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1. Summary

1 Summary

The honeybee (Apis mellifera) is an excellent model organism for social and navi-

gational aspects of ethology. It is also heavily investigated with regard to neuronal

circuits involved in vision, olfaction and memory. The aim of the current study is to

correlate for the first time those peculiar and complex behaviours with the activity of

neurons in certain brain areas. There is no knowledge yet on how social interactions

are represented in the brain of an insect. To find answers in this regard, a mini colony

of worker bees and one honeybee queen was situated in an arena. The behaviour

within the artificial hive was monitored with a video camera by the aid of infra-red

illumination. A custom written code was used to convert the video data into coordi-

nates and head directions. For an experiment, a bee of interest was taken from the

colony. The bee was then equipped with twisted one-meter-long two channel cop-

per wire electrodes. The tips of the electrodes were plated with gold to lower the

impedance by two orders of magnitude. Once the electrodes were situated at the beta

exit of the mushroom body (MB), the electrodes were attached to the bee’s head using

non-toxic silicone. After this procedure, the immobilised bee was placed back into the

hive. We recorded the bee’s behaviour using a video and the neuronal activity with

the extracellular setup. For the full duration of the experiment, the animal was free to

move and behave as it does naturally. I could establish that the social behaviour of the

whole colony is not restricted or modified in any way that might be of relevance in

the current study. The bees exhibit, qualitatively, natural brood care, foraging waggle

dancing, sleep and circadian rhythm. To some degree, the total amount or propor-

tion does diverge due to the small number of initial worker bees of around 1 000. The

extracellular recordings did not differ in any way from traditional recordings concern-

ing the quality with regard to sortability and long-term stability for up to 24 hours.

We found an overall low baseline activity when compared to experiments that were

carried out with restrained honeybees. A multiverse analysis was created to search

for any correlations between the neuronal activity of high-order MB output neurons

and the behaviour extracted from the video recording. A result found over several of

the successful experiments was an increase in spike rate variance for time windows in

which social interactions occurred when compared to equal time windows in which

the recorded bee was alone or random time windows. For the future I suggest to
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2. Zusammenfassung

iuntroduce a feeding mashine into the arena that may motivate the recorded bee to

show more repeaded behaviour. Such devices can train bees in a classical or operant

conditioning way.

2 Zusammenfassung

Zusammenfassung Die Honigbiene (Apis mellifera) ist ein ausgezeichneter Model-

lorganismus für soziale und navigatorische Aspekte der Ethologie. Es wird auch

in Bezug auf neuronale Schaltkreise, die am She- und Geruchs-vermögen und am

Gedächtnis beteiligt sind, intensiv untersucht. Das Ziel der vorliegenden Studie ist

es, diese einzigartigen und komplexen Verhaltensweisen erstmals mit der Aktivität

von Neuronen in bestimmten Hirnarealen zu korrelieren. Es gibt noch keine Erkennt-

nisse darüber, wie soziale Interaktionen im Gehirn eines Insekts representiert werden.

Um diesbezüglich Antworten zu finden, befand sich in einer Arena eine Minikolonie

von Arbeiterinnen und einer Honigbienenkönigin. Das Verhalten innerhalb des kün-

stlichen Bienenstocks wurde mit Hilfe einer Videokamera und Infrarotbeleuchtung

überwacht. Ein speziel hierfür geschriebener Code wurde verwendet, um die Video-

daten in Koordinaten und Kopfrichtungen der Bienen umzuwandeln. Für ein Exper-

iment wurde eine Biene von Interesse aus der Kolonie genommen. Die Biene wurde

dann mit verdrillten, ein Meter langen, Zweikanal-Kupferdrahtelektroden ausgestat-

tet. Die Spitzen der Elektroden wurden mit Gold plattiert, um die Impedanz um

zwei Größenordnungen zu verringern. Sobald sich die Elektroden am Beta-Ausgang

des Pilzkörpers (MB) befanden, wurden die Elektroden mit ungiftigem Silikon am

Bienenkopf befestigt. Nach diesem Verfahren wurde die immobilisierte Biene in den

Bienenstock zurückgebracht. Wir haben das Verhalten der Biene unter Verwendung

eines Videos und die neuronalen Aktivität mit dem extrazellulären Aufbau aufgeze-

ichnet. Während der gesamten Dauer des Experiments konnte sich das Tier frei bewe-

gen und verhalten, wie es unter natürlichen Umständen der Fall ist. Ich konnte fest-

stellen, dass das Sozialverhalten der gesamten Kolonie in keiner Weise eingeschränkt

oder modifiziert wird, auf eine Weise die in der aktuellen Studie relevant sein kön-

nte. Die Bienen zeigen qualitativ, natürliche Brutpflege, Schwänzeltanzen, Schlaf und

zirkadianen Rhythmus. Bis zu einem gewissen Maß divergiert die Gesamtmenge
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3. General Introduction

oder der Gesamtanteil aufgrund der geringen Zahl von etwa 1 000 Arbeiterbienen.

Die extrazellulären Aufzeichnungen unterschieden sich in keiner Weise von tradi-

tionellen Aufzeichnungen hinsichtlich der Qualität in Bezug auf Sortierbarkeit und

Langzeitstabilität für bis zu 24 Stunden. Im Vergleich zu solchen klassischen Ex-

perimenten, fanden wir eine insgesamt niedrige Grundaktivität. Eine Multiverse-

Analyse wurde erstellt, um nach Korrelationen zwischen der neuronalen Aktivität

von MB-Ausgangsneuronen höherer Ordnung und dem aus der Videoaufzeichnung

extrahierten Verhalten zu suchen. Ein Ergebnis, das in mehreren der Experimente

gefunden wurde, war eine Zunahme der Spikeratenvarianz für Zeitfenster, in denen

soziale Interaktionen im Vergleich zu gleichen Zeitfenstern auftraten, in denen die

abgeleitete Biene alleine war oder zufällige Zeitfenster. Für die Zukunft schlage ich

vor, eine Futtermaschine in die Arena zu bringen, die die abgeleitete Biene dazu mo-

tivieren kann, mehr wiederholtes Verhalten zu zeigen. Solche Vorrichtungen können

Bienen in einer klassischen oder operanten Konditionierungsweise trainieren.

3 General Introduction

The goal of this study was to acquire neuronal activity of high order interneurons in

freely behaving honeybees (Apis mellifera L.) under near natural conditions. There-

fore, I have constructed an experimental setup that mainly consists of a horizontally

tilted (17) arena for a mini colony. The arena was connected to the outside world

with a tube. The temperature and humidity in the arena was tightly controlled. The

colonies consisted of 250 – 1000 worker bees and one queen. One bee of interest

was picked and prepared with a one-meter-long two channel extracellular electrode.

This bee was situated back into its hive to investigate its spontaneous behaviour. The

behaviour was recorded by an infra-red camera and suitable illumination. Custom

written scripts extracted the coordinates and head direction of the recorded bee and

its twelve closest conspecifics. The neural activity of mushroom body output neurons

was synchronously recorded and sorted based on their spike shapes.

These experimental conditions allowed me to investigate complex behaviour in the

honey bee. The unhindered nature of the long recording electrodes enabled intrinsi-
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3. General Introduction

cally motivated behaviour that cannot be seen in restrained bees. The bee of interest

could follow a dance, care for brood or show any of the naturally occurring behaviours

that makes the honey bee such an interesting to study model organism. This study

was neuro ethologically motivated, correlating brain activity with free behaviour un-

der natural conditions.

Chapter 1

Here I analyze the integrity of the social group. I discuss measures to check if the hive

is showing natural behaviour in whole. This study is not meaningful as long the bees

in the experimental arena do not show their full repertoire of behaviours. Therefore,

I analyzed their group behaviour regarding the definitions of eusocial and sleeping

behaviour. When the bees show cooperative brood care, overlapping generations

and a division of labor I am confident to assume natural social behaviour. Sleeping

behaviour can easily be disturbed by different factors and its circadian rhythm is

passed on within the colony in a social manner. Therefore, I will use this measure as

further evidence for natural behaviour.

Chapter 2

In this chapter we describe in great detail how we conducted the experiments and

show our first iteration of analysis of the resulting data. To prepare the bee of in-

terest with the recording electrodes as well as suspending the long electrodes some

clever tricks were implemented. Precisely positioning the electrode at the investigated

neuropil and attaching the wire at the bee’s head was critical. For the bee to move

within the arena freely the electrode wires were suspended by a spring that would

move several centimeters when being actuated by just a few milligrams of pulling

force. We discuss the quality of electrophysiological data and compare it with the

well-established methods of having restrained animals.

Chapter 3

All data acquired within this study was analyzed here in search for any correlation of

neuronal activity changes and the recorded behaviour. The unprecedented freedom

in choice of behavior by the bee from its vast repertoire coupled with the complete
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3. General Introduction

lack of control by the experimenter led me to an exploratory multiverse analysis. I

hence searched for any correlation between any aspect of the neuronal domain versus

any behavioral feature. All sensible combinations were checked systematically. I dis-

cuss spike frequency changes related to social interactions. Interestingly those were

partially before, while or after the event. The neuronal response was surprisingly di-

verse as they varied from increase to decrease that stretched over seconds or in some

animals several minutes.

The honey bee is a fascinating animal. It is impossible to sit in front of an obser-

vation hive and not be amazed. They run between each other eagerly, transporting

foraged pollen and nectar. They care for brood and attend the queen. Quite frequently

you will see bees communicate by symbolic dancing behaviour. This behaviour was

first noted by Aristoteles (4. century) and later on investigated by Karl von Frisch

(1946) who was then rewarded with the Nobel prize.

The bees are not just an important model organism in several sciences, they are of

uttermost importance for the pollination of more than two thirds of the world’s crop

species (Roubik 1995). They are as important for the diversity in our ecosystem as well

(Allen-Wardell et al. 1998). Insects inspire scientists across many disciplines (Beisel

et al. 2013). The honey bee in particular is a well-established model in behavioral

science and neuroscience.

In the behavioral science researchers are investigating the social construct of the

colony (Michener 1974, Zayed and Robinson 2012), the supraorganism (SeeFseelly

1989, Rössler 2014, Lüttge et al. 2016).

In the neuroscientific field much research was carried out with respect to learning

and memory in the honey bee (Menzel et al. 1974, Menzel 1983, Menzel 1993, Ham-

mer and Menzel 1995, Okada et al. 2007, Denker et al. 2010, Menzel 2014, Strube-Bloss

et al. 2011, 2016). The honey bee performs many behaviours under natural conditions

in a social context. Bees, as eusocial animals, show division of labor (Lindauer 1952,

Huang and Robinson 1996) and therefore a variety of interactions. They can inter-
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3. General Introduction

act with each other by antennation (Rogers 2013) and trophylaxis (Korst and Velthuis

1982). When they forage they can navigate to food sources (Von Frisch 1967, Menzel

et al. 1996, Menzel et al. 2005, Menzel and Greggers 2015). This very impressive

behaviour is even overshadowed by their capability to communicate these places by

the waggle dance behaviour to other forager bees (Von Frisch 1967, Grüter and Farina

2009, Seeley 2012).

None of the before mentioned behaviours is understood to a sufficient degree. They

are not at all understood on the neuronal level since they are not investigated in such

manner until now.

Honeybees show circadian rhythm (Bloch et al. 2001); they are more active at day

time then at night. This is particularly true for the foraging worker bees (Bloch 2010);

they need sunlight to navigate. Honeybees sleep. They have compound eyes so we

cannot measure their rapid eye movement do detect REM sleep. But many other char-

acteristics of sleep can be applied for the honeybee. They show specific sleep postures

and specific sleep places (Kaiser, 1988), rapid reversibility of sleep, a reduced reaction

threshold and sleep rebound after sleep deprivation (Siegel, 2008). Bees are rather

picky concerning the physical properties of their nest; the volume of their nest as well

as the hive entrance have to be within certain limits (Seeley 1976, 1977) so special

attention will be paid towards stable colony behaviour.

The brain of the honeybee contains less than one million neurons in one cubic millime-

ter. It contains the mushroom bodies (MB), first identified in 1850 by Félix Dujardin.

This paired structure consists of two calyces each that are connected with the alpha

and beta lobe via peduncle. The input region, the calyxes are multimodal. They

receive olfactory input from the antennal lobes and visual inputs from lobula and

medulla and also mechanosensory and gustatory input (Mobbs 1982, Rybak and Men-

zel 1993, Gronenberg 2001, Schröter and Menzel 2003). The MB consists of Kenyon

cells, an intrinsic neuron type. Not all Kenyon cells get input by projection neurons

from other brain regions, some get inhibitory input from recurrent neurons of the

protocerebral calyx tract (Grünewald 1999). The 14 000 Kenyon cells are connected to

6



3. General Introduction

roughly 100 MB output neurons. The connectivity in the MB is in parallel to the di-

rect pathway, were the sensory input is connected to the central complex or the lateral

protocerebrum to the premotor pathway (Menzel 2013). Functionally the MB is highly

involved in learning and olfaction (Hammer and Menzel 1995, Grünewald 1999, Hus-

saini and Menzel 2013). More importantly for this study, it is also the candidate

neuropil for attention (van Swinderen 2003 [Drosophila], Xi et al. 2008 [Drosophila])

and valence (Menzel 2012, Aso et al. 2014 [Drosophila]). MB output neurons can

integrate context and cue so a learned context leads to an expectation of the learned

cue (Filla and Menzel 2015).

We recorded at the beta exit of the alpha lobe, here we expect MB extrinsic neurons

that most likely belong to the group of A1, A2 and A4 neurons (Rybak and Menzel

1993). They response to multiple sensory stimuli (Homberg and Erber 1979, Rybak

and Menzel 1998). They adapt their response pattern during learning (Mauelshagen

1993, Okada et al. 2007, Strube-Bloss et al. 2011, Hussaini and Menzel 2013).

A growing number of neuroethological (Tinbergen 1963) experiments are taking place

were the insects brain activity is recorded and the animal can behave freely (Mizu-

nami et al. 1998 [cockroach], Takeuchi et al. 2004 [cockroach], Mu and Ritzmann 2005

[cockroach], Guo et al. 2014 [cockroach], Harrison et al. 2011 [dragonfly], Thomas et

al. 2011 [dragonfly], Fischer et al. 1996 [locust]).

Furthermore, the honeybee is discussed as a model for cognition in insects (Men-

zel and Giurfa 2001, 2006, Srinivasan 2010, Menzel 2012, Giurfa 2013, Menzel 2017).

If the here proposed experimental approach can be demonstrated as successful con-

cerning quality of neuronal data and naturality of behaviour, I will suggest a variety

of cognitive neuroethological experiments.
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4 Chapter 1: Experimental Colony—Natural and Social Be-

haviour

4.1 Abstract

The social behaviour of honeybees (Apis mellifera) has been well investigated, but

little is known about its neuronal correlates. Recently, it became possible to measure

the activity of a small amount of neurons in the brain of a freely behaving bee inside a

hive by means of extracellular recording. For this purpose, a mini colony of 1 000 hon-

eybees was kept under near-natural conditions. One of these bees was equipped with

an extracellular recording electrode that is long enough so the bee could move freely

in the hive. The recorded animal behaves in the social context of its colony. The neu-

ronal activity is correlated with that behaviour. Recorded data were further analysed

using established methods of principle component analysis (PCA), cross-correlation

and autocorrelation to evaluate the quality of neuronal signals. Evaluating the be-

haviour of the colony is more demanding and is the main aim of this chapter. The

power of the experimental set-up employed in the current study relates to the op-

portunity to correlate neuronal activity with intrinsically motivated behaviour. The

correlation of neuronal activity with performed behaviour requires the continuous

monitoring of all exerted actions in the colony. Furthermore, the colony needs to be

healthy to obtain reliable and meaningful data. It is, therefore, necessary to ensure the

functioning of the eusocial group from an apiarist perspective by detailed observation

of all known properties. Furthermore, the whole hive was continuously recorded on

video for a period of two months and subsequently analysed by a custom-written

computer program. To confirm that the honeybees behave naturally within the exper-

imental hive, the animals were checked to see whether they exhibited typical changes

in motor activity during the day (circadian rhythmicity). In addition, sleeping places

and the circadian distribution of sleeping bouts were analysed to control the condition

of the colony.

