
1. Introduction

During the last decades many companies have invested much effort in the area of
information technology. Most of the effort went into the optimization of transaction-
oriented operational systems. The main goal of these systems is to transport data as
quickly and as cost efficiently as possible. Operational systems model and represent
the dynamic behavior of processes. In this area much research has been conducted
and sophisticated solutions have been developed. Typical operational systems store
data about customers and transactions in databases. Database management systems
(DBMSs) have been developed to support the processing of transactions on this data
efficiently.

But apart from the use in operational systems, valuable strategic information is
also hidden in the operational data. The extraction of this information by analysts
may help companies to operate more efficiently. In particular, complex analytical
queries on historic data over extended time periods are useful. Since the opera-
tional systems cannot deal with additional work load caused by complex analytical
queries, the data has to be transfered from the operational systems to some other
system dedicated only for analysis. These systems are called Data Warehouses.

Usually the data for these systems is stored with DBMSs. Relational DBMS
(RDBMS) are the best understood technique to deal with large data sets. How-
ever they were not primarily designed for these new kinds of data and applications.
There are three major differences between transaction-oriented operational systems
and data warehouse systems:

• Size of the data: Fast access to GB (≈ 109 bytes) or TB (≈ 1012 bytes) of data
is crucial in providing interactive decision support. For these large sets, table
scans, even on parallel systems, should be avoided whenever possible.

• Dynamics of data: In a typical data warehouse, data is inserted, but exception-
ally updated or deleted. Furthermore, insertion only takes place at certain time
windows when the system is not accessible for the analysts. Outside these time
windows, analysts use the system only for reading data. This strategy is typical
for read-mostly environments.

• Type of queries: In data warehouse and in operational systems different
queries are processed. Typical queries in an operational system access data
on a very detailed level, such as the balance of a specific bank account. Typical
queries in data warehouse environments calculate aggregated data over large

1



2 CHAPTER 1. INTRODUCTION

sets of data, such as sum of sales on product groups for some time period. There-
fore, the access to aggregated data over large sets of data has to be supported
efficiently.

Since data warehouses are used for interactive decision support and not in batch
mode, the response time of queries should be as short as possible. The analysts sub-
mit any query in ad-hoc fashion against the data warehouse. Different techniques
are applied to reduce the query execution time. One technique to increase the per-
formance is the use of index structures. Index structures avoid full table scans if only
a small fraction of the stored tuples is used for result computation. Different meth-
ods, such as B-trees, have been investigated in large detail for operational databases
during the last decades, but not for data warehouse systems. Therefore, the research
question of this thesis is: What index structures are best suited for data warehouse
systems?

1.1. Goals

This thesis investigates which index structures are well suited for data warehouse
systems. We provide in detail answers to the following four questions:

1. What should an optimal index structure for data warehouses look like; e. g., how
can optimality be defined and what is the time complexity to calculate such an
optimal solution?

We describe one approach which guarantees finding an optimal index structure
by mapping the problem of finding an optimal index structure to a Mixed Inte-
ger Problem (MIP) and solving the MIP with scientific standard software.

2. How can existing index structures be improved to support typical data ware-
house queries more efficiently?

We discuss in detail an extension of index structures where aggregated data is
materialized in the inner nodes of an index structures. This extension can be
applied to most tree-based index structures.

3. How can the performance of such extended structures be predicted?

We extend performance models known from literature to model the behavior
of the structure with aggregated data in the inner nodes. Furthermore, we
develop a new model which considers the actual distribution of data and the
distribution of queries.

4. How can different index structures be compared?

We describe two approaches for comparing index structures. We apply these
techniques and present results of comparisons of different index structures.
Especially the time/space tradeoff and the evolving technology for secondary
memories are considered in our comparisons.

2



1.2. OUTLINE 3

1.2. Outline

Synopses of Chapter 2 through Chapter 8 follow below:

Chapter 2. Data warehouse systems, as mentioned before, differ greatly from tradi-
tional transaction-oriented database systems. This chapter describes the major differ-
ences between the two types of systems. Operational systems do not efficiently sup-
port the extraction of information through complex analytical queries. Data ware-
house systems need to be designed and implemented which support the decision
making process. We describe the specific properties of these data warehouse sys-
tems. The chapter also discusses several approaches on how to accelerate query
processing in a typical data warehouse environment.

