Chapter 3. We will state the procedure for directed graphs, as we will
work with directed graphs in Chapter 4. This method can be adapted to undirected
graphs by replacing an undirected edge {u, v} by edges (u, v) and (v, u). A directed
graph D is a triple D = (V,E, ϕ), where V = {v1, v2, . . . , vp} is the set of nodes, E is
the set of (directed) edges, and ϕ : E → V × V is a map determining the direction of the
edges. If ϕ(e) = (u, v), then we say that the edge e has initial node u and target node v,
denoted init(e) = u and fin(e) = v. A walk Γ from u to v of length n is a sequence of
edges e1e2 . . . en satisfying init(e1) = u, fin(ei) = init(ei+1) for 1 < i < n, and fin(en) = v.
If u = v, then Γ is called a closed walk. Moreover, we define a weighted digraph D to be
a digraph D together with a weight function w : E → R. If Γ = e1e2 . . . en, we set the
weight of Γ to be w(Γ) :=

∏n
i=1w(ei). For every positive integer n, we define

Aij(n) =
∑

Γ

w(Γ),

where the sum ranges over all walks Γ of length n from node vi to node vj . We define
the transfer matrix of G to be the matrix

Aij =
∑
e

w(e)

where the sum is taken over all edges with init(e) = vi and fin(e) = vj . As it turns out,
we can interpret the Aij(n) as the entries of a certain matrix:

Theorem 2.4.5 ([Sta12, Thm. 4.7.1]). Let n ∈ Z>0. Then Ani,j = Ai,j(n), where we

define A0 := I and where Ani,j is the (i, j)-entry of the matrix An.
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Proving this theorem is a standard exercise in combinatorics classes, as the proof essentially
is matrix multiplication. The matrix A is often referred to as the adjacency matrix of D.
However, we will only use the term adjacency matrix for an undirected, simple graph G
with w ≡ 1, i.e.,

Aij =

1 if {vi, vj} ∈ E,

0 otherwise.

In this case, we obtain the following corollary:

Corollary 2.4.6. Let G be an undirected, simple graph and let A be the adjacency
matrix of G. Then (An)ij counts the number of walks of length n from vi to vj .

Remark 2.4.7. The number of closed walks is counted by trace of An. Since the trace is
the sum of the eigenvalues, and since the (absolute value-wise) biggest eigenvalue λmax is
positive by the Perron–Frobenius theorem [Mey00, Ch. 8], the trace is asymptotically
dominated by λnmax. where we implicitly use that G is connected.

We want to illustrate the previous result in a simple example:

v2

v3

v1 v1 v2

v3

v1 v2

v3

Figure 2.5: G = C3 and the two walks of length 2 from v1 to v1.

Example 2.4.8. Let G = C3, see Figure 2.5. The adjacencey matrix of G is given by

A =

0 1 1

1 0 1

1 1 0


and

A2 =

2 1 1

1 2 1

1 1 2

 .

Now we see that (A2)12 = a11a11 + a12a21 + a13a31 = 2 is the number of walks of length
2 from vertex v1 back to itself, as predicted by Theorem 2.4.5. The walks are shown
in Figure 2.5. We specifically wrote out matrix multiplication to illustrate that a1iai1
counts the number of walks from v1 to v1 via the node vi. This product is 1 if and only
if all factors are 1 and it is 0 otherwise. The sum is over all possible intermediate nodes.
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3
TRANSFER -MATRIX METHODS MEET EHRHART
THEORY

“We learned to be happy. We danced ’round the hall. And learning to count
was the key to it all.” (Sesame Street)

This chapter is joint work with Alexander Engström and based on [EK18].

3.1 introduction

Graph colorings have been intriguing mathematicians and computer scientists for decades.
Historically, graph colorings first appeared in the context of the 4-color conjecture. For
planar graphs, Birkhoff — trying to prove this conjecture — introduced what is now called
the chromatic polynomial. Whitney later generalized this notion from planar graphs to
arbitrary graphs, see [Whi32]. Chromatic polynomials are one of the fundamental objects
in algebraic graph theory with many questions about them still unanswered. For instance,
in 1968 Read asked which polynomials arise as chromatic polynomials of some graph.
This question remains wide open to this day. However, some progress has been made. In
2012, June Huh showed that the absolute values of the coefficients form a log-concave
sequence, see [Huh12, Thm. 3], thus proving a conjecture by Rota, Heron, and Welsh.
Not only classifying chromatic polynomials is extremely challenging, but also explicitly
computing the coefficients turns out be #P -hard, see [JVW90].

In the first part of this chapter, we examine proper k-colorings of Cartesian graph
products of the form G× Pn and G× Cn, where G is an arbitrary graph and Pn (Cn)
is the path (cycle) graph on n nodes, respectively. The motivation for this problem is
twofold:

First, this problem lies at the intersection of transfer-matrix methods and Ehrhart
theory, both areas being interesting in their own right. Classically, transfer-matrix
methods have been used to count the number of (possibly closed) walks on weighted graphs.
However, transfer-matrix methods also made an appearance in seemingly unrelated areas
such as calculating DNA-protein-drug binding in gene regulation [Tei07], the 3-dimensional
dimer problem [Ciu98], counting graph homomorphisms [LM08], computing the partition
function for some statistical physical models [FLS07], and determining the entropy in
physical systems [FP05]. One of the big problems in these applications is that the size
of the transfer matrices increases extremely fast as the size of the system increases.
Therefore, one needs to either limit the size of the system or find a way of “compactifying”
these transfer matrices. In [Ciu98], Ciucu uses symmetry to reduce the size of the matrix.
Similar techniques have also been used by [LM08]. We follow and expand these ideas.

Second, this problem also has direct applications to physics: In [BEMPS10, Sec. 6], it
is described how the chromatic polynomial of graphs of the form G× Pn is related to the
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zero-temperature antiferromagnetic case of the k-state Potts model. If G represents a
molecular structure, then G×Pn corresponds to several connected layers of that molecular
structure. The k colors correspond to k different states of the atoms. Counting the
number of possible combinations is the same as counting the number of colorings. If we
furthermore assume that two adjacent atoms are not allowed to be in the same state, we
arrive at a classical proper coloring problem. Since n is very large in physical systems
and also k may vary, the (doubly or single) asymptotic behavior is of interest.

Our work combines transfer-matrix methods with Ehrhart theory. As an intermediate
step, we examine proper colorings of a graph, where some nodes are already colored. We
call these colorings restricted colorings. The associated counting function is a polynomial
and it satisfies a reciprocity statement, i.e., there is a combinatorial interpretation for
evaluations of this counting function at negative integers.

Theorem (Theorem 3.4.13). Let Γ = ({1, 2, . . . , n}, E) be a graph and fix a proper
k′-coloring c′ : V ′ → {1, 2, . . . , k′} on the induced subgraph Γ|V ′ for a subset V ′ ⊂ V (Γ).
Then, for k ≥ k′, the restricted chromatic polynomial

χc′,Γ(k) = #proper k-colorings c of Γ such that c|V ′ = c′. (3.1)

is a polynomial of degree #V −#V ′ =: s with leading coefficient 1, whose coefficients
ai alternate in sign, and whose absolute values of the coefficient form a log-concave
sequence, i.e., a2

i ≥ ai−1ai+1 holds for 0 < i < s. The second highest coefficient an−1 is
given by

−an−1 = #edges {vi, vj} such that {vi, vj} * V ′.

Moreover, we have the reciprocity statement

χc′,Γ(−k) = (−1)s#(α, c) of Γ with c|V ′ = c′

= (−1)sχc′,Γ(k),

where (α, c) is a pair of an acyclic orientation α and a compatible (not necessarily
proper) k-coloring, c, of Γ.

If a graph is not connected, the chromatic polynomial is a product of the chromatic
polynomials of its connected components. Therefore, we will — without loss of generality —
from now on assume that all our graphs are connected.

With this result at hand, we turn to examine proper colorings of G×Pn and G×Cn. In
Definition 3.4.4, using a group action and restricted k-colorings, we define a compactified
transfer matrix L. The rows and columns of L are labeled by orbits o1, o2, . . . , op of this
group action, see Definition 3.4.1. As it turns out, all entries of L are polynomials in k:
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Theorem (Theorem 3.4.14). With the notation from Theorem 3.4.13 and with k ≥ N ,
we have:

1. Every entry Loi,oj (k) equals the sum of Ehrhart polynomials of lattice inside-
out polytopes of dimension #colors of oj and hence is a polynomial of degree
#colors of oj ,

2. Loi,oj (k) is independent of the choice of the representative, i.e., it is well-defined,
and

3. #oi · Loi,oj (k) = χGoi,oj
(k), where

χGoi,oj
(k) =#proper k-colorings of G× P2 : coloring of G× {1} is in oi

and coloring of G× {2} is in oj .

The matrix L in fact behaves like a transfer matrix:

Theorem (Theorem 3.4.17). Let V (Pn+1) = {1, 2, . . . , n + 1} and let G be any
graph. Let o1, o2, . . . , op be the orbits as defined in Definition 3.4.1. Then, for k ≥
#colors used in oi, the (oi, oj)-entry of Ln counts the number of proper k-colorings of
G× Pn+1, where G× {1} is fixed by a coloring in orbit oi, and where the coloring of
G× {n+ 1} lies oj .

Moreover, L can be used to explicitly compute the chromatic polynomial of G× Pn.

Corollary (Corollary 3.4.20). Let G× Pn+1 and L be as above. Then

χG×Pn+1(k) = (w1(k), . . . , wp(k))Ln1, (3.2)

where wi(k) is the size of oi and 1 := (1, . . . , 1)t.

The row sums of this matrix also satisfy a reciprocity statement:

Proposition (Proposition 3.4.27). LetL ∈ Zp×p be as above, letLni :=
∑p

k=1 (Ln)i,k
be the ith row sum of Ln, and let V (Pn+1) = {1, 2, . . . , n+1}. Then, for k ≥ N = #V (G),
we have

Lni (−k) = (−1)Nn#(α, c) of G× Pn+1 where G× {1} is colored by repr. of oi, (3.3)

where (α, c) is a pair of an acyclic orientation α and a compatible oi-restricted k-coloring
c.

Asymptotically, the power of the biggest eigenvalue λn−1
max of L determines the number

of proper colorings of G× Cn. We give explicit bounds of this eigenvalue in terms of the
row sums. Let δ(L) and ∆(L) be the smallest and biggest row sums of L, respectively.
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Proposition (Proposition 3.4.32). Let G be a graph and N = #V (G) and let δ(L)
and ∆(L) be as above. Then the doubly asymptotic behavior of the number of proper
k-colorings of G× Cn is dominated by λmax and

δ(L) ≤ λmax ≤ ∆(L),

where δ(L) =
∑N

i=0 aik
i, ∆(L) =

∑N
i=0 bik

i, aN = bN , and aN−1 = bN−1.

This chapter is structured as follows. In Section 3.2, we introduce some basic notions about
graphs. In particular, we introduce the Cartesian graph product and the automorphism
group of a graph. In Section 3.3, we introduce a transfer-matrix method and show how
one can use this to count the number of proper colorings when the number of colors is
fixed. We then — following [BZ06] — introduce inside-out polytopes and show how to
count proper colorings of G× Pn when n is fixed. In Section 3.4, we illustrate how one
can use symmetry to define a compactified transfer matrix L, whose size does not depend
on n. We state and prove our main results about this matrix L. We end this section,
with a brief interlude on counting the number orbits under a group action, where Bell
numbers make a surprising appearance.

3.2 background and notation

In this section, we introduce two prominent families of graphs, graph automorphisms,
the Cartesian product of graphs, as well as restricted, proper k-colorings. We end this
section by stating two explicit counting problems that we address in Section 3.4, see
Problem 3.2.3. We assume all our graphs G to be finite and we globally set N := #V (G).
Moreover, we define the path graph Pn to be the graph on the vertex set [n] with edges
{i, i+ 1} for i ∈ [n]. We also define the cycle graph Cn to be the graph with vertex set
[n] and with edge {{i, i+ 1} : i ∈ [n− 1]} ∪ {1, n}. A graph automorphism of a graph
G = (V,E) is a permutation σ of the vertex set such that {i, j} is an edge if and only
if (σ(i), σ(j)) is an edge. The set of automorphisms of a graph G together with the
composition operation forms a group, which is called the automorphism group of G.

Example 3.2.1 (Automorphism group of Cn). Let G = Cn be the cycle graph on n
nodes. The standard way of representing G is by drawing it as a regular n-gon. Now one
notices that every graph automorphism has to be a symmetry of the n-gon and vice versa.
Therefore, the automorphism group of Cn is the dihedral group Dn with 2n elements. In
particular, if n = 5, the dihedral group D5 is generated by the cycle (12345) and by the
permutation (1)(25)(34). The cycle (12345) corresponds to the rotation symmetry of the
regular 5-gon and the permutation (1)(25)(34) corresponds to a flip of the regular 5-gon.

This chapter mainly focuses on a special family of graphs, namely the Cartesian product
of an arbitrary graph G with either the path graph Pn or the cycle graph Cn.

Definition 3.2.2. Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) be two graphs.
The Cartesian product G1 ×G2 (sometimes in the literature also denoted G1�G2) is the
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(a) P3 × P6.

(b) C4 × P3.

Figure 3.1: The Cartesian graph product illustrated.

graph with vertex set V (G1)× V (G2), and vertices (u1, v1) and (u2, v2) are connected by
an edge if

� either u1 = u2 and {v1, v2} ∈ E(G2),

� or if v1 = v2 and {u1, u2} ∈ E(G1).

Figure 3.1 illustrates Definition 3.2.2.
We have already seen the notion of proper graph colorings and the related reciprocity

statement in Section 2.4. In this chapter, we will come across what we call a c′-restricted,
proper k-coloring. Let Γ = (V,E) be a graph and fix a proper k′-coloring c′ : V ′ →
{1, 2, . . . , k′} on the induced subgraph Γ|V ′ of a subset V ′ ⊂ V (Γ), i.e., a proper k′-
coloring on the graph Γ|V ′ = (V ′, E′), where E′ = {{i, j} : i, j ∈ V ′, {i, j} ∈ E}. Then,
for k ≥ k′, we define the c′-restricted chromatic polynomial

χc′,Γ(k) = #proper k-colorings c of Γ such that c|V ′ = c′.

This name will be justified in Theorem 3.4.13, where we will also state a restricted
analogue of Proposition 2.4.3, which again is related to restricted acyclic orientations. A
not necessarily proper c′-restricted k-coloring is compatible with an acyclic orientation α
if

1. (α, c) are compatible in the usual sense,

2. and if v ∈ V \ V ′ is adjacent to u1, u2, . . . , us ∈ V ′ with c′(u1) = · · · = c′(us), then
the orientations of the edges {v, ui} have to be the same for all i.

We are now ready to state the main problems of the first part of this chapter:

Problem 3.2.3. 1. How many proper k-colorings does the Cartesian graph product
G× Pn have?

2. How many proper k-colorings does the Cartesian graph product G× Cn have?

We would like to remark that both k and n are variables. It is enough to consider the
case where G is connected, since otherwise the chromatic polynomial is a product of the
chromatic polynomials of the connected components. Hence, we will always assume that
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G is connected, a fact we will use to properly apply the Perron–Frobenius theorem, see
[Mey00, Ch. 8]. We answer Question 1 in Cor 3.4.20 and we will describe the doubly
asymptotic behavior of Question 2 in Proposition 3.4.32.

There are two prominent special cases which we will address in Section 3.3:

1. k is fixed and n varies (see Section 3.3.1),

2. n is fixed and k varies (see Section 3.3.2).

3.3 prominent special cases

3.3.1 Transfer-Matrix Methods

In this section, we want to introduce a transfer-matrix method and apply it to Prob-
lem 3.2.3 in the case where k is fixed. For a brief introduction to transfer-matrix
methods, we refer the reader to Section 2.4. Let G be a connected graph with vertex set
V (G) = {v1, . . . , vp}. To count the number of proper k-colorings of G× Pn, we associate
a new graph MG to G. We define MG to be the graph with

� vertex set C, where C is the set of proper k-colorings of G,

� and where two vertices (c1(v1), , . . . , c1(vp)) and (c2(v1), . . . , c2(vp)) are connected
if c1(vi) 6= c2(vi) for all i ∈ [p].
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(1,2,1)

(1,3,1)

(2,1,2)

(2,3,2)

(3,1,3)

(3,2,3)

(1,2,3)

(1,3,2)

(2,1,3)

(2,3,1)

(3,1,2)

(3,2,1)

Figure 3.2: MP3
.

Figure 3.2 shows MP3 for three colors. This construction establishes a connection
between k-colorings of G × Pn (G × Cn) and walks (closed walks) of length n in MG,
respectively. By abuse of notation, let u1u2 . . . un be a walk on MG. By construction,
this walk corresponds to the proper k-coloring of G× Pn, where G× {i} is colored by ui

for all i. Similarly, if the walk is closed and thus u1 = un, we get a corresponding proper
k-coloring of G×Cn−1. Therefore, we can count the number of k-colorings of G× Pn by
computing powers of the adjacency matrix AMG

of MG. Moreover, we can asymptotically
count the number of colorings of G× Cn by analyzing the biggest eigenvalue of AMG

.

The size of the transfer matrix AMG
is χG(k)× χG(k), since the number of vertices of

MG is the number of proper k-colorings of G. Figure 3.3 shows AMP3
for four colors.
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Figure 3.3: Adjacency matrix of MP3
for 4 colors.

In Section 3.4, we identify a compactified transfer matrix L whose size does not depend
on k and which can be used to count the number of proper k-colorings of G× Pn for all
k. Furthermore, we show that the biggest eigenvalue of L equals the biggest eigenvalue
of AMG

for all k. We also give a combinatorial and a geometric interpretation for the
entries of L.

3.3.2 Ehrhart Theory and Inside-Out Polytopes

Throughout this section, let n be fixed. This implies that the size of the graphs G× Pn
and G× Cn is fixed, too. Under this assumption, Problem 3.2.3 reduces to computing
the chromatic polynomial of a given graph. We will use the perspective of inside-out
polytopes and Ehrhart theory developed by Beck and Zaslavsky [BZ06] to understand
chromatic polynomials. For a brief introduction to Ehrhart theory and lattice polytopes,
we refer to Section 2.2.

The following definitions are taken from [BZ06]. A hyperplane arrangement H is a
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set of finitely many linear or affine hyperplanes in Rd. An open region is a connected
component of Rd \

⋃
H∈HH. A closed region is the topological closure of an open region.

Moreover, we define the intersection semilattice

 L :=
{⋂
S : S ⊂ H, and

⋂
S 6= ∅

}
,

where the order is given by reverse inclusion. The minimal element is 0̂ = Rd. The
elements of  L are sometimes called flats.  L is therefore a partially ordered set — or poset
for short — and we recursively define the Möbius function µ :  L×  L→ Z by

µ(r, s) :=


0 if r � s,

1 if r = s,

−
∑

r≤u<s µ(r, u) if r < s.

The characteristic polynomial pH of a hyperplane arrangement H is defined as

pH(λ) :=

0 if H contains the degenerate hyperplane Rd,∑
s∈ L µ(0̂, s)λdim s otherwise.

Huh has shown that the coefficients of pH are alternating in sign and the absolute value
of the coefficients form a log-concave sequence, see [Huh12, Thm. 3].

Let P ⊂ Rd be a rational, closed, convex d-polytope and let H be an arrangement of
rational hyperplanes that meets P transversally, i.e., every flat

u ∈
{⋂

S : S ⊂ H and
⋂
S 6= ∅

}
that intersects the topological closure of P also intersects the interior P ◦. Here rational
means that all vertices of P lie in Qd and all hyperplanes in H are specified by equations
with rational coefficients. Following [BZ06], we call the pair (P,H) a rational inside-out
polytope. A region of (P,H) is one of the components of P \

⋃
H or the closure of one

such component. If the vertex set of P is a subset of Zd, we call (P,H) a lattice inside-out
polytope. The multiplicity of x ∈ Rd with respect to H is

mH(x) := #closed regions of H containing x.

The multiplicity with respect to (P,H) is

mP,H(x) :=

#closed regions of (P,H) that contain x, if x ∈ P,

0 otherwise.

We define the closed Ehrhart quasipolynomial

ehrP,H(t) :=
∑
x∈Zd

mtP,H(x),
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where t ∈ Z≥1 and tP denotes the tth dilate of P . Similarly, we define the open Ehrhart
quasipolynomial

ehr◦P,H(t) := #
(
Zd ∩ t

[
P \

⋃
H
])

.

With the notation from above, we have:

Theorem 3.3.1 ([BZ06, Thm. 3.1]). Let P ⊂ Rd be a d-dimensional polytope and
let H be a hyperplane arrangement not containing the degenerate hyperplane Rd. Then

ehr◦P,H(t) =
∑
u∈ L

µ(0̂, u)#
(
Zd ∩ tP ∩ u

)
(3.4)

and if H is transverse to P , we have

ehrP,H(t) =
∑
u∈ L

∣∣µ(0̂, u)
∣∣#(Zd ∩ tP ∩ u) , (3.5)

where µ is the Möbius function of  L.

Since we assume P to be full-dimensional, the hyperplane arrangement subdivides P into
closed regions R1, R2, . . . , Rm. Moreover, we have that

ehrP,H(t) =
m∑
i=1

ehrRi(t) and ehr◦P ◦,H(t) :=
m∑
i=1

ehrR◦i (t),

where ehrRi(t) is the classical Ehrhart quasipolynomial of the closed region Ri, and the
interior of Ri is with respect to the topology of the ambient space Rd, see [BZ06, (4.2)].
We remark that ehr◦P ◦,H(t) does not count any integer point on the facets of P , whereas
ehr◦P,H(t) also counts integer points on facets. Furthermore, there is a reciprocity result:

Theorem 3.3.2 ([BZ06, Theorem 4.1]). If (P,H) is a d-dimensional lattice inside-out
polytope, then ehrP,H(t) and ehr◦P ◦,H(t) are polynomials of degree d and they also
satisfy the reciprocity theorem

ehr◦P ◦,H(t) = (−1)d ehrP,H(−t). (3.6)

In Section 3.4.2, we will intersect inside-out polytopes with hyperplanes, so we will need
the following:

Corollary 3.3.3 ([BZ06, Corollary 4.3]). Let D be a discrete lattice in Rd, let P be
a D-fractional convex polytope, i.e., all vertices of P lie in t−1D for some t ∈ Z>0, and
let H be a hyperplane arrangement in s := aff(P ) that does not contain the degenerate
hyperplane. Then ehrP,H(t) and ehr◦P ◦,H(t) are quasipolynomials in t that satisfy the
reciprocity law

ehr◦P ◦,H(t) = (−1)dim s ehrP,H(−t).

The next result connects inside-out polytopes to proper colorings of graphs.
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Theorem 3.3.4 ([BZ06, Theorem 5.1]). Let G be an ordinary graph on n vertices
and let P = [0, 1]n. Moreover, we define

H(G) := {xi = xj : {xi, xj} ∈ E} .

Then
ehr◦P ◦,H(G)(t) = (−1)n ehrP,H(G)(−t) = χG(t− 1). (3.7)

Remark 3.3.5. The intuition behind this theorem is the following: Every integer point in
the interior of tP corresponds to a (not necessarily proper) coloring of G. If G contains
the edge {xi, xj}, then any proper coloring cannot have an integer point on the hyperplane

xi = xj . Therefore, every integer point in t
(
P ◦ \

⋃
H∈H(G)H

)
corresponds to a proper

coloring of G and vice versa.

y

x
(0, 0) (k + 1, 0)

(0, k + 1)

(k, 1)

(1, k)

bijection

x

y

Figure 3.4: Integer points in dashed triangles correspond to proper k-colorings of P2.

One immediate consequence of Theorem 3.3.4 is that χG is a polynomial of degree n
and the leading coefficient is 1, as the sum of the volumes of the regions of the subdivided
cube equals 1.

3.4 transfer-matrix methods meet ehrhart theory

3.4.1 Enter Symmetry

In this section, we combine transfer-matrix methods with Ehrhart theory. Again, we
will assume that all graphs are connected. We will use group actions and orbits to
introduce a compactified transfer matrix L, whose size does not depend on k. There are
two types of symmetries that appear. Firstly, the set of proper k-colorings in Problem
3.2.3 stays invariant under a permutation of colors. That is, simply renaming the colors
does not change the graph MG. For example, in Figure 3.2, the vertex (1, 2, 1) has as
many neighbors as the vertex (3, 2, 3). Secondly, the graph G itself also has a symmetry
group, called the automorphism group of G. We first quotient out by the group coming
from permuting the colors and then we quotient out by a possibly trivial subgroup of the
automorphism group.
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Definition 3.4.1 (Orbit notation). Let G be a simple, connected graph on N vertices
and let C be the set of proper k-colorings, where k ≥ N . Let Sk be the symmetric group
on k elements and let G be a possibly trivial subgroup of the automorphism group of G,
see Subsection 3.2. The group Sk acts on C by permuting the colors and it gives rise to
orbits õ1, . . . , õq. The group G is acting on õ1, . . . , õq giving rise to orbits o1, . . . , op.