4.2 Introduction

The honeybee (Apis mellifera) is an established model organism for neuroscience

(Menzel and Giurfa 2001, Srinivasan 2010, Galizia et al. 2011, Menzel 2012). Many
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previous electrophysiological studies revealed neuronal pathways concerning olfac-

tion (Mauelshagen 1993, Szyszka et al. 2005, Okada et al. 2007, Strube-Bloss 2011),

colour vision (Menzel 1973, Menzel and Blakers 1976, Vorobyev et al. 2001) and

learning (Hammer 1993, Hammer and Menzel 1995), to name a few (Review: Menzel

and Giurfa 2006). Also well investigated are social behaviour (Michener 1974, Za-

yed 2012) and navigational capabilities (Von Frisch 1967, Menzel et al. 1996, Menzel

et al. 2005, Menzel and Greggers 2015) of honeybees. Correlating neuronal activ-

ity in well-known neuropils such as the mushroom body (Rybak and Menzel 1993,

Heisenberg 2003, Okada et al. 2007) with motivated behaviour would be desirable.

Grooming, queen attending, food processing, and in particular waggle dancing (re-

ceiving or transmitting) would be such behaviours. The main goal of the current

study is to prove the naturality of all behaviours exhibited by a group of bees in the

study’s experimental set-up. Essentially, the data consist of videos that capture the be-

haviour of the bees. Extracellular recordings from the brain region of interest capture

the neuronal correlates of the behaviour. Data arising from extracellular recordings

can be tested in well-established ways. For instance, principle component analysis

(PCA) allows one to measure spike shape stability within a template and separabil-

ity between templates. The inevitable refraction time can be used as an indicator for

correctly separated spike units by computing their autocorrelations. Signals assigned

to independent neuronal sources can be tested through cross-correlations. Such tools

and their objectivity are not accessible for the investigation of natural and social be-

haviour. So, here I investigate different aspects of the behaviour to strengthen the

argument that the behaviour, displayed by the bees in this setup, is natural. Certain

hymenoptera (e.g., the honeybee, Apis mellifera) and termites are eusocial insects.

A eusocial insect is characterised by cooperative brood care, overlapping generations

and division of labour (Crespi and Yanega 1995). The division of labour in bees was

described in detail by Rösch (1925) and Lindauer (1954). A healthy honeybee colony

consists of 1 queen, 10 000 to 60 000 worker bees and, depending on the season, a

few hundred drones. This group, often called a supraorganism (Lüttge et al. 2016),

inhabits a nest called the hive. The natural nest volume of non-domesticated honey-

bees and bees that an apiarist takes care of varies between 20 and 100 litres (Seeley

1977). In nature, the nest’s cavity and the outer end of its entrance can be as distant
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as 74 cm (Seeley 1977). The entrance of the hive is typically located at a height below

2 m from the ground (Seeley 1977). Within the cavity, the bees build and live on wax

combs, which are built from the top hanging down vertically. The wax combs consist

of cells on which the bees walk, sleep and dance. Those cells can be empty or con-

tain brood, pollen or honey. A worker bee has a life expectancy of around six weeks.

However, in fall, when the outside temperature falls under 12◦C, the bees become

winter bees. Winter bees’ lifespan is extended to roughly six months (Furgala 1975).

The honeybee queen can survive for more than three years (Page and Peng 2001). A

healthy queen can lay 2 000 eggs per day (Winston 1987). She lays fertilised eggs

that become workers and unfertilised eggs that become drones (Dzierzon 1845). In a

healthy hive, the queen is the only bee that reproduces, whereas young worker bees

care for the brood. Queen-attending workers collect and distribute queen mandibular

pheromone, which binds the social group together (Seeley 1996). Roughly a third of

the workers are taking care of the brood (nurse bees), while another third takes care

of the queen, cleans the hive, builds comb and processes food (house bees); the last

third is foragers (Robinson 1992), which are of particular interest. They can forage

for pollen, nectar and water. When a forager finds a food source, it can keep the

distance and direction of the source relative to her hive in her memory. This vec-

tor is used by the bee to navigate to that particular food source again. This vector

can also be communicated by a symbolic dance. This is called a waggle dance, and it

allows other forager bees to also visit that food source (Von Frisch 1967). This remark-

able information transfer would be extremely interesting to measure on the neuronal

level. Honeybees actively regulate the temperature and humidity in the hive (Simp-

son 1961). They can lower the temperature inside the hive by both fanning and water

evaporation (Lindauer 1954). The fanning behaviour also lowers the humidity. The

development of the brood is temperature sensitive (Medrzycki et al. 2010). The bees

can upregulate the comb temperature by both generating metabolic heat and form-

ing a dense cluster (Seeley 2014). They keep the brood at 34.5–35.5 ◦C (Heran 1952).

Under natural conditions, brood-free combs have a constant temperature of approxi-

mately 25◦C. Accordingly, this characteristic property can be used to evaluate the state

of the hive (Simpson 1961). Other voluntary behaviours of the bee that can be used as

indicators of natural conditions are sleeping (Kaiser and Steiner-Kaiser 1983, Cirelli
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and Tononi 2008) and motor activity changes based on the circadian rhythm (Moore et

al. 1989). The circadian clock is socially regulated and important for synchronisation

of worker activities (Bloch 2010). Bees that stay in the hive to take care of the brood,

for example, work around the clock. They sleep independently of the time of day.

Foraging bees sleep at night and are more active during day time (Bloch et al. 2001).

Sleeping bees can be detected by immobility for a certain time frame. Since sleep is

important for extinction learning (Hussaini et al. 2009) and precise waggle dances

(Klein et al. 2010), sleep-deprived honeybees would behave unnaturally, possibly due

to an environment that does not accommodate their needs. I expect cooperative brood

care by nurse bees in the reproduction cycle of the honeybee. Overlapping genera-

tions are present when the queen produces eggs constantly. In addition, there should

be adult bees for the whole experimental season, which is substantially longer than

the lifespan of a worker bee. The division of labour is observable when bees take care

of the brood, the nest and the foraging of resources.

4.3 Methods

4.3.1 The animals

In the experiments described in this chapter, 1 000 exclusively freshly hatched bees

that were younger than one day were included in the colony. Additionally, a brood

comb together with a fertilised queen was added to the arena.

4.3.2 The set-up

The freshly prepared arena consisted of a 15◦ tilted square board with a length of 55

cm per side. The board was surrounded by an acrylic glass frame of a 10 cm height.

It was coated with a dry Polytetrafluorethylene (PTFE, also called Teflon) spray to

prevent bees from walking over it as the barrier. The barrier had one opening where

a silicone tube connected the arena to the outside of the building with a length of

50 cm. The channel did not consist of a continuous tube as described in Chapter 2.

Instead, the middle third of the tube was cut out and replaced by a metal mesh bend

in the form of a tube that was tightly connected to the two ends of the silicone tube.

The whole part was surrounded by several layers of a mosquito net so bees could not

escape by mistake. Under certain weather conditions, the air draft disturbed the bees,
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especially at night when cold air was introduced into the arena. To further undock

the air movement, three cardboard shields were introduced into the mesh part in a

diagonal manner to push incoming air out. The arena was situated inside a wooden

box that could be opened to interact with the bees but was generally closed to prevent

air drafts as well as temperature shifts and to keep out light and odours. The inside

of the wooden box was temperature regulated to ensure a constant air temperature of

30◦C.

4.3.3 The observations

The health of the hives and the behaviour of the individual colony members were

observed in person through the eye. Furthermore, a camera system collected video

data of the whole colony for 2 months. To the roof of the set-up box, a camera, an

infra-red light source and electrophysiology equipment were attached. Additionally,

for this investigation, as well as for more comfortable day-to-day monitoring of the

hive, a Raspberry Pi (Raspberry Pi 2, Raspberry Pi Foundation, Cambridge, UK) with

a camera module (noIR cam, Raspberry Pi Foundation, Cambridge, UK) was intro-

duced. The Pi was set up as a webcam server supplying the most recent frame of the

cam as a picture tied to a fixed IP address and a port. Thus, any device connected to

the internet can access this frame through a browser. The camera refreshed the pic-

ture every second by acquiring a new picture from the hive. The pictures were black

and white. Because of the infrared illumination, there was no colour information. The

resolution of the pictures was 1 200 by 1 600 pixels. For this experiment, the stream of

pictures was grabbed consistently by a PC. The VLC media player (VideoLAN, Paris,

France) handled the data stream and converted it to a highly compressed video. The

videos were automatically named by date as well as time and compressed to one hour

files. The used type of video compression, frame rate (1 fps) and grey-scale frames

resulted in a data density of 250 megabytes per day. A custom MATLAB (MATLAB

R2012a, The MathWorks, Natick, Massachusetts, USA) script was used to differentiate

bees from the background of every frame to get coordinates of the bees over time. All

of the analysis presented in the current study was done in MATLAB. A detailed de-

scription of the experimental set-up can be found in the methods section of Chapter

2. Relevant for this discourse are mostly the colonies’ housing and climate conditions.
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4.4 Results

Forming of the cluster A group of approximately 1 000 honeybees was introduced

into the experimental arena. A tube of water and a feeder containing one molar

sucrose solution were supplied. The bees explored the arena and covered the space

evenly. None of them flew or made any quick movements. They started to form

groups of 10 to 50 bees at several locations for short periods of time. Those groups

were formed and disassembled within minutes. Over time, the groups grew in size

and shrunk in number. After two hours, there were two to six groups at a time

containing most of the bees. After four hours, the animals assembled to one group

that was stable for four consecutive hours. Afterwards, the bees regrouped again

within two hours below the feeder in the upper left corner of the arena. The position

of the bee group changed a few more times since the position of the feeder was moved

and a piece of brood comb as well as a fertilised queen were introduced. The queen

was caged for the first two days. The piece of brood was introduced to bind the bees

at a desired location. Young bees cared for the brood, and the queen stayed close to

them. Some worker bees started building a comb near the brood. The bees aggregated

in the upper left corner for the rest of the experiment. On the 12th day around noon,

the empty piece of the brood comb was removed. A cluster of bees has formed around

the queen and considered stable, since its centre had not moved anymore. When the

cluster had formed, the bees behaved calmly.

Colony behaviour Daily inspections took place around noon, typically for 10 min-

utes. When light and air movement was introduced by opening the set-up hood, the

animals did not display any aggressive or escapist behaviour. Within this time, one

or no bee flew off the floor. Most cases of such behaviour seemed to be of exploratory

nature. Only occasionally was a bee defensive. This was noticeable by a different

tone in wing buzzing and a direct approach towards the experimenters face or hands.

Additionally, there was no swarming behaviour. The queen laid eggs and stayed in

the cluster (Fig. 4.1A) whenever she was inspected. She was constantly surrounded

by bees and laid 20 to 50 eggs per day. The eggs were placed close to one another

with only a few single gaps of empty cells. A healthy brood pattern was observed

(Fig. 4.1B). The queen survived the whole experimental season, specifically from the
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beginning of August to the middle of January 2016.

Figure 4.1: Observed examples of natural behaviour in the experimental hive. Pho-

tographs of different behaviours. a The honeybee queen attending other bees and

freshly laid eggs (middle right). b Sealed brood with a regular brood pattern. c Open

brood and nurse bees. d Orientation flights of young bees around the hive’s entrance.

e Cells with stored pollen the bees had gathered. f Trophallactic interactions near the

hive’s entrance on wax combs the bees had drawn.

The worker bees that were put into the arena lived for around six weeks. That

was also true for bees that emerged from eggs the queen had laid. Only in November

were there less dead bees carried out of the hive and fewer eggs laid. The animals

seemingly had become winter bees; those bees stopped foraging outside and survived

from November to January. The worker bees had behaviours for various labours. They

built comb cells from the wax of the foundation on the ground. The area covered by

wax combs quickly became larger than the size of the cluster of bees. Some workers

cared for the eggs the queen had laid. This was noticeable from the occurrence of food

surrounding larvae (Fig. 4.1C). Once the entrance of the arena was opened, bees were

flying out to do orientation flights (Fig. 4.1D). The first few flights covered a small

volume. They explored increasingly larger areas around the hive entrance and started
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Figure 4.2: Temporal distribution of honeybees in the middle of the experimental

arena. The area of 9 × 9 cm in the middle of the arena (blue box in the photograph)

was taken to measure colony activity. This was achieved by counting bee tracks oc-

curring in this field. This area was not occupied by the bee cluster or any obstacles.

Forty-six days’ worth of tracks were counted per hour and averaged according to the

whole data set. a A boxplot of relative occurrence of bees per time of day in hours.

Less bee occurrence was counted between 22:00 and 10:00 MEZ. b Heat map of rela-

tive bee occurrence in false colour. Experimental days are on the x axis, and times of

day are on the y axis. White squares indicate missing data. c Boxplot of relative occur-

rence of bees per experimental day. High differences in distribution of bee attendance

in the middle of the arena across a two-month period from August to September.

foraging within a day. This was observable by the presence of pollen on bees’ legs and

pollen in cells (Fig. 4.1E). The bees most likely foraged nectar. We only supplied a
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sucrose solution within the hive, so we cannot know where the liquid in the cell came

from. The bees had trophallactic interactions (Fig. 4.1F) and dancing behaviour (Sub-

video 1). Most of the dancing bees had no pollen on them, so we conclude that they

had been foraging for nectar. Each waggle phase per dance was indicating similar

directions. The dances as a whole were evaluated as ordinary. The dancing bees had

followers. We estimated that around 10% of the animals were foragers. The amount

of dancing was varying, mainly depending on weather conditions. If the outside

temperature was high enough and no rain occurred, one to three honeybees were

constantly dancing. The portion of bees interacting with the queen and the brood

was much higher. Other noticeable occupations were bees guarding the entrance by

interacting with every bee coming in, seemingly guarding bees. Food-processing bees

and, as mentioned earlier, bees cleaning out dead bees were also identified. The bees

tried to regulate the hive temperature by fanning on very hot days. At night and in

the winter time, they moved closer together in the cluster around the queen. This

resulted in a much smaller diameter and higher density of the cluster.

Motor activity changes over time

To investigate undisturbed social behaviour and natural behaviour of honeybees in

general, measuring circadian rhythm is appropriate. Since the video sequence that

was analysed in the current study had a frame rate of 1 frame per second, the bee

cluster could be tracked because of the good resolution, and individual animals could

not be tracked because of the low frame rate. Bees walked faster between frames and

were more densely distributed than it would be possible to correctly compute which

individual bee belonged to each track from the preceding frame. Therefore, this anal-

ysis was focused on the positions of bees that could be captured. Unfortunately, the

bee cluster surrounding the queen in the area of the brood nest could mostly not be

analysed. The density of bees in the cluster was high enough that the used tracking

algorithm was not suited to separate them. The tracking program was dependent on

the condition that the object converted to dark pixels had to be mostly surrounded

by a bright background. With the resolution of the used camera, nearly all bees were

touching one another in the cluster. To acquire any information on the presence of

the circadian rhythm, the attendance of bees in an empty area was used (Fig. 4.2C).
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The area of 9 × 9 cm in the middle of the arena was taken to measure bee activity.

