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Fluctuation-dissipation relation and stationary distribution of an exactly
solvable many-particle model for active biomatter far from equilibrium
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An exactly solvable, Hamiltonian-based model of many massive particles that are coupled by harmonic
potentials and driven by stochastic non-equilibrium forces is introduced. The stationary distribution
and the fluctuation-dissipation relation are derived in closed form for the general non-equilibrium case.
Deviations from equilibrium are on one hand characterized by the difference of the obtained stationary
distribution from the Boltzmann distribution; this is possible because the model derives from a particle
Hamiltonian. On the other hand, the difference between the obtained non-equilibrium fluctuation-
dissipation relation and the standard equilibrium fluctuation-dissipation theorem allows us to quantify
non-equilibrium in an alternative fashion. Both indicators of non-equilibrium behavior, i.e., deviations
from the Boltzmann distribution and deviations from the equilibrium fluctuation-dissipation theorem,
can be expressed in terms of a single non-equilibrium parameter α that involves the ratio of friction
coefficients and random force strengths. The concept of a non-equilibrium effective temperature,
which can be defined by the relation between fluctuations and the dissipation, is by comparison
with the exactly derived stationary distribution shown not to hold, even if the effective temperature
is made frequency dependent. The analysis is not confined to close-to-equilibrium situations but
rather is exact and thus holds for arbitrarily large deviations from equilibrium. Also, the suggested
harmonic model can be obtained from non-linear mechanical network systems by an expansion in
terms of suitably chosen deviatory coordinates; the obtained results should thus be quite general.
This is demonstrated by comparison of the derived non-equilibrium fluctuation dissipation relation
with experimental data on actin networks that are driven out of equilibrium by energy-consuming
protein motors. The comparison is excellent and allows us to extract the non-equilibrium parameter
α from experimental spectral response and fluctuation data. © 2018 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5020654

INTRODUCTION

Systems that are maintained far from equilibrium are inter-
esting for two reasons: First, nature is not in equilibrium, but
rather energy is constantly injected and removed through a
cascade of interwoven dissipation levels from astrophysical
and geophysical down to biological and microbiological length
and time scales. Equilibrium theories, that are commonly used
to describe natural processes, thus typically employ ideal-
izations and simplifications. Second, most theoretical models
and principles exclusively apply to equilibrium systems, while
methods for the description of non-equilibrium situations are
less developed, so the study of non-equilibrium phenomena
most likely will produce new basic concepts and fundamental
insights.1–4

There are two distinct ways of characterizing a non-
equilibrium system: On the one hand, systems far from
equilibrium deviate from the Boltzmann distribution, the
founding principle of statistical mechanics. Even phase tran-
sitions have been observed as a function of the rate at
which energy is injected into a system. Examples include
phase separation of particles driven by external5–10 or internal
forces11–18 and the collective response of pedestrians to spatial

confinement.19 Experimentally, symmetry-breaking transi-
tions in suspensions of swimming bacteria and filament
systems driven by motor proteins have indeed been demon-
strated.20,21 Non-equilibrium shape transformations have
been described for polymers driven by externally applied
torques.22,23 For some systems, such effects can be derived
by a solution of the governing dynamic equations or by the
system’s tendency to maximize its dissipation, i.e., its entropy
production,24 but a general understanding of non-equilibrium
systems based on distribution function theory is missing.

A fundamentally different indicator of non-equilibrium is
a violation of the fluctuation-dissipation theorem (FDT), the
key theoretical concept to describe the dynamical response
of a system close to equilibrium.2 According to the FDT, the
time derivative of the autocorrelation function of an observ-
able that is coupled to an externally applied time-dependent
force is proportional to the linear response function. Mod-
ified versions of the FDT that account for non-equilibrium
effects have been discussed in the context of laser,25 chaotic,26

glassy,27 colloidal,28 sheared,29–31 and active systems.32–34

Generalized non-equilibrium fluctuation-dissipation rela-
tions were derived25,35–40 and compared with experimental
data for glasses,41 colloids,42,43 and bundles of biological
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filaments.44,45 These two distinct ways of characterizing non-
equilibrium systems, i.e., deviations from the Boltzmann dis-
tribution and the breakdown of the FDT, were not linked to
each other in the past, simply because of the lack of a suitable
model system. The main insight of this paper is derived from
an in-depth comparison of these complementary definitions
of non-equilibrium for an explicitly solvable particle-based
model.