Example 3.4.2. Let G = C5. We first quotient by permutations of colors. This group
action induces orbits õ1, õ2, . . . , õ11 (as computer generated in no particular order):

14 2 3 5 14 2 35 14 25 3 1 24 3 5 1 24 35 1 2 3 4 5

1 2 35 4 1 25 3 4 13 24 5 13 2 4 5 13 25 4

Here, for instance, 14 2 3 5 means that the vertices v1 and v4 are colored by the same
color and that the vertices v2, v3, and v5 don’t share a color with any other vertex. The
automorphism group of C5 is the dihedral group generated by (12345) and (1)(25)(34).
The 11 partitions of the vertex set end up in 3 orbits o1,o2, and o3 after quotienting by
the dihedral group. The classes are represented by:

1 2 3 4 5 1 24 35 1 2 4 35.

Remark 3.4.3. For k ≥ N , quotienting by Sk always gives the same number of orbits.
This is due to the fact that every orbit õ can be seen as a partition of the vertex set of G
into independent sets. In particular, the number of orbits is finite. Therefore, we also get
that the number of orbits o1, . . . , op is the same for all k ≥ N . In Definition 3.4.1, we
only assume that G is a subgroup of the automorphism group, as it is in general difficult
to determine the full automorphism group.

This enables us to define a matrix L encoding the necessary combinatorial information,
whose size is independent of the number of colors k. Following the arguments described
in [Ciu98], we give the following definition:

Definition 3.4.4. Let G be a graph on N nodes. Let o1, o2, . . . , op be orbits as defined
in Definition 3.4.1 and let k ≥ N be any integer. Let AMG

be the transfer matrix of the
graph MG. We define a p× p matrix L whose entries are given by

Li,j = Loi,oj =
∑
m∈oj

ai,m,

where i is any row of AMG
that corresponds to a representative of orbit oi. L is called

the compactified transfer matrix of G.

We want to illustrate this definition for k = 4. The general case will be treated in
Example 3.4.15.

Example 3.4.5. We illustrate this procedure in the following example, where G = P3.
The orbits are o1 = {{1, 3}, {2}} and o2 = {{1}, {2}, {3}}, so we can expect a 2 × 2
matrix L. In this matrix, the (i, j)-entry counts the number of colorings where the first
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P3 is colored by a fixed representative of oi and the second P3 is colored by any element
in oj .

Figure 3.3 shows the transfer matrix for 4-colorings of P3. By following Definition 3.4.4
for k = 4, we can quotient out the orbits and we obtain the matrix

L =

(
7 10

5 11

)
,

which has the same maximal eigenvalue as the original transfer matrix in Figure 3.3, see
Corollary 3.4.8. The entries of L equal the row sums within each orbit/rectangle of the
matrix in Figure 3.3.

Remark 3.4.6. It also makes sense to define L for 1 ≤ k < N . However, the size of L will
be smaller as not all orbits appear. For instance, the orbit, where all colors are different,
cannot appear if k < N . As we will see in Corollary 3.4.20, it makes sense to talk about
L even for k < N provided we multiply L by appropriate row weights that are 0 if k is
too small for an orbit to appear.

Since the entries of L are nonnegative integers, the Perron-Frobenius theorem ensures
that the biggest eigenvalue is real and positive. Furthermore, the following lemma implies
that the biggest eigenvalue of AMG

and the biggest eigenvalue of L agree.

Lemma 3.4.7 ([Ciu98], Lemma 3.2). If N is a nonnegative matrix that commutes
with a group of permutation matrices G, then the largest eigenvalue of N is the same
as the largest eigenvalue of N acting on the subspace of G-invariants.

Corollary 3.4.8. With the notation from above, the biggest eigenvalue of L and
the biggest eigenvalue of AMG

agree.

Remark 3.4.9. There is also a combinatorial reformulation of Definition 3.4.4. Li,j counts
the number of colorings of G× P2, where G× {1} is colored by a fixed representative of
oi and the coloring of G× {2} is in oj .

In Section 3.4.2, we will see that the entries of L are indeed polynomials in k. We also
give a geometric interpretation of the entries.

3.4.2 Ehrhart Theory and Symmetry

As we have seen in Remark 3.4.9, the entries of L can be interpreted as counting proper
k-colorings where one part of the graph is fixed by a coloring and another part has to
lie in a given orbit. In this section, we will use inside-out polytopes to show that this
counting function is indeed a polynomial. However, we first start with a small result
concerning graph colorings that lie in a given orbit.

Let G = (V,E) be a finite, simple graph and let õ be an orbit as defined in Definition
3.4.1, i.e., we do not quotient out by graph automorphisms. The graph G determines a
hyperplane arrangement

H(G) = {xi = xj : {i, j} ∈ E}.

31



We define the õ-restricted chromatic polynomial

χ(G,õ)(t) = #number of proper t-colorings of G lying in orbit õ.

As mentioned above, every orbit can be described by a partition of the vertex set V
into independent sets. Vertices in the same independent set are colored by the same color.
Hence, for every independent set I ∈ õ, we get an additional hyperplane arrangement

HI := {xi = xj : i, j ∈ I} .

Moreover, we also get a hyperplane arrangement

Hõ,I := {xi = xj : i ∈ I and j /∈ I} .

of forbidden hyperplanes by requiring that elements in different independent sets have
different colors. Lastly, we define the hyperplane arrangement

H(G, õ) = H(G) ∪
⋃
I∈õ
Hõ,I .

With this set-up, we now have:

Theorem 3.4.10. Let HI , H(G, õ), and Hõ,I be defined as above. Moreover, let

Põ := [0, 1]n ∩

(⋂
I∈õ

HI

)
.

Then
(−1)s ehrPõ,H(G,õ)(−t) = ehr◦relint(Põ),H(G,õ)(t) = χG,õ(t− 1), (3.8)

where s is the number of colors used in orbit õ. Furthermore, χG,õ is a polynomial of
degree s with leading coefficient 1.

Proof. We first note that Põ is an s-dimensional lattice inside-out polytope with volume 1
(seen as an s-dimensional polytope). The hyperplane arrangement H(G, õ) subdivides Põ
into regions R1, R2, . . . , Rm, where dimRi = dimPõ. We know that ehr◦relint(Põ),H(G,õ)(t)

counts the integer points in the relative interior of the tth-dilate of these regions. The
integer points in these regions correspond to proper (t − 1)-colorings of G that lie in
õ, and every proper (t− 1)-coloring in õ corresponds to an integer point in a t relintRi
for some i, which proves (3.8). The claim about the degree of χG,õ follows from the
dimension and volume of Põ.

Remark 3.4.11. The same result could also be obtained by forming a quotient graph where
all vertices in the independent sets of õ get identified. Now counting proper k-colorings of
this quotient graph is the same as counting proper k-colorings that lie in õ. This however
does not directly work if we also quotient out by graph automorphisms.
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Remark 3.4.12. The statement and the proof still hold for an orbit o if we additionally
quotient out by graph automorphisms, except that the leading coefficient will be the
number of orbits õ that are in the preimage of orbit o.

We now want to apply this geometric machinery to the transfer-matrix theory to interpret
the entries of L in terms of Ehrhart polynomials. Recall that we want to color Γ := G×P2,
where G is a graph on N nodes. In the geometric setting described in [BZ06], we have a
subdivision of the 2N -dimensional unit cube stemming from the edges of the graph Γ.
However, we want to further refine this subdivision according to the orbit structure. As
we will see, this subdivision nicely resembles the symmetry of the orbits.

Let G be a graph with vertices {v1, v2, . . . , vN}, let oi, oj ∈ OG be defined as in
Definition 3.4.1, and let V (P2) = {1, 2}. Pick a representative c of oi such that c(vi) ≤ N
and color the first N vertices accordingly. This defines a (G× {1})-restricted coloring of
G× P2, which we will call an oi-restricted coloring. Recall that Loi,oj counts the number
of oi-restricted colorings such that the coloring of G× {2} is an element of oj .

Since the entries will correspond to restricted colorings, we first state a general result
about restricted colorings.

Theorem 3.4.13. Let Γ = ({1, 2, . . . , n}, E) be a graph and fix a proper k′-coloring
c′ : V ′ → {1, 2, . . . , k′} on the induced subgraph Γ|V ′ for a subset V ′ ⊂ V (Γ). Then, for
k ≥ k′, the restricted chromatic polynomial

χc′,Γ(k) = #proper k-colorings c of Γ such that c|V ′ = c′. (3.9)

is a polynomial of degree #V −#V ′ =: s with leading coefficient 1, whose coefficients
ai alternate in sign, and whose absolute values of the coefficient form a log-concave
sequence, i.e., a2

i ≥ ai−1ai+1 holds for 0 < i < s. The second highest coefficient an−1 is
given by

−an−1 = #edges {vi, vj} such that {vi, vj} * V ′.

Moreover, we have the reciprocity statement

χc′,Γ(−k) = (−1)s#(α, c) of Γ with c|V ′ = c′

= (−1)sχc′,Γ(k),

where (α, c) is a pair of an acyclic orientation α and a compatible (not necessarily
proper) k-coloring, c, of Γ.

Remark. As we learned after publication of [EK18], the statement that the restricted
counting function is a polynomial is [HM07, Thm. 8] and the combinatorial reciprocity
theorem is [JS14, Thm. 4.2], where Jochemko and Sanyal also give a novel proof of the
polynomiality result. We would like to thank Raman Sanyal for pointing this out.

Proof. Let H = H(Γ) be the hyperplane arrangement coming from the edges of the graph
Γ. Let P = [0, 1]n. We intersect (P,H) with the hyperplanes coming from the coloring
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c′, i.e., we intersect (P,H) with the hyperplanes xi = c′(vi) =: c′i for all vi ∈ V ′. This
induces a new inside-out polytope (P ,H) of dimension s. This is illustrated in Figure 3.5.
Using an affine, unimodular map we can assume that (P ,H) ⊂ Rs is full-dimensional.

x

y

z

3 = x

x
y

z

x = y = 3

y = z

Figure 3.5: P3 with vertex x colored by 3, the corresponding inside-out polytope (P,H), and the
induced inside-out polytope (P ,H).

The integer points in [1, k]s that are not in H are counted by χc′,Γ(k), where we assume
that k ≥ maxi c

′
i.

Thus, by (3.4) we have that

χc′,Γ(k) =
∑

u∈L(H)

µ(0̂, u)#
(
Zs ∩ u ∩ kP

)
=

∑
u∈L(H)

µ(0̂, u)kdimu.

Note that this is actually the characteristic polynomial, denoted pH, of the induced
hyperplane arrangement H, since #

(
Zs ∩ u ∩ kP

)
= kdimu. The claim about the log-

concavity now follows by a result of June Huh, see [Huh12, Cor. 27]. The statement
about the second highest coefficient follows, since the only terms of dimension s− 1 come
from flats of dimension s − 1, which are exactly the hyperplanes coming from edges
{vi, vj} such that {vi, vj} * V ′. We remark that this polynomial is alternating in sign,
again by [Huh12, Thm 3.1],

χc′,Γ(−k) = (−1)s
∑

u∈L(H)

∣∣µ(0̂, u)
∣∣ kdimu.

This — using (3.5) — is equivalent to

(−1)sχc′,Γ(−k) = ehrP ,H(k − 1) = (−1)sχc′,Γ(k) =
∑
x∈Zs

m((k−1)P ,H)(x).

Similar to [BZ06, Proof of Cor. 5.5], one can now observe that the right-hand side counts
the number of compatible pairs (α, c), where c is a —not necessarily proper— c′-restricted
k-coloring and α is an acyclic orientation. Here we implicitly used that k ≥ maxi c

′
i while

applying [BZ06, Thm 3.1].

The following theorem states some basic facts about Loi,oj :
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Theorem 3.4.14. With the notation from Theorem 3.4.13 and with k ≥ N , we have:

1. Every entry Loi,oj (k) equals the sum of Ehrhart polynomials of lattice inside-
out polytopes of dimension #colors of oj and hence is a polynomial of degree
#colors of oj ,

2. Loi,oj (k) is independent of the choice of the representative, i.e., it is well-defined,

3. #oi · Loi,oj (k) = χGoi,oj
(k), where

χGoi,oj
(k) =#proper k-colorings : coloring of G× {1} is in oi and

coloring of G× {2} is in oj .

Proof. We first prove the statement for the case, where we only quotient out by permu-
tations of colors. Then we show that this implies the statement for orbits o when we also
quotient out by a subgroup of the automorphism group.

Let G be a graph with vertices {v1, v2, . . . , vN}, let P2 be the path graph on 2 vertices,
and let

H′ = {xi = xj : {i, j} ∈ E(G× P2)}.

Moreover, let C = [0, 1]2N . Let õi, õj be given orbits of G after quotienting out by
permutations of colors. Let I be the collection of independent sets partitioning V that
correspond to õj . As above, for every I ∈ I, we get

HI := {xi = xj : i, j ∈ I} ,

and we get a set of forbidden hyperplanes

Hõj ,I := {xi = xj : i ∈ I and j /∈ I} .

Now let P = C ∩ (
⋃
I HI) and let

H := H′ ∪
⋃
I

Hõj ,I .

Then (P,H) is a lattice inside-out polytope and its dimension is

N + number of colors in õj = N + #I.

We remark that this is the same hyperplane arrangement that one would obtain from
a quotient graph of G× P2. This quotient graph can be obtained in the following way:

1. All vertices of G×{2} that are in the same independent set of õj get identified, and

2. we turn all vertices in the image of G× {2} into a clique.
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Therefore, one can now apply Theorem 3.4.13 to see that the entries of Lõi,õj are
polynomials. If we furthermore quotient by graph symmetries, we by definition fix a row
and add all entries that are in columns indexed by orbits that get mapped to oj . Thus,
the the entries of (Loi,oj ) are also polynomials whose leading coefficient is the number of
orbits in the preimage of oj .

Now let c and c′ be colorings in the same orbit õi. Then there is a bijection of the
colors mapping c to c′. This permutation gives rise to a bijection of the lattice points in
t relint(Ri). Since χGõi,õj

(t) counts the number of proper t-colorings such that G×{1} is

an element of orbit õi and G× {2} is an element of orbit õj and we therefore get

#õi · Lõi,õj (t) = χGõi,õj
(t).

The last statement follows, since we quotiented out by a graph symmetry.

Now that we have seen that the entries of L can be interpreted as Ehrhart polynomials
of inside-out polytopes, we give an explicit example.

Example 3.4.15 (Example 3.4.5 continued). Again let G = P3. Recall that the orbits
are o1 = {{1, 3}, {2}} and o2 = {{1}, {2}, {3}}, so we can expect a 2× 2 matrix L.

We do the same calculation as in Example 3.4.5, but for k colors. For the matrix
L the entries will be polynomial for k ≥ 3, but for lower k the polynomials might not
make sense, as for small k there are not enough colors for every orbit. On the other
hand, the polynomials are of degree at most three. By explicit computer calculations for
k = 3, 4, 5, 6 we infer that the matrix is(

k2 − 3k + 3 k3 − 6k2 + 13k − 10

k2 − 4k + 5 k3 − 6k2 + 14k − 13

)

for k ≥ 3.

In Example 3.4.15, the graph P3 was so small that there was no graph automorphism
identifying two orbits õ and õ′. We now illustrate how the matrices are further reduced
in size when the automorphisms of the underlying graphs are also considered. We first
consider k-colorings of G×Pn with G = C5. It should be noted that this question can be
addressed with ad hoc methods adapted to this particular choice of G, but our method
is completely general. In our method, we do not assume anything about G.

Example 3.4.16 (Example 3.4.2 continued). Let G = C5 be the graph for which we
want to calculate the chromatic polynomial of G × Pn. We label the edges of C5 by
12, 23, 34, 45 and 51. We first quotient by permutations of colors. The 11 partitions of
the vertices into independent sets are (as computer generated in no particular order):

14 2 3 5 14 2 35 14 25 3 1 24 3 5 1 24 35 1 2 3 4 5

1 2 35 4 1 25 3 4 13 24 5 13 2 4 5 13 25 4

36



Since every partition corresponds to an orbit õ as defined in Definition 3.4.1, we expect
an 11× 11-matrix:

Figure 3.6: L matrix where we only quotient out by permutations of colors.

The automorphism group of C5 is the dihedral group generated by (12345) and
(1)(25)(34), see Example 3.2.1. The 11 partitions of the vertex set end up in 3 orbits
after quotienting by the dihedral group. The classes are represented by:

1 2 3 4 5 1 24 35 1 2 4 35

Adding up entries from columns — indexed by orbits õi that get mapped to the same
orbit o — of the 11× 11-matrix gives an even more compactified version, the 3× 3 matrix
L, k5 − 15k4 + 95k3 − 325k2 + 609k − 501 5k3 − 40k2 + 125k − 150 5k4 − 55k3 + 250k2 − 565k + 535

k5 − 15k4 + 93k3 − 301k2 + 510k − 360 5k3 − 36k2 + 96k − 93 5k4 − 53k3 + 224k2 − 449k + 357

k5 − 15k4 + 94k3 − 313k2 + 559k − 428 5k3 − 38k2 + 110k − 119 5k4 − 54k3 + 237k2 − 506k + 441

 .

3.4.3 Main Results

In this section, we show that L, defined as in Definition 3.4.4, behaves like a transfer
matrix. We then deduce that the chromatic polynomial of G× Pn can be determined by
computing powers of L. Moreover, we will use geometry to find an Ehrhart-theoretic
interpretation for the entries of Ln. This geometric interpretation allows us to deduce a
reciprocity statement for the rows sums of Ln. We end this section by stating results
about the biggest eigenvalue of L.

Let G be a graph let o1, o2, . . . , op be as defined in Definition 3.4.1. Then L = (Li,j(k))
is a p× p matrix and the entry (i, j) = (oi, oj) is given by

Li,j = #oi-restricted colorings of G× {1} : coloring of G× {2} lies in oj

=
χGoi,oj

(k)

#oi
.

The next result shows that L behaves like a transfer matrix.

Theorem 3.4.17. Let V (Pn+1) = {1, 2, . . . , n + 1} and let G be any graph. Let
o1, o2, . . . , op be the orbits as defined in Definition 3.4.1. Then, for k ≥ #colors used in oi,
the (oi, oj)-entry of Ln counts the number of proper k-colorings of G × Pn+1, where
G× {1} is fixed by a coloring in orbit oi, and where the coloring of G× {n+ 1} lies oj .
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Before we prove Theorem 3.4.17, we illustrate the statement:

Example 3.4.18 (Example 3.4.5 continued). Let G = P3 with orbits o1 = {{1, 3}, {2}}
and o2 = {{1}, {2}, {3}}. Recall that

L =

(
k2 − 3k + 3 k3 − 6k2 + 13k − 10

k2 − 4k + 5 k3 − 6k2 + 14k − 13

)
.

Let us illustrate the combinatorial interpretation for L11 and L12 in the case where k = 3,
see Figure 3.7.
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(a) The proper 3-colorings counted by L11.
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(b) The proper 3-colorings counted by L12.

Figure 3.7: An illustration of the proper 3-colorings counted by the first row of L.

By Theorem 3.4.17, (L5)1,1 counts the number of colorings of G× P6, where the two
black dots indicate that the two corresponding nodes need to be colored by the same
color, see Figure 3.8.
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Figure 3.8: In (a), we illustrate the general form of a coloring counted by (L5)11. In (b), we give an
explicit example of a 3-coloring counted by (L)511.

Proof of Theorem 3.4.17. We induct on n. By construction, the statement is true for n =
1, so let the statement be true for G×Pm for all m ≤ n. Now V (Pn+1) = {1, 2 . . . , n+ 1}.
We denote the (oi, oj)−entry of Lm ∈ Zp×p by Lmi,j . Then

Lni,j = (Ln−1L)i,j =

p∑
k=1

Ln−1
i,k Lk,j .

By induction hypothesis, the entry Ln−1
i,k counts the number of colorings where the coloring

of G× {1} is fixed by a representative in oi and the coloring of G× {n} lies in orbit ok.
Moreover, Lk,j counts the colorings where the first G is fixed by a representative in ok
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and the coloring of the second G lies in oj . Therefore, Ln−1
i,k Lk,j counts the colorings

where the coloring of G× {1} is fixed by a representative of oi, the coloring of G× {n}
lies in ok, and the coloring of G× {n+ 1} lies in oj . The sum is taken over all possible
orbits and the claim follows.

Remark 3.4.19. This shows that the entries of Ln can be interpreted as sums of Ehrhart
polynomials of (induced) inside-out polytopes assuming that the dilation factor is big
enough. The inside-out polytopes can be explicitly described by following the construction
from the proof of Proposition 3.4.14.

Moreover, this enables us to directly compute the chromatic polynomial of G× Pn+1

from Ln.

Corollary 3.4.20. Let G× Pn+1 and L be as above. Then

χG×Pn+1(k) = (w1(k), . . . , wp(k))Ln1, (3.10)

where wi(k) is the size of oi and 1 := (1, . . . , 1)t.

Proof. Let V (Pn) = {1, 2, . . . , n}. The ith entry Li of Ln1 counts the number of colorings
where G× {1} is colored by a representative of oi. By symmetry, the total number of
colorings with the coloring of G× {1} being in oi equals

wi(k)Li

by Theorem 3.4.14. Now (w1(k), . . . , wp(k))Ln1 sums over all possible orbits and the
claim now directly follows.

Remark 3.4.21. Even though the definition of L implicitly assumes that the number of
colors k ≥ #V (G), the corollary makes sense for all k. If k ≤ #V (G), then the weights
wi of the orbits using more than k colors are 0.

Example 3.4.22 (Example 3.4.5 continued). The chromatic polynomial of P3 × P6 is

χ(k) = (w1, w2)

(
k2 − 3k + 3 k3 − 6k2 + 13k − 10

k2 − 4k + 5 k3 − 6k2 + 14k − 13

)6−1(
1

1

)
,

where w1 = k(k − 1) and w2 = k(k − 1)(k − 2).

Figure 3.9: P3 × P6.
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In general, the chromatic polynomial of P3 × Pn equals

χ(k) = (w1, w2)

(
k2 − 3k + 3 k3 − 6k2 + 13k − 10

k2 − 4k + 5 k3 − 6k2 + 14k − 13

)n−1(
1

1

)
,

where w1 = k(k − 1) and w2 = k(k − 1)(k − 2).

Example 3.4.23 (Example 3.4.16 continued). Recall that G = C5 and that the matrix
L was given by k5 − 15k4 + 95k3 − 325k2 + 609k − 501 5k3 − 40k2 + 125k − 150 5k4 − 55k3 + 250k2 − 565k + 535

k5 − 15k4 + 93k3 − 301k2 + 510k − 360 5k3 − 36k2 + 96k − 93 5k4 − 53k3 + 224k2 − 449k + 357

k5 − 15k4 + 94k3 − 313k2 + 559k − 428 5k3 − 38k2 + 110k − 119 5k4 − 54k3 + 237k2 − 506k + 441

 .

Define a row vector v, where vi is given by the size of the orbit oi after quotienting by a
permutation of the colors and the graph automorphism group:

v = (k(k − 1)(k − 2)(k − 3)(k − 4), 5k(k − 1)(k − 2), 5k(k − 1)(k − 2)(k − 3))T

Let I be the 3× 3 identity matrix and 1 the all-ones column vector of dimension 3. Then
we have a nice formal generating function

ΞG(k, z) =
∞∑
n=0

χG×Pn+1(k)zn

=

∞∑
n=0

vLn1zn

= v

( ∞∑
n=0

(zL)n

)
1

= v(I − zL)−11.

In general, if L is an m×m matrix, we expect that

ΞG(k, z) =
polynomial of z-degree m− 1

polynomial of z-degree m

by calculating (I − zL)−1 using cofactors. For some G there is a mysterious cancellation
and the z-degree of the denominator of ΞG(k, z) is smaller than the size of the matrix.
This is the case in our example, as

ΞC5(k, z) = k(k − 1)(k − 2)
p1(k)z + p0(k)

q2(k)z2 + q1(k)z + q0(k)

where

p0(k) = k2 − 2k + 2,

p1(k) = −k5 + 11k4 − 44k3 + 73k2 − 42k + 14,

q0(k) = 1,

q1(k) = −k5 + 10k4 − 46k3 + 124k2 − 198k + 148,

q2(k) = k8 − 19k7 + 159k6 − 767k5 + 2339k4 − 4627k3 + 5800k2 − 4212k + 1362.
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In the previous example, the degree of the denominator of ΞG(k, z) is smaller than
expected indicating some hidden symmetry.

Definition 3.4.24. A graph G has a hidden symmetry if the denominator of

ΞG(k, z) =

∞∑
n=0

χG×Pn+1(k)zn

has a z–degree less than the order of

{c : V (G)→ Z≥1 : c is a proper coloring of G}/ ∼

where c ∼ c′ if c = αc′β for a bijection α of N and an automorphism β of G.

Example 3.4.25. We have done some computer calculations to tabulate graphs with
hidden symmetries. The connected graphs with at most five vertices are in Figure 3.10.

Figure 3.10: The connected graphs on at most five vertices with a hidden symmetry.

One could speculate that hidden symmetry is something fairly trivial, since the common
factor of the numerator and denominator when calculating ΞG(k, z) from cofactors is
something straightforward. A piece of it usually seems be a power of (z − 1). But for
example for G = C6 the common factor is the non-trivial factor (z − 1)3(k7z4 − 19k6z4 +
k6z3 + 147k5z4− 20k5z3− 598k4z4 + 157k4z3 + 1381k3z4− 3k4z2− 627k3z3− 1821k2z4 +
37k3z2 + 1349k2z3 + 1289kz4 − 173k2z2 − 1483kz3 − 384z4 + 3k2z + 364kz2 + 659z3 −
18kz − 309z2 + 35z − 1).