This area was never occupied by any foreign objects or the cluster. The bees only

walked through this area or rested there for a short time. The amounts of such bee

tracks per time of day were compared. The bees exhibited greater occupation in this

empty area during the afternoon (15:00–20:00) and particular low attendance during

the night (22:00–10:00; Fig. 4.2A). The amount of bee tracks varied greatly throughout

the stable 46 days of the two-month video sequence.

The distribution of bee occurrences was not linearly correlated with outside tem-

perature, humidity or the hours of sunshine (the data are not shown). Nevertheless,

this indicates a stable circadian rhythm in the sense of regular changes in behaviour

over the course of 24 hours.

Another daytime behaviour is sleeping. The video resolution did not allow any anal-

ysis of the antennae position, so I defined sleep as immobility over a time window of

five minutes to eight hours. The coordinates of bee tracks that were stable over such

time periods were extracted from the videos and plotted on top of a single frame of a

video recording from night time. The resulting plot (Fig. 4.3)) indicates a high density

of sleeping places around the bee cluster. No bees slept outside the ring-shaped area.

However, the area of the bee cluster, (red cycle Fig. 4.3) could not be analyzed due

to the aforementioned high density of bees. We could neither by eye nor by video

analysis account for the sleeping behaviour in this area.

The bees sleeping in the ring-shaped area surrounding the cluster were counted

according to the time of day. The distribution of sleeping bees across all analysed

days was the lowest around 11:00 (Fig. 4.4). It was the highest around midnight, thus

confirming another indicator of natural bee behaviour.

To conclude, the queen laid eggs and stayed in the bee cluster. At no time did the

queen swarm. The worker bees showed all labours, foraging, nurse care, comb build-

ing and the like. Different bees’ motor activities were measured in an area in the

middle of the arena. Those differences were repetitive and stable over a time of day.

The bees’ sleeping behaviour could be analysed, and it was found that the bees sleep
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Figure 4.3: Qualitative representation of honeybee sleeping places in the experimental

arena. Sleeping honeybees were characterised by a custom computer program using

an immobile bee-sized blob for at least five minutes but no longer than 8 hours.

Coordinates of all those sleeping bees are plotted as an overlay on a photograph of

the arena. False colour of the overlay represents the amount of sleeping bees over a

46-day period. A continuous field of sleeping places is situated around the dense bee

cluster. All other indicated places are outside the arena floor and are most likely due

to video artefacts. For the following analysis, these data are excluded. The green box

indicates the sub-area used for Fig. 4.4; the red circle indicates the area that was not

analysed area because of high bee density.

around the bee cluster (or in the cluster; no measurements) primarily at night.
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Figure 4.4: Daytime dependent amount of sleeping bees. A boxplot illustrating the

distribution of amounts of bees sleeping per daytime hour. This experiment includes

two months of data. The relative amount of sleeping bees is lower around noon and

higher shortly before midnight. For further experimental and analytical information,

refer to Fig. 4.3.

4.5 Discussion

Electrophysiological studies with freely moving and behaving insects are emerging

and allow for a deeper look into neuronal representations of complex behaviour

(Mizunami et al. 1998, Takeuchi and Shimoyama 2004, Mu and Ritzmann 2005, Guo

et al. 2014). The opportunity to investigate social behaviour is even more compelling
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(Paffhausen et al. 2015). The curse and blessing of such conditions are the necessity

of the animals to freely form a social construct. The bees cannot be forced to develop

a colony. The animals need to be in a situation close enough to their natural condition

to do so. If that cannot be achieved, the bees will escape or die. The experimental

setup discussed in the current study needs to supply an environment in which it is

possible to do electrophysiological dissections and the bee colony can adequately live

for a reasonable amount of time. The experimental animals were part of a mini-colony

composed by around 1 000 worker bees and a queen. The main difference between

this colony and any conventional colony is its size. The focus of the current study

lies in the various interactions of one particular animal with a small group of other

animals. If the colony consists of enough animals that represent all the different be-

haviours that are natural and can survive for a season, this will not pose a problem.

The absence of drones is not worrying either. Drones exist only in spring and early

summer, which outside the period investigated in the current study. The nest volume

was chosen to be 50 litres, which is similar to conventional nests (Seeley 1977). The

exit of the arena was connected to the outside by a 50 cm tube. The length of that

tube was below the reported 74 cm that bees could accept (Seeley 1977). Moreover,

another major difference to a conventional hive is the orientation of the wax combs

and the geometry. Combs of undisturbed bee hives are built from top to bottom, i.e.

vertically. A hive generally consists of several rows of wax sheets with combs on both

sides. Our experimental arena had one layer of wax installed that was facing up and

tilted vertically by only 17°. These major differences seem not to be a problem. The

bees stopped building the comb once the area was around the size of the bee cluster.

There were always empty combs available. The main concern with the low exposure

to gravity on the almost horizontal combs was dancing. The bees, however, can dance

on a comb that is tilted by more than 15° (Markl 1966) and did so in the arena (Sub.

Video 1).

The bees exhibited a behaviour of all known labourers (Lindauer 1952): they took

care of the nest as well as the brood and foraged. The nest was cleaned of dead

bees, and cells were inspected. The amount of comb the bees drew was smaller than

the amount produced by a regular colony. However, compared with a commercial
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queen’s mating box, the experimental colony had a similar bee-to-comb ratio. The

bees foraged pollen as well as nectar and communicated those sites. Round and wag-

gle dancing was observed. The waggle-phase length and direction were similar, as

earlier studies of conventional beehive behaviour suggested (Von Frisch 1967). Con-

trary to the natural case, the bees were constantly fed in the arena by sucrose solution

feeders. The proportion of foragers was too small to supply the needed energy.

The queen behaved as in natural conditions, despite laying only around 20 to 50

eggs per day instead of 2 000. She stayed constantly in the bee cluster. The queen’s

mandibular pheromone gave the colony a sense of being queenright, so the cluster

stayed tightly together around the queen. The worker bees reached an average lifes-

pan (6 weeks), and they transformed to winter bees when the outside conditions were

accordingly. One generation of winter bees survives the whole period of winter, and

it does not forage outside anymore.

The bees behaved similarly to a conventional colony as I had hoped for, despite the

different geometry of the arena and the smaller size of animals. Temperature regu-

lation as a predictor for a healthy colony was not possible, since the arena was too

large for the bees to warm and cool the area by themselves. A smaller arena was

not suitable for the recorded bee. Empty walking space and areas of low bee density

were desirable. High bee density across the whole arena is likely to heighten chances

of bees building the comb on other places then the ground. Everywhere else, the

high density is of high disadvantage for the free movement of the long electrode. By

keeping a large area of the arena free, maintenance was more easily performed. Thus,

experiments concerning in-hive navigation and learning were still a possibility.

The interplay of the circadian clock and the social organisation of honeybees is of

great importance (Bloch 2010). The activity of foraging bees entrains the circadian

rhythm into the dark hive. Forager-dependent labours such honey processing pick

up this entrainment. Bees of this experimental colony exhibited the circadian rhythm

in the form of changes of motor activity and sleeping bouts. This is an important find-

ing underlining the results of the apiaristic observations. The bees exhibited greater
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activity in the afternoon than at night (Fig. 4.2). Furthermore, the amount of bees

sleeping around the queen cluster was higher at midnight than at 11:00 hours. Never-

theless, the data also contain some daytime-independent activity. This also suggests

the right functionality of the hive, since some labours such as brood care are indepen-

dent of the daytime.

In summary, the bees showed co-operative brood care, overlapping generations and

division of labour. Qualitatively, there were no differences from a wild or conven-

tional honeybee hive. The amount and proportions of observed labours was different

but not in ways that were relevant for the focus of the current study.

I conclude that the behaviour displayed by the experimental colony is equivalent to

that in a conventional hive.
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5.1 Highlights

Neural correlates of social interactions within the honeybee colony

Response properties of mushroom body extrinsic neurons

High order combinatorial coding of location, body direction, and social interactions

5.2 Abstract

5.2.1 Background

Honeybees are well established models of neural correlates of sensory function, learn-

ing and memory formation. Here we report a novel approach allowing to record

high-order mushroom body-extrinsic interneurons in the brain of worker bees within

a functional colony. New Method The use of a 100 cm long differential copper elec-

trode allowed the recording of up to four units of mushroom body-extrinsic neurons

simultaneously for up to 24 hours in animals moving freely between members of

the colony. Every worker, including the recorded bee, hatched in the experimental

environment. The group consisted of 200 animals in average.

5.2.2 Results

Animals explored different regions of the comb and interacted with other colony

members. The activity of the units was not selective for location on the comb, body

1Equal contribution
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direction with respect to gravity and olfactory signals on the comb, or the different

social interactions. However, combinations of these parameters defined neural activity

in a unit-specific way. In addition, units recorded from the same animal co-varied

according to unknown factors.

5.2.3 Comparison with Existing Method(s)

All electrophysiological studies with honey bees were performed so far on constrained

animals outside their natural behavioral contexts. Yet no neuronal correlates were

measured in a social context. Free mobility of recoded insects over a range of a quar-

ter square meter allows addressing questions concerning neural correlates of social

communication, planning of tasks within the colony and attention-like processes.

5.2.4 Conclusions

The method makes it possible to study neural correlates of social behavior in a near-

natural setting within the honeybee colony.

5.3 Keywords

Mushroom body extrinsic neurons, combinatorial coding, multi-unit extracellular

recording, social behavior, insect

5.4 Introduction

Single-unit intracellular recordings and Ca2+ imaging of high-order interneurons in

the brain of tethered honeybees have provided us with a wealth of data related to

high-order integration of visual and olfactory information (Hammer (1993), Mauelsha-

gen (1993), Faber (1999), Szyszka et al. (2005), Paulk et al. (2009), Mota et al. (2011)).

Subsequent multi-unit extracellular recordings from mushroom body (MB) extrin-

sic neurons of tethered bees offered new insights into multimodal integration and

learning-related plasticity in the insect brain (Okada et al. (2007), Denker et al. (2010),

Strube-Bloss et al. (2011), Brill et al. (2013), Hussaini and Menzel (2013), review: Men-

zel (2012)). Recordings of local field potentials in bees walking on a treadmill have

also been informative (Paulk et al. (2014)). However, so far it has not been possible
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to record neurons in the brain of freely moving bees. Recording from multiple neu-

rons in a social context, in particular, promises to provide further valuable insights.

Honeybees are social insects that live in colonies of thousands of individuals. Social

communication plays a major role in the life of a bee: it regulates the attendance of

the queen, care of the brood, distribution and processing of incoming food, defense

of the colony, and the allocation of foragers via the waggle dance (von Frisch (1967)

Seeley (2011)). Social communication in the dark hive involves predominantly tactile

and chemical signals between the queen and all members of the colony including the

larvae. The waggle dance is a particular form of symbolic communication by which

the foragers communicate about important sites (foraging places, new nest sites), and

neurons related to the dorsal lobe are thought to provide a second and higher order

code for the stimuli involved in dance communication (Ai et al. (2009)). Social inter-

actions require across sensory integration, recognition of the self in relation to other

group members, updating of conditions within the social environment and appropri-

ate responses to these changes. High-order sensory integration and motor planning at

the output side of the MB of this social insect may be particularly suited to the orga-

nization of social interactions. We developed a method that allows us to record from

MB extrinsic neurons (ENs) in an animal freely moving within a miniature colony

consisting of a queen, brood cells and about 250 workers (including foragers) living

on a single wax comb. We ask whether the neural activity of ENs correlates with the

behavior of the recorded animal including social interactions. Our method allows the

animal to walk to any place on the comb, attend inbound and outbound foragers, join

the queen group, visit the brood region and feed from the honey store. We focused

on the recording of a subgroup of MB ENs, the A1, A2 and A4 neurons (Rybak and

Menzel (1998)), because these neurons have already been well characterized by both

intracellular and extracellular recordings in restrained animals, and were found to

respond to multiple sensory stimuli (Homberg and Erber (1979), Rybak and Menzel

(1998)), and to adapt their responses during learning (Mauelshagen (1993) Okada, Ry-

bak, Manz, Menzel (2007) Strube-Bloss, Nawrot, Menzel (2011) Hussaini and Menzel

(2013)).
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5.5 Material and Methods

5.5.1 Setup

The miniature bee colony was housed in a wooden box next to an electrophysiology

setup (Fig. 5.1). A tilted comb contained mostly empty cells and in one part cells

filled with honey, pollen and water (each part 6 x 6 cells wide). An iron plate beneath

the wooden plate on which the comb was lying was kept at a temperature of 32 – 34

° C. The comb was surrounded by a vertical plastic frame (55 x 55 cm, height of the

sides: 10 cm) whose inner sides were sprayed with Teflon in order to prevent bees

escaping from the comb. Foragers left the colony at the exit via a plastic tube. The top

housing (inner height 68 cm) made the space around the comb light-proof and acted

as a Faraday cage. The ceiling of the top housing was fitted with a webcam (Logitech

Pro 9000, Logitech international S.A., Apples, Schweiz, infrared filter removed) and

infrared LEDs. These were used to monitor the movements of both the test animal

and the animals of the colony. A support box (Fig. 5.1 B, C: 4) carried the head stages

of the preamplifier (EXT, npi, Tamm, Germany) to which the electrode was connected

via a DIP plug.

5.5.2 Behavior of the miniature bee colony and the recorded bee

Two normal sized combs were removed from a colony together with the queen and

about 250 young workers. A piece of a comb of the same colony (14 x 14 cells) with

closed cells containing pupae close to emergence was cut out and inserted into the

combs in the experimental setup. Thus the bees in the miniature colony were close in

age. Another section of cells containing honey and pollen was cut out of a comb of the

same colony and inserted into the combs. Honey, pollen and water were replenished

if needed. A few bees started foraging soon after the establishment of the colony. The

queen attending group of bees usually settled at the furthest distance from the exit

and moved around with the queen at a very low pace. Movement of all bees was

continuously monitored with a webcam under infrared light.

The synchronously aligned data of the extracellular potentials and the location, ori-

entation and behavior of the recorded bee could then be analyzed. The movement
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Figure 5.1: Experimental setup. a Setup during the preparation of the animal. b

Setup during the recording from the animal inside the colony. c Side view of the

tilted comb (# 7). Approximately 250 honeybees (Apis mellifera carnica) and a queen

bee are situated on a 55 cm x 55 cm square of honeycomb (arena). The ground (#8)

is tilted 17° and the whole area is heated. The walls of the arena (#7) are sprayed

with Teflon. Foragers can leave the arena via a plastic tube (#2) through the wall of

the building (#1). The electrode wire (#5) is connected to the head stages of pream-

plifiers (#4) and can either be moved to the dissection place (#10) or together with the

experimental animal onto the wax comb inside the recording box (#7). When inside

the recording box the electrode wire is attached to a coiled nylon threat acting as

spring (#6) and thus prevents the wire touching the ground. The animal is prepared

in the electrophysiology setup (# 9, 10, 11). When stable signals are found the animal

is again immobilized with cold air (6° - 8° C) and transferred back onto the combs.