In fact, driven non-equilibrium systems pose a whole
number of fundamental questions: What is the relation
between FDT violation and deviations from the Boltzmann dis-
tribution, are these two indicators of non-equilibrium behav-
ior necessarily coupled, or could—alternatively—only one
of them be observed? Why is FDT violation in an experi-
mental system, such as biopolymer networks that are driven
by protein motors,46 typically seen at low frequencies, and
is this a property of the active noise spectrum, or rather of
the biopolymeric network? Can a non-equilibrium system be
described by an effective non-equilibrium temperature and
which would preserve the symmetry of the Boltzmann distri-
bution and the structure of the FDT (possibly by introducing
a frequency-dependent temperature4,26,27,32)?

What is needed in order to address these questions is a
Hamiltonian-based model that is simple enough to allow for
the in-depth analysis of the distribution functions, yet complex
enough to yield non-trivial response functions, and that can be
continuously moved away from equilibrium by a suitable con-
trol parameter. We here introduce such a model, which consists
of n massive active particles that are elastically coupled to a
central particle, as schematically depicted in Fig. 1. Each par-
ticle is coupled to a heat sink via friction and subject to a
stochastic force that drives the system away from equilibrium.

Our theoretical model is motivated by the experimental
system of an actin network in the presence of myosin motor
proteins, for which a stark FDT violation has been demon-
strated at increased adenosine triphosphate (ATP, the molec-
ular energy unit in biology) concentration.46 In these experi-
ments, the FDT has been explicitly checked by simultaneously
measuring the spatial autocorrelation of a colloidal bead and
the response of the bead to an externally applied force.47,48

FIG. 1. In the model based on the Hamiltonian Eq. (1), n particles of mass my
and with friction coefficientγy are elastically coupled to a central particle that
has mass m and friction coefficient γ. The harmonic springs have a strength
of K. The n peripheral particles are subject to random forces of strength bact

which are tuned to induce non-equilibrium behavior; the central particle is
subject to a random force of strength b.

In the absence of motor activity, the FDT was demonstrated
to be perfectly obeyed; for ATP-induced motor activity, the
FDT was significantly violated at low frequencies where the
bead fluctuations were seen to be much larger than the bead
response.46 In our comparison with the experimental data, the
central particle represents the colloidal probe, while the active
particles are the protein motors that are mechanically coupled
to the central particle by actin filaments.

Similar models have been studied before in the classi-
cal27,37,49 and quantum50 equilibrium cases in order to under-
stand how friction and memory effects arise from coupled
many-particle systems. Such many-particle models have also
been studied in the non-equilibrium situation where differ-
ent particles are coupled to thermal baths with different
temperatures, and effective temperatures were derived from
the calculated fluctuation-dissipation relations and compared
to stationary distributions.51,52 The main advantage of our
model is that on the one hand the stationary distribution can
be calculated explicitly by mapping on the Fokker-Planck
equation, and on the other hand, the response and autocor-
relation functions can be obtained from the conjugated gen-
eralized Langevin equation. We show that a non-Boltzmann
stationary distribution and FDT violation occur hand in hand
and are described by a single parameter which quantifies
departure from equilibrium, denoted as α. We derive the non-
equilibrium FDT which allows the quantitative description
of the experimental frequency-dependent motion of a tracer
bead in an ATP driven actin network.46 By the mapping of
our model on the experimental spectral data,46 we extract
for the non-equilibrium parameter the value α = 20, which
we interpret in terms of physical parameters such as friction
coefficients, particle masses, and the input power of motor
units. The high value of α indicates that the experimental
system is far from equilibrium. The main strength of our
harmonic model is that, due to its simple nature, it allows
us to derive the stationary distribution and the fluctuation-
dissipation relation in an exact manner, i.e., arbitrarily far away
from equilibrium. As a main insight, our results demonstrate
that the concept of a non-equilibrium effective temperature
has only a rather limited validity since the effective temper-
ature that is extracted from the generalized non-equilibrium
fluctuation-dissipation relation is different from the effective
temperature one would derive from the non-equilibrium sta-
tionary distribution, regardless of how far from equilibrium
the system is moved. In fact, even an arbitrarily small non-
equilibrium forcing breaks the symmetry of the stationary
distribution, vividly demonstrated by couplings between par-
ticle velocities and positions, which in equilibrium are
absent.

