
6. Performance Models for
Tree-Based Index Structures

Make it as simple as possible, but not simpler. Albert Einstein

In the previous chapter we showed that aggregated data in inner nodes increases
the performance of tree-based index structures. Results in the previous chapter are
based on experiments. We would now like to predict analytically the performance
for the index structure with or without the extension. In order to design analyti-
cal models, three in literature well known performance models for index structures
without aggregated data are used. We generalize the models such that they are ap-
plicable to model index structures with aggregated data [Jürgens and Lenz, 1999a].

We then introduce a fourth model that considers the distribution of data and is
able to model index structures with and without aggregated data. Experiments eval-
uate which model is suited best for different data sets. Additionally, we apply the
models to show for what kinds of data and for what kinds of queries the extension
increases the performance the most.

6.1. Introduction

We take three existing models from the literature for modeling the performance of
tree structures and expand these models to model index structures with aggregated
data. The presented performance models work for trees, which organize the data
space in multidimensional rectangles. Members of the R-tree family and many more
index structures fulfill this condition. The estimated number of blocks intersecting a
given query box corresponds to the number of disk accesses needed to perform the
query.

6.2. Fit for modeling

The concept of adding aggregated data to the inner nodes of an index structure spec-
ified in Definition 5.2 on page 48 can be applied to most tree-based index structures.
In order to apply the performance models that are presented in this chapter, we re-
fine the previous Definition 5.2.

63

64
CHAPTER 6. PERFORMANCE MODELS FOR TREE-BASED INDEX

STRUCTURES

Definition 6.1 All tree-based index structures that fulfill the fit for aggregation
definition (Definition 5.2 on page 48) and that store regions as hyper-rectangles
parallel to the axis are called fit for modeling. Each region in (region, agg, ptr) is
a d-dimensional hyper-rectangle as described in Definition 3.2 on page 18.

A large number of index structures fulfill this additional condition. Especially
the members of the R-tree family accomplish this. Structures like the kd-tree or kdb-
tree are also fit for modeling. Structures like the cell-tree, the SS-tree, SR-tree, or the
UB-tree do not base their internal structure on rectangles but on other type of re-
gions. Therefore, these kinds of index structures are not supported by the following
performance models.

6.3. Performance models for access leaf nodes

This section presents performance models for index structures with and without ag-
gregated data. All models consider only accesses to leaf nodes. The main goal of
the extended structure is to minimize the number of disk accesses with minimal
enlargement of the structure. Hellerstein et al. investigates the tradeoff between
redundant data and access overhead in a similar context [Hellerstein et al., 1997b].
Here, we assume that all non-leaf nodes are stored in main memory and all leaf
nodes are read from secondary memory. We keep the first few levels of the tree
in main memory. According to Leutenegger et al. pinning first levels in main mem-
ory gets the greatest improvements for point queries and just small improvements for range
queries [Leutenegger and Lopez, 1998]. But pinning the upper levels of a tree in the buffer
does not hurt in comparison with other buffer management policies like least recently used
(LRU). After defining these basic assumptions, we start reviewing and extending
existing performance models.

The following models have some similarities. All models first estimate Inter(q),
the number of rectangles intersecting the query box q. In the case of an R∗

a-tree the
number of completely contained rectangles is estimated by Contain(q). The num-
ber of accesses of the R∗

a-tree is given with Border(q) = Inter(q) − Contain(q)
as shown in Equation 5.1 on page 46. In the following we assume that the data
space is normalized to S = [0, 1)d where d is the number of dimensions. The size
of the query box is denoted by q = (q1, · · · , qd). The data space in Definition 3.1
O = O1 × · · · × Od = {0, · · · , c1 − 1} × · · · × {0, · · · , cd − 1} is transformed into
{0, 1

c1
, · · · , c1−1

c1
} × · · · × {0, 1

cd
, · · · , cd−1

cd
} = S. Therefore, all tuples of data space O

can be mapped into the data space S.

6.3.1. GRID model

The GRID model [Theodoridis and Sellis, 1996] is the simplest of the models consid-
ered in this chapter. This model assumes that all rectangles of the leaf nodes form a
regular grid. No overlaps are allowed and there is no dead space. That means that the

64

6.3. PERFORMANCE MODELS FOR ACCESS LEAF NODES 65

whole data space is filled with hyper-rectangles. The only input parameters for the
GRID model are the number d of dimensions of the data space and the number n of
leaf nodes that are necessary to store all data entries. The average length of a data
rectangle in the GRID model is given by:

r =
1

d
√

n
(6.1)

Figure 6.1 shows an example with a two-dimensional data space with n = 64 data
rectangles (leaf nodes) and each rectangle has the length of r = 1

8
in both dimensions.