Conjecture 3.4.26. All paths and cycles on at least four vertices have a hidden
symmetry.
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Proposition 3.4.27. Let L ∈ Zp×p be as above, let Lni :=
∑p

k=1 (Ln)i,k be the ith

row sum of Ln, and let V (Pn+1) = {1, 2, . . . , n + 1}. Then, for k ≥ N = #V (G), we
have

Lni (−k) = (−1)Nn#(α, c) of G× Pn+1 where G× {1} is colored by rep. of oi, (3.11)

where (α, c) is a pair of an acyclic orientation α and a compatible oi-restricted k-coloring
c.

Proof. Lni (k) counts the number of colorings of G× Pn+1, where G× {1} is fixed by a
coloring c′. Now one can apply Theorem 3.4.13 and the claim follows.

Corollary 3.4.28. Let k ≥ N Then

m∑
j=1

Li,j(−k) = (−1) ·#(α, c) where first G is fixed by a representative of oi, (3.12)

where (α, c) is a pair of an acyclic orientation and compatible k-coloring.

Example 3.4.29 (3.4.5 continued). Figure 3.11 illustrates Corollary 3.4.28 for P3 × P2,
where k = 3, and where

L =

(
k2 − 3k + 3 k3 − 6k2 + 13k − 10

k2 − 4k + 5 k3 − 6k2 + 14k − 13

)
.

The orientation of the dashed edges can be chosen arbitrarily. The red number gives
the multiplicity of the given case. Therefore, the sum of the red numbers (up to a sign)
equals the evaluation of the second row sum of L at −3

(−3)2 − 4 · (−3) + 5 + (−4)3 − 6 · (−3)2 + 14 · (−3)− 13 = −110 =

=(−1) · (8 + 2 + 4 + 4 + 2 + 2 + 8 + 8 + 1 + 4 + 8 + 2 + 2+

+1 + 1 + 2 + 4 + 1 + 8 + 2 + 2 + 8 + 2 + 4 + 4 + 8 + 8).

If however one is interested in the asymptotic behavior of graphs G×Cn, then we need
to find good bounds for the biggest eigenvalue of L, as this dominates the asymptotics.
The next theorem gives an upper and a lower bound and in particular it shows that the
eigenvalue grows like a polynomial of degree #V (G).

Lemma 3.4.30. Let λmax be the biggest eigenvalue of L (and thus of the adjacency
matrix AMG

). Then
δ(L) ≤ λmax ≤ ∆(L), (3.13)

where δ(L) and ∆(L) are the smallest and biggest row sum of L, respectively.
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Figure 3.11: All (1, 2, 3)-restricted, compatible pairs of acyclic orientations and (not necessary proper)
colorings of P3 × P2.

Proof. The biggest eigenvalue of the adjacency matrix of a graph is bounded above and
below by the biggest and smallest degree of the graph, respectively, see [CR90, Thm. 1].
These are exactly the biggest and smallest row sums of L.

Now the question of determining the biggest eigenvalue reduces to determining the
smallest and biggest row sum of L. This might be computationally challenging. Our next
result gives a combinatorial interpretation of the two highest coefficients, which gives us
a quicker way to obtain the two highest coefficients without computing L. One still needs
to determine all of the orbits using N − 1 colors, which in general is computationally
challenging, but one does not need to explicitly compute the entries of L.

Lemma 3.4.31. Let õ1, õ2, . . . , õp be orbits as defined in Definition 3.4.1. Let õp be
the orbit using N = #V (G) colors. Then δ(L) and ∆(L) are polynomials of degree N ,
their leading coefficient is aN = 1, and

aN−1 = −F + #orbits using N − 1 colors,

where
F = #edges of G× P2 that are not edges of G× {1}.

In particular, the highest two terms of both polynomials agree.
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Proof. This directly follows from Theorem 3.4.13.

To summarize, we get:

Proposition 3.4.32. Let G be a graph and N = #V (G) and let δ(L) and ∆(L) be
as above. Then the doubly asymptotic behavior of the number of proper k-colorings of
G× Cn is dominated by λn−1

max and

δ(L) ≤ λmax ≤ ∆(L),

where δ(L) =
∑N

i=0 aik
i, ∆(L) =

∑N
i=0 bik

i, aN = bN , and aN−1 = bN−1.

3.5 open questions

As we have briefly mentioned in the introduction, enumerating proper colorings of graphs
G× Pn and G× Cn arises in statistical mechanics. In the excellent survey [BEMPS10],
Beaudin, Ellis-Monaghan, and Pangborn describe how the partition function of the Potts
model is related to the Tutte polynomial of a graph. In the case of the 0-temperature
antiferromagnetic case, this partition function is equivalent to the chromatic polynomial
of the underlying graph. Therefore, there are several potential directions for future work.
First, one could explicitly compute the chromatic polynomials of G× Pn or G× Cn for
(for physicists) interesting graphs G. It would be interesting to see how efficient our
methods are in practice. Second, one could try to develop techniques to determine the
Tutte polynomial of graphs like G×Pn and G×Cn. This seems to be a fairly demanding
challenge, since the Tutte polynomial carries a lot of information and complexity.
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4
LEVELNESS OF ORDER POLYTOPES

“Just play. Have fun. Enjoy the game.” (Michael Jordan)

This chapter is joint work with Christian Haase and Akiyoshi Tsuchiya and based on
[HKT].

4.1 introduction

Partially ordered sets — or posets for short — are ubiquitous objects in mathematics.
One particularly nice way to study them was introduced by Richard Stanley. In [Sta86],
he associated two geometric objects to every finite poset Π, namely the order polytope
O(Π) and the chain polytope C(Π). These objects encode important information about
the underlying poset Π. For instance, the vertices of the order polytope are given by
the indicator vectors of order filters. This shows that the number of order filters equals
the number of vertices of O(Π). Furthermore, for a poset Π on d elements, the Ehrhart
polynomial ehrO(Π) : Z≥1 → Z≥0

ehrO(Π)(t) := #tO(Π) ∩ Zd

equals the number of order-preserving maps Π→ [t+ 1] := {1, 2, . . . , t+ 1}, see Theo-
rem 4.2.6.

In this chapter, we are particularly interested in the level property of order polytopes.
As we have seen in Section 2.3, we say that a polytope is level if its canonical module
is generated by elements of the same degree, see Definition 2.3.9. Historically, levelness
was first introduced by Stanley [Sta77, p. 54] and it generalizes the Gorenstein property.
Since the Gorenstein property nicely translates into the language of posets, it is natural
to ask whether one can determine the level property in terms of the Hasse diagram.

Moreover, while the Gorenstein property can be completely classified by the h∗-vector,
see Theorem 2.3.16, the same is not true for the level property, see also Remark 4.6.5.
However, we have the following inequalities:

Proposition 4.1.1 ([Sta96, 3.3 Prop]). Let R =
⊕

i∈Z≥0
Ri be a standard level

k-algebra with Hilbert series

Hilb(R, t) =
h∗0 + h∗1t+ · · ·+ h∗st

s

(1− t)d
,

where h∗s 6= 0. Then, for all i, j with h∗i+j > 0, we have h∗i ≤ h∗jh∗i+j .
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While the Gorenstein property has been extensively studied in the past decades, the
level property has only fairly recently been examined for certain classes of polytopes, with
the exception of [Hib88]. Recent examples include [EHHSM15, HY18] and [KO], on which
Chapter 5 is based on. In this chapter, we focus on the level property of order polytopes,
i.e., the level property of the Ehrhart ring of the order polytope. Hibi [Hib87] was the first
to examine minimal elements of the canonical module of this Ehrhart ring, which in this
context is also known as the Hibi ring. In particular, he characterized Gorenstein posets.
The biggest influence on this chapter comes from [Miy17], where Miyazaki examines and
characterizes levelness of order polytopes. We provide an alternative characterization
using weighted digraphs Γ(Π′) coming from subposets Π′ ⊂ Π∪{±∞}, see Definition 4.4.1
for details.

Corollary (see Corollary 4.4.4). Let Π be a finite poset. Π is level if and only if for
all Γ(Π′) that do not have a negative cycle, the digraph Γ(Π′ ∪ {longest chains in Π})
does not have a negative cycle.

This corollary enables us to use the Bellman–Ford algorithm to check levelness. As a
direct consequence, we get that determining levelness is in co-NP:

Corollary (see Corollary 4.4.6). Levelness of order polytopes is in co-NP.

We show that the necessary condition for levelness of order polytopes in [EHHSM15,
Thm. 4.1] is indeed equivalent to a special case of our characterization. Furthermore, we
give an example that was related to us by Alex Fink showing that this condition is not
sufficient, see Remark 4.5.3 and Figure 4.4a.

Theorem (see Theorem 4.5.2). Let Π be a finite poset and r = codeg(O(Π)). The
following are equivalent:

1. The inequality
height(j) + depth(i) ≤ rank(Π) + 1

is satisfied for all j m i ∈ Π.

2. for all Hasse edges j m i ∈ Π there is an integer point x ∈ rO(Π)◦ such that
xj = xi + 1.

In Section 4.6, we use Corollary 4.4.4 to describe an infinite family of level order
polytopes. The main ingredient is the ordinal sum of two posets, denoted /.

Theorem (see Theorem 4.6.1). The ordinal sum Π = Π1 /Π2 of two posets Π1, Π2

is level if and only if both Π1 and Π2 are level.

Moreover, the ordinal sum operation interacts nicely with the h∗-polynomial.
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Proposition (see Proposition 4.6.4). Let Π,Π1,Π2, be finite posets such that
Π = Π1 /Π2. Moreover, let h∗Π, h

∗
Π1
, h∗Π2

be the h∗-polynomial of the Ehrhart series of
the corresponding order polytopes. Then

h∗Π = h∗Π1
h∗Π2

.

As we illustrate in Remark 4.6.5, Theorem 4.6.1 and Proposition 4.6.4 together can be
used to create infinitely many examples of pairs of posets that have the same Ehrhart
polynomial, but where one poset is level and the other one is not.

We then turn to the more general class of alcoved polytopes. We give a Minkowski
sum characterization for levelness of alcoved polytopes.

Proposition (see Proposition 4.7.8). Let P ⊂ Rd be an alcoved polytope and let
r = codeg(P ). Then P is level if and only if for any integer k ≥ r, it follows that
(kP )(1) = (rP )(1) + (k − r)P , where (lP )(1) := conv(lP ◦ ∩ Zd) for l ∈ {r, k}.

Then we examine when the Cartesian product of two alcoved polytopes is level. We
arrive at the following result:

Theorem (see Theorem 4.7.11). Let P ⊂ Rd and Q ⊂ Re be alcoved polytopes.
Suppose that Q is level and r = codeg(Q) ≥ dimP + 1. Then P ×Q ⊂ Rd+e is level.

This results shows that — under the right assumptions — the product of a level polytope
with a non-level polytope can indeed be guaranteed to be level.

Theorem (see Theorem 4.7.12). Let Π be a poset on d elements and Π1, . . . ,Πm the
connected components of Π. If each Πi is level, then Π is level.

This theorem tells us that in order to guarantee levelness of a poset it is sufficient to show
that all components are level. More generally, for Cartesian products of level polytopes
we have:

Theorem (see Theorem 4.7.13). Let P ⊂ Rd and Q ⊂ Re be level polytopes. If
either

1. codeg(Q) < codeg(P ) and Q has the integer-decomposition property,

2. codeg(P ) < codeg(Q) and P has the integer-decomposition property,

3. or if codeg(Q) = codeg(P ),

then P ×Q is level.

The assumptions are indeed necessary. In Remark 4.7.14, we give an explicit example of
two level polytopes whose product is not level.

The structure of this chapter is as follows: In Section 4.2, we recall the necessary
background on order polytopes and chain polytopes. In Section 4.3, we recall Miyazaki’s
results on level posets. We then give an alternative characterization of level posets using
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weighted digraphs in Section 4.4. In Section 4.5, we show that this characterization
generalizes a necessary condition of Ene, Herzog, Hibi, and Saeedi. In Section 4.6, we
use Corollary 4.4.4 to examine levelness of series-parallel posets. In the last section, we
examine levelness of alcoved polytopes and examine when certain products of polytopes
are again level.

4.2 background and notation

In this section, we will briefly introduce order polytopes and order-preserving maps.
Furthermore, we will define the chain polytope and study the vertex description of both
the order and the chain polytope.

A partially ordered set —or poset for short— Π is a set together with a binary relation
≤Π that is reflexive, antisymmetric, and transitive, and ≤Π is called a partial order on Π.
If the poset is clear from the context, we will simply write ≤. All our posets will be finite.

Let Π be a finite poset. We recall that an element j ∈ Π is said to cover an element
i ∈ Π, denoted j m i, if i ≤ k ≤ j implies that either i = k or j = k. One can recover all
partial orders from these cover relations. Therefore, it’s convenient to illustrate the poset
using these cover relations by a Hasse diagram, see Figure 4.1.

ki

j

ki

j

∞

ki

j

−∞

Figure 4.1: The Hasse diagram of the poset Π = {il j m k}, Π ∪ {∞}, and Π ∪ {−∞}.

Given a poset Π, we define the poset Π := (Π ∪ {∞},≤Π), where

i <Π j :⇐⇒

j =∞ and i ∈ Π,

i <Π j.

Similarly, we define Π := (Π ∪ {−∞},≤Π), where

i <Π j :⇐⇒

i = −∞ and j ∈ Π,

i <Π j.

To every finite poset, Stanley associated two geometric objects, namely the order
polytope and the chain polytope.
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Definition 4.2.1 ([Sta86], Def. 1.1). The order polytope O(Π) of a finite poset Π is the
subset of RΠ = {f : Π→ R} defined by

0 ≤ f(i) ≤ 1 for all i ∈ Π,

f(i) ≤ f(j) if i ≤Π j.

Definition 4.2.2 ([Sta86], Def. 2.1). The chain polytope C(Π) of a finite poset Π is the
subset of RΠ = {g : Π→ R} defined by the conditions

0 ≤ g(i) for all i ∈ Π,

g(i1) + g(i2) + . . . g(ik) ≤ 1 for all chains i1 <Π i2 <Π · · · <Π ik of Π.

Remark 4.2.3. In the following, we will use an isomorphism RΠ ∼= R#Π to make notation
better.

Figure 4.2: The order and chain polytope of the poset described in Figure 4.1.

The definition of both the order and the chain polytope is illustrated in Figure 4.1.
We define an order filter F of a poset Π to be a subset F ⊂ Π such that if i ∈ F and
i < j, then j ∈ F . To every order filter F , one can associate a characteristic function 1F

defined as

1F (i) :=

1 if i ∈ F,

0 otherwise.

Stanley showed that vertices of O(Π) are given by the characteristic functions of order
filters.

Corollary 4.2.4 ([Sta86, Cor. 1.3]). The vertices of O(Π) are the characteristic
functions 1F of order filters F . In particular, the number of vertices equals the number
of order filters.

Stanley also gave the vertex description of chain polytopes. We define an antichain A
of a poset Π to be a subset A ⊂ Π of pairwise incomparable elements. The characteristic
function 1A of an antichain A is defined similarly to the characteristic function of an
order filter.
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Theorem 4.2.5 ([Sta86, Thm 2.2]). The vertices of C(Π) are given by the character-
istic functions 1A of antichains A. In particular, the number of vertices of C(Π) equals
the number of antichains of Π.

Let Π be a d-element poset and let m ∈ Z≥1. We define Ω(Π,m) to be the number of
order-preserving maps Π→ {1, 2, . . . ,m}, where we say that a map f is order preserving
if i ≤Π j implies f(i) ≤ f(j). These order-preserving maps correspond to integer points
in dilates of the order polytope as the next theorem shows:

Theorem 4.2.6 ([Sta86, Thm. 4.1]). The Ehrhart polynomials of O(Π) and C(Π)
are given by

ehrO(Π)(k) = ehrC(Π)(k) = Ω(Π, k + 1).

Remark 4.2.7. As is implicit in Stanley’s proof, interior integer points are in bijection
with strictly order-preserving maps, i.e., maps f that satisfy i <Π j implies f(i) < f(j).

In a poset Π, maximal chains can have different lengths. A chain with maximum length
is called a longest chain.

Figure 4.3: Edges belonging to longest chain are colored red.

Remark 4.2.8. The codegree of O(Π) equals the rank of Π, i.e., it equals the number of
edges in the longest chain of Π.

4.3 miyazaki’s characterization

In this section, we recall the characterization for levelness of order polytopes which was
introduced by Miyazaki, see [Miy17]. In order to give a characterization of the level
property, Miyazaki defined sequences with condition N .

Definition 4.3.1 ([Miy17, Def. 3.1]). Let i1, j1, i2, j2, . . . , it, jt, be a possible empty
sequence of elements in a finite poset Π. We say the sequence satisfies condition N if

1. i1 < j1 > i2 < j2 > · · · > it < jt and

2. for any m,n with 1 ≤ m < n ≤ t, im � jn.
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Definition 4.3.2. Let i1, j1, i2, j2, . . . , it, jt be a sequence of elements in a finite poset Π
with condition N , and set j0 =∞ and it+1 = −∞. We set

r(i1, j1, . . . , it, jt) :=
t∑

s=1

(rank[is, js−1]− rank[is, js]) + rank[it+1, jt].

Moreover, set

rmax := max{r(i1, j1, . . . , it, jt) : i1, j1, . . . , it, jt is a sequence with condition N}.

Associated to every sequence with condition N , Miyazaki defines a special element of
cone(O(Π))◦ ∩ Zd+1, where d is the number of elements in the poset Π:

Definition 4.3.3 ([Miy17, Def 3.6]). Let i1, j1, i2, j2, . . . , it, jt be a sequence of elements
in a finite poset Π with condition N , and set j0 =∞ and it+1 = −∞. We define

x(i1, j1, . . . , it, jt)im :=

t∑
s=m

(rank[is+1, js]− rank[is, js])

for 1 ≤ m ≤ t+ 1 and

y(i1, j1, . . . , it, jt)k := max{rank[is, k] + x(i1, j1, . . . , it, jt)is : k ≥ is}

for k ∈ Π.

These elements give rise to an important class of minimal elements, as the next lemma
shows.

Lemma 4.3.4 ([Miy17, Lem. 3.8]). Let i1, j1, i2, j2, . . . , it, jt be a sequence of ele-
ments in a finite poset Π with condition N , and set j0 = ∞ and it+1 = −∞. If
r(i1, j1, . . . , it, jt) = rmax, then the element y(i1, j1, . . . , it, jt) is minimal in the sense of
Definition 2.3.11. In particular, it is an interior lattice point in the cone. Furthermore,

y(i1, j1, . . . , it, jt)im = x(i1, j1, . . . , it, jt)im ,

y(i1, j1, . . . , it, jt)jm−1 = rank[im, jm−1] + x(i1, j1, . . . , it, jt)im

for 1 ≤ m ≤ t+ 1. In particular, y(i1, j1, . . . , it, jt)j0 = rmax.

Figure 4.4 illustrates Definition 4.3.1 and Lemma 4.3.4.
Now, we can introduce the characterization of Miyazaki:

Lemma 4.3.5 ([Miy17, Thm 3.9]). Let Π be a poset and r = codeg(O(Π)). Then Π is
level is and only if rmax = r.

In this chapter, we characterize levelness of order polytopes in terms of weighted
digraphs. Given a poset Π, we define the Hasse graph H(Π) of Π to be the digraph with
nodes coming from Π and with directed, weighted edges (i, j,−1) and (j, i, 1), where
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(a) Fink’s poset.
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(b) y(9, 7, 5, 3) illustrated.

Figure 4.4: Fink’s poset and the minimal element y illustrated.

il j. In our language, a sequence i1, j1, . . . , it, jt with condition N can be reinterpreted
as a path P in H(Π) from ∞ to −∞ with the up-edges (or the down-edges) coming
from longest chains in [im, jm] (or [im+1, jm]), where j0 =∞ and it+1 = −∞, and we say
that such a path satisfies condition N . Moreover, we set r(P) := r(i1, j1, . . . , it, jt) and
y(P) := y(i1, j1, . . . , it, jt). We chose the weights of the edges so that −r(P) equals the
weighted length.

Remark 4.3.6. This special minimal element y(P) has the property that for every up
(or down) intervals [i, j] in the path we have y(P)i − y(P)j = rank[i, j]. This is a direct
consequence of Lemma 4.3.4 and a brief computation.

Now, we can characterize the level property as the following.

Proposition 4.3.7. Let Π be a finite poset and r = codeg(O(Π)). Then Π is not
level if and only if there exists a path P in H(Π) with condition N such that r(P) > r.

Proof. This directly follows from Lemmas 4.3.5 and 4.3.4.

Remark 4.3.8. Even if Π is level with r = codeg(O(Π)), there may exist a path in H(Π)
of length > r. The interested reader might construct their favorite counter-example.

4.4 a new characterization of levelness

In this section, we introduce an algorithm for checking levelness of order polytopes. First,
we need to associate a weighted digraph to a poset Π together with a subposet Π′ ⊂ Π,
where we require that ilΠ′ j implies ilΠ j.

Definition 4.4.1. Let Π be a finite poset and let Π′ be a subposet of Π such that ilΠ′ j
implies ilΠ j. Let Γ(Π,Π′) = (Π, E) be the weighted digraph with weighted, directed
edges:

1. (i, j,−1) ∈ E if and only if j mΠ i;

2. (j, i, 1) ∈ E if and only if j mΠ′ i.

Clearly, Γ(Π,Π) = H(Π). If Π is clear from the context, we will write Γ(Π′).
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A negative cycle is a directed cycle whose sum of weights is negative. A wedge of
cycles is a closed directed path (where repetition is allowed) whose sum of weights is
negative. An integer point x ∈ cone(O(Π))◦ ∩Zd+1 is sharp along a covering pair j m i if
xj = xi + 1.

Next, we associate a weighted digraph to every integer point in cone(O(Π))◦. The
following lemma shows that the associated digraph does not have any negative cycles.

Lemma 4.4.2. Let b ∈ cone(O(Π))◦ ∩ Zd+1 be given. Then the weighted digraph Γb
whose nodes are given by the elements of Π and whose weighted, directed edges are

� {(i, j,−1) : il j} ∪ {(j, i, 1) : il j, bj − bi = 1} ,

� {(−∞, i,−1) : im−∞} ∪ {(i,−∞, 1) : im−∞, bi = 1},

� and {(i,∞,−1) :∞m i} ∪ {(∞, i, 1) :∞m i, bi = maxj bj}.

does not have any negative cycles. In particular, every subgraph contains no negative
cycles.

Proof. For i, j ∈ Π, let u(i, j) denote a directed path from i to j where i < j and let
d(l, k) denote a directed path from l to k where l > k. Let u(i1, i2), d(i2, i3), u(i3, i4),
. . . , d(is, i1) be a directed cycle in Γb with i1 < i2, i3 < i2, . . . , i1 < is. We first remark
that the weights of the down-paths d(i, i+ 1) are given by

=1︷ ︸︸ ︷
bi − b(1) +

=1︷ ︸︸ ︷
b(1) − b(2) + · · · − b(r)+

=1︷ ︸︸ ︷
b(r) − bi+1= bi − bi+1,

where we set b∞ = maxk bk + 1 and b−∞ = 0. Therefore, the sum of the weights in the
cycle is equal to

(bi2 − bi3) + · · ·+ (bis − bi1)− length(i1, i2)− · · · − length(is−1, is)

=(bi2 − bi1) + · · ·+ (bis − bis−1)− length(i1, i2)− · · · − length(is−1, is) ≥ 0,

since b ∈ cone(O(Π))◦ implies that bj − bi ≥ length(i, j) for all i < j, where length(i, j)
is the length of the path from i to j.

The following theorem uses the Bellman–Ford algorithm, which was introduced by
Bellman and Ford, see for instance [Bel58]. We are using this algorithm as a black box.
Instead of explicitly describing it, we will merely state some basic facts about it:

� The Bellman–Ford algorithm finds the shortest path from a sink to any other node
in a weighted digraph. In contrast to other algorithms, it can also deal with negative
weights assuming that the digraph does not contain any negative cycles (that can
be reached from the starting node), see [Sch03, Thm. 8.5].

� If there is such a negative cycle, the Bellman–Ford algorithm can detect the negative
cycle, [Sch03, Thm. 8.6].

55



� The Bellman–Ford algorithm runs in O(#V ·#E), where V is the vertex set and
E is the edge set of the underlying graph, see [Sch03, Thm. 8.5].

Given a path P in H(Π) with condition N , let Π′(P) be the subposet of Π whose covering
pairs are given by the up paths of P. Now, we give a new characterization of level order
polytopes.

Theorem 4.4.3. Let Π be a finite poset on d elements and let r = codeg(O(Π)). Then
Π is level if and only if for any path P in H(Π) with condition N such that Γ(Π′(P))
has no negative cycles, Γ(Π′(P) ∪ {longest chains in Π}) has no negative cycles.

Proof. Let M(O(Π)) := cone(O(Π)) ∩ Zd+1 and let M◦(O(Π)) := cone(O(Π))◦ ∩ Zd+1.
To show the first direction, let’s assume O(Π) is level. Associated to Γ(Π′(P)), there is a
b ∈M◦(O(Π)). To see this, run the Bellman–Ford algorithm on Γ(Π′(P)). The Bellman–
Ford algorithm minimizes the distance from −∞ to any point i. After multiplying all
entries by −1, the algorithm will return a point b such that for all covering pairs j m i in
Π, we have bj ≥ bi + 1 and moreover for any weighted edge (j, i, 1) in Γ(Π′(P)) we have
bi ≥ bj − 1. The first condition implies that b ∈ M◦(O(Π)). Moreover, it follows from
these conditions that for any weighted edge (j, i, 1) in Γ(Π′(P)), we have bj−bi = 1. Since
Π is level, there exists a point b̃ ∈M◦(O(Π)) on height r such that b− b̃ ∈M(O(Π)).
This implies that for every covering pair j m i in Π, we have

bj − bi ≥ b̃j − b̃i.