Clearly, a harmonic model can always be obtained from a
more complex, non-linear mechanical network by a Gaussian
expansion in terms of suitably defined deviatory coordinates.
Our model should thus quite generally describe mechani-
cal systems far from equilibrium, as long as the mechanical
response is close to linear, even when the system is far from
equilibrium as described by our non-equilibrium parameter
α. This expectation is confirmed by the good comparison of
our model with experimental spectral data for driven actin
biopolymeric networks.
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STATIONARY DISTRIBUTION OF MANY-PARTICLE
MODEL

To proceed, we consider a tracer particle of mass m that is
via harmonic bonds of strength K coupled to n active particles
of mass my. The Hamiltonian is given by

H =
Kx

2
x2 +

m
2
v2 +

n∑
i=1

K
2

(x − yi)
2 +

n∑
i=1

my

2
w2

i , (1)

where x and v are the position and the velocity of the tracer
bead while yi and wi are the positions and velocities of the
active particles, respectively. The central particle is in addi-
tion confined by a harmonic potential of strength Kx. Our
one-dimensional model can be trivially generalized to three
dimensions. By adding friction terms and random forces
to the Hamilton equations, which mimics the presence of
a heat bath, we obtain the coupled set of linear Langevin
equations

ẋ(t) = v(t),

m v̇(t) = −γv(t) − (nK + Kx)x(t) + K
∑

i

yi(t) + bFv(t),

ẏi(t) = wi(t),

my ẇi(t) = −γywi(t) − K(yi(t) − x(t)) + bact
i Fact

i (t),

(2)

where γ is the friction coefficient of the tracer bead and γy is
the friction coefficient of the active particles. For simplicity, we
assume Gaussian random forces with zero mean and variances
〈Fv(t)Fv(t ′)〉 = 2δ(t � t ′) and 〈Fact

i (t)Fact
j (t ′)〉 = 2δijδ(t − t ′);

the random force strengths are b for the tracer bead and bact
i

for the active particles. Note that for an equilibrium system
one would now fix the noise strengths at values b2 = kBTγ
for the tracer bead and (bact

i )2 = kBTγy for the active particles
in order to recover Maxwell-Boltzmann distributions for the
velocities.53 We do not do this, but rather analyze the model
for arbitrary random force strengths. Summing over the equa-
tions for the active particles, we arrive at the reduced Langevin
equations

ẋ(t) = v(t),

m v̇(t) = −γv(t) − Kxx(t) + nK(y(t) − x(t)) + bFv(t),

ẏ(t) = w(t),

my ẇ(t) = −γyw(t) − K(y(t) − x(t)) + byFw(t),

(3)

where we defined the mean position and velocity of the active
particles as y(t) =

∑
iyi(t)/n and w(t) =

∑
iwi(t)/n, respectively.

The random force acting on the mean position of the active
particles is given by

Fw(t) =
n∑

i=1

bact
i Fact

i (t)

nby
, (4)

with b2
y =

∑
i(b

act
i )2/n2 and satisfies 〈Fw(t)Fw(t ′)〉 = 2δ(t � t ′).