The top housing (#3) is lowered toward the wax comb. The ceiling of the top housing

carries a HD webcam and infrared LEDs. The top housing is surrounded by a metal

mesh which acts as a Faraday cage. The head stages are connected to an analog/digi-

tal converter via an amplifier (#9). The numbers in the figure give the respective parts

of the setup: 1: outside world, 2: plastic tubing connecting the colony to the outside

world, 3: top housing which can be lowered and acts as a Faraday cage, 4: head stages

of the preamplifier, HD web cam and infrared LED, 5: recording wire, 6: coiled nylon

threat, 7: wax comb, 8: metal plate and heater, 9: preamplifier and analog-digital

converter, 10: dissection place with micromanipulator and stereo microscope, 11: PC.
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of the recorded animal was tracked with a custom made program which allowed not

only the location of the animal but also the orientation of its body long axis, the speed

of its movement and any close contacts to other animals. Using this program the

following behavioral categories were distinguished: bee alone (no bee closer than the

distance of a bee size), bee in close contact (“close”) and bee touching another bee

(“touch”), bee within the queen attending group (“group”), bee close to departing or

arriving foragers at the exit (“exit”). As one can see from the supplementary video

the recorded animal may experience these social interactions in different regions of

the comb, may have come back to the same area from different directions, and may

position its body in different directions relative to gravity in different areas.

5.5.3 Dissection

We found it essential that the animal was not too aroused or stressed during dissec-

tion. We blew cold air against the animal keeping it narcotized during dissection.

Since the mechanoreceptors in the neck of the bee are very sensitive we avoided hold-

ing the head tightly by the neck; instead we caught the mandibles with tweezers that

are very precisely manipulated by a micromanipulator very carefully avoiding any

stretching of the neck. After a small hole was cut above one of the two alpha lobes

we pushed the trachea sack above it to the site and immediately inserted the two Cu-

recording wires, not the silver wire. The neural sheath of the brain is rather soft for a

very short time (< 20 s) after the trachea sack has been pushed to the side, and thus the

neural sheath was not needed to be cut. Promising neural activity was searched for

when the animal had warmed up. A resting brain not covered with hemolymph was

also very important for the stabilization with the two component silicon glue (KWIK-

SIL Sarasota, FL, USA, mixture 1:1). We therefore sucked away the hemolymph (if

there was any) from the brain surface, made sure that the cuticle was dry and put the

mixed KWIK-SIL around the electrodes into the hole of the head capsule. Before we

did this we checked that the grounding silver wire touched the brain surface without

any pressure on it. After the KWIK-SIL had hardened the animal was again cooled

with ice cold air, the squeezer of the abdomen removed, the mandibles released and

then the animal carefully but quickly moved onto the wax comb of the colony.
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5.5.4 Electrophysiology

Two polyurethane-coated copper wires (14 µm in diameter, Electrisola, Escholzmatt,

Switzerland) were twisted over a length of 1 m. The carefully cut ends of these wires

were plated with carbon nano fibers and gold using the method of Ferguson et al.

(2009). This procedure reduced the impedance of the whole recording wires below

60 KΩ. We limited the number of the Cu wires to two because we observed that the

animals were more likely to be restrained from freely moving with tetrodes. The other

ends of the wires were de-insulated and attached to the amplifier input connectors by

means of conducting silver glue. A silver wire (diameter 50 µm, Advent, Eynsham

Oxon, UK) was twisted together with the two Cu wires. The weight of the three wires

was counter balanced by a spring made of a thin fishing line. Such fishing lines come

rolled up and when unrolled form a very flexible spring. The spring can counter-

balance a weight of 8 mg (the weight of the twisted electrode wire). The mechanical

stress of the recording wires was mostly determined by the ground electrode because

it needed to be thicker than the active wires. The adjustment of the strength of this

string and the location of fixing it to the electrode wires was critical and needed ad-

justment.

Each electrode wire was connected to the head stage of a preamplifier (npi electronic,

Germany). Filters were set to high pass of 10 Hz and low pass of 2 kHz. Hum noise

(50 Hz) was eliminated by an additional filter (Hum Bug; Digitimer, Hertfordshire,

UK). Neural activity was sampled at a rate of 40 kHz through an analog-to-digital

converter (1401 micro MKII; Cambridge Electronic Design, Cambridge, UK), and ini-

tial data analysis was performed by Spike2 software (Cambridge Electronic Design)

including signal storage and pre-analysis of the data. The amplifier used a band

pass filter with cut-off frequencies between 10 Hz and 2 kHz. Off-line analysis with

Spike 2 software included calculation of the difference between the signals from the

two electrodes which was then band pass filtered (300 Hz – 2000 Hz) with a digital

FIR-filter (‚finite impulse response‘) and used for both multi-unit analysis (MUA) and

sorting of single units. The semi-automated template matching algorithm of Spike2

was used for spike sorting. Besides careful visual inspection, sorting quality was con-

trolled by means of a principal component analysis of the first three components of
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each sorted unit. The dots of the single units (encoded in one particular color) needed

to be clearly separated from each other in order to ensure good sorting quality and to

avoid false positives and negatives in spike trains of a single unit. Muscle potentials

could be identified by their broad spikes. These spikes were cut out of the recording

(representative example in Fig. 5.2).

Figure 5.2: Multi-unit extracellular recording Here two units are recorded, one pre-

dominantly via electrode 1 and the other via electrode 2. Template sorting leads to

the separation of these two units as marked in the two traces.

5.6 Results

Our recordings were performed in an experimental set-up consisting of a miniature

honeybee colony and a nearby electrophysiological set-up. The colony (about 250 bees

and the queen) lived on a tilted (17° to horizontal) layer of a wax comb (55 x 55 cm).

The animals were prepared for recordings at the dissection place. After the electrode

was inserted and stable recordings were established the animal was moved to the wax

comb and watched by a webcam in order to record its behavior. The recorded animal

was selected from the miniature colony and belonged either to the queen attending

group (5 animals), the food processing bees (3 animals) or the foragers (1 animal). The

recordings lasted up to 24 hours. One to four units were recorded simultaneously.

Routine offline data analyses were performed in order to sort the spikes. Custom

written programs in MatLab allowed extracting the coordinates of the recorded bee,

its interaction with other bees and other categories of behavior. The analysis is based
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on the results from 9 animals. The average recording time was 155 minutes, a total of

11 sorted units were evaluated (Fig. 5.2).

The tilted level of the combs together with other cues provided the bees with sig-

nals for orientation within the set-up. These additional cues were the signals from

the exit (faint light, fresh air, temperature gradient), chemical signals from the queen

group and the cells with honey and pollen. These signals formed an overlapping pat-

tern of rather stationary gradients depicted schematically in Fig. 3. It can be expected,

therefore, that bees walking on the tilted combs related these signals to the gravity

cue and to each other possibly allowing localization on the combs and directed move-

ments. Bees are able to perceive the gravity force on a tilted surface at an angle of ≥

15◦ to horizontal and perform well orientated waggle dances (Markl, 1966).

Figure 5.3: Schematic scheme of the effective gradients on the surface of the tilted

comb. Gravity force (grey arrows pointing downwards) provided a compass in the

dark, and several overlapping gradients added additional signals, e.g. faint light from

the entrance together with fresh air and a temperature gradient marking the entrance

(blue), humidity and specific odorant gradients emerging from the food area (honey,

yellow), pheromones arising from the queen and chemical signals from the attending

workers attending the queen (red).
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The miniature colony showed normal behavior (Supplementary Video 1). The

queen laid eggs and the young bees attended the queen. The group of bees moved

around with her but preferred the upper part of the comb furthest away from the

exit. The number of foraging bees was rather small, and under fortunate weather

conditions a regular traffic of foragers via the exit was observed. Some of these bees

performed round dances since the nectar and pollen sources were close to the colony

during the test period. Unfortunately none of our recorded bees attended a dance,

but other bees did. The queen related group and the foragers showed a circadian

rhythm of movement with less dense grouping between 12am and 6pm. Such looser

contacts to the queen were most obvious under perfect weather conditions and active

foraging. The recorded animals traveled through most parts of the comb but were not

particularly attracted by the queen group although some of them were collected from

the queen group.

The recorded ENs belonged to the group of A1, A2 and A4 neurons (Rybak and Men-

zel, 1993) known to respond to multiple sensory inputs, to change their responses to

learned odors and to develop different response properties for cue and context stimuli

in the course of context dependent olfactory learning in harnessed bees (Mauelshagen,

1993, Okada and others, 2007, Strube-Bloss and others, 2011, Hussaini and Menzel,

2013). One characteristic of these ENs is their rather stable and high spontaneous

activity in the range of 10 – 20 Hz in restrained bees. In contrast, ENs recorded in

freely moving animals had a rather low spontaneous rate of spike discharge often

well below 1 Hz (Supplementary Fig. 5.1). Fig. 5.4 shows an example in a time/space

resolved plot giving spiking activity in false colors of the walking track. Bursts of

spikes were observed without any obvious external stimuli or behavior of the animal.

Prolonged periods of no spike activity may have occurred under certain conditions,

e.g. when the animal was close to the exit (Fig. 5.4), and enhanced activity could be

related to social contacts, to particular regions on the comb, to the direction of the

body in the gravity field, or combinations of these conditions. Supplementary Video

2 shows a walking trajectory together with the unit´s activity in false colors. In some

units higher activity correlated with faster walking speed.

We first asked whether neural activity of ENs depended on the location of the
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Figure 5.4: Time and space resolved activity of unit 2 of bee 4. Time is plotted ver-

tically. Spike activity is given in false colors of the walking track (color code at the

top of the insert at right). The location of the queen group is marked with the bluish

vertical pillar and the exit by the dark blue vertical bar. The backgrounds mark 5 dif-

ferent behavioral categories of the animal in false colors (color code at the right side).

The recording lasted for 3.5 hours.

animal on the comb. No such effect was found with the exception that a reduction

of spiking activity appeared in some units when the animal was close to the exit

(Fig. 5.4, Fig. 5.7). Next we analyzed the relationship between spiking activity,

body direction and area on the comb. Supplementary Fig. 2 shows an example

in which an animal performed many body rotations in the same area. One of the

two units increased the firing rate when the body direction pointed at 120-130° and

decreased it when the body was arranged at 30 -80°. The other unit was more active

when the body pointed at 90-120°. All other animals walked around and had their

body directions under different angles to gravity in different areas of the comb and at

different times when they may have returned to the same area. Therefore, we included

in the analysis, whether the animal was resting or walking and in which of 9 subareas

the animal was on the comb (Fig. 5.5, Supplementary Fig. 5.2). Since the number

of measurements taken in each of these subareas was rather different in different
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animals we indicate in Fig. 5.5 and Supplementary Fig. 5.2 with black or red arrows

how many measurements were evaluated for each of the 12 body directions. Body

direction effects were seen only in few subregions, e.g. in bee 2 in the middle upper

area of the comb in which the two recorded units coded for different body directions,

an effect not seen in the resting animal (Supplementary Fig. 2). We conclude from

these results that the recorded ENs may code body direction only in combination with

other parameters (e.g. location on the comb, walking activity or resting.
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Figure 5.5: Activity of two units in relation to body direction and location in nine sub

areas of the comb. Both bees were walking during the recording time and reached

the respective areas from different directions. The upper graph shows unit 1 from

bee 2, the lower graph unit 2 from bee 5. The two areas in the upper right (marked

grey, overlapping partly with the location of the queen group marked blue) were not

visited. The lower graphs and the arrows explain the design if the subfigures. The

arrows give the body directions in 30° intervals relative to gravity. The length of the

arrows relates to the relative frequency of spike in the particular direction. The black

arrows indicate measuring times shorter than 10 s, and the red arrows measuring

times longer than 10 s.
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As shown in Fig. 4 and supplemental video 1 the recorded animals were well in-

tegrated in the social community of the miniature colony experiencing several kinds

of social interactions (alone, close to another animal, touching another animal, being

within the queen group or close to the exit and thus close to in and outbound for-

agers). Fig. 5.4 marks the 5 behavioral categories in false colors on the background

of the 3D plot. The most frequent behaviors were alone and close to another animal.

Fig. 5.6 gives a representative example of four units recorded in bee 9 over a period

of about half an hour. Each category of social interactions (red dots in Fig. 5.6) was

evaluated in intervals of 100 ms, therefore, the same interactions may have appeared

in close temporal proximity, and the red dots fuse to a red line. Transitions between

the various interactions may also happen in quick succession.

Figure 5.6: Time course of neural activity in four units of animal 9 in relation to five

social interactions. The occurrence of the five social interactions (alone: no animal

closer than the body length of a bee; close: another bee is closer than the body length

of a bee; touch: the recorded bee touches another bee; group: recorded bee is within

the queen group; exit: recorded animal is close to the exit and to foraging bees) are

plotted with red dots (right ordinate). Spiking activity (left ordinate) is given in blue.

Bee 9 was not close to the exit during the time period depicted here.

No units were found that were reliably and repeatedly active only when a par-

ticular social interaction occurred but preferential response patterns were seen. For

example, unit 1 in bee 5 (supplementary Fig. 3) and unit 1 in bee 7 (Supplementary
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Fig. 4) were rather specifically active during multiple encounters of close and touch,

and were silent when the animal was close to in and out bound foragers at the exit.

All 4 units given in Fig. 6 showed the lowest activity when the animal was within the

queen group, an activity pattern which we also saw in a unit of bee 1 (not shown).

Unit 1 in bee 8, on the contrary, was particularly active when the animal joined the

queen group (not shown). The prevailing activity patterns were overlapping activities

of the recorded units.

In order to test whether ENs may code for social interactions in a combinatorial way

we analyzed two units of bee 4 which were recorded over 3.5 hours. Fig. 7 gives

the joint activities of the two units for five behavioral categories (Supplementary Fig.

5 A – E shows the respective distributions separately for each of the five behavioral

categories). The activities in both units were highly correlated indicating that a pro-

cess not captured by the 5 behavioral categories drove activity in both units jointly.

This unknown process was not related to walking speed. However, there were also

selective effects in a combinatorial way. For example, high activity in both units was

not related to any other social activity then the animal being alone. When the animal

was within the queen group (pink) the activity was always very low in both units.

This was also the
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Figure 5.7: Neural activity of two units in animal 4 during 3.5 hours of recording. Five

different social behaviors are color coded. The animal is alone (green), the animals

is close to another animal (red), the animal touches another animal (deep blue), the

animal is close to the exit (light blue), the animal is with the queen group (pink). Each

point gives the number of spikes in unit 1 and unit 2 in Hz. See Supplementary Fig.

6 a- e for separate plots of the five behavioral categories.

case when the animal touched another animal (deep blue) but other than in the

behavioral state of being within the queen group neural activity in both units reached

also higher values. Neural activities during being close to the exit (light blue) and

being close to another animal (red) appeared to be antagonistic. When activity of

unit 1 was around 150 Hz and that of unit 2 around 50 Hz (cluster of light blue dots

indicating “close to the exit”) than other social behaviors were mostly lacking.

5.7 Discussion

Recording of high-order interneurons in freely ranging animals still poses a major

challenge for neuroscientists. Large animals like primates can be fitted with a de-

vice that allows wireless monitoring of multiple units (Schwarz et al. 2014). Smaller

animals like mice and birds are also able to carry miniature telemetric devices al-
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lowing wireless connections within a small range and over rather short time periods

(Schregardus et al. 2006).Only large insects can be fitted with such telemetric devices

because the batteries required to operate them are too bulky and heavy, and wireless

power transmission and energy harvesting technology with integrated circuits have

yet been used only for dragonflies operating in a small volume of space Harrison, 2011

27306 /id). Thomas, 2012 27303 /id.. In cases where telemetric devices have been ap-

plied to insects so far they were not used to transmit recordings from interneurons

but to stimulate the antennal nerves Holzer and Shimoyama (2014) or to record EMG

Thomas, 2012 27303 /id.. Standard methods of recording via long, flexible cables

connecting the electrodes with the amplifiers are used e.g. in rats (e.g. Moser et al.