Hence for any weighted edge (j, i, 1) in Γ(Π′(P)), we have b̃j − b̃i = 1. Since b̃ is
on height r, we also know that b̃ is sharp along the longest chains in Π. Since G :=
Γ(Π′∪{longest chains in Π}) is a subgraph of Γb̃, using Lemma 4.4.2, we get that G does
not contain a negative cycle.

We prove the other direction by contraposition. Let’s assume that Π is not level.
Then there exists a path P with condition N such that r(P) = rmax > r. Moreover,
Γ(Π′(P)) is a subgraph of Γy(P). Hence by using Lemma 4.4.2, it follows that Γ(Π′(P))

has no negative cycle. On the other hand, since rank(Π) = r, it follows that Γ(Π′(P) ∪
{longest chains in Π}) has a negative cycle.

This directly implies the following:

Corollary 4.4.4. Let Π be a finite poset. Π is level if and only if for all Γ(Π′) that
do not have a negative cycle, the digraph Γ(Π′ ∪ {longest chains in Π}) does not have
a negative cycle.

Proof. One direction directly follows from Theorem 4.4.3, so we only need to show that if
Π is level and if Γ(Π′) does not contain a negative cycle, then Γ(Π′∪{longest chains in Π})
does not have a negative cycle. However, this follows from the proof of Theorem 4.4.3.

Remark 4.4.5. For practical purposes this corollary is more convenient than the previous
characterization. This is due to the fact that it is hard to determine (all) paths with
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condition N . We will use this corollary to give an infinite family of level posets, see
Theorem 4.6.1.

Moreover, we get that — given the input Π — determining the levelness of order
polytopes is in co-NP, where co-NP is the complexity class containing the problems of
the complement of NP, i.e., the complexity class having a short certificate for rejection.
For more about complexity classes, we refer to [Sch86, Sec. 2.5].

Corollary 4.4.6. Levelness of order polytopes is in co-NP.

Proof. If O(Π) is not level, then there exists a short certificate Π′(P) such that Γ(Π′(P))
does not have a negative cycle but Γ(Π′(P) ∪ {longest chains in Π}) has a negative
cycle. This will be tested by the Bellman–Ford algorithm in polynomial time, since
we need to run the Bellman–Ford algorithm twice, once for Γ(Π′(P)) and once for
Γ(Π′(P) ∪ {longest chains in Π}). Therefore, we can verify non-levelness in polynomial
time.

We now explicitly describe the algorithm underlying Corollarly 4.4.4:

Algorithm 4.4.7.
For Γ(Π′) ⊂ H(Π):

Run Bellman–Ford for Γ(Π′)

If negative cycle:

1=1

Else:

Run Bellman–Ford for Γ(Π′ ∪ {longest chains in Π})
If negative cycle:

Return NOT LEVEL

Else:

1=1

Return LEVEL

Theorem 4.4.8. A poset Π is level if and only if Algorithm 4.4.7 returns level.

Proof. This directly follows from Corollary 4.4.4.

4.5 a necessary condition of ene, herzog, hibi, and saeedi madani

We now want to show that [EHHSM15, Thm 4.1] is a special case of Corollary 4.4.4.
We first need to define the depth and the height of an element, where we follow again
[EHHSM15]. The height of an element i ∈ Π, denoted height(i) is the maximum length
of a chain in Π descending from i. Similarly, we define the depth of an element i, denoted
depth(i), to be the maximum length of a chain in Π ascending from i.

They show that the following is a necessary condition for levelness:
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Theorem 4.5.1 ([EHHSM15, Thm. 4.1].). Suppose Π is level. Then

height(j) + depth(i) ≤ rank(Π) + 1 (4.1)

for all j m i ∈ Π.

Our next result shows that this is weaker than Corollary 4.4.4. In fact, it is equivalent to
Corollary 4.4.4 where Π′ is a single edge.

Theorem 4.5.2. Let Π be a finite poset and r = codeg(O(Π)). The following are
equivalent:

� inequality (4.1) is satisfied by all covering pairs

� for all Hasse edges j m i ∈ Π there is an integer point x ∈ rO(Π)◦ such that
xj = xi + 1.

Proof. Let’s assume that all covering pairs satisfy (4.1) and fix a covering pair j m i. We
remark that rank(Π) equals the codegree r of the order polytope O(Π). Thus, we need
to show that there exists an integer point x ∈ rO(Π)◦ such that xj = xi + 1. To create
such an x, we can label the elements in Π using labels from {1, 2, . . . , r − 1}. We first
label xj = height(j) and hence xi = height(j)− 1. For k ∈ Π \ {i, j} we label xk = −∞,
and then we recursively relabel by

xk =

max{height(k), xi + length([i, k])} if k > i,

height(k) otherwise.
(4.2)

To show that this indeed gives an interior integer point in rO(Π)◦, we need to show that
r > xk ≥ height(k) for all k. We say a label xk is well-defined if it satisfies this condition.
There are two cases:

1. k > i, then (4.1) ensures that (4.2) only yields well-defined labels;

2. k ≯ i, then the recursive definition gives us height(k), which by definition is
well-defined.

This proves the first direction.
Now let assume that for all Hasse edges (j m i) in Π there exists an integer point

x ∈ rO(Π)◦ such that xj = xi + 1. Let’s fix a covering pair j m i. Then we have an
integer point x ∈ rO(Π)◦ with xj = xi + 1 and it follows that height(j) ≤ xj . Since we
have an integer point in the interior of rO(Π), we also get that

depth(i) ≤ rank(Π)− xi.

Putting everything together, we obtain

height(j) + depth(i) ≤ rank(Π) + 1,

as desired.
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However, this result is not sufficient. The following example was related to us by Alex
Fink, see Figure 4.4a.

Remark 4.5.3. Let Π be the poset from Figure 4.4a. We have that codeg(O(Π)) = 5.
Moreover, for any covering pair il j in Π, there is a minimal element x on height 5 with
xi + 1 = xj . Thus, by Theorem 4.5.2 the condition of [EHHSM15, Thm. 4.1] is satisfied.
However, Π is not level. The minimal element y(9, 7, 5, 3) is on height 6, see Figure 4.4b.

4.6 series-parallel posets

The goal of this section is to describe a new family of level posets. The main character of
this section is the ordinal sum. We follow the notation of [Sta12, Sec. 3.2]. Let Π1 and
Π2 be two posets. Then their ordinal sum Π1 /Π2 is the poset with elements from the
union Π1 ∪Π2 and with relations s ≤ t if

� s, t ∈ Π2 with s ≤Π2 t, or

� s, t ∈ Π1 with s ≤Π1 t, or

� s ∈ Π1 and t ∈ Π2.

Posets that can be built up as ordinal sums of posets are called series-parallel posets.

Π1 Π2

Π1 /Π2

Figure 4.5: Ordinal sum of a chain of length 3 and an antichain of length 2.

We want to show the following result:

Theorem 4.6.1. The ordinal sum Π = Π1 /Π2 of two posets Π1, Π2 is level if and
only if both Π1 and Π2 are level.

Proof. We prove the first direction by contraposition. So let’s assume that Π1 is not
level. By Corollary 4.4.4, there exists a weighted digraph ΓΠ1 with nodes coming
from Π1 which does not contain a negative cycle, but the weighted directed graph
ΓΠ1 ∪ {longest chains in Π1} has a negative cycle. However, we also get that ΓΠ has
a weighted digraph with up-edges of weight 1 only coming from up-edges of ΓΠ1 does
not contain a negative cycle, but ΓΠ ∪ {longest chains in Π} contains one, proving that
Π1 /Π2 is not level. The case where Π2 is not level follows analogously.

We prove the other direction again by contraposition. So let’s assume that Π1 / Π2

is not level. By Corollary 4.4.4, there exists a weighted digraph Γ with nodes coming
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from Π such that Γ does not have a negative cycle and Γ ∪ {longest chains in Π} has a
negative cycle, where Γ ∪ {longest chains in Π} is the weighted digraph obtained from Γ
by adding down edges of weight 1 along longest chains in Π. In order to show that either
Π1 or Π2 are not level, we will construct graphs ΓΠ1 and ΓΠ2 without negative cycles
such that adding down edges of weight 1 along longest chains creates a negative cycle.
The following two quotient maps will be essential for this:

Π1 /Π2

q1
� Π1 /Π2/(p2 ∼ p′2 ∼ ∞) ∼= Π1

Π1 /Π2

q2
� Π1 /Π2/(p1 ∼ p′1 ∼ −∞) ∼= Π2,

where p1, p
′
1 ∈ Π1 and p2, p

′
2 ∈ Π2.

∞

-∞

Π1 ∞

-∞

Π2

Π1 /Π2

∞

−∞

Figure 4.6: Original poset (on the right) and the two quotient posets (on the left and in the middle).

Note that these quotient maps also induce weighted directed graphs ΓΠ1 and ΓΠ2 on
the underlying posets Π1 and Π2, respectively. We will show the following:

1. Both ΓΠ1 and ΓΠ2 do not have a negative cycle

2. Either ΓΠ1 ∪ {longest chains in Π1} or ΓΠ2 ∪ {longest chains in Π2} or both have
a negative cycle.

This implies that either Π1 or Π2 or both cannot be level proving the claim. The first
claim follows by contraposition. If either ΓΠ1 or ΓΠ2 had a negative cycle, then one can
lift this cycle to obtain a negative cycle in Γ. This is due to the fact that every maximal
element in Π1 is comparable to every minimal element in Π2, together with the fact that
every up-edge has the same weight, namely −1.

Now let’s prove the second claim. We remark that longest chains in Π1 /Π2 are
concatenations of longest chains in Π1 and longest chains in Π2 and vice versa. This
means that

imΠ1(Γ ∪ {longest chains in Π1 /Π2}) = imΠ1(Γ) ∪ {longest chains in Π1}
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and

imΠ2(Γ ∪ {longest chains in Π1 /Π2}) = imΠ2(Γ) ∪ {longest chains in Π2},

where imΠ1 (or imΠ2) denotes the image of the quotient map onto Π1 (or Π2). More-
over, if a negative cycle of Γ ∪ {longest chains in Π1 /Π2} is entirely contained in
q−1

1 (Π1) ∪ {min. elt’s of Π2} or q−1
2 (Π2) ∪ {max. elt’s of Π1}, then clearly the image

also has a negative cycle. (Caveat: After forming the quotient map, the cycle might
become a wedge of cycles. But since the total weight of the original cycle is the sum of
the weights of the cycle in the image, at least one of these cycles in the wedge has to be
negative.)

So we only need to consider the case where a negative cycle contains edges contained
in Π1 and in Π2. We can cover the cycle into the part, whose edges are entirely in
q−1

1 (Π1) ∪ {min. elt’s of Π2}, and a part whose edges are in q−1
2 (Π2) ∪ {max. elt’s of Π1}.

Note that the edges between Π1 and Π2 appear in both parts. Therefore, the total weight
w of the cycle equals

0 > w = wΠ1
+ wΠ2

− wΠ1Π2 ,

where wΠ1
and wΠ2

are the weights of the parts in the preimage of Π1 and Π2, respectively.

The weight of the connecting edges between Π1 and Π2 is denoted wΠ1Π2 . This weight
is 0, since there are as many up- as there are down-edges and the weights are −1 and
1, respectively. Therefore, either wΠ1

or wΠ2
or both are negative. If wΠ1

is negative,

applying the quotient map gives us a wedge of cycles in Π1 with negative weight. Hence it
contains at least one negative cycle. The case where wΠ2

is negative is similar. Therefore,

we have seen that either Π1 or Π2 is not level proving the claim.

For the remainder of this section, let Π = Π1 / Π2. We will first give a geometric
description of the order polytope and the chain polytope of Π in terms of the order and
chain polytopes of Π1 and Π2, respectively.

Lemma 4.6.2. Let Π,Π1,Π2 be posets such that Π = Π1 /Π2. Then

C(Π) = conv{C(Π1)× 0Π2 ∪ 0Π1 × C(Π2)} =: C(Π1)⊕ C(Π2), (4.3)

where ⊕ is the free sum of C(Π1) and C(Π2).

Proof. By Theorem 4.2.5, the vertices of the chain polytope are given by the indicator
vectors of antichains. Now one notices that no antichain can contain elements from both
Π1 and Π2.

Lemma 4.6.3. Let Π,Π1,Π2 be posets such that Π = Π1 /Π2. Then

O(Π) = conv{O(Π1)× 1Π2 ∪ 0Π1 ×O(Π2)}. (4.4)
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Proof. By Corollary 4.2.4, the vertices of the order polytope are given by the indicator
vectors of filters. Now one notices that as soon as a filter contains an element of Π1, it
contains all elements of Π2.

Moreover, we have:

Proposition 4.6.4. Let Π,Π1,Π2 be posets such that Π = Π1 / Π2. Moreover,
let h∗Π, h

∗
Π1
, h∗Π2

be the h∗-polynomial of the Ehrhart series of the corresponding order
polytopes. Then we have

h∗Π = h∗Π1
h∗Π2

. (4.5)

Proof. By Theorem 4.2.6 the Ehrhart series of the chain polytope of a poset Π is the
same as the Ehrhart series of the order polytope of Π. In [HH16, Lem 3.2], Hibi and
Higashitani show that if the free sum, P ⊕ Q, of two lattice polytopes P , Q both
containing the origin has the integer-decomposition property, then h∗P⊕Q = h∗Ph

∗
Q. Now

using Lemma 4.6.2 together with [HH16, Lem 3.2] implies the result. Note that every
chain polytope and every order polytope has a unimodular triangulation and thus has
the integer-decomposition property. For the order polytope, we directly get a regular,
unimodular, flag triangulation by taking the standard triangulation of the cube and
restricting it to the order polytope. For the chain polytope, Stanley [Sta86] constructs
such a regular, unimodular, flag triangulation.

Remark 4.6.5. In [Hib88], Takayuki Hibi gives an example of two order polytopes O(Π1),
O(Π2) where both have the same h∗-polynomial, but Π1 is level and Π2 is not level. This
shows that the level property cannot be characterized by the h∗-polynomial. We remark
that Theorem 4.6.1 together with Proposition 4.6.4 gives a way to create infinitely many
such examples Π1 /Π3 and Π2 /Π3, where Π3 is any level poset.

4.7 connected components of level posets

In this section, we discuss connected components of level posets. Any connected component
of a Gorenstein poset is Gorenstein. This fact naturally leads us to consider whether
any connected component of a level poset is level. However, this is not true in general.
From the following result we know that there exists a level poset such that a connected
component of the poset is not level.

Theorem 4.7.1 ([EHHSM15, Theorem 4.7]). Let Π be a poset on d elements and let
Cs be a totally ordered set with s elements. Then the poset on the set Π ∪ Cs ,where
elements from Π and Cs are incomparable, is level for all s� 0.

We give an explicit bound for s appearing in Theorem 4.7.1.

Theorem 4.7.2. Let Π be a poset on d elements and let Cs be a totally ordered set
with s elements. Then the poset on the set Π ∪ Cs, where elements from Π and Cs are
incomparable, is level for all s ≥ d.
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In order to prove this theorem, we consider a more general class of lattice polytopes
containing any order polytope.

Definition 4.7.3. We say that a polytope P ⊂ Rd is alcoved if P is an intersection of
some half-spaces bounded by the hyperplanes

Hm
i,j = {(z1, . . . , zd) ∈ Rd : zi − zj = m} for 0 ≤ i < j ≤ d,m ∈ Z,

where z0 = 0.

It is known that any order polytope is alcoved. After a unimodular change of coordinates,
every chain polytope is alcoved, too. Furthermore, any alcoved polytope possesses the
integer-decomposition property.

For a lattice polytope P = {x ∈ Rd : Ax ≤ b} ⊂ Rd, we set P (1) = {x ∈ Rd : Ax ≤
b− 1}.
Remark 4.7.4. If P = {x ∈ Rd : Ax ≤ b} ⊂ Rd is an alcoved polytope for some m× d
integer matrix A and some integer vector b ∈ Zm, then since A is a totally unimodular
matrix, P(1) is a lattice polytope. In particular, one has P(1) = conv(P ◦ ∩ Zd).

Lemma 4.7.5. Let P ⊂ Rd be an alcoved polytope. Then for any positive integer k,
kP and P (1) are alcoved.

Proof. Since P is alcoved, P is a polytope given by inequalities of the form bij ≤ zi−zj ≤
cij , for some collection of integer parameters bij and cij . Hence for any positive integer k,
kP is a polytope given by inequalities of the form kbij ≤ zi − zj ≤ kcij . Moreover, P (1)

is a polytope given by inequalities of the form bij + 1 ≤ zi− zj ≤ cij − 1. Therefore, both
kP and P (1) are alcoved.

For two lattice polytopes P and Q in Rd, set

Cayley(P,Q) = conv(P × {0} ∪Q× {1}) ⊂ Rd+1.

We say that Cayley(P,Q) is the Cayley polytope of P and Q.

Lemma 4.7.6. Let P and Q be alcoved polytopes in Rd. Then Cayley(P,Q) has a regu-
lar unimodular triangulation. In particular, Cayley(P,Q) has the integer-decomposition
property.

Proof. This is [HPPS14, Lemma 4.15], since alcoved polytopes have a type A root
system.

This directly implies the following result.

Corollary 4.7.7. If P,Q ⊂ Rd are alcoved polytopes, then the map(
P ∩ Zd

)
×
(
Q ∩ Zd

)
� (P +Q) ∩ Zd.

is onto.
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Proof. We have that

2 Cayley(P,Q) ∩ {(x1, . . . , xd+1) ∈ Rd+1 : xd+1 = 1} = (P +Q)× {1}.

Since Cayley(P,Q) has the integer-decomposition property, it follows that every integer
point in 2 Cayley(P,Q) can be written as a sum of two integer points in Cayley(P,Q).
However, the only way we can get an integer point at height 1 is if we add one integer
point at height 0 and at height 1, i.e., one integer point belongs to P and one belongs to
Q, proving the claim.

Now, we give a characterization on levelness of alcoved polytopes.

Proposition 4.7.8. Let P ⊂ Rd be an alcoved polytope and let r = codeg(P ). Then
P is level if and only if for any integer k ≥ r, it follows that (kP )(1) = (rP )(1) +(k−r)P .

Proof. First, assume that P is level. Then from the definition of levelness, for any integer
k ≥ r, (kP )◦ ∩Zd = (rP )◦ ∩Zd + (k− r)P ∩Zd. Hence one has (kP )(1) = conv(((rP )◦ ∩
Zd) + (k − r)P ∩ Zd) = conv((rP )◦ ∩ Zd) + conv((k − r)P ∩ Zd) = (rP )(1) + (k − r)P.

Conversely, assume that for any integer k ≥ r, (kP )(1) = (rP )(1) + (k − r)P . By
Lemma 4.7.5, (kP )(1), (rP )(1) and (k − r)P are alcoved polytopes. Hence by Corol-
lary 4.7.7, P is level.

Lemma 4.7.9. Let P ⊂ Rd be a lattice polytope and let r′ ≥ codeg(P ) be an integer.
Assume that there exists an integer k > r′ such that (kP )(1) = (r′P )(1) + (k − r′)P .
Then for any integer k > k′ ≥ r′, we have (k′P )(1) = (r′P )(1) + (k′ − r′)P .

Proof. Assume that there exists an integer k > k′ ≥ r′ such that (k′P )(1) ) (r′P )(1) +
(k′ − r′)P . In general, it follows that (k′P )(1) ⊃ (r′P )(1) + (k′ − r′)P . Then we have

(kP )(1) ⊃ (k′P )(1) + (k − k′)P ) (r′P )(1) + (k − r′)P = (kP )(1).

Hence this is a contradiction.

On levelness of dilated polytopes, the following theorem is known.

Theorem 4.7.10 ([BGT02, Theorem 1.3.3]). Let P be a lattice d-polytope. Then for
any integer k ≥ d+ 1, kP is level.

Now, we prove the following theorem about levelness of a product of alcoved polytopes.

Theorem 4.7.11. Let P ⊂ Rd and Q ⊂ Re be alcoved polytopes. Suppose that Q is
level and r = codeg(Q) ≥ dimP + 1. Then P ×Q ⊂ Rd+e is level.

Proof. By Theorem 4.7.10, rP is level. Hence for any positive integer k′, one has
(k′rP )(1) = (rP )(1) + (k′ − 1)rP from Proposition 4.7.8. Therefore, by Lemma 4.7.9, it
follows that for any k ≥ r, we obtain (kP )(1) = (rP )(1) + (k − r)P . Since Q is level, for
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any k ≥ r, we obtain (kQ)(1) = (rQ)(1) + (k − r)Q. Fix a positive integer k ≥ r. Since
int(k(P ×Q)) ∩ Zd+e = (int(kP ) ∩ Zd)× (int(kQ) ∩ Ze),

(k(P ×Q))(1) = (kP )(1) × (kQ)(1)

= ((rP )(1) + (k − r)P )× ((rQ)(1) + (k − r)Q)

⊂ ((rP )(1) × (rQ)(1)) + (k − r)(P ×Q)

= (r(P ×Q))(1) + (k − r)(P ×Q)

⊂ (k(P ×Q))(1).

Hence P ×Q is level.

Now, we prove Theorem 4.7.2.

Proof of Theorem 4.7.2. The order polytope of Π ∪ Cr is the Cartesian product of O(Π)
and O(Cr), which is the r-dimensional unimodular simplex. This simplex has codegree
r + 1. Hence by Theorem 4.7.11, the claim now follows.

Conversely, we consider posets all of whose connected components are level. In fact,
these posets are always level.

Theorem 4.7.12. Let Π be a poset on d elements and Π1, . . . ,Πm the connected
components of Π. If each Πi is level, then Π is level.

Theorem 4.7.12 follows from the following result:

Theorem 4.7.13. Let P ⊂ Rd and Q ⊂ Re be level polytopes. If either

1. codeg(Q) < codeg(P ) and Q has the integer-decomposition property,

2. codeg(P ) < codeg(Q) and P has the integer-decomposition property,

3. or if codeg(Q) = codeg(P ),

then P ×Q is level.

Proof. Let rP := codeg(P ) and let rQ := codeg(Q). Without loss of generality, we
assume codeg(Q) ≤ codeg(P ). Then r := codeg(P ×Q) = max{rP , rQ} = rP , since
x = (xP ,xQ) ∈ (P × Q)◦ ∩ Zd+e implies that xP ∈ P ◦ ∩ Zd and that xQ ∈ Q◦ ∩ Ze.
Let (xP ,xQ, h) ∈ cone(P ×Q) ∩ Zd+e+1 with h > r. Then this point projects to points
(xP , h) ∈ cone(P ) ∩ Zd+1 and (xQ, h) ∈ cone(Q) ∩ Ze+1. Since P is level, we have that

(xP , h) = (x◦P , r) + (x̃P , h− r),

where (x◦P , r) ∈ cone(P )◦ ∩ Zd+1 and (x̃P , h− r) ∈ cone(P ) ∩ Zd+1. Similarly, since Q is
level, we have that

(xQ, h) = (x◦Q, rQ) + (x̃Q, h− rQ),
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where (x◦Q, rQ) ∈ cone(Q)◦ ∩ Ze+1 and (x̃Q, h − rQ) ∈ cone(Q) ∩ Ze+1. If codeg(P ) =
codeg(Q), we now get a decomposition

(xP ,xQ, h) = (x◦P ,x
◦
Q, r) + (x̃P , x̃Q, h− r),

where (x◦P ,x
◦
Q) ∈ r(P ×Q)◦ ∩Zd+e and where (x̃P , x̃Q) ∈ (h− r)(P ×Q)∩Zd+e proving

levelness of P ×Q.

So let’s assume codeg(Q) < codeg(P ). Since Q has the integer-decomposition property,

we can express (x̃Q, h− rQ) as a sum of height 1 elements, i.e., (x̃Q, h− rQ) = (x̃
(1)
Q , rP −

rQ) + (x̃
(2)
Q , h− rP ) and thus obtain

(xQ, h) = (x◦Q, rQ) + (x̃Q, h− rQ) = (x◦Q + x̃
(1)
Q , rP ) + (x̃

(2)
Q , h− rP ),

where (x◦Q + x̃
(1)
Q , rP ) ∈ cone(Q)◦ ∩Ze+1 and (x̃

(2)
Q , h− rP ) ∈ cone(Q)∩Ze+1. Therefore,

we can express (xP ,xQ, h) as

(xP ,xQ, h) = (x◦P ,x
◦
Q + x̃

(1)
Q , r) + (x̃P , x̃

(2)
Q , h− r)

where (x◦P ,x
◦
Q+x̃

(1)
Q ) ∈ r(P×Q)◦×Zd+e and where (x̃P , x̃

(2)
Q ) ∈ (h−r)(P×Q)◦∩Zd+e.

Remark 4.7.14. In Theorem 4.7.13, we really need the assumption that the polytope of
lower codegree has the integer-decomposition property. Consider the following example,
where

P = conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 2)}

and where

Q = conv{(0, 0), (1, 0), (0, 1)}.

Then P does not have the integer-decomposition property, but it is Gorenstein and thus
level. Moreover, Q has the integer-decomposition property and it is level, since it is
Gorenstein. However, the product P ×Q is not level.