We estimate the number of rectangles which intersect the query box completely by
(cf. left part of Figure 6.1):

InterG(q) =
d∏

j=1

min

{
qj

r
+ 1,

1

r

}
∀q ∈ 2I (6.2)

The number of gray shaded rectangles in the left part of Figure 6.1 corresponds to
the number of blocks which are accessed when an R∗-tree is used. In this example
16 rectangles are read for a query box of size q = (3

8
, 3

8
). The subscript G indicates the

GRID model. The min operator in Equation 6.2 is necessary for larger query boxes.
Otherwise the estimator would calculate for query boxes larger than q = (r−1

r
, r−1

r
)

in at least one dimension the a wrong number of intersecting data rectangles.
Theodoridis et al. do not consider aggregated data in the inner nodes

[Theodoridis and Sellis, 1996]. Therefore, we extend the GRID model. For the R∗
a-

tree we estimate the number of rectangles completely contained in the query box.
This is the number of white rectangles inside the gray shaded frame in the right part
of Figure 6.1. Then we calculate the estimator for the number of rectangles inside the
query box by:

ContainG(q) =

d∏
j=1

max
{qj

r
− 1, 0

}
∀q ∈ 2I (6.3)

In the above example the query box contains four rectangles completely. We save
this number of disk accesses when a structure like the R∗

a-tree is used in comparison
with use of an R∗-tree.

The number of necessary disk accesses for an R∗
a-tree according to the GRID

model is therefore the difference between the two estimators:

BorderG(q) = InterG(q) − ContainG(q) ∀q ∈ 2I (6.4)

The GRID model has the main benefit that it is very easy and fast to compute to get a
rough estimate of the needed disk accesses for data that is uniformly distributed over
the data space. Only the number of leaf nodes and the size of the query box is needed.
The GRID model neither considers the size of the different data rectangles nor the
distribution of rectangles. The next model will overcome one of these drawbacks
and use the size of the rectangles.

65

66
CHAPTER 6. PERFORMANCE MODELS FOR TREE-BASED INDEX

STRUCTURES

query box

0
0 1

1

Without use of aggregated data

query box

0

1

0 1

With use of aggregated data

Figure 6.1.: GRID model with d = 2, n = 64, and r = 1
8

6.3.2. SUM model

The SUM model is more precise than the GRID model, but it is also more complex to
compute. The first part of the SUM model is developed according to two indepen-
dently published approaches [Kamel and Faloutsos, 1993], [Pagel et al., 1993]. If the
data space S is normalized to [0, 1)d the probability for a point query to access a given
rectangle equals the size of that rectangle. For example, if the size of a rectangle is
0.15 relative to the data space, the probability of a point query to access this rectangle
is 15 %. According to the SUM model the probability that a rectangle intersects with
the rectangle of query box q is the length of the rectangle extended in each dimen-
sion by the length of the query box in each dimension (cf. Figure 6.2). The size of the
query box q and the size of rectangle i are needed for computation only. The actual
positions of the query boxes and the actual positions of rectangles are not needed in
these computations. Opposite to the approaches from literature where the case that
the sum qj + rij can become greater than 1 is not excluded, we solve this problem
by using a min-function. For each rectangle i = 1, · · · , n we calculate the probability
pi =

∏d
j=1 min{qj + rij, 1}, so that it intersects the query box. The sum of all these

probabilities provides the exptected number of rectangles intersecting the query box
q according to SUM model as:

Intern
S(q) =

n∑
i=1

d∏
j=1

min{qj + rij, 1}︸ ︷︷ ︸
pi

∀q ∈ 2I (6.5)

The superscript n indicates that all n rectangles are used to calculate the expected
value and the subscript S indicates that the SUM model is used.

In the second part, we extend the SUM model and consider the use of aggre-
gated data. For a tree-based index structure with aggregated data inside the index

66

6.3. PERFORMANCE MODELS FOR ACCESS LEAF NODES 67

r12

q1

r1

p2

r11

p1q2

q1

query box qq2

r21

q2

r2 r22

q1

10
0

1

Figure 6.2.: Illustration of p1, p2 for SUM model

structure we need to estimate the probability that a query box q completely contains
a rectangle i (e. g. rectangles a and c in Figure 5.2 on page 45). To the best of our
knowledge this measure is not presented in literature before. From Figure 6.3 one
can derive p′i =

∏d
j=1 max{qj − rij, 0}. To prevent qj − rij to become negative, we use

the max function. The expected number of rectangles completely contained in the
query box is computed by:

Containn
S(q) =

n∑
i=1

d∏
j=1

max{qj − rij , 0}︸ ︷︷ ︸
p′i

∀q ∈ 2I (6.6)

According to Equation 5.1 the expected number of blocks to be read from secondary
memory is the difference between the number of nodes intersecting the query box
and the number of nodes completely contained in the query box:

Bordern
S(q) = Intern

S(q) − Containn
S(q) (6.7)

With the given functions Intern
S(q) and Bordern

S(q) we are able to predict the number
of disk accesses for a given query box for tree structures with and without material-
ized aggregated data in the inner nodes according to the SUM model.

6.3.3. Equivalence of GRID model and SUM model

The GRID model and the SUM model seem to be quite different. However, under
some preconditions they area equal.

67

68
CHAPTER 6. PERFORMANCE MODELS FOR TREE-BASED INDEX

STRUCTURES

p′1

q2

q1

q1

r1

q2

p′2

r2

q1

query box qq2

1

0
0 1

Figure 6.3.: Illustration of p′1, p′2

Theorem 6.1 Assume that in the SUM model there are no overlaps between leaf
nodes, the leaf nodes cover the whole data space (completeness), and all leaf
nodes have the same size (equisize). Then it follows that Intern

S(q) = InterG(q)
and Bordern

S(q) = BorderG(q) ∀q ∈ 2I .

Proof:
We denote the length of a rectangle in the SUM model as r.