2008) and in the large fruit bat (Rubin et al. 2014) in order to monitor many principle

cells in the hippocampus. Such methods were found to be difficult to apply to insects

because the wires were too heavy and too stiff. Mizunami et al. (1998a) applied such a

method to the cockroach sampling recordings from mushroom body neurons but the

recording wires were shorter and the animal was quite constrained in its movements.

Bender et al. (2010) recorded units of the central complex of tethered cockroaches

walking on a slippery surface and established correlations between firing rate and

stationary walking speed. Here we solved the problem of the long recording wires by

using only two twisted copper wires and a thin ground electrode. Furthermore, we

counteracted the weight and mechanical stress of the wires with a loose spring made

of thin fishing line. The fine adjustment of this loose spring is an essential part of our

method. In addition, we substantially reduced the impedance of the recording wires

by applying the gold plating method of Ferguson et al. (2009).

The aim of our study is to search for neural correlates of social interactions within

the honeybee colony. It was therefore essential to establish a stable miniature colony

with near-normal social interactions. Preliminary experiments showed that this re-

quires a queen attended by young bees, brood cells, sealed cells, honey cells and

pollen cells. The data reported here come from one colony that was established with

243 animals and contained 80 animals after 6 weeks at the end of the season. Initially

young bees emerged from the sealed cells, and the larvae were cared for. Although

the queen stopped laying eggs due to the late season of the year the queen court ap-
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peared normal, foragers were flying in and out, and some of them performed round

dances. Since such a small colony cannot control the temperature on such a large

comb we kept the temperature of the surface below the comb at 32 - 34° C.

We recorded mushroom body extrinsic neurons (ENs) in the ventral aspect of the al-

pha lobe. These ENs belong to the A1, A2 and A4 neurons (Rybak and Menzel 1993),

and one of the neurons is the single identified neuron PE1 (Mauelshagen 1993). Both

PE1 and other ENs in this area respond to multiple sensory inputs (Homberg and

Erber 1979); Rybak and Menzel 1993), Rybak and Menzel 1998) and their properties

change during olfactory learning (Mauelshagen 1993); Okada, Rybak, Manz, Men-

zel 2007), Strube-Bloss, Nawrot, Menzel 2011); Hussaini and Menzel 2013). In fact

olfactory cue stimuli and visual context stimuli were found to change the response

properties of these ENs in bees categorically differently (decreased response to the ol-

factory cue, and increased response to the visual context stimuli) possibly indicating

that they are involved in separating cue and context (Hussaini and Menzel 2013). No

evidence has been found yet that these ENs in honeybees respond selectively to com-

binations of sensory modalities or context-dependent combinations of stimuli as was

reported for ENs of the cockroach Li and Strausfeld (1999). The spontaneous response

rate of these ENS in restrained bees ranged between 10 – 20 Hz but was found to be

much lower in the freely moving animals in our experiments. It is thus likely that

inhibitory input is lower when the animals are restrained and indeed spontaneous

activity of putatively inhibitory neurons of the A3 ENs is rather high in restrained

animals (Haehnel and Menzel 2010). The reduced response of units recorded in the

central complex of the walking cockroach to antennal stimulation (Bender, Pollack,

Ritzmann 2010) may also indicate higher inhibitory demand in actively ranging ani-

mals. Interestingly, putative pyramidal cells in the mammalian hippocampus of freely

moving rats are characterized by low spontaneous activity (0.2 – 1 Hz) as compared

to restrained animals (Kraus et al. 2013).

Multi-unit recordings in freely moving rats have revealed a large range of highly

informative data on the multiple coding properties of principle cells in the hippocam-

pus and prefrontal cortex (McNaughton et al. 2006), review: Moser, Kropff, Moser
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2008). The activity of these neurons depends on place, body direction, viewing direc-

tion, and goal-seeking behavior as well as the integration of multiple state-dependent

sensory inputs. A major insight concerns the multi-faceted properties of principle

cells in the hippocampus of rats. Depending on the particular training and test condi-

tions these neurons may respond selectively to additional stimuli, may “remap” their

responses to place when the environment is changed (Colgin et al. 2008), may keep

their place properties even in the dark, and change them when the task of the animal

is altered (Manns and Eichenbaum 2009, review: Eichenbaum 2002). An indication

for the possible involvement of mushroom body ENs in comparable tasks comes from

extracellular recording in the cockroach (Mizunami et al. 1998b) Mizunami, Okada,

Li, Strausfeld 1998a), who related neural activity of ENs to the place in a heat avoid-

ance training task. However, molecular genetic manipulations in Drosophila do not

support this conclusion and rather point to the ellipsoid body as a neural structure

involved in place learning (Ofstad et al. 2011).

Although the animals in our experiment were in the dark they still should be able

to localize themselves relative to the gravity field as a compass and to overlapping

gradients of local cues like odors, substrate structure, temperature and light as well

fresh air through the exit hole. No evidence was found that any of the recorded ENs

coded a “place field” in the strict sense but some of them were more active in a par-

ticular area than in others. Some ENs also displayed a dependence on body direction,

but this property was not independent of the area on the comb. The body direction

effect in single units may also depend on whether the animal was walking or resting,

but again this effect depended on the area. Obviously the recorded ENs did not code

any one of these properties in isolation. The multiple coding properties of ENs of

freely moving bees within the colony became particularly obvious when their activi-

ties were correlated with social behaviors. None of the ENs were exclusively activated

by one of the five behavioral categories we distinguished. This finding is quite sur-

prising since meeting with the queen group or intense contact to another animal could

have been expected to lead to particularly strong effects. However, combinations of

units´ activities could be rather specific.
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Neural correlates of social behavior have not been studied so far in an insect model.

The organization of social behavior requires integration of sensory information from

group members, evaluation of these signals in the context of own needs and percep-

tion of specific signals for the coordination between group members. Olfactory social

signals are often perceived by specialized receptors (e.g. the vomeronasal system in

mammals, Dulac and Torello 2003), particular pheromone receptors, Christensen and

Hildebrand 2002)). Specific social memory may be formed by filial imprinting (chick:

Town 2011), mammals: Kendrick et al. 1992) and imprinting-like learning in honey-

bees (Masson and Arnold 1984) and ants (Bos et al. 2010).

Basic neural correlates of social behavior have already been found in the worm Coenorhab-

ditis elegans (Garrison et al. 2012), Emmons 2012). The authors concluded that the

nervous system of C. elegans houses a social circuitry which promotes positive social

behavior. In Drosophila, formation and retrieval of a specific form of memory, ARM

(amnesia resistant memory) is facilitated in social conditions (Chabaud et al. 2009).

Flies trained for ARM interact within a group to improve their conditioned perfor-

mance.

Multiple evidence exists for neuroanatomical correlates of social conditions in mam-

mals (e.g. primates, Struble and Riesen 1978). Functional and structural neural corre-

lates of social behaviors in birds and mammals depend on the context in which they

are acquired or retrieved. For example, the pattern of singing-related neural activ-

ity in several high-level brain areas specialized for song learning in adult zebra finch

depends on whether the bird sings by itself or to another bird (Hessler and Doupe

1999), and neurons of the intermediate and medial mesopallium of the chick respond

differentially to familiar and unfamiliar conspecifics (Town 2011). Several aspects of

such social circuits have meanwhile been characterized (Insel and Fernald 2004).

The methods established here will allow us to address similar questions in the honey-

bee. In addition, we shall search for the neural correlates of dance communication, a

unique symbolic form of ritualized movement in the honeybee that transmits spatial

information and requires the receiving bee to have explored the environment around
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the hive. Therefore, we shall predominantly select experienced foragers as recorded

animals and include units in the central complex in our analysis, since this neuropil

in the insect brain is known to code sun compass-related cues (Homberg 2008) and to

provide high-order motor commands to descending neurons (Bender, Pollack, Ritz-

mann 2010).
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6 Chapter 3: Increased Spike Rate Variance of MB Output

Neurons due to Social Interactions in Honeybees (Apis mel-

lifera)

6.1 Abstract

Honeybees (Apis mellifera) are a well-established model in the search for neural corre-

lates of behaviour. Social behaviour is of particular interest, but due to its complexity,

no neural correlates are known for social interactions. The aim of the current study is

to correlate neuronal activity of multimodal high-order mushroom-body (MB) extrin-

sic neurons with social behaviour in a rather natural setting. Extracellular recording

electrodes of a one-meter length were inserted in the beta exit of the MB of a freely

moving bee within a small but functional colony. Its behaviour was video recorded.

All meaningful parameters of the two data sets, behavioural and neurophysiologi-

cal, were tested in an exploratory manner searching for neural correlations. Strong

changes in the spike rate appeared before, during or after social interactions. The

variance of the spike rate within a certain time window around such interactions

was higher when compared with those within windows marked ‘alone’, in which the

recorded animal did not interact. The window length ranged from 40 s to 12 min,

depending on individual animals, for the strongest effect. Future experiments will

involve indoor foraging as a repetitive task with components of social interaction and

operant conditioning.

6.2 Introduction

The ecological and economical value of honeybees cannot be overestimated. Since the

work of Von Frisch (1914, 1967), the honeybee has developed into a well-established

model animal in several biological disciplines, particularly in behavioural science

(Menzel 2005, Menzel and Giurfa 2006, Menzel 2017) and neuroscience (Homberg

and Erber 1979, Rybak and Menzel 1993, Menzel 2012, Filla and Menzel 2015). The

honeybee has a rich repertoire of behaviours, and it is a social insect with intriguing

navigational skills. Extensive knowledge has been acquired about the bee’s brain,

neuropils and several types of neurons. How can we put these areas of interest closer
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together? How does the brain of each individual bee code for social interactions?

Only an unrestrained bee can have an intrinsically motivated behaviour such as social

behaviour and dancing. The bees in this study are, unlike any previous experiments,

unhindered as well as free to move and behave. As already described in Chapters 1

and 2 of the current study, we investigate the neuronal correlates of behaviour that is

observable in the presented experimental set-up.

What neurons are suitable candidates for coding for social interactions, dancing be-

haviour, brood care and interactions with the queen? Additionally, the experimental

circumstances described here allow the animal to have signs of attention (Paulk et

al. 2014), planning and learning. It would be fascinating to investigate the neuronal

correlates of these behaviours (Menzel and Giurfa 2006, Menzel 2012).

There are two neuropils of interest: the mushroom body (MB) and the central complex

(CC). The MB is associated with olfaction, learning and memory (Strube-Bloss et al.

2011, Menzel et al. 1996, Heisenberg 1998, 2003), and the CC is associated with func-

tions around locomotor activity and orientation (Seelig and Jayaraman 2013, Strauss

2002, Neuser et al. 2008). The CC is situated deep in the brain (Homberg 1985) such

that it is very difficult to record through with our technique. The MB extrinsic neu-

rons (EN), by contrast, are situated shallow and right next to a clear landmark (Rybak

and Menzel 1993, 1998). We decided to investigate the behaviour of social interactions

in the context of olfaction (Cheal and Sprott 1971) and memory rather than location

and orientation. At least in mammals, olfaction, memory and social behaviour seem

to be tied closely together (Levine and McBurney 1986, Kirk-Smith and Booth 1987).

Here, I analyse the correlation of high-order output neurons of the MB with the be-

haviour of honeybees in their natural habitat. Extrinsic neurons of the alpha lobe

project in many parts of the honeybees’ brain (Rybak and Menzel 1993, 1998). They

are multimodal (Homberg and Erber 1979, Erber 1978), and their responses are not

related to motor activity (Huber 1960, Mauelshagen 1993). It was demonstrated that

ENs change their activity in response to classical conditioning (Haehnel and Menzel
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2010; Filla and Menzel 2015). They can code the value of a stimulus and distinguish

between rewarded and non-rewarded odour (Okada et al. 2007, Strube-Bloss et al.

2011, 2016, Menzel 2014). Therefore, I expect to find correlates between the neuronal

activity and social interactions.

The neuronal activity of high-order neurons in natural unhindered conditions com-

pared to common laboratory conditions might have unforeseen insights into the emerg-

ing field of insect cognition (Menzel and Giurfa 2006, Webb 2012, Menzel 2012, Giurfa

2013, Perry et al. 2017).

The activity of these neurons is further analysed, building on the analysis already

presented in Chapter 2. Here, I present an explorative analysis in search for correla-

tions between any aspect of physiological data and behavioural data. The experiments

in the current study are novel, and there are no data or literature on any closely re-

lated investigations. I present a multiverse analysis (Steegen et al.2016) to uncover

any correlation between the two aforementioned types of data. This prevents any

kind of confirmatory data analysis. A hypothesis-driven analysis would be inappro-

priate in these exploratory experiments. After exploring this new type of data and

understanding, i.e. how spike rate changes are related with some of the behaviours,

at least to some degree, one can think about a hypothesis (Tukey 1980, 1977). Here,

an analytical toolbox is presented to investigate the data (Hoaglin 2003).

6.3 Materials and Methods

A detailed description of the experimental set-up can be found in the methods sec-

tions of Chapters 1 and 2. A wax-covered platform sized 55 × 55 cm was tilted 17°

horizontally. This arena has PTFE-covered walls and an entrance tube to the outside.

The arena serves as a hive for a mini-colony with around 1 000 worker bees and a

queen. One animal was picked and prepared with a 1 m long electrode. The elec-

trode consisted of two copper wires as mono-polar channels and one bare silver wire

as the ground. The tip of the two copper wires was gold plated for lower impedance.

Once the electrode was positioned in the area of interest, i.e. the ventral aspect of

the alpha lobe of the alpha lobe, it was stabilised by applying two-component sil-
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icone (Kwik-Sil, World Precision Instruments, Florida, USA). The prepared animal

was situated back into the arena. Its behaviour was recorded by an infra-red camera

synchronously with the extracellular recordings in Spike2 (Version 5.21, Cambridge

Electronic Design Limited, Cambridge, England). For consistent curing of the two-

component silicone in the honeybee’s brain, a system to warm the whole bee shortly

after applying the silicone was introduced. Plastic tubing was wrapped tightly around

the metal bee holder. The tubing was attached on a hot-water reservoir on one end

and a wastewater container on the other. The hot-water reservoir was elevated so the

gravitational force moved the water through the system. The tubing could be gradu-

ally clamped to adjust the flow of water and thus the temperature of the bee holder

and the bee. The temperature of the bee holder was adjusted to 35 °C. The analysis

script of this chapter can be found in the appendix. It consists of a newly written

custom MATLAB script MATLAB 2011, MathWorks Inc., Massachusetts, USA).

6.4 Results

Here, I analyse the behaviour extracted from the video recordings and the correlation

with spike activity of extracellularly recorded neurons. These neurons are extrinsic

high-order interneurons that output at the alpha lobe of the MB. The bees were un-

hindered in their behaviour, also meaning that their behaviour was as unpredictable

and sparse as it is under natural conditions. To deal with the small number of known

variables as well as the high dimensionality of the extracted behaviour and neuronal

activity, the data were analysed in an exploratory fashion. The behavioural data are

described and analysed concerning their quality in Chapter 1. Any behaviour that

is analysed here was evaluated to be natural. The behaviour of the colony was not

further analysed. However, some features of the experimental bee’s behaviour were

investigated to compare with bees that were not prepared and without an electrode.

Of particular interest was the walking speed of the recorded bees. The walking speed

distribution of random bees was compared with the distribution of any recorded bee.