Proof. We first remark that codeg(Q) = 3 and codeg(P ) = 2. Hence, codeg(P ×Q) = 3.
There are exactly 4 integer points in the interior of 3(P ×Q), namely

3(P ×Q)◦ ∩ Z5 = {(1, 1, 1, 1, 1), (1, 2, 1, 1, 1), (2, 1, 1, 1, 1), (2, 2, 3, 1, 1)}.

However, the integer point (2, 2, 2, 2, 1) ∈ (4(P ×Q)◦ ∩ Z5 cannot be written as a sum

(2, 2, 2, 2, 1) = x1 + x2

of points x1 ∈ 3(P ×Q)◦ ∩ Z5 and x2 ∈ (P ×Q) ∩ Z5. Thus, P ×Q is not level.

We end this article with the following criterion for levelness:
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Lemma 4.7.15. If a lattice d-polytope P has a covering by unimodular simplices such
that every interior face of such a simplex contains an interior sub-face of dimension
codeg(P )− 1, then P is level.

Proof. Let b ∈ cone(P )◦∩Zd+1 and let r := codeg(P ). We will prove levelness by showing
that every such b can be written as an integral combination of an interior integer point
on height r with integer points on height 1.

The unimodular simplices in the covering of P give rise to a covering of cone(P ) by
unimodular cones. Therefore, b is in at least one such unimodular cone. Let ∆ =
conv{v1,v2, . . . ,vd+1} be the corresponding unimodular simplex and let cone(∆) be the
cone over ∆. Then there is a unique representation

b =
d+1∑
i=1

λi(vi, 1), (4.6)

where λi ∈ Z≥0. There are two cases: If λi = 0 for some i ∈ I in an index set I, then
this means that b is contained an (d + 1 −#I)-dimensional face, which has to be an
interior face. Then, for J := {1, . . . , d + 1} \ I, the face conv{vj}j∈J gives rise to a
(#J)-dimensional cone containing b. Hence, by assumption there is a subset R ⊂ J with
#R = r, such that the point x =

∑
i∈R(vi, 1) is a point in cone(P )◦ ∩ Zd+1. Combining

this with Equation (4.6), we obtain

b = x+ (b− x) ,

where b− x ∈ cone(P ) ∩ Zd+1, which proves levelness,
If λi 6= 0 for all i ∈ {1, 2, . . . , d+ 1}, then we can set x =

∑
i∈J(vi, 1), where J is an

interior (r − 1)-dimensional face. The claim now follows analogously.

It would be interesting to see a poset interpretation of this lemma.
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5
LEVEL ALGEBRAS AND s- LECTURE HALL POLYTOPES

“One and one and one is three.” (The Beatles (Come Together))

This chapter is based on joint work with McCabe Olsen, see also our paper [KO].

5.1 introduction

Let P ⊂ Rn be a convex lattice polytope. It is a common question in Ehrhart theory
to determine if P is a Gorenstein polytope, that is, to determine if the associated
semigroup algebra of P is a Gorenstein algebra. Such polytopes are of interest in
geometric combinatorics, because they have some integer dilate, cP , which is a reflexive
polytope [DNH97]. Moreover, as we have seen in Chapter 2, Gorenstein polytopes have
a palindromic Ehrhart h∗-polynomial, see Theorem 2.3.16. Gorenstein polytopes are
also of interest in algebraic geometry for a variety of reasons, including connections
to mirror symmetry (see e.g. [Bat94] and [CLS11, Section 8.3]). Roughly speaking, a
pair of reflexive lattice polytopes gives rise to a mirror pair of Calabi–Yau manifolds.
We recommend [Cox15] for an excellent survey article about reflexive polytopes and
their connection to mirror symmetry. Subsequently, classifications of the Gorenstein
property have been extensively studied and are known for many families including
order polytopes [Hib87, Sta86], twinned poset polytopes [HM16], and r-stable (n, k)-
hypersimplices [HS16].

As in the previous chapter, we say that P is a level polytope if its associated semigroup
algebra is a level algebra. The question of detecting levelness has not been studied
nearly to the degree as detecting the Gorenstein property (see e.g. [EHHSM15, HY18]).
However, in addition to the independent interest in level algebras, if P is level, we obtain
nontrivial inequalities on the coefficients of the Ehrhart h∗-polynomial, which are not
satisfied for general lattice polytopes, see Proposition 4.1.1.

One family of well-studied polytopes are the s-lecture hall polytopes. For a given
s ∈ Zn≥1, the s-lecture hall polytope is the simplex defined by

P(s)
n :=

{
λ ∈ Rn : 0 ≤ λ1

s1
≤ λ2

s2
≤ · · · ≤ λn

sn
≤ 1

}
.

These polytopes arise from the extensively investigated s-lecture hall partitions, introduced
by Bousquet-Mélou and Eriksson [BME97a, BME97b]. To quote Savage and Schuster
from [SS12]: “Since their discovery, lecture hall partitions and their generalizations
have emerged as fundamental tools for interpreting classical partition identities and for
discovering new ones.” Though many algebraic and geometric properties of s-lecture hall
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polytopes are known (see e.g. [Sav16]), the known Gorenstein results are very limited
and there are no known levelness results.

Our focus is to work towards a classification of the Gorenstein and level properties
in s-lecture hall polytopes. In particular, we provide a full characterization for the
Gorenstein property. We also give another more geometric characterization in the case
that s has at least one index i, 1 < i ≤ n, such that gcd(si−1, si) = 1. We also provide
a characterization for levelness which applies to all s-sequences in terms of s-inversion
sequences. These main results are as follows:

Theorem 5.1.1. Let s = (s1, s2, . . . , sn) ∈ Zn≥1. Then P
(s)
n is Gorenstein if and only

if there exists a c ∈ Zn+1 satisfying

cjsj−1 = cj−1sj + gcd(sj−1, sj)

for j > 1 and
cn+1sn = 1 + cn

with c1 = 1.

While the next result is not as general, it guarantees that, under the condition that

gcd(si−1, si) = 1 for some 1 < i ≤ n, the vertex cones of P
(s)
n at (0, 0, . . . , 0) and at

(s1, s2, . . . , sn) being Gorenstein already implies that P
(s)
n is Gorenstein.

Theorem 5.1.2. Let s = (s1, s2, . . . , sn) ∈ Zn≥1 be a sequence such that there ex-
ists some 1 < i ≤ n such that gcd(si−1, si) = 1 and define ←−s = (←−s1 , . . . ,

←−sn) :=

(sn, sn−1, . . . , s1). Then P
(s)
n is Gorenstein if and only if there exist c,d ∈ Zn satisfying

cjsj−1 = cj−1sj + gcd(sj−1, sj)

and
dj
←−−sj−1 = dj−1

←−sj + gcd(←−−sj−1,
←−sj )

for j > 1 with c1 = d1 = 1.

Remark 5.1.3. As far as we know, Corollary 5.3.5 follows from Theorem 5.1.2, but not
from Theorem 5.1.1.

In the following theorem, I
(s)
n = {e : 0 ≤ ei < si} is the set of s-inversion sequences, and

In,k is the set of s-inversion sequences with exactly k ascents. We refer to Section 5.2 for
details.

Theorem 5.1.4. Let s = (s1, s2, . . . , sn) ∈ Zn≥1 and let r = max
{

asc(e) : e ∈ I
(s)
n

}
.

Then P
(s)
n is level if and only if for any e ∈ I

(s)
n,k with 1 ≤ k < r there exists some

e′ ∈ I
(s)
n,1 such that (e+ e′) ∈ I

(s)
n,k+1.

The structure of this chapter is as follows. In Section 5.2, we provide the necessary
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(a) P
(1,2,3)
3 .

(b) P
(15,22,13)
3 .

Figure 5.1: Two three-dimensional lecture hall polytopes (not drawn to scale)

background for lecture hall partitions including their vertex- and halfspace-descriptions.
The focus of Section 5.3 is proving the Gorenstein classifications. In Section 5.4, we
prove the characterization of the level property and use the characterization to arrive at
several consequences of interest. We conclude in Section 5.5 with some potential ways to
improve and extend these results and other future directions.

5.2 background

In this section, we provide the terminology and background literature necessary for our
results. Specifically, we provide a review of the polyhedral geometry of lecture hall
partitions. For the necessary background about Ehrhart theory and the levelness as well
as the Gorenstein property, we refer the reader to Section 2.2 and Section 2.3, respectively.
For a more in-depth overview of some of the results concerning s-lecture hall polytopes
and many others, the reader should consult the excellent survey of Savage [Sav16].

Let s = (s1, s2, . . . , sn) ∈ Zn≥1 be a sequence. Given any s-sequence, define the s-lecture
hall partitions to be the set

L(s)
n :=

{
λ ∈ Zn : 0 ≤ λ1

s1
≤ λ2

s2
≤ · · · ≤ λn

sn

}
.

We can associate to the set of s-lecture hall partitions several geometric objects. In
particular, the s-lecture hall polytope and the s-lecture hall cone. For a given s, the
s-lecture hall polytope is defined

P
(s)
n : =

{
λ ∈ Rn : 0 ≤ λ1

s1
≤ λ2

s2
≤ · · · ≤ λn

sn
≤ 1
}

= conv{(0, . . . , 0), (0, . . . , 0, si, si+1, . . . , sn) for 1 ≤ i ≤ n}.

See Figure 5.1 for two three-dimensional examples of lecture hall polytopes.
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The Ehrhart h∗-polynomials of P
(s)
n have been completely classified. Given s, the

set of s-inversion sequences is defined as I
(s)
n := {e ∈ Zn≥0 : 0 ≤ ei < si}. For a given

e ∈ I
(s)
n , the ascent set of e is

Asc(e) :=

{
i ∈ {0, 1, . . . , n− 1} :

ei
si
<
ei+1

si+1

}
,

with the convention s0 := 1 and e0 := 0, and asc(e) := # Asc(e). With these definitions,
we can give the explicit formulation for the Ehrhart h∗-polynomials.

Theorem 5.2.1 ([SS12, Theorem 8]). For a given s ∈ Zn≥1,

h∗
P

(s)
n

(z) =
∑
e∈I(s)n

zasc(e).

The polynomials h∗
P

(s)
n

(z) generalize Eulerian polynomials and are known as the s-Eulerian

polynomials, as the sequence s = (1, 2, . . . , n) gives rise to∑
e∈I(1,2,...,n)

n

zasc(e) =
∑
π∈Sn

zdes(π) = An(z)

which is the usual Eulerian polynomial. These s-Eulerian polynomials are known to be
real-rooted and, hence, unimodal [SV15].
s-lecture hall polytopes have been the subject of much additional study (see e.g.

[HOT16, HOT17, PS13, PS13, SV12]). Of particular interest are algebraic and geometric
structural results such as Gorenstein and IDP results. The second author of [KO] along
with Hibi and Tsuchiya in [HOT16] provides some Gorenstein results in particular
circumstances. Additionally, the following theorem for IDP holds.

Theorem 5.2.2 ([BS]). P
(s)
n has the IDP.

A proof for the case of monotonic s-sequences was given by the second author of [KO]
with Hibi and Tsuchiya in [HOT16] which Brändén and Solus [BS] show can be extended
to any s when they prove that all s-lecture hall order polytopes have the IDP. Moreover,

in [BL16, Conj 5.4] it is conjectured that for any s, P
(s)
n possesses a regular, unimodular

triangulation.
For a given s, the s-lecture hall cone is defined to be

C(s)
n :=

{
λ ∈ Rn : 0 ≤ λ1

s1
≤ λ2

s2
≤ · · · ≤ λn

sn

}
.

These objects are related to s-lecture hall polytopes in that C(s)
n arises as the vertex cone

of P
(s)
n at the origin (0, . . . , 0). It is important to realize that C(s)

n is not the same object

as cone
(
P

(s)
n

)
. In fact, C(s)

n arises as a nontrivial quotient of cone
(
P

(s)
n

)
. The s-lecture

hall cones have been studied extensively (see e.g. [BBK+15, BBK+16, Ols17]) and the
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following Gorenstein results for the lecture hall cones are particularly of interest for our
purposes.

Theorem 5.2.3 ([BBK+15, Corollary 2.6], [BME97b, Proposition 5.4]). For a positive

integer sequence s, the s-lecture hall cone C(s)
n is Gorenstein if and only if there exists

some c ∈ Zn satisfying
cjsj−1 = cj−1sj + gcd(sj−1, sj)

for j > 1, with c1 = 1.

Moreover, in the case of s-sequences where gcd(si−1, si) = 1 holds for all i, we have a
refinement to this theorem. We say that s is u-generated by a sequence u of positive
integers if s2 = u1s1 − 1 and si+1 = uisi − si−1 for i > 1.

Theorem 5.2.4 ([BBK+15, Theorem 2.8], [BME97b, Proposition 5.5]). Let s =
(s1, · · · , sn) be a sequence of positive integers such that gcd(si−1, si) = 1 for 1 ≤
i < n. Then C(s)

n is Gorenstein if and only if s is u-generated by some sequence
u = (u1, u2, · · · , un−1) of positive integers. When such a sequence exists, the Gorenstein

point c for C(s)
n is defined by c1 = 1, c2 = u1, and for 2 ≤ i < n, ci+1 = uici − ci−1.

5.3 gorenstein lecture hall polytopes

In this section, we will give a characterization of Gorenstein s-lecture hall polytopes
with the restriction that there exists some index i such that 1 < i ≤ n satisfying

gcd(si−1, si) = 1. To give such a classification, we will analyze the structure of cone(P
(s)
n ).

The following lemma gives a half-space inequality description of this cone:

Lemma 5.3.1. With the notation from above, we have

cone
(
P(s)
n

)
=
{
λ ∈ Rn+1 : Aλ ≥ 0

}
,

where

A =



1
s1

0 0 . . . 0
−1
s1

1
s2

0 . . . 0
...

...
...

...
...

0 . . . −1
sn−1

1
sn

0

0 . . . 0 −1
sn

1


.

Moreover, this cone is simplicial.

Proof. This follows directly from the half space description of P
(s)
n . Assume that P

(s)
n =

{λ̃ ∈ Rn : M λ̃ ≥ b}, where b = (0, 0, . . . , 0, 1)t. Then on height λn+1, we have M λ̃ ≥
λn+1b. The statement now follows.
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Equipped with the half-space description, we can now give a proof of Theorem 5.1.1.

Proof of Theorem 5.1.1. Let s = (s1, s2, . . . , sn) ∈ Zn≥1. By Lemma 5.3.1, we can express

cone
(
P

(s)
n

)
as

cone
(
P(s)
n

)
=

{
λ ∈ Rn+1 : 0 ≤ λ1

s1
≤ · · · ≤ · · · ≤ λn

sn
≤ λn+1

}
.

Now one notices that cone
(
P

(s)
n

)
= C(s1,...,sn,1)

n+1 , or in other words, that the cone over

P
(s)
n equals the s̃-lecture hall cone, where s̃ := (s1, s2, . . . , sn, 1). By Theorem 5.2.3, this

s̃-lecture hall cone is Gorenstein if and only if there exist c ∈ Zn+1 satisfying

cjsj−1 = cj−1sj + gcd(sj−1, sj)

for j > 1 and
cn+1sn = 1 + cn.

with c1 = 1.

We now recall a technical lemma which we will use in our characterization.

Lemma 5.3.2 ([BBK+15, Lemma 2.5]). Let C = {λ ∈ Rn+1 : Aλ ≥ 0} be a full
dimensional simplicial polyhedral cone where A is a rational matrix and denote the rows
of A as linear functionals α1, . . . , αn+1 on Rn+1. For j = 1, . . . , n+ 1, let the projected
lattice αj(Zn+1) ⊂ R be generated by the number qj ∈ Q>0, so αj(Zn+1) = qjZ.

1. The C is Gorenstein if and only if there exists c ∈ Zn+1 such that αj(c) = qj for
all j = 1, . . . , n+ 1.

2. Define a point c̃ ∈ C ∩ Qn+1 by αj(c̃) = qj for all j = 1, . . . , n + 1. Then C is
Gorenstein if and only if c̃ ∈ Zn+1 in which case we say that c̃ is a Gorenstein
point.

We can now prove our next result.

Proof of Theorem 5.1.2. Let P
(s)
n be Gorenstein with Gorenstein point c ∈ cone

(
P

(s)
n

)
.

Then c has lattice distance 1 to all facets of cone
(
P

(s)
n

)
by [BG09, Thm. 6.33]. For a

vertex v, the vertex cone Tv(P
(s)
n ) of P

(s)
n at v is obtained from cone

(
P

(s)
n

)
by quotienting

cone
(
P

(s)
n

)
by (v, 1). The image of c under this quotient map can be seen to be the

Gorenstein point of Tv(P
(s)
n ), since this point has lattice distance 1 to all facets of Tv(P

(s)
n )

showing that all vertex cones are Gorenstein as well, again by [BG09, Thm. 6.33].
In particular, the vertex cone at the vertex (0, 0, . . . , 0) is of the form

0 ≤ λ1

s1
≤ · · · ≤ λn

sn
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and it is known by Theorem 5.2.3 that this cone is Gorenstein if and only if there
exists a c ∈ Zn satisfying the recurrence above. Likewise, it straightforward to see

that Ts(P
(s)
n ) ∼= T0(P

(←−s )
n ), where ∼= means equivalence after an affine, unimodular

transformation, and where T0(P
(←−s )
n ) is of the form

0 ≤ λ1
←−s1
≤ · · · ≤ λn

←−sn

which is Gorenstein if and only if there exists a d ∈ Zn satisfying the recurrence above.
Therefore, this is certainly a necessary condition.

To show the other direction we employ Lemma 5.3.2. Since the characterization given
in Lemma 5.3.2 essentially requires finding integer solutions to linear equations, we first
deduce some divisibility conditions that will later prove useful.

Assume that we have c,d ∈ Zn as described above and suppose that gcd(si, si+1) = 1.
Note that this gives us the following

cnsn−1 = cn−1sn + gcd(sn−1, sn)

and

d2
←−s 1 = d1

←−s 2 + gcd(←−s 1,
←−s n)⇐⇒ d2sn = d1sn−1 + gcd(sn−1, sn)

where d1 = 1. Subtracting both equalities, we get

(d2 + cn−1)sn = (1 + cn)sn−1.

Repeating the above process, we also have

(d3 + cn−2)sn−1 = (d2 + cn−1)sn−2

and in general for some k, we have

(dk+1 + cn−k)sn−k+1 = (dk + cn−k+1)sn−k. (5.1)

If we know that i = n− k, then gcd(sn−k, sn−k+1) = 1 and we can deduce the division
requirement sn−k+1|(dk + cn−k+1).

By Lemma 5.3.2, we get that a cone of the form Aλ ≥ 0 is Gorenstein if and only
if there is a point c such that αi(c) = qi for all i, where αi is the ith row of A and qi
is defined as in Lemma 5.3.2. Lemma 5.3.1 explicitly describes the rows. From this it
follows that

q1 =
1

s1
, q2 =

1

lcm(s1, s2)
, . . . , qn =

1

lcm(sn−1, sn−2)
, qn+1 =

1

sn
.

Now we need to find a point c ∈ Zn+1 such that αi(c) = qi. This directly implies that
c1 = 1 and that

cjsj−1 = cj−1sj + gcd(sj−1, sj)

75



for 2 ≤ j ≤ n. These conditions are all satisfied by assumption. However, we also need
to satisfy the condition

−cn
sn

+ 1 · cn+1 =
1

sn
⇐⇒ cn+1sn = 1 + cn.

Now, we note that from Equation (5.1) it follows that

sn =
(1 + cn)

(d2 + cn−1)
sn−1,

so we can rewrite
cn+1sn−1 = d2 + cn−1.

We can iterate these substitutions repeatedly to arrive at the equality

cn+1sn−k+1 = dk + cn−k+1

However, since sn−k+1|(dk + cn−k+1), cn+1 is an integer. Here we are implicitly using
that c,d ∈ Zn≥1, which follows from the recursive definition. So we are done. This also
shows that sn−j+1|(dj + cn−j+1) for all j.

Remark 5.3.3. We mentioned before that this theorem applies to a large subfamily of
s-lecture hall polytopes. This remark will make this statement more precise. Given two
positive integers a and b, the probability that gcd(a, b) = 1 converges to 1

ζ(2) = 6
π2 , where

ζ(s) =
∑∞

n=1
1
ns is the Riemann ζ-function. Heuristically, assuming that these events are

independent (which they are not), we get that roughly
(
1− 6

π2

)n−1
-percent of sequences

fall within the range of our theorem. Computer simulations suggest that this estimate is
fairly precise for large dimensions.

Remark 5.3.4. In [BBK+15, Cor 2.7], the authors remark that if one truncates a sequences
s with corresponding c = (c1, c2, . . . , cn), the truncated sequence (s1, s2, . . . , si) also has a
corresponding point (c1, c2, . . . , ci). However, the direct analogue of this statement is not
true in our case. The sequence (8, 6, 10, 10, 5, 2, 4) gives rise to a Gorenstein lecture hall
polytope, whereas (8, 6, 10, 10, 5) does not give rise to a Gorenstein lecture hall polytope,
since it has 39 interior lattice points. However, we can make the following statement:
If (s1, s2, . . . , sn) has corresponding integer points c,d, then the truncated sequence
(s1, s2, . . . , si) has corresponding integer points c̃ = (c1, c2, . . . , ci), d̃ = (dn−i+1, . . . , dn)
provided dn−i+1 = 1.

This theorem along with Theorem 5.2.4 implies the following more specialized charac-
terization.

Corollary 5.3.5. Let s = (s1, s2, . . . , sn) be a sequence of positive integers satisfying

gcd(si, si+1) = 1 for all 1 ≤ i < n. Then P
(s)
n is Gorenstein if and only if s and ←−s are

u-generated sequences.

We have the following corollary on the level of s-Eulerian polynomials
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Corollary 5.3.6. Let s = (s1, s2, . . . , sn) be a sequence of positive integers. The
s-Eulerian polynomial is palindromic if and only if there exists a c ∈ Zn+1 satisfying

cjsj−1 = cj−1sj + gcd(sj−1, sj)

for j > 1 and
cn+1sn = 1 + cn.

with c1 = 1.

Table 5.1 contains some examples of palindromic s-Eulerian polynomials.

5.4 characterization of level lecture hall polytopes

We now give a characterization of which s-sequences admit level P
(s)
n , which is given

in terms of the structure of s-inversion sequences. It will be useful to define some new

notation. Let I
(s)
n,k :=

{
e ∈ I

(s)
n : asc(e) = k

}
. Moreover, we define addition of inversion

sequences as follows. Given e, e′ ∈ I
(s)
n with e = (e1, e2, . . . , en) and e′ = (e′1, e

′
2, . . . , e

′
n),

then e+ e′ = (e1 + e′1 mod s1, e2 + e′2 mod s2, . . . , en + e′n mod sn).

5.4.1 Proof of characterization

Proving this characterization relies on understanding the link between the arithmetic
structure of inversion sequences and the semigroup structure of lattice points in Π

P
(s)
n

.

To fully understand and exploit this connection, we will need several lemmas.

Lemma 5.4.1. Let V (P
(s)
n ) = {v0, . . . ,vn} denote the set of vertices of P

(s)
n . Let

P
(s)
n := (P

(s)
n ∩ Zn)− V (P

(s)
n ) There is an explicit bijection

ϕ : P(s)
n −→ I

(s)
n,1

where ϕ(λ1, . . . , λn) 7→ (e1, . . . , en) by ei = si − λi(modsi).

Proof. Let λ = (λ1, λ2, . . . , λn) ∈ P
(s)
n . We have that

0 ≤ λ1

s1
≤ λ2

s2
≤ . . . ≤ λn

sn
≤ 1

Note that this means that λi ≤ si for all i and if λi = si then λj = sj for all i ≤ j ≤ n.

Additionally, note that the vertices of P
(s)
n are precisely the lattice points of the form

(0, . . . , 0, si, si+1, · · · , sn)

So, then λ can be expressed as the following:

λ = (0, . . . , 0, ai, ai+1, . . . , aj , sj+1, . . . , sn)
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sequence s corresponding c corresponding d s-Eulerian polynomial

(i) (2, 1, 3, 2, 1) (1, 1, 4, 3, 2) (1, 3, 5, 2, 5) 1 + 5z + 5z2 + z3

(ii) (3, 2, 3, 1, 2) (1, 1, 2, 1, 3) (1, 1, 4, 3, 5) 1 + 9z + 16z2 + 9z3 + z4

(iii) (1, 4, 3, 2, 3) (1, 5, 4, 3, 5) (1, 1, 2, 3, 1) 1 + 16z + 38z2 + 16z3 + z4

(iv) (3, 5, 2, 3, 1) (1, 2, 1, 2, 1) (1, 4, 3, 8, 5) 1 + 20z + 48z2 + 20z3 + z4

(v) (1, 2, 3, 4, 5) (1, 3, 5, 7, 9) (1, 1, 1, 1, 1) 1 + 26z + 66z2 + 26z3 + z4

(vi) (1, 2, 5, 8, 3) (1, 3, 8, 13, 5) (1, 3, 2, 1, 1) 1 + 50z + 138z2 + 50z3 + z4

(vii) (4, 3, 2, 5, 3) (1, 1, 1, 3, 2) (1, 2, 1, 2, 3) 1 + 30z + 149z2 + 149z3 + 30z4 + z5

(viii) (4, 7, 3, 2, 3) (1, 2, 1, 1, 2) (1, 1, 2, 5, 3) 1 + 43z + 208z2 + 208z3 + 43z4 + z5

(ix) (5, 9, 4, 3, 2) (1, 2, 1, 1, 1) (1, 2, 3, 7, 6) 1 + 82z + 457z2 + 457z3 + 82z4 + z5

(x) (3, 5, 12, 7, 2) (1, 2, 5, 3, 1) (1, 4, 7, 3, 2) 1 + 175z + 1084z2 + 1084z3 + 175z4 + z5

(xi) (3, 11, 8, 5, 2) (1, 4, 3, 2, 1) (1, 3, 5, 7, 2) 1 + 180z + 1139z2 + 1139z3 + 180z4 + z5

(xii) (2, 7, 5, 10, 4) (1, 4, 3, 7, 3) (1, 3, 2, 3, 1) 1 + 181z + 1218z2 + 1218z3 + 181z4 + z5

(xiii) (3, 8, 13, 5, 2) (1, 3, 5, 2, 1) (1, 3, 8, 5, 2) 1 + 213z + 1346z2 + 1346z3 + 213z4 + z5

Table 5.1: Palindromic s-Eulerian Polynomials
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where each 0 < ak < sk.