Intern
S(q) =

n∑
i=1

d∏
j=1

min{qj + r, 1}

= nrd

d∏
j=1

min

{
qj

r
+ 1,

1

r

}

= n

(
1

d
√

n

)d

︸ ︷︷ ︸
=1

d∏
j=1

min

{
qj

r
+ 1,

1

r

}

=

d∏
j=1

min

{
qj

r
+ 1,

1

r

}
= InterG(q)

Similar transformations prove Containn
S(q) = ContainG(q). Therefore,

Bordern
S(q) = BorderG(q) and the models are equivalent under the above mentioned

assumptions. 2

68

6.3. PERFORMANCE MODELS FOR ACCESS LEAF NODES 69

Figure 6.4.: Example of a one-dimensional figure in a two-dimensional data space,
M = 100, Mf = 10, df = 1

From Theorem 6.1 it follows that the SUM model is accurate, if the rectangles of
the leaf nodes form a grid.

6.3.4. FRACTAL model

The FRACTAL model is based on the concept of fractal dimen-
sions [Faloutsos and Kamel, 1994]. Here, we concentrate on the number of fractal
dimensions df of real data sets and use this concept to quantify the deviation from
the uniform distribution of data.

We describe the main idea for the calculation of df : A grid with M squares is laid
over the real dataset and for each cell of the grid it is tested, if at least one point of
the real data set is contained in this cell. The number of cells that are filled with at
least one point is called box count Mf . The ratio of the number of cells of the grid
and the box count gives a parameter for the deviation from the uniform distribution
of data.

Figure 6.4 shows points of a real data set forming a line segment. The dimension-
ality of the data space is d = 2. We lay a grid with M = 100 cells over the real data
set. Then we count number of grid cells that contain at least one data point as box
count Mf = 10. The following equation calculates the fractal dimension from these
values by:

df = d
log(Mf)

log(M)
(6.8)

In the example in Figure 6.4 the fractal dimension is df = 1. We detected a one-
dimensional real data set (the line segment) in the two-dimensional data space. The
FRACTAL model applies the fractal dimension df to calculate the average length of

69

70
CHAPTER 6. PERFORMANCE MODELS FOR TREE-BASED INDEX

STRUCTURES

GRID model FRACTAL model

Figure 6.5.: d = 2, df = 1, n = 9, ⇒ GRID model: r = 1
3
, FRACTAL model: r′ = 1

9

data rectangles. This length is computed by:

r′ =
1

df
√

n
, (6.9)

We give an example on how df is used. We assume an index structure occupies
n = 9 leaf nodes. The left part of Figure 6.5 shows the rectangles of a GRID model
which assumes that the rectangles form a regular grid. The GRID model computes
a value of r = 1

3
as the average length of rectangles. The FRACTAL model takes the

fractal dimension df into account and estimates from this df the average length of
the rectangles as r′ = 1

9
. The size of the rectangles are shown on the right side of

Figure 6.5. This example shows that the concept of fractal dimensions considers the
part of the data space which the real data sets occupies. Opposite to that the GRID
model assumes that the whole data space is used. Given the size of the query box
q = (q1, · · · , qd) and the expected size of one data rectangle r′ the FRACTAL model
estimates the number of rectangles intersecting the query box similar to the SUM
model:

InterF (q) =

n∑
i=1

d∏
j=1

min{qi + r′, 1} ∀q ∈ 2I (6.10)

Similar, we calculate the number of rectangles completely contained in the query box
as:

ContainF (q) =
n∑

i=1

d∏
j=1

max{qi − r′, 0} ∀q ∈ 2I (6.11)

The number of rectangles that are accessed by an R∗
a-tree is therefore given as:

BorderF (q) = InterF (q) − ContainF (q) ∀q ∈ 2I (6.12)

The subscript F indicates the use the FRACTAL model. Next, some equivalences
between the different models are investigated.

70

6.4. PISA MODEL 71

6.3.5. Equivalence between FRACTAL model, SUM model, and
GRID model

We presented three different models. However, under specific conditions these mod-
els compute the same result. We formulate these equivalences in Theorem 6.2.

Theorem 6.2 Assume that in FRACTAL model and in SUM model there are no
overlaps between leaf nodes, the leaf nodes cover the whole data space (com-
pleteness), and all leaf nodes have the same size. It follows that the FRACTAL
model, the SUM model, and the GRID model estimate the same values.

Proof: If the whole data space is filled, each cell of the grid contains at least one point.
Therefore, the box count Mf = M . From this follows df = d log(M)

log(M)
= d. Therefore,

r′ = 1
df
√

n
= 1

d
√

n
= r.