The set of linear stochastic differential equations defined by
Eq. (3) can be written as a matrix equation

żk(t) = −Akmzm(t) + ΦkmFm(t), (5)

where we defined the four-dimensional state vector
~z(t)= (x(t), v(t), y(t), w(t)) and the random force vector

~F(t) = (Fx(t), Fv(t), Fy(t), Fw(t)). Note that doubly appearing
indices are summed over. The matrices appearing in Eq. (5)
are given explicitly by

A =

*.....
,

0 −1 0 0

nK/m + Kx/m γ/m −nK/m 0

0 0 0 −1

−K/my 0 K/my γy/my

+/////
-

(6)

and

Φ =

*.....
,

0 0 0 0

0 b/m 0 0

0 0 0 0

0 0 0 by/my

+/////
-

. (7)

The associated Fokker-Planck equation for the time-dependent
density distribution P(~z, t) = P(x, v , y, w, t) follows via the
Kramers-Moyal expansion of Eq. (5) as53

Ṗ(~z, t) = [∇kAkmzm + ∇k∇mCkm]P(~z, t), (8)

where Cij =ΦikΦjk . With the Gaussian ansatz for the stationary
distribution

P0(~z) = N−1 exp(−ziE
−1
ij zj/2), (9)

where N is an unimportant normalization constant, we obtain
from Eq. (8) and the stationarity condition Ṗ(~z, t) = 0 the
following equation:

Aii − AijzjE
−1
ik zk + Cij(E

−1
ik zkE−1

jl zl − E−1
ij ) = 0. (10)

This is equivalent to the Lyapunov equation

AikEkj + AjkEki = 2Cij, (11)

as shown in the supplementary material, where we also present
the explicit solution for all entries of the covariance matrix
Eij, which is easily found by solving the set of linear equa-
tions defined by Eq. (11). We note that Exv = 〈xv〉 = 0 and
Eyw = 〈yw〉 = 0 and that 〈xw〉 = �〈yv〉, irrespective of the
parameters, which reduces the number of independent covari-
ances from ten (for a symmetric four-by-four matrix) down
to seven. For the remaining seven covariances, a fundamental
symmetry transpires: if the noise strengths acting on the active
and tracer particles, by and b, respectively, obey the relation

b2
y = b2γy/(nγ). (12)

we obtain as stationary solution the simple result

P0 ' exp(−γH/b2), (13)

where H is the Hamiltonian defined in Eq. (1). Thus, ordinary
Boltzmann statistics is recovered if the noise strength acting
on the tracer particle is chosen as b2 = γkBT, in which case
one obtains P0 ' exp(�H/kBT ). If Eq. (12) holds, we explic-
itly find 〈v2〉 = kBT /m, 〈w2〉 = kBT /(nmy), 〈x2〉 = kBT /Kx,
〈y2〉 = kBT (1/Kx + 1/(nK)), 〈(x � y)2〉 = kBT /(nK), and
〈xw〉 = 〈yv〉 = 〈vw〉 = 0 (as shown in the supplementary mate-
rial). This is precisely what one would derive from standard

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-034818
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-034818
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-034818
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equilibrium statistical mechanics. To quantify the departure
from equilibrium, we define the non-equilibrium parameter
α as

b2
y = (1 + α)b2γy/(nγ). (14)

For α = 0, we recover Eq. (12) and thus the equilibrium sta-
tionary distribution. For α , 0, we obtain a non-equilibrium
stationary distribution that is characterized by non-vanishing
couplings between velocities and positions that are linearly
proportional to α, 〈xw〉 = �〈yv〉 ∝ α as well as 〈vw〉 ∝ α, and
positional covariances that deviate from the equilibrium solu-
tion. The complete and exact stationary non-equilibrium solu-
tion is shown in the supplementary material; due to the length
of the resulting expressions, we exemplarily show here only
positional variances in the vanishing mass (i.e., overdamped)
limit m = my = 0,

〈x2〉 =
kBT
Kx

(
1 +

αnγy

nγy + γ + γyKx/K

)
, (15)

〈(x − y)2〉 =
kBT
nK

(
1 + α

Kγ + Kxγy

Kγ + Kxγy + nKγy

)
. (16)

The following properties are noteworthy:

(i) For α = 0, the second term in the parentheses vanishes
and thus the equilibrium result for the mean-square
displacement of a particle in a harmonic potential of
strength Kx or nK, the first term, is recovered.

(ii) For active particles into which the random forces inject
more energy than in equilibrium, i.e., for α > 0, the
tracer particle is less confined and the variance 〈x2〉 in
Eq. (15) goes up; this effect is linear in α. Likewise,
the variance 〈(x � y)2〉 in Eq. (16) increases linearly
with α.