If we apply our map λi 7→ si − λi (mod si), we get the inversion sequence

e = (0, 0, . . . , 0, si − ai, si+1 − ai+1, . . . , sj − aj , 0, . . . , 0).

It is left to verify that e ∈ I
(s)
n,1. Since we had that

0 <
ai
si
≤ ai+1

si+1
≤ . . . ≤ aj

sj
< 1

which holds if and only if

1 >
si − ai
si

≥ si+1 − ai+1

si+1
≥ . . . ≥ sj − aj

sj
> 0

which means that e contains exactly one ascent at position i− 1.

This process is certainly reversible, so we have a bijection.

Note that P
(s)
n is precisely the elements at height 1 in Π

P
(s)
n

. We can extend this

bijection to apply to elements of I
(s)
n,k and all elements of P

(s)
n in the following manner.

Lemma 5.4.2. Let e = (e1, e2, · · · , en) ∈ I
(s)
n,k and suppose that the k ascents are at

positions i1, i2, · · · , ik. There is a bijective correspondence between e and lattice points
λ = (λ1, · · · , λn, k) ∈ Π

P
(s)
n
∩ Zn+1. Suppose that i` < j ≤ i`+1, then we map ej 7→ λj

by
λj = ` · sj − ej (5.2)

and λj = 0 if 1 ≤ j ≤ i1. Moreover, addition in the semigroup corresponds to entry-
wise addition of the inversion sequences modulo si in the ith position. That is, any
decomposition of λ as a sum of elements of height one in Π

P
(s)
n

is consistent with the

sum of inversion sequences.

Remark 5.4.3. By entry-wise addition of the inversion sequences modulo si in the ith
position, we mean that we pick the unique representative of this equivalence class in
{0, 1, . . . , si − 1}.

Proof of Lemma 5.4.2. It is clear that this map is injective. We must verify the following:

(A) The image of λ under this map is an element of Π
P

(s)
n

.

(B) Entry-wise addition of inversion sequences is consistent with addition in the semi-
group.

To show (A), note that it is clear that λ is at height k in Rn+1. Moreover, it follows
that

(λ1, · · · , λn) ∈ k ·P(s)
n ∩ Zn, (5.3)
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as if i` < t < i`+1 then
et
st
≥ et+1

st+1
implies that

` · st − et
k · st

≤ ` · st+1 − et+1

k · st+1
.

Moreover, if t = i`+1 we have

` · st − et
k · st

≤ (`+ 1) · st+1 − et+1

k · st+1

immediate from et+1 < st+1, establishing (5.3).
To verify that λ is in fact in Π

P
(s)
n

, we must show that neither of the following hold:

(i) (λ1, · · · , λn) ∈ (k − 1) ·P(s)
n ∩ Zn

(ii) λ = λ′ + v where (λ′1, · · · , λ′n) ∈ (k − 1) ·P(s)
n ∩ Zn and v is a vertex of P

(s)
n .

Note that (i) is impossible as we have λn = k · sn − en > (k− 1)sn as en < sn. For (ii),
suppose that we write λ = λ′ + v, where v = (0, 0, · · · , 0, sj+1, · · · , sn) with 0 ≤ j < n.
There are two possible cases: j ∈ Asc(e) or j 6∈ Asc(e).

If j ∈ Asc(e), then we have
ej
sj
<
ej+1

sj+1
. Consider λ′ and suppose that

(λ′1, · · · , λ′n) = (λ1, · · · , λj , λj+1 − sj+1, · · · , λn − sn) ∈ (k − 1) ·P(s)
n ∩ Zn

Given that λj = (p− 1) · sj − ej and λj+1 = p · sj+1 − ej+1 where j is the pth ascent,
we have that the following inequality must hold:

(p− 1) · sj − ej
(k − 1)sj

≤ p · sj+1 − ej+1 − sj+1

(k − 1)sj+1
=

(p− 1) · sj+1 − ej+1

(k − 1)sj+1
.

However, this is equivalent to
ej
sj
≥ ej+1

sj+1
so this cannot occur.

If j 6∈ Asc(e), say that j > ip, the location of the pth ascent, so λj = p · sj − ej and

λj+1 = p · sj+1 − ej+1. For (λ′1, · · · , λ′n) ∈ (k − 1) · P(s)
n ∩ Zn, the following inequality

must hold

p · sj − ej
(k − 1)sj

≤ p · sj+1 − ej+1 − sj+1

(k − 1)sj+1
=

(p− 1) · sj+1 − ej+1

(k − 1)sj+1
.

This inequality is equivalent to
ej
sj
≥ ej+1

sj+1
+ 1 which is a contradiction to ej < sj .

Therefore, we have shown (A). This is sufficient for showing the bijection, as the map
is clearly injective and the sets are of the same cardinality by previous work of Savage
and Schuster [SS12]. That said, the bijection can also be realized explicitly by reversing
the map. In particular, suppose that λ = (λ1, · · · , λn, k) ∈ Π

P
(s)
n

, we get our inversion

sequence e by
ei = −λi mod si.
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Note that this inversion sequence will have precisely k ascents and moreover the pth
ascent in the sequence will occur at i precisely when (p − 1) · si ≤ λi < p · si and
p · si+1 ≤ λi+1 < (p+ 1) · si+1 for some 1 ≤ p ≤ k − 1. This is the exact reversal of the
constructive map (5.2) from inversion sequences to lattice points is Π

P
(s)
n

.

To show (B), suppose that we have f ∈ I
(s)
n,k−1 and g ∈ I

(s)
n,1 such that f + g = e ∈ I

(s)
n,k.

So we have

f = (f1, . . . , fj−1, fj , . . . , fh, fh+1, . . . , fn)

and

g = (0, . . . , 0, gj , . . . , gh, 0, . . . , 0)

and

e = (f1, . . . , fj−1, (fj + gj) mod sj , . . . , (fh + gh) mod sh, fh+1, . . . , fn).

Consider the corresponding lattice points for f and g in Π
P

(s)
n

:

λf = (λf1
, . . . , λfj−1

, λfj
, . . . , λfh

, λfh+1
, . . . , λfn

, k − 1)

and

λg = (0, . . . , 0, λgj , . . . , λgh , sh+1, . . . , sn, 1).

Adding these lattice points in the semigroup yields

λf + λg = (λf1
, . . . , λfj−1

, λfj
+ λgj , . . . , λfh

+ λgh , λfh+1
+ sh+1, . . . , λfn

+ sn, k).

We have two possible cases: either λf + λg ∈ Π
P

(s)
n

or λf + λg 6∈ Π
P

(s)
n

.

If λf +λg ∈ Π
P

(s)
n

, we consider the reverse map which will give the inversion sequence

(. . . , λfj−1
mod sj−1,−(λfj

+ λgj
) mod sj , . . . ,−(λfh

+ λgh
) mod sh,−(λfh+1

+ sh+1) mod sh+1, . . .)

and this inversion sequence is precisely e = f + g, which is as desired.

Now suppose for contradiction that λf + λg 6∈ Π
P

(s)
n

. Note that we can express

λf + λg = λ′ +
∑n

i=1αivi where λ′ ∈ Π
P

(s)
n

, with at least one αi 6= 0, αi ∈ Z≥1, and

λ′ is at height r < k. Additionally, given that vi = (0, . . . , 0, si, si+1, . . . , sn), it is clear
that λf + λg maps to the same inversion sequence as λ′ by definition of the inverse map.

This implies that e maps to λ′ and thus e ∈ I
(s)
n,r for r < k, which contradicts our initial

assumption.

Remark 5.4.4. We should note that in the proof that addition is compatible, we only

consider inversion sequences f ∈ I
(s)
n,k−1 and g ∈ I

(s)
n,1 such that f + g ∈ I

(s)
n,k, as this is

the requirement of staying inside the fundamental parallelepiped. However, this need

not always be the case. If f + g ∈ I
(s)
n,` for some ` ≤ k − 1, the addition of the sequences

is still consistent with addition in the semigroup, but this occurrence is precisely when
λf + λg 6∈ Π

P
(s)
n

. In particular, λf + λg = λf+g + (0, · · · , 0, k − `), which lies in the

equivalence class λf+g, but is not the representative in Π
P

(s)
n

.
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Remark 5.4.5. One could rephrase the statement to say that addition of inversion sequences
is compatible with addition of lattice points in the semigroup modulo the equivalence
class given by the fundamental parallelepiped.

With this understanding of the arithmetic structure of I
(s)
n , we can now give a proof of

the characterization.

Proof of Theorem 5.1.4. First recall that if R is a graded, ∗local , Cohen-Macaulay
algebra with dim(R) = d, then R is level if for some homogeneous system of parameters
x1, . . . , xd of R, all the elements of the graded vector space soc (R/(x1, . . . , xd)) are of

the same degree. Consider the semigroup algebra k[P
(s)
n ] := k[cone(P

(s)
n )∩Zn+1]. Notice

that P
(s)
n is a simplex and let Π

P
(s)
n

denote the (half-open) fundamental parallelepiped.

Note that dim(k[P
(s)
n ]) = n + 1 and k[P

(s)
n ] has a natural homogeneous system of

parameters, namely the monomials corresponding to the vertices, which we denote by

x0, x1, . . . , xn. The quotient k[P
(s)
n ]/(x0, · · · , xn) is precisely the equivalence classes of

lattice point each in Π
P

(s)
n

. Let m1, · · · ,mα ∈ Π
P

(s)
n

be the elements at height 1. The

socle soc(k[P
(s)
n ]/(x0, · · · , xn)) are precisely the lattice points in λ ∈ Π

P
(s)
n

such that

λ + mi 6∈ Π
P

(s)
n

for all mi by Lemma 5.4.1 and Theorem 5.2.2. By Lemma 5.4.2, we

know that semigroup addition corresponds to entry-wise addition on inversion sequences.
Subsequently, this condition on inversion sequences is precisely the condition that only

elements of highest degree in Π
P

(s)
n

are in soc(k[P
(s)
n ]/(x0, · · · , xn)), which then must

contain elements which are all the same degree.

5.4.2 Consequences of the characterization

First consider the following resulting inequalities given for the coefficients of s-Eulerian
polynomials.

Corollary 5.4.6. Let s = (s1, s2, . . . , sn) ∈ Zn≥1 be a sequence such that P
(s)
n is

level. Then the coefficients of the s-Eulerian polynomial h∗
P

(s)
n

(z) = 1 + h∗1z+ · · ·+ h∗rz
r

satisfies the the inequalities h∗i ≤ h∗jh∗i+j for all pairs i and j such that h∗i+j > 0.

These inequalities follow from [Sta96, Chapter III. Proposition 3.3] and provide
additional information of the behavior of s-Eulerian polynomials to complement the
known log-concave inequalities from [SV15]. It is worth noting that these inequalities need
not be satisfied for arbitrary s. For example, the sequence s = (2, 3, 5, 9) does not give

rise to a level polytope as there exists no element f ∈ I
(2,3,5,9)
4,1 such that f + e ∈ I

(2,3,5,9)
4,4

for the inversion sequence e = (1, 1, 2, 4) ∈ I
(2,3,5,9)
4,3 . Moreover, we have

h∗
P

(2,3,5,9)
4

(z) = 1 + 48z + 154z2 + 66z3 + z4

and we notice that h∗3 > h∗1h
∗
4.
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In addition to the characterization of Gorenstein given in Section 5.3, we can also
arrive at a different characterization by considering the following restriction of Theorem
5.1.4.

Corollary 5.4.7. Let s = (s1, s2, · · · , sd) ∈ Zn≥1 and let r = max
{

asc(e) : e ∈ I
(s)
n

}
.

Then P
(s)
n is Gorenstein if and only if for any e ∈ I

(s)
n,k with 1 ≤ k < r there exists some

e′ ∈ I
(s)
n,1 such that (e+ e′) ∈ I

(s)
n,k+1 and |In,r| = 1.

Proof. P
(s)
n is Gorenstein if and only if P

(s)
n is level with exactly one canonical module

generator. The canonical module of k[P
(s)
n ] for P

(s)
n level has |I(s)

n,r| generators, as this is

the leading coefficient of the h∗ polynomial of P
(s)
n .

We should note that in general Corollary 5.4.7 is less computationally useful than
Theorem 5.1.2 or Theorem 5.1.1. However, it is unexpected, and indeed striking, that
these conditions are equivalent when there exists an index i such that gcd(si−1, si) = 1.

In the case of s ∈ Z2
≥1, the conditions of Theorem 5.1.4 must always be satisfied.

Therefore, we have the following result.

Corollary 5.4.8. The lecture hall polytope P
(s1,s2)
2 is level for any s = (s1, s2).

Remark 5.4.9. By [HY18, Prop. 1.2], every lattice polygon is level. We state this result
and its proof only to show how one can explicitly use Theorem 5.1.4 to determine levelness,
especially in small dimensions.

Proof. Without loss of generality, suppose that s1 ≤ s2. First note that if I
(s1,s2)
2,2 = ∅,

then levelness is trivial. This trivial case consists of sequences s = (1, s2) and s = (2, 2),
which can be concretely shown to not have any inversion sequence with 2 ascents.

So, if I
(s1,s2)
2,2 6= ∅, we have two cases either

(i) 2 ≤ s1 < s2, or
(ii) 3 ≤ s1 = s2.

In both cases, given e ∈ I
(s1,s2)
2,1 we will explicitly construct f ∈ I

(s1,s2)
2,1 such that

e+ f ∈ I
(s1,s2)
2,2 .

In case (i), take e = (e1, e2) ∈ I
(s1,s2)
2,1 . We have three possible subcases:

� Suppose that e1 ≥ 1 and e2 = 0. Let f = (f1, f2) where f1 = 0 and f2 = s2 − 1.

Then e+ f = (e1, s2 − 1) ∈ I
(s1,s2)
2,2 because

e1

s1
≤ s1 − 1

s1
<
s2 − 1

s2
.

� Suppose that e1 ≥ 1 and e2 ≥ 1. Note that e ∈ I
(s1,s2)
2,1 implies that e2 < s2 − 1

because we have

0 <
e1

s1
≤ s1 − 1

s1
<
s2 − 1

s2
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So, if e2 = s2 − 1, then we will have that Asc((e1, e2)) = {0, 1} which contradicts

that e ∈ I
(s)
2,1. Let f = (0, s2 − e2 − 1). Then we have e+ f = (e1, s2 − 1) ∈ I

(s1,s2)
2,2

as shown above.

� Suppose that e1 = 0 and e2 ≥ 1. Let f = (1,min{b s2s1 c, s2 − e2 − 1}) ∈ I
(s1,s2)
2,1 .

Then, we have that

e+ f =

(1, s2 − 1) if s2 − e2 − 1 ≤ b s2s1 c

(1, e2 + b s2s1 c) if b s2s1 c < s2 − e2 − 1

If the first case is true, then clearly e+ f ∈ I
(s1,s2)
2,2 by previous arguments. In the

second case, notice that

1

s1
<
b s2s1 c+ 1

s2
≤
b s2s1 c+ e2

s2

and hence e+ f ∈ I
(s1,s2)
2,2 .

Now for case (ii), take e = (e1, e2) ∈ I
(s1,s2)
2,1 . We have several possible subcases:

� Suppose that e1 = 0 and e2 ≥ 1. If e2 > 1, let f = (1, 0) ∈ I
(s1,s2)
2,1 and we have

e + f = (1, e2) ∈ I
(s1,s2)
2,2 . If e2 = 1, then let f = (1, 1) ∈ I

(s1,s2)
2,1 and we have

e+ f = (1, 2) ∈ I
(s1,s2)
2,2 .

� Suppose that e1 ≥ 1 and e2 = 0. If e1 < s1 − 1, let f = (0, s2 − 1) ∈ I
(s1,s2)
2,1 and we

have that e+f = (e1, s2−1) ∈ I
(s1,s2)
2,2 . If e1 = s1−1, then let f = (s1−1, s2−1) ∈

I
(s1,s2)
2,1 and we get that e+ f = (s1 − 2, s2 − 1) ∈ I

(s1,s2)
2,2 .

� Suppose that e1 ≥ 1 and e2 ≥ 1. Note that e1 ≥ e2. If e1 < s1 − 1, then let

f = (0, s2 − e2 − 1) ∈ I
(s1,s2)
2,1 and we have that e + f = (e1, s2 − 1) ∈ I

(s1,s2)
2,2 . If

e1 = s1 − 1, the let f = (s1 − 1, s2 − e2 − 1) ∈ I
(s1,s2)
2,1 and we get that e + f =

(s1 − 2, s2 − 1) ∈ I
(s1,s2)
2,2 .

Therefore, we satisfy the conditions of Theorem 5.1.4 in all cases.

The characterization allows for the construction of new level s-lecture hall polytopes
through the following corollaries.

Corollary 5.4.10. The lecture hall polytope P
(s)
n is level if and only if the lecture

hall polytope P
(1,s)
n+1 is level.
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Proof. We can express any inversion sequence e ∈ I
(1,s)
n+1 as

e = (0, e′)

where e′ ∈ I
(s)
n . Thus, e satisfies the conditions of Theorem 5.1.4 exactly when e′ satisfies

the conditions.

Remark 5.4.11. One also has P
(s)
n level if and only if P

(s,1)
n+1 level by applying an analogous

argument.

Corollary 5.4.12. If both P
(s)
n and P

(t)
m are level, then P

(s,1,t)
n+m+1 is level.

Proof. Any inversion sequence e ∈ I
(s,1,t)
n+m+1 can be expressed as

e = (e1, 0, e2)

where e1 ∈ I
(s)
n and e2 ∈ I

(t)
m . Subsequently, e satisfies the conditions of Theorem 5.1.4

when e1 and e2 both satisfy the conditions of Theorem 5.1.4.

Remark 5.4.13. It is worth noting that by combining Corollary 5.4.8 and Corollary 5.4.12
we can create an infinite family of level s-lecture hall polytopes of arbitrary dimension.

In particular, P
(s)
n is level when s is any sequence satisfying si = 1 when i = 0 mod 3.

5.5 concluding remarks and future directions

One immediate avenue to continue this work would be using the levelness characterization
to produce more tractable results in special cases. Furthermore, based on experimental
evidence, we have the following conjecture for levelness in a large family of lecture hall
polytopes:

Conjecture 5.5.1. Let s ∈ Zn≥1 be a sequence such that there exists some c ∈ Zn
satisfying

cjsj−1 = cj−1sj + gcd(sj−1, sj)

for j > 1 with c1 = 1. Then P
(s)
n is level.

This conjecture, if true, implies that C(s)
n a Gorenstein cone is sufficient for P

(s)
n to be

level. However, it should be noted that the characterization, though more efficient than
explicitly computing the generators of the canonical module, can often be unwieldy for
complicated computations. It may, in fact, be more effective to produce an alternative
representation of the level property, perhaps in terms of local cohomology.

An additional future direction would be to consider levelness in s-lecture hall cones.
There is no canonical choice of grading for the s-lecture hall cones as there is in
the polytopes and the different gradings have different computational advantages (see
[BBK+15, Ols17]). One must choose a grading before approaching this problem. Prelim-
inary computations with respect to certain gradings suggests that (non-Gorenstein) level
s-lecture hall cones are quite rare.
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6
SEMIGROUPS — A COMPUTATIONAL APPROACH

“Few things are harder to put up with than a good example.” (Mark Twain)

This chapter is based on joint work with Yanxi Li, Johannes Rauh, and Ruriko Yoshida,
see also our article [KLRY18].

6.1 introduction

Consider the system of linear equations and inequalities

Ax = b, x ≥ 0, (6.1)

where A ∈ Zm×n and b ∈ Zm. Suppose that the solution set over the real numbers
{x ∈ Rn : Ax = b, x ≥ 0} is not empty.

Problem 6.1.1. Decide whether there exists an integral solution to the system (6.1) or
not.

Problem 6.1.1 is called the integer feasibility problem. To decide whether a system of
equations is feasible is the first step in integer programming, where the goal is to find an
“optimal” solution. Therefore, problem 6.1.1 can be solved computationally using a linear
programming system that can handle integer constraints, such as lp solve [BEN15].
However, this computational approach does not work if one wants to study a family of
integer feasibility problems at the same time. Here, we consider the following problem:

Problem 6.1.2. For fixed A ∈ Zm×n, decide for which b ∈ Zm there exists an integral
solution to the system (6.1).

Problems 6.1.1 and 6.1.2 are of fundamental importance in many areas such as opera-
tions research, number theory, combinatorics, and statistics (see [TY08] and references
within). For instance, the Frobenius problem is a simple-sounding yet wide-open integer
feasibility problem, see e.g. [RA05] for an overview. For positive, coprime integers a1,
a2,. . . , an, the Frobenius problem asks to find the biggest positive integer that cannot
be expressed as a non-negative linear combination of the ai’s with integral coefficients.
Even for n = 4, this is an active area of research.

The feasibility of (6.1) can be described in terms of the semigroup

M :=M(A) := {a1x1 + · · ·+ anxn : x1, . . . , xn ∈ Z≥0} (6.2)

generated by the column vectors a1, . . . ,an of A. Here, Z≥0 denotes the set of non-negative
integers, i.e., Z≥0 := {0, 1, 2, . . . }. Moreover, we need the cone

K := cone(A) := {a1x1 + · · ·+ anxn : x1, . . . , xn ∈ R≥0}
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generated by the columns of A, where R≥0 := [0,∞). Throughout this chapter, we
assume that all cones are pointed, i.e., that they do not contain lines: if v ∈ K \ {0},
then −v /∈ K. Finally, we need the lattice

Λ := Λ(A) := {a1x1 + · · ·+ anxn : x1, . . . , xn ∈ Z}

generated by the columns of A. In this chapter, we assume Λ(A) = Zn.

By definition, an integral solution to the system (6.1) exists if and only if b ∈ M.
In general, it is difficult to check whether a given vector belongs to M. However, it is
much easier to check whether a given vector belongs to Λ or to K: To check whether
b ∈ Λ is a problem of linear algebra (over the integers), and to check whether b ∈ K
one can compute the inequality description of K and check whether b satisfies all linear
inequalities. Admittedly, computing the inequalities can be a difficult problem in itself,
but usually it is still easier than the integer feasibility problem. Therefore, it makes sense
to compare M to the larger semigroup M = K ∩ Λ, which is called the saturation of M.
Clearly, M⊂M, and we call M saturated (or normal) if M =M. We define the set of
holes H of the semigroup M to be H :=M\M.

If b ∈ H ⊂M, then the system

Ax = b,x ≥ 0,

has a solution x ∈ Rn over the reals, but no solution x ∈ Zn≥0 over the integers.

In general, the set H may be infinite, but it is possible to write H as a finite union of
finitely generated (affine) monoids. The first step is to compute the fundamental holes,
where we say that a hole h ∈ H is fundamental if there is no other hole h′ ∈ H such that
h− h′ ∈M. In contrast to H, the set F ⊆ H of fundamental holes is always finite, as it
is contained in the bounded set

P :=
{∑n

i=1
λiai : 0 ≤ λ1, . . . , λn < 1

}
,

as shown in [TY08]. A finite algorithm to compute F is due to [HTY09b].

Once F is known, it is necessary to compute an explicit representation of the holes
in f +M, where f ∈ F . Hemmecke et. al. [HTY09b] showed how the set of holes
in f +M can be expressed as a finite union of finitely generated monoids using ideas
from commutative algebra. Together with an algorithm to compute the fundamental
holes, this gives a finite algorithm to compute an explicit representation of H, even for
an infinite set H.

As shown by [AB03, TY08], computing the set of holes is polynomial in time in the
input size of A if we fix the number of variables m and n (see the definition of input size
in [Bar94]). Once we compute M for a particular matrix A, we do not have to compute
it again as it does not depend on b.

In this chapter, we have implemented the algorithm introduced in [HTY09b] and we
have applied our software to problems in combinatorics and statistics. We named the
software HASE (Holes in Affine SEmigroups). It is available at http://ehrhart.math.
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fu-berlin.de/People/fkohl/HASE/. The homepage also contains the input files that
are needed to reproduce the examples that are discussed in this chapter.

This chapter is organized as follows: In Section 6.2, we outline the algorithm. The
performance of the algorithm and possible ways to speed up the process are described in
Section 6.3. In Section 6.4, we compute the set of holes for the common diagonal effect
model [TTY08]. In Section 6.5, we show some computational experiments concerning
the integer-decomposition property of polytopes and concerning a lifting algorithm for
Markov bases, see [RS15]. We end with a discussion and open problems.