InterF (q) =

n∑
i=1

d∏
j=1

min{qi + r′, 1}

r′=r
=

n∑
i=1

d∏
j=1

min{qi + r, 1}

= Intern
S(q)

Theorem 6.1
= InterG(q)

Similar transformation can be done to proof ContainF (q) = Containn
S(q) =

ContainG(q). Therefore, BorderF (q) = Bordern
S(q) = BorderG(q) and the three mod-

els are equivalent under the above defined assumptions. 2

6.4. PISA model

This section introduces a new approach to estimate the number of disk accesses
for a given range query. This model considers the actual distribution of data rect-
angles and the distribution of locations of query rectangles. The new model is
called Performance model for Index Structures with and without Aggregated data
(PISA) [Jürgens and Lenz, 1999a]. First we calculate the probability that two rectan-
gles intersect with each other. Although we only present the two-dimensional case,
the term rectangle refers to a multidimensional interval as noted before. We assume
that the intersection probabilities in all dimensions are independent from each other.
If the distributions are dependent on each other, we can still extend our model to
this case. However, the model is getting more complex (cf. Section 6.8). For the case
of two independent dimensions we consider two rectangles as shown in Figure 6.6.
The two rectangles only intersect, if and only if, they intersect in each dimension.
Rectangles are projected on each dimension separately. We define that the corre-
sponding intervals A and B have length a, b ∈ [0, 1). We consider the two intervals

71

72
CHAPTER 6. PERFORMANCE MODELS FOR TREE-BASED INDEX

STRUCTURES

0
0

1

1

query box

data rectangle

a

y

x

b

Figure 6.6.: One-dimensional projection of data rectangle and query box

1

y

ba0 x
A B

Figure 6.7.: The position of interval A of length a and interval B of length b

A = [x, x + a) and B = [y, y + b) where x is a realization of the random variable X
distributed over [0, 1− a) and y is a realization of the random variable Y distributed
over [0, 1 − b), (cf. Figure 6.7). The variable x denotes the space between the leftmost
point of interval A and 0. Similar the variable y denotes the space between the left-
most point of interval B and 0. We define an indicator function f : [0, 1]2 → {0, 1} to
decide whether two intervals A and B intersect or not:

f(x, y) =

{
1 : A intersects B
0 : otherwise =

{
1 : (y ≥ x − b) ∧ (y ≤ x + a)
0 : otherwise (6.13)

The gray shaded area in Figure 6.8 represents all possible combinations with the two
intervals intersecting each other. If x and y are equal, the rectangles intersect defi-
nitely. The probability that two given rectangles intersect each other is calculated.
We assume that the positions of data and query rectangles are distributed according
to some parametric density function over the data space. Let da and db be the den-
sity functions of the positions of the intervals A and B. The probability that the two
intervals intersect is P(A intersects B):

h1(a, b) =

{
1

(1−a)(1−b)

∫ 1−a

0

∫ 1−b

0
f(x, y) da(x) db(y) dy dx : a + b < 1

1 : otherwise
(6.14)

The PISA model uses Equation 6.14 later to adapt to different distributions. To com-
pute the probability that a rectangle intersects the query box in multidimensional

72

6.4. PISA MODEL 73

a

1-a 1

1-b
1

b

y

x

f(x,y)=1

Figure 6.8.: A intersects B, f(x, y) = 1, in the gray shaded area

data space, h1 is applied in all dimensions and the different probabilities are multi-
plied under the above assumption of dimensional independence. The total expected
number of accesses is given by:

Intern
P (q) =

n∑
i=1

d∏
j=1

h1(qj , rij) ∀q ∈ 2I (6.15)

If aggregates in the inner nodes of the tree are available, there is no need to access
leaf nodes whose rectangles are completely contained in the query box. We apply
the same reasoning as for the derivation of Intern

P (q). Firstly, we define an indicator
function g : [0, 1]2 → {0, 1} that decides whether one interval is completely contained
in the other one:

g(x, y) =

{
1 : A contains B
0 : otherwise =

{
1 : (y ≥ x) ∧ (y < x + a − b)
0 : otherwise (6.16)

The gray shaded area in Figure 6.9 represents the combinations of x and y values
where the B is completely contained in A. If b is greater than a, it is not possible for
B to be completely contained in A. The probability that two intervals intersect each
other is calculated by P(A contains B):

h2(a, b) =

{
1

(1−a)(1−b)

∫ 1−a

0

∫ 1−b

0
g(x, y) da(x) db(y) dy dx : a > b

0 : otherwise
(6.17)

The function h2 is used to compute the expected number of rectangles that are com-
pletely contained in the query box. This formula is similar to Equation 6.15 for the
case without aggregated data:

Containn
P (q) =

n∑
i=1

d∏
j=1

h2(qj, rij) ∀q ∈ 2I (6.18)

73

74
CHAPTER 6. PERFORMANCE MODELS FOR TREE-BASED INDEX

STRUCTURES

1

1-a 1

a-b

1-b

x

y

g(x,y)=1

Figure 6.9.: A contains B, g(x, y) = 1, in the gray shaded area

Equation 6.15 and Equation 6.18 consider the distribution of the rectangles and the
actual distribution of the query boxes. Next, we apply the PISA model to a structure
like the R∗

a-tree. We calculate the expected number of accesses as the difference of
the two previously calculated functions:

Bordern
P (q) = Intern

P (q) − Containn
P (q) ∀q ∈ 2I (6.19)

6.5. Computational Efficiency of SUM model and
PISA model

With a large number of rectangles, the performance measures Border(q) of SUM
model and PISA model are expensive to compute, because we have to compute the
actual size of each rectangle. One idea to speed-up computation is to assume that all
rectangles are quadratic and have the same size. The average length r̃ of all rectan-
gles is given by:

r̃ =
1

n

n∑
i=1

r̃i with r̃i = d

√√√√ d∏
j=1

rij (6.20)

If r̃ is used to get a faster to compute expected number of inner blocks according to the
SUM model, it follows:

Contain1
S(q) = n

d∏
j=1

max{qj − r̃, 0} ∀q ∈ 2I (6.21)

The superscript 1 indicates that just one rectangle (the average rectangle) represents
all rectangles. One could argue that this simplification works only well for data

74

6.5. COMPUTATIONAL EFFICIENCY OF SUM MODEL AND PISA MODEL 75

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10

uniform

Figure 6.10.: Histogram of number of rectangles for uniformly distributed data

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10

skewed

Figure 6.11.: Histogram of number of rectangles for skewed data

where all rectangles have approximately the same size, i. e. standard deviation is
neglectable.