(iii) Although it is vital to consider the complete Fokker-
Planck equation with finite particle masses since this
allows us to observe the symmetry breaking of the
stationary distribution for α , 0 in terms of velocity-
position correlations very clearly, non-equilibrium
effects survive in the overdamped, mass-less limit.

(iv) In the absence of elastic coupling between tracer and
active particles, i.e., for K = 0, the non-equilibrium
effect on 〈x2〉 in Eq. (15) (not surprisingly) vanishes.

(v) The limit of vanishing friction is somewhat subtle, and
the behavior depends on how this limit is approached;
for example, if γ → 0 and γy → 0 at a constant ratio
γ/γy, the non-equilibrium effect on the variances does
not vanish.

(vi) Finally, for vanishing confinement potential of the
tracer particle, i.e., for Kx = 0, the variance 〈x2〉 in
Eq. (15) is infinity regardless of the value of α; we
thus see that active particles cannot confine a particle,
that in equilibrium is unconfined (which is a conse-
quence of spatial homogeneity). Likewise, the variance
〈(x � y)2〉 in Eq. (16) is for K = 0 infinity regardless of
the value of α.

We conclude this section by saying that non-equilibrium
in our model is quantified by a single parameter α, defined
in Eq. (14), which depends on the ratio of friction coeffi-
cients and noise strengths acting on the particles. For α , 0, a

symmetry-breaking transition of the stationary solution and
a departure from the equilibrium Boltzmann distribution
are obtained. We can straightforwardly recognize the non-
equilibrium nature of the distribution for α , 0 because our
model is based on a Hamiltonian, and thus the equilibrium dis-
tribution is directly given by the Boltzmann weight Eq. (13).
This is a significant advantage of our approach that is Hamilto-
nian based, compared to alternative approaches that start from
a dynamic evolution equation.

NON-EQUILIBRIUM FLUCTUATION-DISSIPATION
RELATION

We now connect to the experimentally observed FDT vio-
lation. For this, we need to calculate autocorrelation functions
and response functions; this is most conveniently done using
the Langevin equation derived earlier. For simplicity and in
order to cast our results for the tracer-bead motion in the form
of a generalized Langevin equation, we set the active particle
mass to zero, my = 0. We have seen that this does not elimi-
nate non-equilibrium effects, as the particle positions deviate
from the Boltzmann distribution also in the overdamped case,
as demonstrated in Eq. (15).

The explicit solution of the Langevin equation (3) for
the active particle motion, described by the variable y(t), for
my = 0 reads as

y(t) =
∫ t

−∞

dt ′e−(t−t′)K/γy

[
K
γy

x(t ′) +
by

γy
Fw(t ′)

]
. (17)

Inserting this solution into the Langevin equation (3) for the
tracer particle, described by the variables x(t) and v(t), we
obtain the generalized Langevin equation

mv̇(t) = −Kxx(t)−
∫ ∞
−∞

dt ′Γ(t − t ′)v(t ′) + F(t) + Fext(t), (18)

where Fext(t) is an external force which we added for later
derivation of the response function. The memory function that
appears in Eq. (18) is given by

Γ(t) = θ(t)
[
2γδ(t) + nKe−tK/γy

]
, (19)

where θ(t) denotes the theta function with the properties
θ(t) = 1 for t > 0 and θ(t) = 0 for t < 0, which makes the
memory function single sided. The noise F(t) in Eq. (18) is
given by

F(t) = bFv(t) +
nKby

γy

∫ t

−∞

dt ′e−(t−t′)K/γy Fw(t ′) (20)

and consists of the noise acting directly on the tracer particles
(proportional to b) and a term due to the noise acting on the
active particles (proportional to by). The latter term consists
of a convolution integral because this noise is transmitted via
the elastic linkers of strength K. Defining the auto-correlation
function of the random noise as CFF(t) = 〈F(0)F(t)〉, we obtain

CFF(t) = kBT
[
2γδ(t) + n(1 + α)Ke−|t |K/γy

]
. (21)