6.2 computing holes

In this section, we briefly describe our software and the implementation. The two main
steps of the algorithm of [HTY09b] are:

1. Compute the set F of fundamental holes.

2. For each of the finitely many f ∈ F , compute an explicit representation of the holes
in f +M.

Our software outsources step 1 to Normaliz, see [BIR+]. Normaliz is a computer
program that computes the saturation (or Normalization) of an affine semigroup. Usually,
the saturation M(A) is output in the form of a matrix A′ such that M(A) =M(A′),
i.e., the saturation equals the semigroup generated by the columns of A′. Starting with
version 3.0, Normaliz can also compute a second representation of M(A) by giving a
minimal set F ′ of “generators of M(A) as a M(A)-module.” Formally, this says that

M(A) =
⋃
f∈F ′

(f +M(A)).

It is not difficult to see that 0 ∈ F ′ (since M⊆M) and that F := F ′ \ {0} is the set of
fundamental holes of M(A). For details how Normaliz computes the set F ′, we refer to
the documentation of Normaliz. As an illustration, Section 6.4 contains a description
of the (fundamental and non-fundamental) holes of the common diagonal effect models.

It remains to determine the holes in f +M for every fundamental hole f ∈ F . Every
non-hole belongs to (f+M)∩M and if z ∈ (f+M)∩M, then also z+Aλ ∈ (f+M)∩M
for any λ ∈ Zn≥0. Consider the ideal

IA,f :=
〈
xλ : λ ∈ Zn≥0, f +Aλ ∈ (f +M) ∩M

〉
, (6.3)

where xλ :=
∏n
i=1 x

λi
i is the monomial with exponent vector λ. Then, f + Aλ is not

a hole if and only if xλ ∈ IA,f . So we need to find a description of the monomials not
in IA,f . These monomials are called the standard monomials. There are algorithms for
finding the standard monomials, once a generating set for the ideal IA,f is known. A
generating set of the ideal IA,f is described by the following lemma:
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Lemma 6.2.1 ([HTY09b], Lemma 4.1). Let M be the set of ≤-minimal solutions
(λ,µ) ∈ Z2n

≥0 to f + Aλ = Aµ, where the partial order ≤ is given by coordinatewise
comparison. Then

IA,f =
〈
xλ : ∃µ ∈ Zn≥0 such that (λ,µ) ∈M

〉
.

Therefore, we have to find minimal integral solutions to the above system of linear
equations for every fundamental hole f . For this task, we can again use Normaliz, or
we can use the zsolve command of 4ti2, see [tt08]. Usually, zsolve runs faster, so it is
the default choice of HASE.

Once we have a generating set for IA,f , we can use a computer algebra software to
find the standard monomials. In general, the set of standard monomials of a polynomial
ideal can be infinite, but it has a finite representation in terms of standard pairs, which
were established in [STV95]. HASE relies on Macaulay2 [GS], which has the command
standardPairs. A standard pair is a pair that consists of a monomial xλ and a set
xµ1 , . . . ,xµr of monomials. Such a pair corresponds to the set of holes

f +A(λ+
∑r

i=1 ciµi), ci ∈ Z≥0,

and the set of all such standard pairs gives all holes in f +M.

6.3 performance of the algorithm

As shown by [AB03, TY08], computing the set of holes H for the semigroup M is
polynomial in time in the input size of A if we fix the number of variables m and n (see
the definition of the input size in [Bar94]). Still, computing H is a difficult problem, and
our algorithm may fail to terminate due to limited memory or time even for reasonably-
sized examples.

In the examples we computed, we experienced the following problems:

� Normaliz may fail to compute the set F of fundamental holes.

� For one of the fundamental holes f ∈ F , zsolve or Normaliz may fail to find the
≤-minimal solutions to f +Aλ = Aµ.

� For one of the fundamental holes f ∈ F , Macaulay2 may fail to compute the
standard pairs.

In this list, a failure means that either we ran out of memory or we ran out of time, i.e.,
we became impatient and aborted the computation.

If Normaliz fails, there is not much we can do. We really need the fundamental holes,
and if computing the fundamental holes overstrains our computational resources at hand,
it is very probable that the problem is just too difficult. The only thing we could do is to
ask the developers of Normaliz, who are always up for a challenge, for advice.

If one of the later steps fails, there is much more that we could do. The translation
of computing the holes of the form f +M for a fundamental hole f into a problem of
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commutative algebra is not very direct, and there may be some room for improvements.
We discuss one trick that we implemented in Section 6.3.1 below.

There may be a fourth problem: Namely, the set F may be extremely large. Thus,
even if Normaliz computes F within reasonable time and if zsolve and Macaulay2
find the hole monoids reasonably fast for each single hole, the total running time may be
unacceptable. However, at least in this case it is relatively easy to obtain a good estimate
for the total running time that would be needed, since in this case the cardinality of F is
known, and the running times of zsolve and Macaulay2 per fundamental hole can be
estimated by their performance on the first few holes.

If F is very large, a natural remedy is to look for symmetries of the problem. However,
currently symmetries are not implemented in HASE.

6.3.1 Speeding up zsolve

Let f ∈ F be a fundamental hole. As explained in Section 6.2, we want to solve the linear
system f +Aλ = Aµ. This system can be simplified considerably if certain non-holes
are known in advance. The simplest case is to look at the vectors f + ai, where ai is a
column of A.

Suppose that f+ai is not a hole. Then f+ai = Aµ0 for some µ0. Thus, f+ai+Aλ =
A(µ0 + λ). This shows that if f + ai is not a hole, then f + ai +M contains no other
holes. This implies that every minimal solution to f +Aλ = Aµ has λi = 0. Let A′ be
the matrix A with the ith column ai dropped. Then, instead of solving f +Aλ = Aµ,
we may just as well solve f +A′λ′ = Aµ. Observe that this leads to a linear system with
one variable fewer. If we can identify many columns ai that we can drop, we can speed
up the computation of the holes in f +M.

This idea is implemented in HASE and can be activated using the option --trick.
With this option, HASE does the following instead of solving f +Aλ = Aµ:

1. For each column ai of A, check whether f + ai is a hole.

2. Let A′ be the matrix with columns those ai for which f + ai is a hole.

3. Compute the minimal solutions to f + A′λ′ = Aµ (using either zsolve or Nor-
maliz).

4. Use Macaulay2 to compute the standard pairs of the ideal IA′,f .

Step 1 is an integer feasibility problem. HASE uses the open source (mixed-integer)
linear programming system lp solve [BEN15] to solve this problem. Usually, this is a
relatively quick step (and if it is not, it is again an indication that our original problem
is too difficult).

In the last step, observe that the trick also leads to a smaller ideal IA′,f or, more
precisely, an ideal in a smaller ambient ring (IA,f and IA′,f will in fact have the same
generators). This, however, should not lead to a big speed-up, since the command
standardPairs in Macaulay2 will usually realize when variables do not appear in the
generating set of an ideal.
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6.4 common diagonal effect models

In this section, we consider the common diagonal effect models (CDEM) introduced
by [HTY09a]. Under this model, we consider a d× d contingency table with row sums,
column sums, and the diagonal sum fixed. The CDEM and its generalizations have also
been studied in [OT12]. The results in this section were obtained by computing small
examples using HASE to build a conjecture.

Let A ∈ Z(2d+1)×d2 be the matrix that computes the row sums, column sums, and also
the diagonal sum of a d× d table. For instance, if d = 3, we have

A =



1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 0 1 0 0 0 1


.

The cone K generated by the columns of A lies in the hyperplane

d∑
i=1

zi =

2d∑
i=d+1

zi, (6.4)

since this linear equality is satisfied by all columns of A. Our goal is to describe the
Hilbert basis of the saturation M of the semigroup M generated by the columns of A.
First, we define a set F that will later turn out to be the set of fundamental holes of M.

Definition 6.4.1. Let aij be the ((i− 1)d+ j)th column of A, and let

hkl :=
1

2
(all + alk + akl + akk) .

Finally, let F := {hkl : k, l ∈ [d], k < l}, where [d] := {1, 2, . . . , d}.

There are
(
d
2

)
choices for l and k. Since every choice yields a different vector, we get

#F =
(
d
2

)
. The next lemma shows that F consists of holes.

Lemma 6.4.2. F ⊂ K ∩ Z2d+1, and F ⊆M \M.

Proof. aij has a 1 in the jth coordinate and in the (d + i)th coordinate. Moreover,
if i = j, then there is a 1 in the (2d + 1)th coordinate. So every vector of the form
2hkl = all +alk +akl +akk has a 2 in the lth, kth, (d+ l)th, (d+k)th and in the (2d+ 1)st

coordinate, and all other coordinates are 0. Thus, F ⊂ K ∩ Z2d+1 =M.
It remains to show that F ∩M = ∅. So suppose we have an non-negative integral

linear combination of the aij ’s that lies in F . To get a 1 in the lth coordinate, we need a
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generator ail and to get a 1 in the kth coordinate we need a generator ai′k. Since there
has to be a 1 in the (d+ l)th and (d+ k)th coordinate, we see that i, i′ ∈ {l, k}. Note that
we cannot use a different generator to obtain a 1 in these coordinates, since otherwise
we would get another 1 in the first d coordinates. If there are more than 2 generators,
then either there is an entry bigger than 1 or there are at least five 1′s in the first 2d
coordinates.

If i = i′, then without loss of generality our linear combination is all + alk, which has
a 2 in the (d + l)th coordinate. If i 6= i′, then either we have akl + alk, which has a 0
in the last entry, or we have all + akk which has a 2 in the last entry. Hence, we have
F ∩M = ∅. To see that all elements in F are indeed fundamental holes, one checks that
each vector of the form hkl − aij is not in M.

We have now identified a set of fundamental holes. In [TY08, proof of Proposition 3.1],
Takemura and Yoshida have shown that the set of fundamental holes is contained in

P :=

 ∑
i,j∈[d]

λijaij : 0 ≤ λij < 1 for i, j ∈ [d]

 .

To identify the fundamental holes, we can focus on P . Moreover, this proposition also
implies that the (minimal) Hilbert basis is contained in the closure of P . The next
theorem describes the (minimal) Hilbert basis for M.

Theorem 6.4.3. The minimal Hilbert basis for M is given by

H := {aij}i,j∈[d] ∪ F .

Proof. Let z = (z1, z2, . . . , z2d+1) ∈ P ∩ Z2d+1 \ {0}. Since z ∈ P , we have that
z =

∑
ij λijaij with λij < 1.Let S := z1 + z2 + · · ·+ zd = zd+1 + zd+2 + · · ·+ z2d. For

every i, j ∈ [d], we have zi =
∑d

j′=1 λij′ and zd+j ≥ λij . This implies

S − zd+i =
∑

j∈[d]\{i}

zd+j ≥


∑

j∈[d]\{i}

λij

 z lattice point
= zi,

and hence
zi + zd+i ≤ S. (6.5)

We show that every non-negative integer vector z that satisfies (6.5) is a non-negative
integer combination of H. To do this, we show that if z 6= 0, then there is an element
a ∈ H such that z − a is non-negative and satisfies (6.5). Observe that subtracting a
from z decreases the right hand side S, so we need to make sure that the left hand side
also decreases for those i ∈ [d] for which (6.5) holds with equality.

First, suppose that z2d+1 > 0.
If there are two indices l and k where equality holds in (6.5), then

zk + zd+k = S ≥ zk + zl and zl + zd+l = S ≥ zd+k + zd+l.
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It follows that zd+k = zl and zd+l = zk. Thus, zl and zk are the only nonzero entries among
the first d coordinates. It is easy to check that in this case, z − 1

2(all + alk + akl + akk)
is non-negative and satisfies (6.5).

If there is only one index i for which equality holds in (6.5), we can check that z − aii
again is non-negative and satisfies (6.5). If there is no i for which equality holds, we pick
i such that the pair of indices (i, d+ i) with zi, zd+i 6= 0 contains the biggest entry and
subtract aii. Then z − aii is non-negative and satisfies (6.5).

It remains to discuss the case z2d+1 = 0. To express z as a non-negative linear integral
combination of a′ijs where i 6= j, we translate the problem to a matching problem. We

have two labeled multi-sets
⋃
i:zi>0

⋃zi
r=1{i} and

⋃
j:zd+j>0

⋃zd+j

s=1 {j}, both of cardinality
S. Writing z as a non-negative integer combination of the aij corresponds to a matching
between the two sets. The matching has to be proper in the sense that we only match
elements i, j with i 6= j. For example, if z = (2, 0, 2, 2, 0, 2, 0), the two multi-sets are both
equal to {1, 1, 3, 3}. In this example, there is (up to symmetry) only one proper matching
that matches 1 to 3 and 3 to 1, corresponding to the identity z = a1,3 +a3,1 +a1,3 +a3,1.

It remains to show that there always exist such a proper matching. This can either be
seen directly by induction or by appealing to Hall’s marriage theorem, noting that (6.5)
always ensures that the marriage condition is satisfied.

This finishes the proof H is a Hilbert basis. It is straightforward to check that H is
indeed minimal.

Knowing the Hilbert basis for M, we can completely describe the set of fundamental
holes.

Corollary 6.4.4. F is the set of fundamental holes of M.

Proof. We have already seen that every element in F is a fundamental hole. It only
remains to show that there are no other fundamental holes. Any fundamental hole is
a non-negative integer combination of the Hilbert basis H. Clearly, this combination
cannot involve the columns aij (otherwise the combination would not be fundamental).
Thus, it suffices to show that the sum of two holes in H is not a hole. This follows from
the identity hij + hkl = akk + all + aij + aji.

We have now seen that there are exactly
(
d
2

)
fundamental holes. However, this semigroup

has infinitely many holes:

Theorem 6.4.5. The set of holes in the set hkl +M is the union of the two monoids

hkl + Z≥0akk + Z≥0akl + Z≥0alk + Z≥0all (6.6a)

and

hkl +
∑d

i=1
Z≥0aii. (6.6b)

Proof. Fix k, l ∈ [d], k < l. If i 6= j and i /∈ {k, l}, then

hkl + aij = akk + ail + alj
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assuming that j 6= l. If j = l, then we get

hkl + aij = all + akl + aik.

Thus, if i 6= j and i /∈ {k, l}, then hkl + aij is not a hole. Similarly, if j /∈ {k, l},
then hkl + aij is not a hole. Thus, if hkl +

∑s
r=1 airjr is a hole, then either ir = jr or

{ir, jr} = {k, l} for each r. We claim that either ir = jr for all r, or {ir, jr} = {k, l} for
all r. This implies that each hole is as in the statement of the theorem. The claim follows
from the computation

hkl + aii + akl = akk + all + ail + aki,

which is valid whenever i /∈ {k, l} and k 6= l.

It remains to see that every integer vector in (6.6) is indeed a hole. Let h be of the
form (6.6a), and suppose that h =

∑
ij λijaij with λij ≥ 0. Then λij 6= 0 only for

{i, j} ⊆ {k, l}, because hi = 0 or hj = 0 for i, j /∈ {k, l}. The matrix A restricted to the
columns aij with {i, j} ⊆ {k, l} equals


1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1

1 0 0 1


up to rows with only zeros. Since this matrix has rank four, the representation of h as
a linear combination is unique. However, by assumption, h has a representation of the
form h = hkl + . . . in which the coefficients are not integers (but half integers). Thus, h
is a hole.

Finally, let h be of the form (6.6b). Suppose that h =
∑

ij λijaij with λij ∈ Z≥0, and

let S =
∑d

i=1 hi =
∑

ij λij . Note that h2d+1 = S − 1. Therefore, h is the sum of S − 1
“diagonal” columns aii and one “off-diagonal” column aij . This is not possible, since, by
assumption, the column sums and the row sums are the same.

Remark 6.4.6. Note the following two properties of the hole monoids:

1. The two monoids corresponding to a single hole hkl are not disjoint.

2. The hole monoids corresponding to two different fundamental holes hkl, hk′l′ are
not disjoint: For example,

h12 + a33 = h23 + a11.
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6.5 computational experiments

Semigroups play an important role in combinatorics, in discrete geometry, and in com-
binatorial commutative algebra. As we have seen in Chapter 2, the interplay between
these areas is nicely exemplified by the theory of lattice polytopes. One can associate a
semigroup to every lattice polytope. The Hilbert function of the corresponding graded
semigroup ring turns out to be the Ehrhart function of the lattice polytope, see also
[MS05, Section 12.1].

It is of particular interest to determine whether this semigroup has holes. For example,
if the semigroup has holes, then there is no unimodular triangulation. Therefore, the
algebraic structure is closely related to geometric properties. In Section 6.5.1, we present
a computational result regarding the linear ordering polytope.

Holes of semigroups also play a role when computing Markov bases, as was recently
shown by [RS15]. We give a brief example in Section 6.5.2.

6.5.1 The Integer-Decomposition Property and Linear Order Polytopes

This section is dedicated to examine whether the nth linear order polytope Pn has the
integer-decomposition property. Sturmfels and Welker already showed that for n ≤ 6,
the nth linear ordering polytope satisfies the IDP, see [SW12, Theorem 6.1].

For any permutation π of n elements, we define

vij(π) =

1 if π(i) > π(j)

0 otherwise,

where 1 ≤ i < j ≤ n. We follow the definition of [Kat13, Section 3.3] and define the nth

linear ordering polytope Pn as the convex hull of the n! vectors v(π) := (vij(π))1≤i<l≤n ∈
R(n2). Note that the vertices are the only integer points of Pn. A python program that
generates the matrix can be downloaded from the HASE homepage. After a bit more
than a month of computation time on a linux machine with 16 Intel processors (Intel(R)
Xeon(R) CPU E5-2687W v2 at 3.40GHz), the program confirmed that P7 also has the
IDP.

Theorem 6.5.1. The nth linear ordering polytope Pn has the integer-decomposition
property for n ≤ 7.

Recent improvements made by the Normaliz team make it much faster to validate this
result. Unfortunately — at least with our computational tools — checking whether P8

has the IDP is still out of reach. The question whether or not Pn satisfies the IDP for all
n ∈ Z≥1 is still open.

6.5.2 Lifting Markov bases and Gröbner bases

Recently, Rauh and Sullivant [RS15] have proposed a new iterative algorithm to compute
Markov bases and Gröbner bases of toric ideals in which a key step is to understand the
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holes of an associated semigroup. We do not explain this theory here, but we summarize
two examples that arose in this context and that can now be reproduced using HASE.

The first example is from the computation of the Markov basis of the binary complete
bipartite graph K3,N , as computed by [RS14]. The associated semigroup has two fun-
damental holes. Each fundamental hole has one associated monoid, generated by eight
generators. The input file K31codz.mat for HASE can be downloaded from the HASE
homepage. Within a few seconds, HASE produces the following output:

Normaliz found 2 fundamental holes.

Standard pairs of [1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1]:

1: {x1, x2, x4, x7, x9, x10, x12, x15}

Standard pairs of [1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0]:

1: {x0, x3, x5, x6, x8, x11, x13, x14}

The same method can be used to compute a Markov basis for the binary 3× 3-grid.
In this case, one needs to understand the holes of a larger semigroup. Again, the input
file 3x3codz.mat can be downloaded from the HASE homepage.

This problem turns out to be much more difficult for HASE, and in fact, after waiting
24 hours for HASE to finish we became impatient and aborted the program, even when
the option --trick was activated.

Surprisingly, it turns out that the set of holes itself can be computed with some
extra information: While the semigroup has 32 fundamental holes, there are only three
symmetry classes. The time that HASE spends on a single hole varies greatly, even within
a symmetry class. So all that is needed to finish the computation is to find representatives
of the three symmetry classes such that the hole monoid computations run through
relatively quickly. The current version of HASE cannot be used to run the algorithm on
a subset of the fundamental holes (but it is not difficult to do this manually by looking
at HASE’s source code). This shows once again how important it is to take symmetry
into account.

6.6 discussion and open problems

There are many open problems concerning semigroups and holes of semigroups. In this
section, we just want to briefly mention a non-respresentative selection of open problems.

As mentioned in the beginning, the Frobenius problem is still open if there are more
than two generators. There are several computational results, see e.g. [BEZ03]. It might
be possible to use the structure of the holes, i.e. which hole is based on which fundamental
hole, to say something about the Frobenius number. Alternatively, one could use a slightly
modified version of HASE to compute the Frobenius number explicitly.

As briefly discussed in Section 6.5.1, holes in semigroups coming from lattice poly-
topes are of particular interest as they reflect geometric properties. Therefore, another
application of HASE is to describe the semigroup coming from a user specified lattice
polytope.
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7
HASE

“Mathematics is a collection of cheap tricks and dirty jokes.” (Lipman Bers)

This chapter is based on the HASE manual which can be found at
http://ehrhart.math.fu-berlin.de/People/fkohl/HASE/Manual/, see [KLRY16].

HASE is a program that computes holes of pointed, affine semigroups. It is an
implementation of the algorithm described by Hemmecke, Yoshida, and Takemura, see
[HTY09b]. The program itself is written in Python 3, but it internally uses (and hence
is dependent on) Normaliz [BIR+], Macaulay2 [GS], and optionally on 4ti2 [tt08]. The
dependence on 4ti2 however is not strict, as there is the –Nsolve option avoiding 4ti2.
The source code can be found in the Appendix, see Chapter 8. In this chapter, we
want to explicitly demonstrate how one can use HASE to compute the holes in certain
semigroups.

7.1 the basics

7.1.1 Notation

In this section, we want to briefly recall the notation that we have used in Chapter 6.
Let A ∈ Zm×n be a matrix with integral entries. Moreover, let Z≥0 = {0, 1, 2, 3, . . . } be
the set of nonnegative integers and let R≥0 = [0,∞). Let a1, a2, . . . , an be the columns
of a matrix A. Then we define

1. the semigroup generated by the columns of A as the set

M :=M(A) := {a1x1 + · · ·+ anxn : x1, . . . , xn ∈ Z≥0} ,

2. the cone generated by the columns of A as

K := cone(A) := {a1x1 + · · ·+ anxn : x1, . . . , xn ∈ R≥0} ,

and

3. the lattice Λ = Λ(A) generated by the columns A as

Λ := Λ(A) := {a1x1 + · · ·+ anxn : x1, . . . , xn ∈ Z} .

The following definitions have already been introduced in Chapter 2 and Chapter 6,
but we will briefly recall them here. The semigroup M = K ∩ Λ is called the saturation
of the semigroup M with respect to the lattice Λ(A). It follows that M⊂M and we
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call M saturated if M =M (this is also called normal). We call H =M\M the set of
holes of the semigroup M. A hole h ∈ H is fundamental if there is no other hole h′ ∈ H
such that h− h′ ∈M. Note that in contrast to H, F is always finite as it is contained in
the the set

P :=
{∑n

i=1
λiai : 0 ≤ λ1, . . . , λn < 1

}
,

as shown in [TY08]. Let us illustrate these definitions in a small example.

Example 7.1.1 (The Frobenius Problem). Let p, q be two positive, coprime integers.
In the notation above, this means A = (p, q) ∈ R1×2. The semigroup generated by the
columns of A is

M(A) = {n ∈ Z≥0 : n = ap+ bq , where a, b ∈ Z≥0} .

It is a direct consequence of Bezout’s theorem that the lattice generated by p and q is
Λ(A) = Z. However, if p and q are not coprime, then Λ(A) 6= Z. Furthermore, we have
that cone(A) = R≥0. The saturation M = cone(A) ∩ Λ(A) = R≥0 ∩ Z = Z≥0. Thus,
the set of holes H = M\M is the of nonnegative integers that cannot be written as
a positive, linear, integral combination of p and q. It is a theorem that there are only
finitely many holes in M(A). The Frobenius problem asks to find the largest number
that cannot be written as such a combination of p and q. This number is called the
Frobenius number and it is denoted g(p, q). Moreover, it can be shown that

g(p, q) = pq − p− q.

For a proof this theorem, we refer the reader to [BR07, Theorem 1.2, p. 6].
If we now choose p = 3 and q = 7, we can see that

H = {1, 2, 4, 5, 8, 11}.

and
F = {1, 2}.

One can generalize this problem to more than two generators. In this case — except for
some smaller special cases — the Frobenius problem remains wide open.

7.1.2 A First Example

This example is taken from [HTY09b, Ex. 2.2]. Let us now turn to an explicit computation
of holes in an affine semigroup. Let M(A) be the semigroup generated by (1, 0)t, (1, 2)t,
(1, 3)t, and (1, 4)t. This means that

A =

(
1 1 1 1

0 2 3 4

)
.

To compute the holes with HASE, we need to create an input-file example.mat which
looks like

100



2 4

1 1 1 1

0 2 3 4

The first line specifies the dimensions of the matrix and the other lines describe the
matrix A. We have to make sure that this file is in the same folder as Normaliz and
ZSolve, which is an application from 4ti2. Now we can run the program by entering

python3 hase.py --normaliz "./normaliz" -v example

into the terminal. The output looks like

Using temporary directory /tmp/tmp080qluh7/

Read example.mat. 4 generators in dimension 2.

>>>>> Running normaliz to compute the fundamental holes.

Normaliz found 1 fundamental holes.

Looking at hole [1 1]

>>>>> Running zsolve to find the minimal solutions to f = Am - Al.

>>>>> Running M2 to compute the standard pairs. Output:

1: {x0}

This output means that there is one fundamental hole (1, 1)t and H can be described as

H =
{

(1, 1)t +m(1, 0)t : m ∈ Z≥0

}
.

As mentioned in the preface, there is the option –Nsolve, which uses Normaliz to
determine the integer solutions instead of using 4ti2. The command now looks like

python3 hase.py --normaliz "./normaliz" --Nsolve "./normaliz" -v beispiel

The output now is

Read beispiel.mat. 4 generators in dimension 2.