Another way of refining the model is to classify all rectangles into k different
size classes. This is done in the following way: we transform each rectangle to a
square having the same area as the rectangle. The length of this square classifies the
rectangle as follows:

Definition 6.2 Let k be the number of different classes. The number of rectan-
gles belonging to class l is given by:

ul =

∣∣∣∣
{

i|i ∈ {1, · · · , n} ∧ l

k
≤ r̃i <

l + 1

k

}∣∣∣∣ , l ∈ {0, · · · , k − 1) (6.22)

Figure 6.10, Figure 6.11, and Figure 6.12 show histograms for the three different
data sets. The number of classes is set to k = 100, which is equivalent to a class width
of 1

k
= 0.01 .

The histograms show that less than the first 10 values represent the distribution
of the length of the rectangles.

Each class l is represented by a rectangle with equal length in all dimensions.
The length is the center of the interval

[
l
k
, l+1

k

)
. Having the size of the representative

75

76
CHAPTER 6. PERFORMANCE MODELS FOR TREE-BASED INDEX

STRUCTURES

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10

normal

Figure 6.12.: Histogram of number of rectangles for normally distributed data

rectangle and the number of rectangles of each class, the estimator for inner nodes
according to SUM model is:

Containk
S(q) =

k−1∑
l=0

ul

d∏
j=1

max

{
qj − l + 0.5

k
, 0

}
∀q ∈ 2I (6.23)

The superscript k shows that k classes are used. In this chapter the SUM model and
PISA model are used in three different precision modes:

• The 1-rectangle case. The average rectangle according to Equation 6.20 repre-
sents all rectangles (e. g. Contain1

S in Equation 6.21).

• The k-rectangle case. We map every rectangle into exactly one out of k classes.
Each class is represented by one rectangle (e. g. Containk

S in Equation 6.23).

• The n-rectangle case. Here we use the actual size of each rectangle.
(e. g. Containn

S in Equation 6.6).

The measures Inter1
S , Contain1

S , Inter1
P , Contain1

P , Interk
P , and Containk

P are de-
fined analogously.

6.6. Adapting PISA model to different distributions

This section shows how PISA is adapted to different distributions. We will focus
on uniform, skewed, and normal distributions to show in detail how the model is
adaptable.

6.6.1. Uniformly distributed data

We start to show the flexibility of PISA model with uniformly distributed data. Uni-
formly distributed data is shown in Figure 5.9 on page 58. The density functions

76

6.6. ADAPTING PISA MODEL TO DIFFERENT DISTRIBUTIONS 77

da(x) and db(y) with parameter constraints 0 ≤ a, b < 1 are:

da(x) =

{
1

1−a
: 0 ≤ x ≤ 1 − a

0 : otherwise
(6.24)

db(y) =

{
1

1−b
: 0 ≤ y ≤ 1 − b

0 : otherwise
(6.25)

From Equation 6.14 we get the probability that two intervals inter-
sect [Lenz and Jürgens, 1998]:

h1(a, b) =

{
a+b−a2−b2−ab

(1−a)(1−b)
: a + b < 1

1 : otherwise
(6.26)

The probability that one interval completely contains the other interval is computed
by combining Equation 6.17 and Equation 6.25 to:

h2(a, b) =

{
a−b
1−b

: a > b

0 : otherwise
(6.27)

Equation 6.15 on page 73 for Intern
P (q) and Equation 6.18 on page 73 for Bordern

P (q)
allow us to predict the performance of the index structures with and without aggre-
gates in the structure for a given query box size.

6.6.2. Skewed data

Next, we investigate how PISA can be adapted to skewed data, cf. Figure 5.10 on
page 59. Its density function is given by:

da(x) =

{
2x

1−a
: 0 ≤ x ≤ 1 − a

0 : otherwise
(6.28)

db(y) =

{
2y
1−b

: 0 ≤ y ≤ 1 − b

0 : otherwise

The empirical one-dimensional density function can be seen in the left part of Fig-
ure 5.10 on page 59. The distribution of the rectangles is presented in right part of
Figure 5.10. Most points are in the upper right corner of the data space.