Chapter 3. Among the most important properties of DBMSs is the ability to handle
large amounts of data. Different technologies are used to store and retrieve this data
efficiently. Large sets of data do not fit into main memory and, therefore, are stored
on secondary memory. Fast accesses to the data have to be provided to retrieve
the data. The mechanics of the disks influence the performance of the index struc-
tures. In order to process queries efficiently, different access structures have been
developed in traditional academic research. This chapter presents different kinds
of structures that organize multidimensional data efficiently. We focus on the R-tree
family, on the multi-component equality encoded indexes, and on the range encoded
bitmap indexes because of their flexibilities.

Chapter 4. Since there is a strict separation of insert operations and read operations
in data warehouses, one method of increasing the query processing speed is to invest
more effort in organizing the data such that read operations perform quickly. We de-
scribe an approach for finding optimal index structures. We first define optimality,
and then solve the problem of computing an optimal structure by transforming the
problem into a Mixed Integer Problem (MIP). This MIP is solved with scientific stan-
dard software. Experiments show a serve problem: The time complexity of the MIP
increases exponentially with the number of tuples and the number of clusters. Be-
cause of this exponential growth, this approach is in general infeasible. Therefore,
in the following chapters of this thesis, we apply heuristic techniques for improving
index structure for data warehousing. One application of computing optimal index
structures with a MIP is to evaluate for small data sets how closely the heuristic
approaches attain their optimum.

Chapter 5. The results of typical queries in data warehouse systems are aggregated
data from large sets of data and not values of specific tuples. To support such queries
we examine a technique where we materialize aggregated data in the inner nodes of
a tree-based index structure. This data could also be calculated from data stored
in leaf nodes, but the access to the aggregated data in the inner nodes is certainly
faster than accesses to successor nodes. This concept of aggregated data in the inner

3



4 CHAPTER 1. INTRODUCTION

nodes is generic and is applicable to most tree-based index structures. We show how
to modify algorithms to maintain and to use the aggregated data. In particular we
modify the R∗-tree in such a way which leads to the so called R∗

a-tree. We present
results of experiments comparing the R∗

a-tree and the R∗-tree. Results show that the
performance of queries on aggregated data is significantly increased by using the
extended structure.

Chapter 6. DBMSs can create different index structures on the same table. In order
to choose the fastest index structure, it is desirable to have analytical models which
predict the performance. For some index structures these models have been pro-
posed in literature. Chapter 6 deals with performance models for tree-based index
structures. We analyze models for index structures with the extension of aggregated
data in the inner nodes and index structures without the extension. Then we apply
three performance models for index structures without aggregated data which are
known from literature. We extend the models so that they are applicable to model
index structures with aggregated data. Then we introduce a new and better model:
PISA (Performance of Index Structures with and without Aggregated data). The
PISA model considers the distribution of data and the distribution of queries. Ex-
periments determine the accuracy of models for different data sets. The PISA model
is in most scenarios more accurate than the other models. We can decide under
which conditions the use of the index structure with aggregated data increases the
performance of the index structure to the highest degree.

Chapter 7. For range queries on aggregated data, the R∗
a-tree promises to be an effi-

cient structure. However, tree structures have one major drawback: Tree structures
degenerate when the number of dimensions increases as usually this is the case in
data warehouse systems. Another class of index structures, the bitmap indexes, try
to overcome the problem of degeneration by storing the data of each dimension sepa-
rately and allowing fast access to those dimensions necessary to answer queries. The
question arises which structure is best suited for certain applications. We select and
investigate the parameters which influence the performance of the index structures.
We apply two techniques to compare different index structures. A first method uses
classification trees to visualize rules which are generated from a number of cases.
Classification trees show which parameters influence the performance of the index
structure more than other parameters. Then a second technique project multidimen-
sional spaces into two dimensions which can be visualized in scatter diagrams. Our
results show that by exploiting the evolving disk technology bitmap indexes become
more time efficient in comparison to the tree-based index structures.

Chapter 8. The last chapter summarizes the contributions of this thesis. We briefly
point out possible further research directions.

4