There were no differences between the two groups. It was also tested whether any

of the recorded bees avoided certain areas of the arena. Plotting all recorded bees’

trajectories together revealed that the bees did not avoid any place in the arena. The

amount of rotations per direction was measured to see if any recorded animal was
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turning mostly in one direction. Any experimental bees with most turns in one direc-

tion were completely excluded. There were few cases, and all of them exhibited poor

quality of neuronal data. Those animals all died within two hours upon preparation.

Interestingly, all recorded bees that did not indicate unidirectional turning behaviour

accumulated less than a full turn in one direction but more than in the other direction,

even though these bees turned 50° per minute on average. The analysis of the quality

of extracellular recordings was discussed in great detail in Chapter 2. All those tests

were also carried out with this data set. All recorded units that were included in this

analysis obeyed the aforementioned controls regarding auto- and cross-correlation.

The spike frequency of the units ranged from very low (0.1–1 Hz) to high (20 Hz).

The baseline changes were of particular interest. Most units had a wide variety of

frequencies over long periods of time. They could spike rather stably at 1 Hz for half

an hour and then slowly increase their rate over 5 minutes to 10 Hz. At 10 Hz, they

could be stable for an hour and then change to a different value. Within this stable

baseline time window, there were changes in around 20% of the spike frequency in

the order of seconds. However, there were greater changes over larger time windows.

Overall, all tested units had a high dynamic range. It was not possible to assign any

spike rate changes to any type of response category. However, as described later,

some behavioural events were in sync with an increase and later with a decrease in

the spike rate. Nevertheless, other features than the spike frequency of the spike

data were tested against all of the behavioural data. The tested features included in-

terspike intervals (ISI), high- and low-pass filtered spike rates and the combinatorial

spike rates of units recorded in the same animal. The ISI was close to the reciprocal

spike frequency but not the same, especially when they were different, for example,

when a spike burst was followed by a decrease in the spike rate. These quick changes

were not observed in the spike rate since it was always integrated over some time

window, but this would be registered by the ISI. However, this approach did not

result in any mentionable results. As described earlier, the great range of frequen-

cies at which the units fired, the spike frequency changes were filtered. The cut-off

frequency for both high pass and low pass was 0.1 Hz. The high-pass-filtered data

resulted in data representing high frequency changes of the units with a baseline of 0

Hz. The low-pass-filtered data contained only the low-frequency components of the
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spike-rate changes, i.e. the baselines. These processed neuronal data did not corre-

late in any way with the behaviour in any of the applied tests. The different units

that were separated per experiment were tested independently as mentioned above

and in combination to each other. The difference in spike rate and the synchrony of

firing was investigated. As described later, their spiking properties were plotted in

an X–Y manner, with different properties of the behaviour plotted as a false colour

on top. To search for correlations between behaviour and neuronal activity, obvious

misapprehension must be proven absent. Therefore, the data was tested for correla-

tions between walking speed or turning behaviour and the neuronal activity. These

correlations would be dangerous to interpret since they could possibly arouse muscle

potentials or movement of the electrode in the bee brain. None of them correlations

was found in the current study. The bee could move around in its hive freely. All

positions (the queen group with the brood and the dancing area) have different im-

portance since they are differently far located from the entrance. It was important

to search for correlations between these places and the neuronal activities as well as

place cells and grid cells. No correlations or trends could be found. To analyse the

data in regard to place and grid cells, the problem was that none of the recorded bees

explored the hive in multiple times. Observing random bees indicated that they do

not explore the hive in a manner that would be sufficient to recognize those patterns.

The recorded bees’ trajectory in correlation with the spike activity as the false colour

can be seen in Figure 5.4. The aforementioned importance of certain places can be

investigated with these plots. None of the additional data analysed in this chapter ex-

hibited any interesting results. In Figure 1 of this chapter, any locational importance

of where a social interaction takes place can be investigated. The trajectory of the

recorded bee is depicted in black. The closest bee at any given time point is plotted

in the false colour of the spike activity of one unit of the recorded animal. Thus, a

location dependence could be recognised. The social context of certain places could

be revealed this way. However, this must be treated with caution as the bee in this

example was visiting the upper area only once. The heightened spike rate in this area

may not be correlated with the closer distance to the brood. None of the recorded

bees made any repetitive visiting of places that were accompanied by different spik-

ing behaviours.
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Figure 6.1: Neuronal activity in context of nearby bees. The trajectory of a free-

moving bee in its hive is plotted in black. The corresponding spike activity of this bee

is plotted in false colour (colour bar on the right) at the coordinates of the closest bee

for each data point. In the upper right of the path, the activity is generally higher than

in the rest of the experiment. Since this phenomenon has continuity, any assumption

is speculative (dark blue represents the position of the hive exit; light blue represents

the area of the queen group at the time of the experiment).

Nevertheless, the recorded bee and its locational in relation to any approaching

bee may be of importance when one explores social correlates. Therefore, the relative

distance and direction from the view of the recorded bee were analysed. The direction

of the approaching bee was computed relative to the long axis of the recorded bee

and the distance between the two bees. The result for one bee can be seen in Fig. 6.2.

There seems to be no difference in spike activity when the recorded bee is approached

from the back or front side. The distance indicates a trend of higher spike rates for

smaller distances. The spike rate distribution and distance from the recorded bee to

the closest bee was plotted separately, and it also confirmed this trend. In detail, low

spike frequency was present at all distances, but high frequencies were more frequent

at close distances (data not provided).
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Figure 6.2: Neuronal activity in context of relative positions of the closest bee to the

recorded bee. These coordinates are plotted for any given moment relative to the

recorded bee positioned at the centre (white star) facing upwards (bee pictogram’s

upper left). The neuronal activity as spike frequency is plotted as the false colour on

top of the associated coordinates of the bee with the closest distance to the recorded

bee. No correlation was found concerning direction. A weak trend of higher neuronal

activity for coordinates of bees particularly close to the recorded bees can be seen.

Angular properties of the bees’ behaviour are analysed to some extent in Chapter

2. Here, I further investigate any possible correlations. Therefore, the occurrence of

directions the recorded bee was facing were summed up (Fig. 6.3 a, b) to not falsely

assume any relationships out of unequal angular distributions. With that in mind, one

can appropriately evaluate the spike-rate distribution in relation to the head direction

of the recorded bee (Fig. 6.3 c, d). Furthermore, the distribution of the spike rate of

the recorded bee was analysed in relation with the angle of an approaching be relative

to the long body axis of the recorded bee (Fig. 6.3 e, f). Neither the presented example

nor the rest of the data that were analysed produced any trends in this regard. The

head direction of the recorded bee was investigated in relation to the coordinates of
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relevant places such as the entrance and the brood nest. This analysis was not fruitful.

None of the bees changed their recorded spike activity towards any of those places in

a meaningful way.
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Figure 6.3: Circular analysis of orientation and approach direction of one exemplary

animal. a, b Orientation of the recorded bee in relation to the arena. Distribution of

occurrences per angle the bee was captured every 100 ms over the duration of the

experiment. The plot on the right is the circular equivalent of the one on the left. A

head direction of 0° corresponds to a bee facing up, and 270° corresponds to the wall

that contains the exit tube. The bee in this example was facing downwards slightly

more than any other direction. c, d Spike activity per orientation of the recorded

bee in relation to the arena. Distribution of spike frequency for every angle the bee

was captured each 100 ms over the duration of the experiment. The plot on the

right is the circular equivalent of the average spike frequency of the plot on the left.

There is no correlation between the spike activity and the orientation of the bee in the

arena (Kuiper test of circular statistics, p = 0.47). e, f Distribution of spike frequency

per approaching angle of the closest bee to the recorded bee. The angle and spike

frequency were captured for each 100 ms over the duration of the experiment. The

plots on the right (b, d, f) is the circular equivalent of the average spike frequency

of the plot on the left. There is no correlation between the spike activity and the

approaching angle.
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The main goal of the current study was to investigate neuronal correlates of social

interactions. The bees’ social events in which we were most interested are as follows:

following a dance, performing a dance, interacting with the queen or the brood and

socially interacting with hive mates. Unfortunately, in all of our data, we could only

observe the last behaviour. This behaviour was only observed in eight experiments

that were frequent enough for us to analyse any correlation. Social interactions were

defined as the moment when a bee approaches the recorded bee from far to the point

where the distance between the two bees was close enough that they had to either

touch or at least acknowledge each other. In particular, a social interaction happened

when the recorded bee had no bee closer than 10 cm to it and only one bee ap-

proached the recorded bee closer than 1 cm. The moment these conditions were met

are henceforth referred to as social interaction. The quality of the video prohibited

any evaluation of antennation or proboscis extension. These events and a certain time

window before and after were extracted from the behavioural and neuronal data. Ini-

tially. the time windows were chosen to be one second before and after the interaction.

This did not have any effects. The windows were further enlarged gradually for all

the experiments and started to be interesting when they were longer than 20 s. The

longest period of time that was showing peak differences was 12 minutes. To evaluate

them, these blocks of data were plotted one by one in order of occurrence. Plotted was

the neuronal property of interest, but only spike-rate differences were found. So, the

spike rate was plotted, and the moment of first interaction in the middle of the graph

was marked by a vertical line. This exhibited many spike-rate changes, which were

more when compared with time windows in which the bee was alone. “Alone” was

defined as an equally sized time window in which the bee was always further than

10 cm apart from the next bee. In comparison, when the bee was alone, the spike rate

was mostly stable. The interesting part of the spike rate changes in the time around

an interaction is their unreliable nature. As can be seen in Figure 4 (blue graphs),

the spike-rate changes were an increase, burst or decrease in the rate, before, during

or after the interaction. Many examples of no spike rate change in the same animal

worth mentioning. There is a spike rate difference in response to social interactions

compared to the bee being alone. However, there are many different responses that

needed to be categorised in a meaningful way. Therefore, behavioural features were
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also plotted, especially the distance of the approaching bee and the walking speed

of the recorded bee (Fig. 4). All other properties, for example, walking speed of

an approaching bee or any kind of angular information, are not presented here but

were tested. The behavioural data did not contribute to untangling different types of

neuronal responses.
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Figure 6.4: Temporal relationships between behavioural and other selected neuronal

events. Each plot illustrates an encounter of a bee with the recorded bee of one

experiment.
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continue Fig. 6.4:The graphs are in order of occurrence. The red graph represents

the distance from the closest bee to the recorded bee, and the pink vertical line depicts

the first time point of the lowest distance. The black graph represents the walking

speed of the recorded bee. There is no correlation between the walking speed or onset

of walking and the neuronal activity. The blue graph illustrates the spike activity, and

its first peak prior to the encounter was marked (the vertical green line on the light

blue background). Events without any noticeable peak or a peak outside the green

line do not have such green line. The focus of this figure is the temporal relation in

a subset of events. The delay between the spike-rate peak and the bee’s encounter

is 13 to 14 seconds. This figure indicates 15 events out of 40 that did exhibit this

phenomenon. Both events were marked by hand.

One particular case indicates regularity in their response pattern. In Figure 4, the

social interactions of an animal are presented as mentioned earlier. Of interest are the

plots with the light blue background. They illustrate occasions when the spike rate

changes peaking 13.5 s before (green vertical line) the social interaction begins. This

type of spike-rate change occurred 15 out of the 36 times in the recorded bee.

Another interesting case is illustrated in Figure 5. The spike rate increased and later

decreased over a time period of 7 minutes when the bee had an interaction with an-

other bee as well as when the recorded bee started to move. The firing rates were

elevated 5 to 10 minutes.

The only behavioural events that were related with neuronal activity changes were

social interactions and, to a less extent, the beginning of locomotion of the recorded

bee.
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Figure 6.5: Temporal relationships between behavioural and neuronal events. a Each

plot illustrates an encounter of a bee with the recorded bee (blue vertical line) of

one experiment. b Each plot illustrates the onset of movement by the recorded bee

independent of any other bee. The graphs are in order of occurrence. They show

the spike activity over a time of 12 minutes. The events are distributed fairly evenly

across a 10-hour experiment. The focus of this figure is the temporal relation in a

subset of events. The data illustrate an overall trend of an increase and a following

decrease of spike activity of the recorded units over a time frame of 5 to 10 minutes.

Both events were marked by hand.

These spike-rate changes were not consistent in their timing, duration or polarity.

To further investigate the varying spike rates, the variance of spike frequency was

computed. The variance measures how far the spike frequency in the time window

of a behavioural event spreads out from its average value. Therefore, the variance is

independent of the spike rate baseline and does only incorporate the variety of spike

frequencies within the time in question.

For the aforementioned interaction events, the variance of spike frequency was in-

vestigated with differently sized time windows to search for the greatest effect. It was

found (Fig. 6) that a window of 400 seconds resulted in the greatest variance over

the whole set of data that were eligible (>50 events/animal) for this type of analysis.
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Notably, the effect was slightly weaker when the window started at the moment of

the interaction and became stronger as time progressed. The variance of spike fre-

quency of equally sized windows over which the bees were ‘alone’ and the variance

for random events were computed. It can be seen that the distribution of all events

per category of social interaction per animal was different in most cases. The variance

distribution between ‘alone’ and ‘random’ was mostly similar, whereas the variance

distribution of the spike frequency was elevated in the cases of social interaction, i.e.

‘contact’.
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Figure 6.6: Spike frequency variance distribution in relation to social states. Eight

independent experiments are presented. The variance of spike frequency changes in

a 400 s window was computed for each social state and each experimental animal.

The social state ‘alone’ was defined by a 400 s window in which the recorded bee

had no contact with any other animal (e.g., no other bee was closer than 10 cm to the

recorded bee). The state ‘contact’ was defined as a window in which the recorded bee

was alone and one bee came closer than 1 cm to it. The moment of closest distance

between the bees was marked as the 200th second. The resulting window of 400 s

was thus 200 s both before and after the encounter. The ‘random’ states were 400

s windows randomly chosen by a script. The amount of windows per ‘alone’ and

‘contact’ state within one experiment were surprisingly similar. The amount for the

‘random’ state was chosen to be matched by the higher count of one of the naturally

occurring states.

To summarise, the recorded bees behaved properly when compared to random

bees. None of the neuronal properties, ISI, spike rate or their combination could be

correlated with any behavioural feature related to location or direction. The only

strong correlate was the variance of spike frequency in relation to social interaction.
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6.5 Discussion

The aim of the current study is to find neuronal correlates of social behaviour. Due to

the open exploratory nature of these experiments, the analysis of the resulting data

was also exploratory. The experimental bees were prepared with a two-channel extra-

cellular electrode to record extrinsic output neurons of the MB. The bees were situated

into the social context of their natural habitat, i.e. the arena.

The challenge of the analysis of an open-world approach such as the one in the cur-

rent study is the degrees of freedom. This obvious disadvantage of such an open

experimental design was still outweighed by the quality of the resulting data. From a

neuroethological point of view (Ewert 1980), it is exciting to investigate the neuronal

activity of high-order neurons of an animal that is not restrained. The animals in the

current study are neither in an unnatural position under strong illumination nor sur-

rounded by strange doors as it is the case in many electrophysiological studies. The

bee is surrounded by its peers. The light, odour and temperature in the hive are the

same for the experiment as they were before the experiment.