We use Equation 6.14 and the definition of da and db in Equation 6.28 to calculate
the probability that two intervals intersect each other (for a + b < 1):

h1(a, b) =
4

(1 − a)2(b − 1)2

(
b2

2
− ab2 +

3a2b2

4
− b3 4ab3

3
(6.29)

+
7b4

12
+

1

3
(1 − a − b)3(a + b) − 1

3
b3(a + b)

+
1

4
(1 − a − b)2(a2 − b2) − 1

4
b2(a2 − b2)

)

77

78
CHAPTER 6. PERFORMANCE MODELS FOR TREE-BASED INDEX

STRUCTURES

0

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.8

1.6

2.4

3.2

4

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

Figure 6.13.: Two-dimensional distribution da,b(x, y) = da(x) ∗ db(y) (over [0, 1)2

skewed data)

0.2
0.4

0.6
0.8

1

0.2

0.4

0.6

0.8

1

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

0.2

0.4

0.6

0.8

1

Figure 6.14.: Function f(x, y)

78

6.6. ADAPTING PISA MODEL TO DIFFERENT DISTRIBUTIONS 79

0.2
0.4

0.6
0.8

1

0.2

0.4

0.6

0.8

1

0
0.8
1.6

2.4

3.2

4

0

0.2
0.4

0.6
0.8

1

0.2

0.4

0.6

0.8

1

Figure 6.15.: da,b(x, y) ∗ f(x, y)

Similarly we combine Equation 6.17 and the definition of da and db to derive the
probability that one interval contains the other one for skewed data as (for a > b):

h2(a, b) =
4
3
(1 − a)3(a − b) + (1 − a)2(a − b)2

(1 − a)2(b − 1)2 (6.30)

Figure 6.13, Figure 6.14, and Figure 6.15 illustrates the two-dimensional case with
respect to h1. Figure 6.13 shows the two-dimensional density function da,b(x, y) =
da(x)∗db(y). Figure 6.14 displays the indicator function f(x, y). Figure 6.15 represents
the integrand of Equation 6.17 as a the product of the functions f(x, y)∗da,b(x, y). The
volume under this function is the result of the integral which is calculated as h2.

For uniformly distributed data and for skewed data we can compute the perfor-
mance measures Border(q) as closed expressions.

6.6.3. Normally distributed data

Next, we adapt the PISA model to ’bell-shaped’ normal distributed data. The
normal distribution is a symmetric distribution with no closed expression for
its distribution function. The test data is generated with the Box-Muller
method [Box and Muller, 1958]. To standardize normal distributed random almost
on [0, 1] the functional parameters µ = 1

2
and σ = 1

8
are chosen. The left side of Fig-

ure 5.11 on page 59 shows the empirical distribution of one-dimensional data. The
right side of Figure 5.11 shows the distribution of the rectangles when normally dis-

79

80
CHAPTER 6. PERFORMANCE MODELS FOR TREE-BASED INDEX

STRUCTURES

tributed points are indexed by an R∗-tree. The density functions are (µ ∈ R, σ ∈ R+):

da(x) =
1√
2πσ

e
−(x−µ)2

2σ2 (6.31)

db(y) =
1√
2πσ

e
−(y−µ)2

2σ2 (6.32)

Equation 6.14 and Equation 6.17 cannot be solved analytically if da and db are the
normal density functions. Therefore, we apply numeric approximation and approx-
imate the distribution functions by a polynome from [Ibbetson, 1963]. Further ap-
proximations are necessary in order to compute the integrals in Equation 6.14 and
Equation 6.17. Appendix B on page 133 presents these computations in detail.

h2(a, b) =
1

2
(U(a, b) + L(a, b)) (6.33)

The two functions Ua,b and La,b are shown in Equation B.1 and Equation B.4 on
page 133. They are upper and lower bounds of function h2. Therefore, h2 is ap-
proximated by the average of both values.

6.7. Model evaluation

This section shows the results of model evaluation using the R∗-tree and R∗
a-tree as

physical data structures. The R∗-tree is chosen as a representative of multidimen-
sional tree-based index structures. The R∗-tree is a balanced structure, well known
for its robustness and ability to adapt well to different data distributions. We com-
pare results of model evaluation and measurements. The experiments were run with
uniformly, skewed, and normally distributed data. In each of the following experi-
ments we generated ten different trees with 1,000,000 tuples in each tree. The maxi-
mum fanout is Bleaf = 102 and the minimum fanout is bleaf = 41. The average fanout
is approximately 70. We assume quadratic query boxes and the size of the query
box varies between 0.05 % and 6.4 % of the data space. Larger query boxes are not of
interest, because the use of an index structure is slower than a sequential scan of the
whole data set if more than 7 % of all leaf nodes have to be accessed.

Figures 6.16 to 6.21 use half-logarithmic scales. The x-axis represents the size of
the query box relative to the whole data space. The y-axis shows the percentage
deviation:

Ye =
|modeled values − measured values|

measured values
∗ 100 (6.34)

A graph with stars shows the deviation of the GRID model and the a graph with
diamonds represents the deviation of the FRACTAL model. The graphs of the SUM
model are marked with triangles and the results of PISA model are labeled with
small squares. SUM model and PISA model use three precision modes as described
in Chapter 6.5.

80

6.7. MODEL EVALUATION 81

0

2

4

6

8

10

0.001 0.01

D
iff

er
en

ce
 o

f m
ea

su
re

d
va

lu
e

an
d

m
od

el
ed

 v
al

ue
 in

 %

query box size

SUM 1
SUM k
SUM N

PISA

SUM
Fractal
GRID

PISA 1
PISA k
PISA N

GRID
Fractal

Figure 6.16.: Percentage of error Ye of R∗-tree for uniformly distributed data

6.7.1. Uniformly distributed data

Figure 6.16 presents the percentage error Ye for the R∗-tree for uniformly distributed
data. The SUM model is slightly better than the PISA model.