>>>>> Running normaliz to compute the fundamental holes.

Normaliz found 1 fundamental holes.

Looking at hole [1 1]

>>>>> Running Normaliz to find the minimal solutions to f = Am - Al.

>>>>> Running M2 to compute the standard pairs. Output:

1: {x0}

7.1.3 Frobenius Revisited

Let’s now turn to the Frobenius problem. We will start with a very small example to
nicely interpret the output. With the notation of Example 7.1.1, we set p = 3 and q = 5.
For technical reasons, we embed the problem into R2. Our input file frobenius.mat then
looks like:

2 2

3 5

0 0

HASE gives the following output:
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Using temporary directory /tmp/tmp6qedfn44/

Read frobenius.mat. 2 generators in dimension 2.

>>>>> Running normaliz to compute the fundamental holes.

Normaliz found 2 fundamental holes.

Looking at hole [1 0]

>>>>> Running zsolve to find the minimal solutions to f = Am - Al.

>>>>> Running M2 to compute the standard pairs. Output:

1: {}

x0: {}

2

x0 : {}

Looking at hole [2 0]

>>>>> Running zsolve to find the minimal solutions to f = Am - Al.

>>>>> Running M2 to compute the standard pairs. Output:

1: {}

x1: {}

There are only two fundamental holes, but there are several standard pairs. The x′is in
the output refer to the (i− 1)st generator. For the hole (1, 0) this simply means, we have
the holes (1, 0), then the hole (1, 0) + (3, 0) and (1, 0) + 2 · (3, 0) . Moreover, we have the
holes with base point (2, 0), namely (2, 0) and (2, 0) + (5, 0). Note that the list of holes is
redundant, as the hole (7, 0) appears with two different base points. In higher dimensions
we cannot expect a finite set of holes, so based on every hole there will be a monoid. This
monoid is trivial in our case, which explains the empty brackets after the variables.

7.1.4 A Bigger Example

Now let us turn to a more complex problem, namely to the Common Diagonal Effect
Model (CDEM) which we have already encountered in Section 6.4. The CDEM examines
(square) marginal tables, where the row sums, the column sums, and the diagonal sum
are fixed. Let

M =


m11 m12 . . . m1n

m21 m22 . . . m2n
...

... . . .
...

mn1 mn2 . . . mnn


be an n× n marginal table. We embed M into Rn2

using the isomorphism

M 7→ (m11,m12, . . . ,m1n,m21,m22, . . . ,m2n, . . . ,mn1,mn2, . . . ,mnn) =: M̃.

Now we can describe the conditions that the row sums, columns sums, and diagonal sum
is fixed by a linear equation of the form

AM̃ = b
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for some A ∈ Rn2×n2
and b ∈ Rn2

. In particular, if n = 4 then A ∈ Z9×16 is the matrix

A =



1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1


.

Let us determine the holes of the semigroup generated by the columns of A. We save A
in the file 44.mat:

9 16

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Now we can run our program with the following command:

python3 hase.py --normaliz "./normaliz" -v 44

The output will be:

Normaliz found 6 fundamental holes.

Standard pairs of [0 0 1 1 0 0 1 1 1]:

1: {x10, x11, x14, x15}

1: {x0, x5, x10, x15}

Standard pairs of [0 1 0 1 0 1 0 1 1]:

1: {x5, x7, x13, x15}

1: {x0, x5, x10, x15}

Standard pairs of [0 1 1 0 0 1 1 0 1]:

1: {x5, x6, x9, x10}

1: {x0, x5, x10, x15}

Standard pairs of [1 0 0 1 1 0 0 1 1]:

1: {x0, x5, x10, x15}

1: {x0, x3, x12, x15}

Standard pairs of [1 0 1 0 1 0 1 0 1]:

1: {x0, x5, x10, x15}

1: {x0, x2, x8, x10}

Standard pairs of [1 1 0 0 1 1 0 0 1]:

1: {x0, x5, x10, x15}

1: {x0, x1, x4, x5}

103



An explicit description of the Hilbert basis and the structure of the holes of M(A) is
described in Chapter 6, see also [KLRY18].

7.2 more options

In this section, we want to give a very brief overview over the different options. Enter

python3 hase.py --normaliz "./normaliz" --help

in your terminal to see all possible flags.

usage: hase.py [-h] [-k] [--M2 M2] [--normaliz NORMALIZ]

[--zsolve ZSOLVE] [-t] [--time]

[--lp_solve LP_SOLVE] [-v]

filename

Compute the hole monoids of an affine semigroup.

positional arguments:

filename the name of the file containing the generators,

without the ending ".mat" (as columns of a matrix, in

4ti2 .mat format)

optional arguments:

-h, --help show this help message and exit

-k, --keep-temporary-files

with this option, temporary files are created in the

same directory (using FILENAME-him as a basename) and

are not deleted when the program finishes. Note that

the temporary files for different fundamental holes

get the same name, so only the temporary files used

when computing the monoid of the last fundamental hole

are preserved.

--M2 M2 the command to call Macaulay2 (including the path)

--normaliz NORMALIZ the command to call normaliz (including the path)

--zsolve ZSOLVE the command to call zsolve (including the path)

--Nsolve the command to use Nsolve instead of zsolve (including path)

-t, --trick for each fundamental hole f and generator g, check if

f+g is a hole. Only compute the hole monoid among the

remaining generators.

--time time each zsolve command

--lp_solve LP_SOLVE the command to call lp_solve (including the path)

-v, --verbose increase output verbosity. Use several times ("-vv")

to further increase output verbosity
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8
APPENDIX

“If you had done something twice, you are likely to do it again.” (Brian Kernighan
and Bob Pike (The Unix Programming Environment, p. 97)

We want to end this thesis by appending the source code of HASE. The implementation of the
flag --trick is due to Johannes Rauh.

Listing 8.1: Source Code of HASE

#!/usr/bin/env python3

import sys
import os
import numpy as np

import argparse # command line processing
import warnings # to avoid warning when reading empty matrix in .mat format
import tempfile # to create temporary files in dedicated directory
import subprocess # to call other commands safely

######## parse arguments
parser = argparse.ArgumentParser(description=”Compute the hole monoids of an affine

semigroup.”)
parser.add argument(”filename”, help=”the name of the file containing the generators,

without the ending \”.mat\” (as columns of a matrix, in 4ti2 .mat format)”)
parser.add argument(”−k”, ”−−keep−temporary−files”, help=”with this option, temporary

files are created in the same directory (using FILENAME−him as a basename) and
are not deleted when the program finishes. Note that the temporary files for
different fundamental holes get the same name, so only the temporary files used
when computing the monoid of the last fundamental hole are preserved.”, action=”
store true”)

parser.add argument(”−−M2”, help=”the command to call Macaulay2 (including the path
)”, default=’M2’)

parser.add argument(”−−normaliz”, help=”the command to call normaliz (including the
path)”, default=’normaliz’)

parser.add argument(”−−zsolve”, help=”the command to call zsolve (including the path)”,
default=’zsolve’)

parser.add argument(”−t”, ”−−trick”, help=”for each fundamental hole f and generator g,
check if f+g is a hole. Only compute the hole monoid among the remaining

generators.”, action=”store true”)
parser.add argument(”−−time”, help=”time each zsolve command”, action=”store true”)
parser.add argument(”−−lp solve”, help=”the command to call lp solve (including the

path)”, default=’lp solve’)
parser.add argument(”−v”, ”−−verbose”, action=”count”, help=”increase output verbosity.

Use several times (\”−vv\”) to further increase output verbosity”, default=0)
parser.add argument(”−n”, ”−−Nsolve”, help=”use normaliz instead of zsolve to solve

linear integer equations.”, action=”store true”)
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args = parser.parse args()

######## input/output of files
def getMatMatrix(filename):

with warnings.catch warnings(): # numpy complains if the file is empty (or contains
only the header line)

warnings.simplefilter(”ignore”)
matrix = np.loadtxt(filename, dtype=int, skiprows=1) # , ndmin=2 : does

not work for matrices with one size equal to zero
return matrix

# motivated by: http://stackoverflow.com/questions/5914627/prepend−line−to−beginning−
of−a−file

def appprepend(filename,header=’’,footer=’’):
with open(filename, ’r+’) as f:

content = f.read()
f.seek(0, 0)
f.write(header.rstrip(’\r\n’) + ’\n’ + content.rstrip(’\r\n’) + ’\n’ + footer)

def putMatMatrix(filename,A):
# np.savetxt(filename, A, fmt=’%i’, header=str(A.shape[0])+” ”+str(A.shape[1]), comments

=’’) ## for numpy > 1.7.0
np.savetxt(filename, A, fmt=’%i’)
appprepend(filename, header=str(A.shape[0])+” ”+str(A.shape[1]))

def putMatConstVector(filename,size,entry):
”Writes a vector of identical entries to a file in 4ti2 format”
with open(filename,’w’) as f:

f.write(’1 ’ + str(size) + ”\n”)
for i in range(size):

f.write(entry + ’ ’)
f.write(”\n”)

def putNormalizMatrix(filename,A,add=’’):
”Writes the matrix ’A’ to file ’filename’ in Normaliz format. last line is add.”

# np.savetxt(filename, A.T, fmt=’%i’, header=str(A.shape[1])+”\n”+str(A.shape[0]), footer
=add, comments=’’) ## for numpy > 1.7.0

np.savetxt(filename, A.T, fmt=’%i’)
appprepend(filename, header=str(A.shape[1])+”\n”+str(A.shape[0]), footer=add)

def readNormalizFundHoles(filename):
FundHoles = set()
with open(filename,’r’) as outfile:

line=’’
while not ”embedding dimension =” in line:

line = outfile.readline()
dimension cone = int(line.strip().split()[−1]) # the last part of the line is

the embedding dimension
FundHoles = np.empty((0,dimension cone),dtype=np.int )
# line that contains ”module generators” and ends with ’:’
while not ”module generators over original monoid:” in line:

line = outfile.readline()
line = outfile.readline()
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while line != ”\n”:
hole=np.array(line.strip().split(), dtype=int)
if np.any(hole):

FundHoles = np.append(FundHoles, [hole], axis=0)
line = outfile.readline()

return FundHoles # − {’’} # remove the empty generator

def readNormalizInhom(filename):
SolInhom=set()
with open(filename,’r’) as outfile:

line = ’’
while not ”embedding” in line:

line = outfile.readline()
dimension matrix = int(line.strip().split()[−1])−1 # the −1 is due to the

fact that they have the inhomogeneous part as the last column
SolInhom=np.empty((0,dimension matrix),dtype=np.int)

while not ”module generators:” in line:
line=outfile.readline()

line=outfile.readline()
while line != ”\n”:

solution=np.array(line.strip().rsplit(’ ’, 1)[0].split(), dtype=int) #
rsplit removes the last entry (inhomogeneous part)

SolInhom = np.append(SolInhom, [solution], axis=0)
line=outfile.readline()

return SolInhom

### set up temporary files
if args.keep temporary files:

dirname = ””
else:

dir = tempfile.TemporaryDirectory()
dirname = dir.name + ”/”
if args.verbose:

print (”Using temporary directory ” + dirname)
filename = dirname + os.path.basename(args.filename) + ”−him” # use this as the base for

all temporary files

### read the matrix

try:
matrix = getMatMatrix(args.filename + ”.mat”)

except FileNotFoundError:
print(”ERROR: Could not read matrix from file ” + args.filename + ”.mat.”, file

=sys.stderr)
if args.verbose:

print(”Maybe ” + args.filename + ”.mat does not exist?”, file=sys.stderr)
sys.exit(1)

except (StopIteration,ValueError,UserWarning):
print(”ERROR: Could not read matrix from file ” + args.filename + ”.mat.”, file

=sys.stderr)
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if args.verbose:
print(”Maybe a syntax error in ” + args.filename + ”.mat?”, file=sys.

stderr)
sys.exit(1)

if len(matrix.shape) <= 1: # matrix is not a matrix, but a vector or so...
if (matrix.shape[0] == 0):

print(”ERROR: Input matrix (read from file ” + args.filename + ”.mat)
seems to be empty.”, file=sys.stderr)

sys.exit(1)
else:

matrix.shape=(1,matrix.shape[0])

dimension cone = matrix.shape[0] # ambient dimension of the cone
number generators = matrix.shape[1] # number of generators of the semigroup

if args.verbose:
print(”Read ” + args.filename + ”.mat. ” + str(number generators) + ”

generators in dimension ” + str(dimension cone) + ”.”);

if args.verbose:
print(”>>>>> Running normaliz to compute the fundamental holes.”)

putNormalizMatrix(filename + ”.in”,matrix,add=”cone”)
if args.verbose >= 2: # normaliz is quite verbose, so make it quiet, unless verbosity level is

at least 2:
normalizopts = [”−c”]

else:
normalizopts = []

try:
subprocess.check call([args.normaliz,”−M”] + normalizopts + [filename])

except subprocess.CalledProcessError as err:
print(”ERROR: Normaliz failed with exit code: ” + str(err.returncode), file=sys.

stderr)
sys.exit(1)

try:
FundHoles = readNormalizFundHoles(filename + ”.out”)

except:
print(”ERROR: Could not read Normaliz output.”, file=sys.stderr)
sys.exit(1)

# if args.verbose:
print(”Normaliz found ” + str(len(FundHoles)) + ” fundamental holes.”);

### Find set of minimal solutions to f = Am − Al

if not args.Nsolve: # When using zsolve: prepare auxilliary files and verbosity options
if args.verbose >= 3:

zsolveopts = [”−v”]
elif args.verbose == 2:

zsolveopts = []
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else: # zsolve is too verbose, so make it quiet, unless verbosity level is at least 2:
zsolveopts = [”−q”]

putMatConstVector(filename + ”.rel”, dimension cone, ”=”)
if not args.trick: # prepare auxilliary files for zsolve only once

concmatrix = np.concatenate((matrix,−matrix),axis=1)
putMatMatrix(filename + ”.mat”, concmatrix)
putMatConstVector(filename + ”.sign”, 2*number generators, ”1”)

# for run var in range(number fundholes):
for hole in FundHoles:

if args.verbose:
print(”Looking at hole ”,end=’’)
print(hole)

##### implement Johannes’ trick: check each generator whether it is necessary:
if args.trick:

necessary generators = []
for k in range(number generators):

with open(filename + ’.lp’,’w’) as lpfile:
lpfile.write(’min: ;\n’)
for j in range(number generators): # positivity constraints

lpfile.write(’x’ + str(j) + ’>=0;\n’)
for i in range(dimension cone): # margin constraints

iszero = True
for j in range(number generators):

Aij = matrix.item((i,j))
if Aij != 0:

if iszero:
iszero = False

else:
lpfile.write(” + ”)

if Aij != 1:
lpfile.write(str(Aij) + ” ”)

if (number generators > 10 and j <
10):

lpfile.write(” ”)
lpfile.write(”x” + str(j))

if not iszero: # a zero line in the matrix A would
lead to the equation 0 = 0, which leads to an
error of lp solve

lpfile.write(” = ” + str(hole[i] + matrix.
item((i,k))) + ”;\n”)

# integer constraint:
lpfile.write(”int x0”)
for i in range(1,number generators):

lpfile.write(”, x” + str(i))
lpfile.write(”;\n”)

if args.verbose:
print(”>>>>> Trick: Running lp solve to exclude certain

generators.”)

if args.verbose>=1:
lpret = subprocess.call([args.lp solve, ”−S1”, filename + ”.lp
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”])
else:

with open(os.devnull,”w”) as defnull:
lpret = subprocess.call([args.lp solve, ”−S1”,

filename + ”.lp”], stdout=defnull)
if lpret==2: # lp solve returns exit code 2 if problem is not feasible

necessary generators.append(k)
elif lpret != 0: # any exit code except 0 or 2 indicates a problem

# raise subprocess.CalledProcessError(lpret,args.lp solve + ”
−S1 ” + filename + ”.lp”)

print(”ERROR: lp solve failed with exit code: ” + str(
lpret), file=sys.stderr)

sys.exit(1)

if not args.Nsolve: # write auxilliary files if using zsolve
concmatrix = np.concatenate((matrix,−np.take(matrix,

necessary generators,axis=1)),axis=1)
putMatMatrix(filename + ”.mat”, concmatrix)
putMatConstVector(filename + ”.sign”, number generators + len(

necessary generators), ”1”)

if args.Nsolve: # run normaliz
# prepare the matrix
### there should be a cleaner way to construct concmatrix! hole is of type

np.array.
f = np.zeros((1,int(dimension cone)),dtype=np.int)

if args.trick:
concmatrix = np.concatenate((matrix,−np.take(matrix,

necessary generators,axis=1),−np.array([hole]).T),axis=1)
else:

concmatrix = np.concatenate((matrix,−matrix,−np.array([hole]).T),
axis=1)

putNormalizMatrix(filename + ”nsolve.in”, concmatrix.T, add=”
inhom equations”)

if args.verbose:
print(”>>>>> Running Normaliz to find the minimal solutions

to f = Am − Al.”)
try:

subprocess.check call([args.normaliz]+[filename + ”nsolve”])
except subprocess.CalledProcessError as err:

print(”ERROR: Normaliz failed with exit code: ” + str(err.
returncode), file=sys.stderr)

sys.exit(1)

try:
zinhom=readNormalizInhom(filename + ”nsolve.out”)

except:
print(”ERROR: Could not read Normaliz output. ”, file=sys.

stderr)
sys.exit(1)
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numzinhom = len(zinhom)

else: # run zsolve
putMatMatrix(filename + ”.rhs”,np.array([hole]))
if args.verbose:

print(”>>>>> Running zsolve to find the minimal solutions to f
= Am − Al.”)

try:
if args.time:

subprocess.check call([”time”, args.zsolve] + zsolveopts + [
filename])

else:
subprocess.check call([args.zsolve] + zsolveopts + [filename])

except subprocess.CalledProcessError as err:
print(”ERROR: zsolve failed with exit code: ” + str(err.

returncode), file=sys.stderr)
sys.exit(1)

###########IMPORTANT########
#In contrast to the paper, we have to take the SECOND HALF of each solution (m,l),
#since we entered the linear system differently!

try:
zinhom = getMatMatrix(filename + ”.zinhom”)

except:
print(”ERROR: Could not read zsolve output. ”, file=sys.stderr)
sys.exit(1)

numzinhom = len(zinhom)

if numzinhom == 0:
print(’Standard pairs of ’ + str(hole) + ’:’)
##### implement Johannes’ trick: need to change the numbering

according to necessary generators
if args.trick:

# output the necessary generators.
# replace is needed to have the same output format as M2
print(’ 1: ’ + str(necessary generators).replace(”[”,”{x”).replace(”

, ”,”, x”).replace(”]”,”}”))
else:

print(’ 1: ’ + str(list(range(number generators))).replace(”[”,”{
x”).replace(”, ”,”, x”).replace(”]”,”}”))

else:

if len(zinhom.shape) == 1:
zinhom.shape = (1,zinhom.shape[0])

secondhalf = np.take(zinhom,range(number generators,zinhom.shape[1]),axis
=1)

#create input file for macaulay2
with open(filename + ”.m2”, ’w’) as m2file:

m2file.write(’toMonomial = V −> product for i from 0 to #
generators R − 1 list (R i)ˆ(V#i); −− turn a vector into a
monomial\n’)

m2file.write(’toMonomialIdeal = M −> monomialIdeal for i from 0
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to numRows(M)−1 list toMonomial flatten entries (Mˆ{i});
−− turn a matrix into a monomial ideal (each row is a
monomial)\n’)

m2file.write(’M = matrix ”’) #write matrix M whose rows are the
lambdas

notfirst = False
for line in secondhalf:

if notfirst:
m2file.write(’;’)

else:
notfirst = True

line.tofile(m2file,sep=”,”)
m2file.write(’”;\n’) #matrix M is now written
m2file.write(’n=%d; −− number of variables \n’ %int(secondhalf.

shape[1]))
m2file.write(’f = map ZZˆn;\n’) #create n by n identity matrix
##### implement Johannes’ trick: need to change the numbering

according to necessary generators
if args.trick:

m2file.write(’R=QQ[’)
for i in necessary generators:

m2file.write(’x’ + str(i) + ’,’)
m2file.write(’ Degrees => entries f, MonomialOrder =>

Lex];\n’) #Degrees makes ring multigraded
else:

m2file.write(’R=QQ[vars(52..51+n), Degrees => entries f,
MonomialOrder => Lex];\n’) #Degrees makes ring
multigraded

# variables starting at 52 are x0, x1, ...
m2file.write(’I=toMonomialIdeal(M);\n’)
m2file.write(’SPI = standardPairs I;\n’) # compute the standard

pairs
m2file.write(’for entry in SPI do (\n’)
m2file.write(’ << ” ” << toString(entry#0) << ”: ” <<

rsort(entry#1) << endl;)\n’)

m2file.write(’quit();\n’)

if args.verbose:
print(”>>>>> Running M2 to compute the standard pairs.

Output:”)
else:

print(’Standard pairs of ’ + str(hole) + ’:’)
try:

subprocess.check call([args.M2,”−−script”,filename + ”.m2”])
except subprocess.CalledProcessError as err:

print(”ERROR: Macaulay2 failed with exit code: ” + str(err.
returncode), file=sys.stderr)

sys.exit(1)
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ZUSAMMENFASSUNG

Diese Arbeit beschäftigt sich mit den Eigenschaften und Anwendungen von Gitterpolytopen,
sowie Eigenschaften von Halbgruppen. Die nötigen Grundlagen werden in Kapitel 2 beschrieben.

In Kapitel 3 werden zulässige Färbungen von einer speziellen Familie von Graphen untersucht.
Diese Familie ist durch das kartesische Produkt G× Pn bzw. G× Cn eines beliebigen Graphs
G mit einem Pfad- (Pn) beziehungsweise einem Kreisgraph Cn mit n Ecken gegeben. Um diese
Problemstellung zu untersuchen, werden Transfermatrixmethoden mit umgestülpten Polytopen
(inside-out polytopes) kombiniert. Um die Grösse der Transfermatrix zu beschränken, werden
Gruppenwirkungen, die durch die zugrundeliegende Symmetrie gegeben sind, ausgenutzt. Dies
führt zu einer expliziten Formel für das chromatische Polynom für Graphen der Form G× Pn.
Desweiteren wird das asymptotische Verhalten der Anzahl der zulässigen Färbungen von G× Cn

beschrieben.
In Kapitel 4 werden Halbordnungen und die assoziierten Ordnungspolytope (order poly-

topes) auf die algebraische Level-Eigenschaft untersucht. Diese Eigenschaft verallgemeinert die
Gorenstein-Eigenschaft und beschreibt die Struktur der minimalen Elemente des kanonischen
Moduls. Während es einfach ist, die Gorenstein-Eigenschaft für Halbordnungen zu klassifizieren,
verhält sich die Level-Eigenschaft subtiler. Wir benutzen gewichtete, gerichtete Graphen, um eine
vollständige Klassifizierung zu erreichen. Mit dieser Klassifizierung beschreiben wir eine neue,
unendliche Familie von Halbordnungen, die die Level-Eigenschaft besitzen. Desweiteren wird eine
Klassifizierung der Level-Eigenschaft für Alkovpolytope (alcoved polytopes) gegeben.

Die Gorenstein- und die Level-Eigenschaft von s-Hörsaal-Polytopen (s-lecture hall polytopes)
wird in Kapitel 5 untersucht. In der Literatur wurde bisher nur die Gorenstein-Eigenschaft für
Hörsaal-Kegel untersucht, siehe [BBK+15]. Aufbauend auf diesen Resultaten klassifizieren wir
die Gorenstein-Eigenschaft der Hörsaal-Polytope für alle s-Folgen. Die Gorenstein-Eigenschaft
hat direkte Implikationen für die Struktur einer Erzeugendenfunktion. Weiterhin geben wir auch
eine Charakterisierung der Level-Eigenschaft in Form von Inversionsfolgen. Wir illustrieren, wie
man diese Charakterisierung benutzen kann, um zu zeigen, dass jedes 2-dimensionale Hörsaal-
Polytop die Level-Eigenschaft hat. Der Hauptpunkt ist hier, explizit zu zeigen, wie man diese
Klassifizierung in niedrigen Dimensionen anwenden kann.

Die Level- und die Gorenstein-Eigenschaften können durch die Struktur eines Halbgruppen-
rings beschrieben werden. Kapitel 6 widmet sich der Frage, wann solche Halbgruppen(ringe)
Löcher haben können. Diese Arbeit baut auf Resultaten aus [HTY09b] auf, wo ein Algo-
rithmus zum Finden und Beschreiben solcher Löcher beschrieben wird. Dieser Algorithmus
wurde von uns implementiert. Die dazugehörige Software kann unter http://ehrhart.math.fu-
berlin.de/People/fkohl/HASE/ gefunden werden. Mithilfe dieser Software konnten wir die Löcher
des gewöhnlichen Diagonaleffekt-Modells (common diagonal effect model) beschreiben, sowie
zeigen, dass die assoziierte Halbgruppe des linearen Ordnungspolytops (linear ordering polytope)
keine Löcher hat.

Kapitel 7 kann als Bedienungsanleitung der dazugehörigen Software angesehen werden. Anhand
von expliziten Beispielen werden die Bedienung der Software beschrieben, sowie verschiedene
Optionen illustriert. Desweiteren zeigen wir, wie man das Programm benutzen kann, um das
Frobenius-Problem zu untersuchen. Im Anhang ist der Quellcode von HASE angegeben.
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