Comparing Eqs. (19) and (21), we see that CFF(t) = kBTΓ(|t|),
a consequence of the standard fluctuation-dissipation theo-
rem,53 only holds for α = 0, and for α , 0 the two func-
tions differ, which points to FDT violation. The memory

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-034818
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function Γ(t) and the random-force autocorrelation function
CFF(t) are not directly measurable, and in order to connect to
experiments, we need to calculate response functions and par-
ticle positional autocorrelation functions. The response func-
tion χ(t) is defined via the particle positional response to an
externally applied force

x(t) =
∫ ∞
−∞

dt ′ χ(t − t ′)Fext(t
′), (22)

where causality demands χ(t) = 0 for t < 0. From the Fourier-
transformed generalized Langevin equation (18)

x̃(ω) =
∫

dte−iωtx(t) = χ̃(ω)
[
F̃(ω) + F̃ext(ω)

]
, (23)

we obtain, by averaging over the noise, 〈x̃(ω)〉 = χ̃(ω)F̃ext(ω)
and therefore the response function

χ̃(ω) =
〈x̃(ω)〉

F̃ext(ω)
=

[
Kx − ω

2m + iωΓ̃(ω)
]−1

. (24)

The Fourier transform of the positional autocorrelation func-
tion Cxx(t) = 〈x(0)x(t)〉 is from Eq. (23) and setting the external
force to zero given by

C̃xx(ω) = C̃FF (ω) χ̃(ω) χ̃(−ω). (25)

The equilibrium FDT reads in the time domain
χ(t) = �θ(t)Ċxx(t)/(kBT ), from which we obtain via Fourier
transform the standard result for the imaginary part of the
response function53

χ̃I (ω) = −ωC̃xx(ω)/(2kBT ). (26)

From Eq. (24), we see that

χ̃I (ω) = −ωΓ̃R(ω) χ̃(ω) χ̃(−ω). (27)

Combining Eqs. (25) and (27), we obtain that

−ωC̃xx(ω)/(2kBT )
χ̃I (ω)

=
C̃FF (ω)/(2kBT )

Γ̃R(ω)
≡ 1 + Ξ(ω), (28)

where in the last step, we introduced the spectral function
Ξ(ω) that quantifies deviations from the standard FDT shown
in Eq. (26). Equation (28) corresponds to the generalized,
exact FDT and is valid arbitrarily far away from equilib-
rium. The Fourier-transformed real part of the memory ker-
nel and random force autocorrelation function follow from
Eqs. (19) and (21) as

Γ̃
R(ω) = γ +

nγy

1 + ω2γ2
y/K2

(29)

and

C̃FF (ω)/(2kBT ) = γ +
n(1 + α)γy

1 + ω2γ2
y/K2

. (30)

By inserting these expressions into the generalized FDT in
Eq. (28), we finally obtain for Ξ(ω) the explicit result

Ξ(ω) =
αnγy

nγy + γ + γγ2
yω2/K2

'
α

1 + τ2ω2
, (31)

where in the last step, we made the approximate assumption
that nγy > γ, which means that the friction coefficient of the

FIG. 2. The spectral function Ξ(ω) plotted here as a function of frequency
f = ω/(2π) characterizes deviations from the equilibrium fluctuation-
dissipation theorem and is defined in Eq. (28). Experimental data from
motor-protein driven actin networks in the presence of ATP (red circles)46

are compared with the prediction of Eq. (31) (red line), the extracted non-
equilibrium parameter is α = 20, and the time scale is τ = 1 s. Blue circles
denote experimental results in the absence of myosin motors46 and agree with
the expected equilibrium limit Ξ(ω) = 0 (black horizontal line).

active particles γy (which includes half of the physical linker
molecules connecting active particles to the tracer bead) times
the number of active particles n is larger than the friction coef-
ficient γ of the tracer particle, which is certainly a sensible
limit to take. Interestingly, the final result for Ξ(ω) is not pro-
portional to the number of active particles n; this result can be
traced back to our model assumption that the noise acting on
different active particles is uncorrelated. The relaxation time
defined in Eq. (31) is given by

τ2 =
γyγ

nK2
. (32)

We see that the final expression for the non-equilibrium FDT
correction term Ξ(ω) is of a surprisingly simple Lorentz
form and in fact linearly proportional to the non-equilibrium
coefficient α. This allows for direct comparison with exper-
iments and, in particular, for extracting α as well as τ from
experimental data.