Figure 6.17 shows the deviations for the R∗
a-tree. The PISA model is more precise

than the SUM model, but more important than the model is the precision mode that
is used in the experiments. However, we think that for uniformly distributed data
all models are sufficiently precise, i. e. the percentage error for R∗-tree is less than
4 % and the percentage error for R∗

a-tree is less than 8 %.

6.7.2. Skewed data

For skewed data the results are shown in Figure 6.18 for the R∗-tree and in Figure 6.19
for the R∗

a-tree. The PISA model is more precise than GRID model, FRACTAL model,
or SUM model. The precision mode has very little influence on the results. In Fig-
ure 6.18 the SUM model and GRID model are very close to each other and have an
error rate of 35 % while the PISA model has an error of approximately 5 % for the
R∗-tree. Evidently the PISA model is significantly better than the other models in
case of an R∗

a-tree.

81

82
CHAPTER 6. PERFORMANCE MODELS FOR TREE-BASED INDEX

STRUCTURES

0

2

4

6

8

10

0.001 0.01

D
iff

er
en

ce
 o

f m
ea

su
re

d
va

lu
e

an
d

m
od

el
ed

 v
al

ue
 in

 %

query box size

PISA 1

SUM 1

PISA k

SUM k

PISA 1

SUM 1
GRID
Fractal

SUM 1
SUM k
SUM N
PISA 1
PISA k
PISA N

GRID
Fractale

Figure 6.17.: Percentage of error Ye of R∗
a-tree for uniformly distributed data

0

5

10

15

20

25

30

35

40

45

50

0.001 0.01

D
iff

er
en

ce
 o

f m
ea

su
re

d
va

lu
e

an
d

m
od

el
ed

 v
al

ue
 in

 %

query box size

SUM

Fractal
GRID

PISA

SUM 1
SUM k
SUM N
PISA 1
PISA k
PISA N

GRID
Fractal

Figure 6.18.: Percentage of error Ye of R∗-tree for skewed data

82

6.7. MODEL EVALUATION 83

0

5

10

15

20

25

30

35

40

45

50

0.001 0.01

D
iff

er
en

ce
 o

f m
ea

su
re

d
va

lu
e

an
d

m
od

el
ed

 v
al

ue
 in

 %

query box size

SUM 1

SUM

Fractal
GRID
PISA

SUM k
SUM N
PISA 1
PISA k
PISA N

GRID
Fractale

Figure 6.19.: Percentage of error Ye of R∗
a-tree for skewed data

0

20

40

60

80

100

0.001 0.01

D
iff

er
en

ce
 o

f m
ea

su
re

d
va

lu
e

an
d

m
od

el
ed

 v
al

ue
 in

 %

query box size

SUM 1
SUM k
SUM N

PISA

Fractal
SUM
GRID

PISA 1
PISA k
PISA N

GRID
Fractal

Figure 6.20.: Percentage of error Ye of R∗-tree for normally distributed data

83

84
CHAPTER 6. PERFORMANCE MODELS FOR TREE-BASED INDEX

STRUCTURES

0

20

40

60

80

100

0.001 0.01

D
iff

er
en

ce
 o

f m
ea

su
re

d
va

lu
e

an
d

m
od

el
ed

 v
al

ue
 in

 %

query box size

SUM 1
SUM k
SUM N

PISA

SUM

GRID

Fractal

PISA 1
PISA k
PISA N

GRID
Fractale

Figure 6.21.: Percentage of error Ye of R∗
a-tree for normally distributed data

6.7.3. Normally distributed data

Figure 6.20 and Figure 6.21 show results for normally distributed data. The PISA
model is much more precise than the other models. For the R∗-tree the PISA model
has error rates of approximately 20 % while the SUM and GRID model have error
rate of 80 % (!). Notice that for this model the precision mode has nearly no influence.
It is much more important to choose the right model. For the R∗

a-tree the PISA model
reaches error rates of 40 %, but is clearly more precise than the GRID or SUM model.

The evaluation of the models show that PISA model dominates all the other mod-
els. This is true due to the fact that PISA model considers the actual distribution of
data and queries. The SUM model and the FRACTAL model assume implicit uni-
formly distributed data. Usually, real world data is not uniformly distributed. There-
fore, we believe that the PISA model has a great impact on performance evaluations
on real world data.

6.8. PISA model for dependent data

One assumption of the PISA model is that the joint distribution of the data can be
modeled by marginal distribution on each dimension separately, i. e. independently.
In many real applications this assumption does not hold and correlations between
different dimensions in the data exist. We show how the PISA model is extended
to use joint distributions. In this chapter, the two-dimensional case is considered

84

6.9. EXTENSION OF MODELS 85

only, but extension is straightforward and can be applied to any fixed number of
dimensions.