The honeybee can do as it pleases, so unfortunately, there is a high chance of very

little repetitions or the desired behaviour not occurring at all. My approach is to

analyse the resulting data from any possible perspective. Such a multiverse analysis

(Steegen et al. 2016) allows one to investigate any aspect that might prove meaningful

afterwards. However, it is not allowed to introduce any confirmatory analysis using

the data presented in the current study. Any hypothesis one could derive as a result

of the data cannot be tested on the same data; this is known as HARKing (hypothe-

sising after the results are known; Kerr 1998). When testing all dimensions of the data

from extracellular recording of the brain versus all dimensions of the behavioural data

extracted from the recorded videos, false negative and false positive are guaranteed.

Furthermore, the most compelling result, the increased variance of spike-rate changes

when the experimental animal is interacting, was found as a result of changing the

window sizes until they had a measurable difference (p-hacking; Head 2015).
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In Chapter 1, I illustrated the naturality of the behaviour demonstrated by the bees,

individually and as a social group. In Chapter 2, we demonstrated the stability and

quality of the electrophysiological data. Additionally, the walking speed and the turn-

ing behaviour were compared with those of random bees in the arena. Included bees

did not indicate any differences. Animals that behaved differently did so strongly;

they walked extremely slowly, if at all, or they turned only in one direction. There

were no cases that were not immediately clear while the experiment was still running.

Therefore, I can rely on the acquired data and further analyse the correlation of be-

haviour and neuronal activity.

As presented in Chapter 2 of the current study, the spike-rate baseline of the in-

vestigated neurons is much lower than it is when the animal is restrained in a bee

holder and experimented in laboratory conditions. This is also true for the data anal-

ysed here. This should be further investigated by untangling the social context and

the restrained position of the bee. Therefore, I suggest that restrained bees and free

moving bees be in their hive or in solitude under those two conditions. Preliminary

experiments have indicated that bees in an arena such as the one presented here fly

off when in solitude. When these bees have clipped wings, they explore the borders

of the arena quickly and then stop moving until they die rather quickly. All of the 10

bees tested this way died within 12 hours. Restrained bees can survive up to several

days when fed sufficiently.

The units spiked occasionally with 0.1 to 1 Hz. They also sporadically spiked with a

frequency of up to 20 Hz. The frequency changed very slowly, over minutes, between

somewhat stable values. There was no clear ON or OFF pattern. There was no pat-

tern that could be observed without relating to the behaviour. Therefore, we included

the analysis of frequency band-filtered spike rates, the interspike interval and com-

binatorial features of the spike frequency. The only correlation we found was based

on changes in spike frequency. There was no additional information extractable by

using the combinatorial spike pattern of two or more units recorded simultaneously.

This is most likely due to the small number of experiments that resulted in a multiple

of single unit activity. The intention of filtering the spike rate with a low-pass and
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a high-pass filter was to separate time into different orders of magnitude. The low-

pass filtered spike rate resulted in slow changes over minutes. I then investigated the

difference in behaviour when the rate was stable for some time and at a different sta-

ble rate for a different period of time. The high-pass filtered data would reflect quick

spike-rate changes that would more likely be connected to some behaviour in immedi-

ate temporal relation. The low-pass filtered data could be related to something such

as a state (attention, planning, etc.), whereas the high-frequency component could

code for direct responses to certain stimuli.

I investigated the special relation between the recorded bee’s position and the neu-

ronal activity in the sense of place cells and grid cells as they are known in mammals

(Moser et al. 2008). No correlations were found. This is mostly due to the small

space the bee covered in the period during the experiment. To further analyse such

types of responses, one would need to design a walking arena that is significantly

smaller. However, single bees in preliminary experiments have exhibited no walking

behaviour when in solitude. It could be possible to encage recorded bees in small sub-

sections within the arena to investigate place and grid cells. With such a motivation,

recording from the central complex (CC) would also be worth considering (Pfeiffer

and Homberg 2014). The orientation of the recorded bee relative to the arena as well

as another bee that approached the recorded bee and thus the gravitational force were

analysed. No correlation was found. One could further investigate indoor navigation

by recording from the CC (Homberg 2004, Homberg et al. 2011, Seelig and Jayaraman

2013, Neuser et al. 2008). The social behaviour of the honeybee is of central interest

in the current study. Therefore, I investigated spatial relations with the focus on so-

cial areas and events. I analysed the positions where social interactions occurred in

search of context-dependent spike-rate changes (Gerber and Menzel 2000, Filla and

Menzel 2015). I could not observe any correlations; this might be related to the small

proportion of the arena the bees explored during the experiments. In different time

windows of social interactions, the spike rate varied. It varied stronger then when the

recorded bee was ‘alone’ in many cases. This unspecific correlation could not be tied

to any behaviourally relevant condition. This might be of importance in determin-

ing which bee is in motion and approaching another one. There was no correlation
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in such or any other way. This might be related to the small number of repetitions.

Even though there were around 100 interactions per experiment, when divided based

on approaching angle, walking speed, location or other factors, the number of occur-

rences per group is too small to give any insights.

The duration of the time windows that evoked the highest variance were surpris-

ing. The spike rate changed before, during and after interactions in seconds up to a

few minutes. It was suggested that the MB is involved in the temporal integration of

sensory signals (Schürmann 1987, Erber et al. 1987). There is evidence for plasticity

at the input of ENs (Menzel and Manz 2005, Menzel 2012) and the coding of valency

(Aso et al. 2014). These neurons can distinguish rewarded stimuli from non-rewarded

stimuli (Strube-Bloss et al. 2011, 2016; Menzel 2014).

Interpretation of the results at this point is fairly speculative. The changed spike activ-

ity includes long, short, increased or decreased changes before, during or after social

interactions. What I call social interaction here might include occasions on which the

bees exhibited behaviour of antennation, feeding or only siting close to each other.

There are too many possibilities to get to any conclusion. Therefore, I suggest getting

more control of the experimental design. One feasible way would be to use cameras

with a spatial and temporal resolution that would allow the identification of anten-

nal and proboscis movement. It would be interesting to correlate each component of

antennal movement with a high temporal resolution to correlate this important social

behaviour with the neuronal activity. An effortless alternative would be to attach the

recorded bee in some way at a location of interest. This would hinder the bee from

free movement but allow for close recording, thus resulting in high spatial resolution.

The position of interest would include the dance floor and the immediate proximity

to the queen. This would enable one to correlate the different frequencies involved

in the dancing behaviour of honeybees with high-order neurons. The movement of a

dancing bee’s abdomen and wings together as well as its distance from the recorded

bee’s head and the movement of its antenna would be very intruiging to correlate

with the recorded bees neuronal activity. This should be repeated for many dances

for different locations by different dancers.
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A promising way of further controlling the experimental conditions without losing

the existing natural conditions is to involve an automatic feeding machine. Such a

device was preliminarily tested, and it worked just fine. It supplies a sucrose solution

and an optic stimulus for a short period of time. This repeats in a loop with breaks of

a few minutes. The first tests have indicated that the bees use the automatic feeder to

gather the sucrose solution (data not shown). The bees interact with the device after

a while only when the optic stimulus is present. In the context of our experiments,

it would be useful to record from a bee with experience with the feeding device. It

then would, most likely, continue to gather the sucrose solution when the stimulus

is present and pass on the solution to a honey-processing bee. The recorded bee

might move back and forth between the feeding device and honey-processing bees. It

would plan, navigate, expect, be rewarded and interact socially in the process. If we

can make that work, this series of behaviours could appear over and over again. The

indoor foraging in general could be seen many times in this experimental set-up. The

analysis of such an experiment would be straightforward. Every elemental behaviour

such as the approach of the feeder can be pooled, and the neuronal activity changes

can be investigated. Of special interest would be how the spike activity relates to

unforeseen situations. We could easily change certain parameters such as the sucrose

concentration and supply duration as well as the optic stimulus colour. How does the

bee’s brain respond to such changes?

By implementing the aforementioned adaptations, I am confident about exploring

the neural correlates of natural behaviours further.
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7 General Discussion

The aim of the current study is the correlation of neuronal activity and social be-

haviour of honeybees. I demonstrate that the bees as a colony behaved as one would

expect under natural conditions. The experimental bee displayed no difference in be-

haviour compared to any other bee. The electrophysiological data did not differ in

signal-to-noise ratio or sortability when compared to traditional set-ups with tethered

bees. The multiverse analysis in which I correlated any neuronal property with any

meaningful aspect of behaviour revealed an increase in variance when the experimen-

tal bee interacted socially. Later on, I discuss the use of such signals as an indicator

of cognitive abilities.

To investigate the social behaviour of honeybees on the level of neuronal activity,

an experimental set-up must provide certain properties. The housing of a bee colony

must be as close as possible to natural conditions. Additionally, the experimental bee

must be accessible so that the probes to pick up neuronal data can be connected to

a nearby data acquisition system. In this case, I used extracellular recording tech-

niques. A 1m long two-channel electrode was utilised. One end of the electrode, the

one connected to the amplifier of the data acquisition set-up, constituted a fixed point

in space. The bee must be able to move around inside the artificial hive without any

obstacles. Consequently, the colony has to be situated in a pseudo two-dimensional

arena to ensure that the fixed end of the electrode and the recorded animal always

have a line of sight. Therefore, I built a flat arena with one layer of wax on the ground.

The surrounding border walls were covered in slippery Teflon (PTFE). To make sure

the bees would not walk over each other, the number of bees per colony was con-

sidered. Furthermore, it is not possible to handle two or more recorded bees at the

same time for reasons of entanglement. Generally, the wireless alternative does exist

(Harrison et al. 2011) for bigger insects. The device Harrison use is roughly 1 cm2 in

area and has two antennae attached that are around 8 cm in length. Between honey-

comb alleys filled with other bees, this will not be suitable. Virtual reality approaches

may have their applications elsewhere (Paulk 2014), but for the investigation of social

behaviour, the temporal and spatial resolution of reality is unattainable for such ma-

chines. Especially here, where odours are most likely to play an extremely important
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role (Michener 1974, Van Zenden 2010). Thus, it would be interesting to keep track

of the flow of odours in the arena. The precise measurement of odours over time in

a two-dimensional space is unreasonable at this time. Therefore, I conclude that long

electrodes for one honeybee in a one-sided arena are for the short and medium terms

the best approach to determining neuronal correlation of social interactions.

In Chapter 1, I dissect in great detail the social behaviour of the mini-colony. No

relevant aspects of such eusocial group indicated any concerning deviation from nat-

ural conditions. The colonies used for experiments did not swarm even if they had

the opportunity. The bees cared successfully for the eggs the queen had laid. The

bees foraged nectar and pollen from nature as they would naturally. The amount of

foraged resources did not suffice due to the small number of worker bees. There-

fore, we added sucrose solution feeders. This somewhat unnatural condition did not

pose any harm to the general aim of the current study. The bees do forage, and they

communicate about profitable food sources by dancing. Under advantageous weather

conditions, dances were more than every minute observable. Additionally, the indoor

food gathering from the feeders substantiated the idea of introducing learning experi-

ments within the arena, which is discussed later on. Even as the feeders were present,

bees continued to forage outside. I investigated the circadian rhythm and found that

after some time of group forming after the initial introduction of young bees into the

arena, the bees quickly started to change their activity according to the time of day.

Although bees had dancing behaviour, the experimental bee did not attend one. Over-

all, the experimental bees did not do much. They did not explore the whole arena,

and most of them were sitting some distance away from the queen group or the brood

nest. This is not a surprise; bees rest much (Seeley 1989).

The total number of bees was considerably lower than in commercial or wild hives.

This resulted in a small amount of available wax comb, eggs laid and brood taken care

of. This is not natural but desirable; the amount of offspring matched the number of

old dying bees. All colonies that were used for experiments were rather stable in

count. The densely packed bees covered around a quarter of the area, and the loosely
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distributed bees slightly more than a quarter. The rest of the arena was empty, thus

leaving space for future experiments involving training devices.

We recorded extracellular at the beta exist of the alpha lobe; here, we expected MB

extrinsic neurons that most likely belonged to the group of A1, A2 and A4 neurons

(Rybak and Menzel 1993). We used some electrodes with a dye to check if we were

at the correct region. Since this method did not work very often, and the dye spot

was mostly larger that the region an experimenter can precisely aim for it, we rarely

made this marking. The uncertainty of what cells we record from is the pitfall of ex-

tracellular recording techniques. Nevertheless, bees cannot be genetically engineered,

yet as this is possible in fruit flies, and intracellular recordings are several orders of

magnitude more sensitive to movement. The advantage of extracellular recordings,

i.e. having some or even hundreds of electrodes (Spira and Hai 2013), is true for

larger animals. Commercially available multi-electrode arrays are larger than a hon-

eybee’s whole body. We used custom-made electrodes with two electrode wires to

get two channels; the more channels one records, the more details may be revealed

about combinatorial differences in spike shape for a reliable spike-sorting process,

even with many signals per channel. The number of wires in the current study is

two; more wires seem to be damaging to the bee’s brain. The signal-to-noise ratio of

the electrophysiological recordings was a surprise. The 1 m long two-channel copper

electrodes with a silver ground wire did not add any noise. When the recoded bee

was situated in the experimental arena, the noise level was as low as in any other

well-maintained electrophysiological set-up for restrained bees and close to the mini-

mum noise the amplifier could perform. The subsequent spike sorting did not differ

in any way from that of traditional experimental data from restrained animals in more

controlled environments.

Nevertheless, the ratio of experiments involving bees prepared with electrodes to

successful experiments was devastatingly low. It was most likely not qualitatively

different from that in any other comparable experiment with restrained bees, and the

percentage of electrodes delivering neuronal signals was as expected as long as the

bee was still restrained. The difference derives from the bee showing behaviour af-
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ter releasing into the arena for the duration of the experiments. Here, we could see

the damage the preparation in some cases did to the animal’s behaviour. Bees that

did not behave like others in the arena behaved distinctly differently. They turned in

small cycles for an hour or so and died. In those cases, we assume that the prepara-

tion of the electrode destroyed the bees’ important neurons. There are experimental

approaches carried out by other research groups involving free movement of extra-

cellularly recorded insects such as the cockroach (Mizunami et al. 1998, Takeuchi et

al. 2004, Mu and Ritzmann 2005, Guo et al. 2014, the dragonfly (Harrison et al. 2011,

Thomas et al. 2011) and the locust (Fischer et al. 1996). However, those insects walk

or fly in solitude. They do not feature a rich repertoire of behaviours as the honeybee

does. These experiments are mostly aimed at walking behaviour and motor activity.

The cockroach, the dragonfly and the desert locust are substantially larger than a bee,

so they can carry much larger devices, and thicker or more electrodes can be used on

them.

As described earlier, bees rest for a considerable amount of time, and even though

they do a decent amount of patrolling (Seeley 1989), they did not explore the arena

for several occasions as it would be necessary to investigate indoor navigation or

concepts such as the mammalian place and grid cells. I invested the head direction

with respect to gravitation, meaningful places such as the hive entrance as well as

the brood nest and related the angle of approaching bees towards the recorded bee.

None of those resulted in any correlation. The most interesting result with respect

to the multiverse analysis was the decreased spike-rate variance for time windows

around a social interaction when compared with equal time windows over which the

experimental bee was alone or random time windows for the overwhelming majority

of experiments. The spike frequency did not only increase or decrease before, dur-

ing or after a social interaction. All these combinations occurred within one recorded

animal. The spike frequency varied over a much larger time window as one would as-

sume. Regarding the temporal context of neuronal activity and the related behaviour

in an insect, an educated guess would aim for seconds. Notably, the strongest effect in

difference in variance of the spike rate between animals in social contact and animals

that are alone was between 40 seconds and 12 minutes.
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I presume an increase in variance of spike rates as a neuronal correlate for social

interaction. The known properties of MB output neurons are supporting that notion.