In Fig. 2, we compareΞ(ω), defined in Eq. (28) and calcu-
lated from experimental data for C̃xx(ω) and χ̃I (ω) obtained
for actin networks with added myosin motors in the presence
of ATP (red data points),46 with the Lorentz scaling form in
Eq. (31) (red line). The general agreement between the exper-
imental data and the predicted functional form of Ξ(ω) is very
good; the extracted fitting parameters are α = 20 for the non-
equilibrium parameter and τ = 1 s for the relaxation time scale.
The blue circles represent data that are obtained in the absence
of myosin motors and closely agree with the expected result
Ξ(ω) = 0 (black horizontal line). The large fit result for α
shows that the experimental system is far from equilibrium and
thus a non-perturbative treatment of non-equilibrium effects,
as accomplished in our calculation, is needed; the value of
the relaxation time τ will be interpreted in the section titled
Discussion.

DISCUSSION

By the comparison with experimental data in Fig. 2, we
see that the derived generalized FDT Eq. (28) works well even
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for complex active biological systems. The advantage of our
model is that all terms have physical meaning.

To demonstrate this, we first connect the non-equilibrium
parameter α to the injected power due to active particles. For
this, we consider the Langevin equation for a single active
particle in the absence of coupling to the tracer particle (i.e.,
for K = 0), which follows from Eq. (2) as

my ÿi(t) = −γyẏi(t) + bact
i Fact

i (t). (33)

Multiplying by ẏi(t) and averaging, we obtain

d
dt
〈
my

2
ẏ2

i 〉 = 0 = −γy〈ẏ
2
i 〉 + bact

i 〈ẏiF
act
i 〉. (34)

The left side is the time derivative of the average kinetic energy
of the particle; the right side is the difference of the dissipation
rate

I = γy〈ẏ
2
i 〉 (35)

and the injected power

P = bact
i 〈ẏiF

act
i 〉. (36)

In a stationary state, the injected power is equal to the dissi-
pation rate, and we have P = I. We explicitly obtain for the
dissipation rate (see the supplementary material)

I = γy〈ẏ
2
i 〉 =

(1 + α)kBTγy

my
, (37)

which contains an equilibrium dissipation (independent of
α) and a non-equilibrium part proportional to α. We see
that both finite mass my and finite friction coefficient γy are
needed in order to make a meaningful comparison of the non-
equilibrium parameter α and the dissipation rate I. For the
mass of the active particle, we assume my = 4πR3ρ/3 with
water density ρ = 103 kg/m3, and for the friction coefficient,
we take the Stokes expression γy = 6πηR with water viscosity
η = 10�3 Pa s. For the ratio γy/my, we thus obtain, assum-
ing a typical radius R = 1 µm, the value γy/my = 4 · 106 s�1.
We note that the radius R of course includes half of the linker
that connects the active particles to the central tracer bead,
which explains why we use a rather large value for R in our
simple estimate. In terms of the dissipation rate I, our result
for γy/my implies that in order to reach a non-equilibrium
parameter of α = 1, Eq. (37) predicts that we need to inject
a power of P = I = 8 · 106kBT /s; this is quite enormous,
considering that typical biological motors consume of the
order of 100 ATP/s and that the excess free energy of an ATP
molecule is about 30kBT under physiological conditions.54 In
the experiment shown in Fig. 2, most likely many motors act in
parallel on one active unit, which increases the injected power
proportionally.

We finally discuss the time scale τ defined in Eq. (32) and
that appears in the Lorentz form Eq. (31). Assuming the har-
monic coupling potential between active particles and tracer
bead to arise from the perpendicular bending of a semi-flexible
filament, the harmonic strength is K ' kBT`P/L3,55 where
L denotes the filament length and `P the persistence length.
For the friction coefficient, we again assume γy ' γ ' 6πηR.
Choosing all length scales to be of the order of a micrometer,
`P ' L ' R ' 1 µm, we obtain from Eq. (32) for the time scale

τ ' 5/
√

n s. The effective time scale thus depends weakly on
n, the number of active units that are coupled to the tracer bead,
and should be of the order of a second, in agreement with the
fit to the experimental data in Fig. 2. We conclude that the fit
parameters extracted in Fig. 2 make sense when interpreted
physically. In future experimental studies, it will be interest-
ing to see how α and τ change when experimental parameters
such as ATP concentration, motor, and filament density are
varied.