Let da(x, y) be the two-dimensional density function of the location of data
rectangles, and let db(x, y) be the two-dimensional density function of the loca-
tion of the query boxes. Let r1, r2 be the length and width of the data rectangle,
and let q1, q2 denote the length and width of the query box. The probability h1

that rectangles intersect is computed similarly as for the one-dimensional case. If
(q1 + r1 ≤ 1)∧ (q2 + r2 ≤ 1) and (0 ≤ r1, r2, q1, q2 < 1) the probability is calculated as:

h1(r1, r2, q1, q2) = (6.35)∫ 1−r1

0

∫ 1−r2

0

∫ 1−q1

0

∫ 1−q2

0
f(x1, x2)f(y1, y2)da(x1, y1)db(x2, y2)dy2dx2dy1dx1

(1 − r1)(1 − r2)(1 − q1)(1 − q2)

If a structure like the R∗
a-tree is used, we need the probability h2 that the

query box contains completely a given rectangle. If (q1 > r1) ∧ (q2 > r2) and
(0 ≤ r1, r2, q1, q2 < 1), the probability is:

h2(r1, r2, q1, q2) = (6.36)∫ 1−r1

0

∫ 1−r2

0

∫ 1−q1

0

∫ 1−q2

0
g(x1, x2)g(y1, y2)da(x1, y1)db(x2, y2)dy2dx2dy1dx1

(1 − r1)(1 − r2)(1 − q1)(1 − q2)

If (q1 ≤ r1)∨ (q2 ≤ r2) the rectangle is too small to be completely contained inside
the query box and we set h2(r1, r2, q1, q2) = 0.

6.9. Extension of models

The models are based on the assumption that the leaf nodes are stored on a disk
system while all inner nodes are held in main memory. The access to the secondary
memory is about factor 105 slower than accessing main memory. Therefore, the cost
models for the above described models consider only the leaf node level. In some
applications this assumption does not hold and we have to extend the model to other
levels of the tree.

Assume the tree has a height of h and the first j levels (j ∈ {0, · · · , h − 1}) are
stored in main memory. Then h − j levels are stored on secondary memory. For this
case the above described models are applied for each level. Altogether the models
are applied h − j times and the results of all levels are summed up to get the total
estimator.

85

86
CHAPTER 6. PERFORMANCE MODELS FOR TREE-BASED INDEX

STRUCTURES

0

0.05

0.1

0.15
0.2

0.25

length of query box

0

0.05

0.1

0.15

0.2

0.25
width of query box

0

20

40

60

80

100

percentage savings

0

0.05

0.1

0.15
0.2

0.25

length of query box

0

0.05

0.1

0.15

0.2

0.25
width of query box

Figure 6.22.: Percentage savings of disk accesses of R∗
a-tree and R∗-tree by length and

width of query box (PISA model, 40.000 leaf nodes with uniformly dis-
tributed data)

6.10. Applications of models

In this section we investigate under which conditions (i. e. size, form, number of
dimensions) the use of aggregated data yields better performance compared to ne-
glecting aggregated data.

6.10.1. Savings of R∗
a-tree depending on the query box size

and form

Figure 6.22 shows the estimated savings in percent of the R∗
a-tree over the R∗-tree

for different sizes of the query box. The x- and y-coordinates are the length and the
width of the query box. The z-coordinate shows the savings in percent. The R∗

a-tree
outperforms the R∗-tree for large quadratic query boxes. Points close to the x-axis
or y-axis represent thin or short queries, so called ‘spaghetti’ queries. For this class
of queries there is no or only small benefit of using the R∗

a-tree, whereas for large
quadratic queries the savings are significant. Notice the scale of Figure 6.22. Only
for very thin of very short query boxes are there no savings using the R∗

a-tree.

6.10.2. Savings of R∗
a-tree depending on the number of

dimensions

Figure 6.22 shows that savings depend on the size and form of the query box. It is
evident that not only the query box sizes influences savings. The data also heavily

86

6.11. SUMMARY 87

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sa
vi

ng
s

in
 p

er
ce

nt

query box size

2d
3d
4d
5d

10d
20d
30d

Figure 6.23.: Savings of accesses for different number of dimensions

influences the performance of the index structure.
Figure 6.23 shows the percentage of savings of the structure with and without

aggregated data for different number of dimensions. It is assumed that there is an
index structure with n = 106 leaf nodes and the number of dimensions is varied. We
use only quadratic query boxes and vary the size of the query box relatively to the
data space. Figure 6.23 shows that the structure is efficient for few dimensions, i. e.
d ≤ 5. For the two and three-dimensional case the structure rapidly reaches savings
of close to 90 %. For up to 5 dimensions there can be an significant performance
improvement gained with the aggregated data. For more than ten dimensions the
improvements are rather small. As is well known the R∗-tree is not very efficient for
high dimensional data. Our extension to the R∗-tree with aggregated data is most
efficient in cases where the R∗-tree is efficient. Consequently this extension should
be applied in case of less than five dimensions and large query boxes.

6.11. Summary

This chapter discussed models for non-extended and models for extended multidi-
mensional index structures. The key idea of the extension is to store materialized
aggregates in the inner nodes of the tree structure. The use of this materialized data
reduces the processing time of range queries.

To estimate the performance of multidimensional index structures various exist-
ing performance models are studied and extended. A new Performance model for

87

88
CHAPTER 6. PERFORMANCE MODELS FOR TREE-BASED INDEX

STRUCTURES

Index Structures with and without Aggregated data (PISA) is presented. We show
how PISA can be adapted to uniformly, skewed, and normally distributed data. The
R∗-tree and R∗

a-tree is taken as reference index structures to evaluate the accuracy of
the models. The evaluation of the models confirms that the PISA model is more pre-
cise than other existing models. Applications of models show for what kind of data
and for what kind of queries the extension of the R∗-tree to the R∗

a-tree is relative
efficient.

88