CONCLUSION

We have introduced an exactly solvable, Hamiltonian-
based many-particle model that accounts for non-equilibrium
stochastic driving as well as friction dissipation. On the one
hand, by mapping onto a Fokker-Planck equation and solv-
ing the stationary distribution in closed form, we characterize
the departure from equilibrium by comparison with the Boltz-
mann distribution. On the other hand, the exact solution of
the conjugated Langevin equation allows us to derive a gen-
eralized non-equilibrium fluctuation-dissipation relation and
thereby to characterize deviations from equilibrium by com-
parison with the standard equilibrium FDT. Both the stationary
distribution and the fluctuation-dissipation relation indicate
departures from equilibrium as soon as the non-equilibrium
parameter α is non-zero, and thus these two fundamental
indicators of non-equilibrium behavior are coupled to each
other.

We characterize departures from the equilibrium FDT
by the experimentally measurable spectral function Ξ(ω),
defined in Eq. (28), which has Lorentz form in the limit
of many active particles, as seen in Eq. (31), in excellent
agreement with experimental measurements on active fila-
mentous networks, as shown in Fig. 2. Ξ(ω) depends on
the coupling between active particles and tracer bead as
well as on the non-equilibrium driving strength, and it thus
offers a spectral fingerprint of non-equilibrium systems. The
non-equilibrium fluctuation-dissipation relation Eq. (28) can
obviously be interpreted in terms of a frequency-dependent
effective temperature, defined by

kBTeff ≡ kBT (1 + Ξ(ω)), (38)

by which the standard equilibrium FDT Eq. (26) would be
reinstalled by simply using kBT eff instead of kBT. However,
this fix falls short of describing the non-equilibrium system
in its entirety. This is illustrated by the fact that the non-
equilibrium stationary distribution does not only differ from
the Boltzmann distribution by a factor in the exponential,
which would amount to an effective temperature, but rather
shows a fundamentally different symmetry: As soon as the
non-equilibrium parameter α becomes non-zero, the covari-
ances that couple positions to velocities 〈xw〉 = �〈yv〉 and the
velocities of the tracer and active particles 〈vw〉, which vanish
in equilibrium, become non-zero. This cannot be explained by
an effective unique temperature, regardless of its definition.
Even if we would introduce multiple effective temperatures
that are different for each entry in the covariance matrix,
the effective temperatures defined by the non-equilibrium
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stationary distribution would have to be different from the
effective temperatures defined by the generalized fluctuation-
dissipation relation, as a comparison of the result for the
expectation value for 〈x2〉 in Eq. (15) and the spectral func-
tion in Eq. (31) shows. Thus we conclude that the concept
of an effective temperature, defined by the non-equilibrium
fluctuation-dissipation relation, fails to describe the station-
ary non-equilibrium distribution and thus has only limited
power as a general concept to characterize non-equilibrium
systems.

Our model is based on a harmonic Hamiltonian, given
in Eq. (1). The generalization to the most general quadratic
Hamiltonian with different coupling constants between the
active particles and the tracer bead is straightforward but
does not change the resulting physics. Non-linear coupling
terms are much more difficult to include. We note that our
harmonic Hamiltonian can be derived from more general
non-linear models by a saddle-point analysis in terms of suit-
ably defined coordinates, so we argue that to leading order
in a systematic saddle-point expansion, our model results
apply to a wide class of more complicated non-linear mod-
els. As a generalization of our model, it would be inter-
esting to include also couplings between particle velocities,
which would mimic viscoelastic and hydrodynamic interaction
effects.

SUPPLEMENTARY MATERIAL

See supplementary material for details of the derivation
and the stationary solution of the Lyapunov equation and the
estimate of the injected power.
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