The multimodality implies that olfaction, which is important in social behaviour, vi-

sual and mechanosensory stimuli are integrated (Mobbs 1982, Rybak and Menzel

1993, Gronenberg 2001, Schröter and Menzel 2003). This already abstract informa-

tion is also coupled to some extent with valency (Aso et al. 2014 [Drosophila]). The

odour–reward association can be coded by MB output neurons (Strube-Bloss 2011).

Szyszka et al. (2008) demonstrated that Kenyon cells that give input to MB output

neurons respond to a learned odour differently than before training. The possible re-

sponses include increase, decrease and no change in activity. Filla and Menzel (2015)

found that a visual context and an olfactory cue change the firing rate of MB output

neurons after learning.

To speculate about the possible meaning of these different response patterns, the

amount of accumulated data is not sufficient. It might be that a certain combination

of relevant stimuli leads to a stable spike-rate change, and a different combination

leads to a different but stable response. To get reproducible results in this line of

thoughts, the number of social events must be much higher, and the events must be

differentiated much deeper on the behavioural level. The problem is that even though

some bees were recorded with continuous signals for up to 24 hours, the number of

recorded social events was too small. The behaviour is too multidimensional, and we

lack knowledge of the relevant signals in the spike trains. The best chances of suc-

cessfully analysing social interactions in the future are either to drastically increase

the videos’ time and spatial resolution to differentiate the behaviour much deeper or

to introduce an incentive for much more repetition of a few behaviours. The first

will happen in the medium term as consumer electronics drive developments in tech-

nology to higher bit rates, but one must not forget the additional overhead when

handling massive amounts of data. I suggest the second approach, that is, to intro-

duce an automatic feeding device (Paffhausen 2017) into the arena that can present a

colour stimulus paired with provision of the sucrose solution. Stimulus and reward

are only present for a short time; after some time, they appear again and cycle over the

93



7. General Discussion

whole time. Honeybees can associate the colour stimulus with the reward (Von Frisch

1914). In a preliminary test, I could see that the bees feed on such a device, and after

some hours, they mostly approach the device when the colour stimulus is present. In

future experiments, we would prepare with recording electrodes bees that have indi-

cated beforehand that they have learned the association between colour stimulus and

reward. When those bees are introduced back into the arena with the device, there is

a reasonable chance that after some resting time the bee will continue to interact with

the feeding device. This highly motivated bee could then collect sucrose and pass it

on to a honey-processing bee. This would hopefully continue as the device repeats

the reward and colour presentation. I have reason to believe that the experimental

bee in such circumstances would socially interact with a honey-processing bee in a

somewhat controlled and repetitive manner. Then, the bee would wait in anticipation

for the next colour stimulus. The animal would then most likely navigate to the place

where the device supplies the reward. Here, I expect some change in spike rate due

to the valency of the rewarded stimulus. There will be several very interesting be-

haviours involved. Each behaviour within one category of behaviours will be rather

stable, and the behaviour between experiments across animals will also be stable and

comparable. Even more interesting is the opportunity to manipulate any parame-

ter to the experimenters’ needs. When investigating expectation, one can change the

learned colour stimulus or the concentration of the sucrose solution. Additional dim

light sources with the learned colour stimulus can be activated at different locations

in the hive. When interested in the navigational aspect of such experiments, one can

introduce a maze that gets increasingly more difficult for the bees to solve over time

as walls are added. Since the experiments take place in the hive, many animals can

learn without any supervision or interference. A maze also lowers the amount of

bees interfering with the rewarding device (preliminary test, data not shown) what

might be desirable in some cases. In the probable case in which those experiments

can generally be carried out and the bees co-operate sufficiently, I propose cognitive

neuroethological experiments. This topic is heavily debated (Menzel and Giurfa 2001,

2006, Srinivasan 2010, Menzel 2012, Giurfa 2013, Menzel 2017). I suggest use of the

spike rate changes of the neurons investigated in the current study as indicators of

complex behaviour. The neurons we most likely recoded from integrated multimodal
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stimuli and meaning. They have mostly been input from neurons that are involved

in learning and memory. In this case, I do not plan to tie a particular behaviour with

a specific firing pattern and an identified neuron. I am rather interested in whether

certain high-order behaviour exists in the honeybee. The recorded neuronal response

may indicate attention or expectations.

This experimental set-up with the feeding device can easily be used to conduct exper-

iments involving operant learning. A capacitance sensor can be integrated to measure

the attendance of a bee at a particular position in the arena and then trigger the re-

warding colour stimulus. Therefore, we could investigate the changes in spike rate of

MB output neurons, as mentioned earlier, with the additional detour from the place

the bee needs to go to activate the rewarding stimulus. In summary, I could illustrate

that the experimental approach in the current study is suitable for recording high-

order MB output neurons of freely behaving honeybees in their natural environment.

However, the different spiking patterns that occur during social interactions could not

be clearly assigned to particular subclasses of behaviour. Therefore, I suggest the use

of higher-resolution behavioural monitoring to dissect behavioural differences more

clearly. Alternatively, I suggest the introduction of a device that motivates repetitive

indoor foraging to increase repetitive behaviour.
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Analysis of e-phys and behavioural data towards neuronal
correlates of social behaviour

The MIT License (MIT)

Copyright (c) 2017 Benjamin H Paffhausen

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%

spike2 and Tracker (Manu) - data

setup Ben for data from: Aron Isabella Inga

INPUT: 2 files that got exportet from spike2.smr to .mat unbinned

1 file from Manus Tracker (BeeTracker V1.2 (- instead of _)

->values.mat log.mat - if 0 new compute, if 1 take saved workspace.mat

OUTPUT: plots(not saved) and the workspacxeFULL.mat at the very end

 

clear all
close all

start

tic
figure_position1 = [2840 1080 1000 1080];   % upper window [2840 1080 1000 1080]
figure_position2 = [2840 0 1000 1080];      % lower window [2840 0 1000 1080]
figure_positiondouble = [2840 0 1000 2160];      % big window [2840 0 1000 1080]



loading

cd c1511241259_001_ALL
files=dir('*359_part_Ch1u2u3u4_log.mat');
files_amount=length(files);
if files_amount==0                             % either import and format all the data
    % or if aleady done load the workspace
    load('1511241359_1_up_3.mat')
    times1 = V1511241359_002_Ch3.times;         % timepoint since recStart were is a spike
    codes1 = V1511241359_002_Ch3.codes;         % empty, templateNr
    values1 = V1511241359_002_Ch3.values;       % 1-30 show one analog template
    load('1511241359_1_down_4.mat')
    times2 = V1511241359_002_Ch4.times;         % timepoint since recStart were is a spike
    codes2 = V1511241359_002_Ch4.codes;         % empty, templateNr
    values2 = V1511241359_002_Ch4.values;       % 1-30 show one analog template
    load('1511241359_2_up_5.mat')
    times3 = V1511241359_002_Ch5.times;         % timepoint since recStart were is a spike
    codes3 = V1511241359_002_Ch5.codes;         % empty, templateNr
    values3 = V1511241359_002_Ch5.values;       % 1-30 show one analog template
    load('1511241359_2_down_6.mat')
    times4 = V1511241359_002_Ch6.times;         % timepoint since recStart were is a spike
    codes4 = V1511241359_002_Ch6.codes;         % empty, templateNr
    values4 = V1511241359_002_Ch6.values;       % 1-30 show one analog template
    clear V15*;
    cd c1511241359_002-1;
    files_track=dir('*values.mat');
    load(files_track.name)

data formating, time down, all end at 36006, cleaned from no tracking

    has_frame=has_frame';                       %time down
    has_frame=abs((has_frame*2)-1);
    object_count=object_count';                 %time down
    weite=size(x);                              % 12...
    dauer=weite(1);
    weite=weite(2);
    temparray=zeros(sum(has_frame),weite);

other hiRes spikeformat, 10x res - new rAver + mean

    spikes1=zeros(10*(dauer),1);
    spikes2=zeros(10*(dauer),1);
    spikes3=zeros(10*(dauer),1);
    spikes4=zeros(10*(dauer),1);
    isi1=zeros((dauer),1);
    isi2=zeros((dauer),1);
    isi3=zeros((dauer),1);
    isi4=zeros((dauer),1);
    for i= 2:dauer*10
        spikes1(i)=length(times1(times1<(i/100) & times1>((i-1)/100)));
        spikes2(i)=length(times2(times2<(i/100) & times2>((i-1)/100)));
        spikes3(i)=length(times3(times3<(i/100) & times3>((i-1)/100)));
        spikes4(i)=length(times4(times4<(i/100) & times4>((i-1)/100)));
    end
    
    isiNOW=zeros(20,1);



    k=1;
    h=1;
    for i=2:length(times1)
        if times1(i) >= k/10
            isi1(k)=max(isiNOW);
            k=k+1;
            h=1;
            isiNOW=zeros(20,1);
        end
        if k<=dauer
            isiNOW(h)=(times1(i)-times1(i-1));%+isi1(k);
            h=h+1;
        end
    end
    
    isiNOW=zeros(20,1);
    k=1;
    h=1;
    for i=2:length(times2)
        if times2(i) >= k/10
            isi2(k)=max(isiNOW);
            k=k+1;
            h=1;
            isiNOW=zeros(20,1);
        end
        if k<=dauer
            isiNOW(h)=(times2(i)-times2(i-1));%+isi1(k);
            h=h+1;
        end
    end
    
    isiNOW=zeros(20,1);
    k=1;
    h=1;
    for i=2:length(times3)
        if times3(i) >= k/10
            isi3(k)=max(isiNOW);
            k=k+1;
            h=1;
            isiNOW=zeros(20,1);
        end
        if k<=dauer
            isiNOW(h)=(times3(i)-times3(i-1));%+isi1(k);
            h=h+1;
        end
    end
    
    isiNOW=zeros(20,1);
    k=1;
    h=1;
    for i=2:length(times4)
        if times4(i) >= k/10
            isi4(k)=max(isiNOW);
            k=k+1;
            h=1;
            isiNOW=zeros(20,1);
        end
        if k<=dauer
            isiNOW(h)=(times4(i)-times4(i-1));%+isi1(k);
            h=h+1;
        end



    end
    
    spikes1_smooth=smooth(spikes1,10);
    spikes2_smooth=smooth(spikes2,10);
    spikes3_smooth=smooth(spikes3,10);
    spikes4_smooth=smooth(spikes4,10);
    spikes1_down=zeros(dauer,1);
    spikes2_down=zeros(dauer,1);
    spikes3_down=zeros(dauer,1);
    spikes4_down=zeros(dauer,1);
    spikes1_down_neu=zeros(dauer,1);
    spikes2_down_neu=zeros(dauer,1);
    spikes3_down_neu=zeros(dauer,1);
    spikes4_down_neu=zeros(dauer,1);
    
    for i = 1:dauer
        spikes1_down_neu(i)=mean(spikes1(((i*10)-9):((i*10))))*10;
        spikes2_down_neu(i)=mean(spikes2(((i*10)-9):((i*10))))*10;
        spikes3_down_neu(i)=mean(spikes3(((i*10)-9):((i*10))))*10;
        spikes4_down_neu(i)=mean(spikes4(((i*10)-9):((i*10))))*10;
    end
    for i = 1:dauer
        spikes1_down(i)=mean(spikes1_smooth(((i*10)-9):((i*10))))*10;
        spikes2_down(i)=mean(spikes2_smooth(((i*10)-9):((i*10))))*10;
        spikes3_down(i)=mean(spikes3_smooth(((i*10)-9):((i*10))))*10;
        spikes4_down(i)=mean(spikes4_smooth(((i*10)-9):((i*10))))*10;
    end
    for j=1:weite                % only tracked parts stay
        temp=x(:,j);
        temparray(:,j)=temp(has_frame~=0);
    end
    x=temparray;
    for j=1:weite
        temp=y(:,j);
        temparray(:,j)=temp(has_frame~=0);
    end
    y=temparray;
    for j=1:weite
        temp=angle(:,j);
        temparray(:,j)=temp(has_frame~=0);
    end
    angle=temparray;
    for j=1:weite
        temp=distance(:,j);
        temparray(:,j)=temp(has_frame~=0);
    end
    distance=temparray;
    for j=1:weite
        temp=distance_to_main(:,j);
        temparray(:,j)=temp(has_frame~=0);
    end
    distance_to_main=temparray;
    for j=1:weite
        temp=id(:,j);
        temparray(:,j)=temp(has_frame~=0);
    end
    id=temparray;
    for j=1:weite
        temp=rel_angle(:,j);
        temparray(:,j)=temp(has_frame~=0);
    end



    rel_angle=temparray;
    object_count=object_count(has_frame~=0);
    spikes1_down_neu=spikes1_down_neu(has_frame~=0);
    spikes2_down_neu=spikes2_down_neu(has_frame~=0);
    spikes3_down_neu=spikes3_down_neu(has_frame~=0);
    spikes4_down_neu=spikes4_down_neu(has_frame~=0);
    spikes1_down=spikes1_down(has_frame~=0);
    spikes2_down=spikes2_down(has_frame~=0);
    spikes3_down=spikes3_down(has_frame~=0);
    spikes4_down=spikes4_down(has_frame~=0);
    isi1=isi1(has_frame~=0);
    isi2=isi2(has_frame~=0);
    isi3=isi3(has_frame~=0);
    isi4=isi4(has_frame~=0);
    distance_to_main(distance_to_main==0)=NaN;
    x = double(x);
    y = double(y);
    angle=double(angle);
    distance_to_main=double(distance_to_main);
    id=double(id);
    object_count=double(object_count);
    rel_angle=double(rel_angle);
    x(x ==0) = nan;
    y(y ==0) = nan;
    y = 1200-y;         % mirror video upside down
    angle=angle-90;
    angle=mod(angle,360);
    for j=1:12
        for i=1:length(angle(:,j))-1
            if abs(angle(i,j)-angle(i+1,j))>130 && abs(angle(i,j)-angle(i+1,j))<200
                angle(i+1,j)=mod((angle(i+1,j)-180),360);
            end
        end
    end
    
    clear temp*;
    log=1;
    FileNameLog=[datestr(now, 'yyyy-mm-dd'),'_1511241359_part_Ch1u2u3u4_log.mat'];
    save(FileNameLog,'log')
    FileName=[datestr(now, 'yyyy-mm-dd'),'_1511241359_part_Ch1u2u3u4_workspace.mat'];
    save(FileName)
else
    workspace_file=dir('*359_part_Ch1u2u3u4_workspace.mat');
    workspace=workspace_file.name;
    load(workspace)
    cd ..
end
disp('data complete')

variables

distance_speed_threshold = 50;              % walkingspeed threshold [50]
rAverageSpeed_size = 50;                    % average' breite [50]
angle_resolution = 36;                      % polarPlot bin'ing [36]
turning_angle_smooth = 10;                  % bin'ing for direction/angle, 360-0° [10]
binning_dist=100;
binning_speed=100;
track_bins=50;
step_behavior=100;



density_plot_scaler=10;
rAverage1 = smooth(spikes1_down,5);         % smoothed beforehand by 10
rAverage2 = smooth(spikes2_down,5);
rAverage3 = smooth(spikes3_down,5);
rAverage4 = smooth(spikes4_down,5);
 
max1=max(rAverage1);
max2=max(rAverage2);
if max2<max1                                % the bigger rAverage max stays for both colorbars
    max2=max1;
end

spikeshape overlay Unit 1 2 3 4 [1]

figure('OuterPosition',figure_position1)
subplot(2,2,1)
valuesHK1=values1';
plot(valuesHK1(:,1:100:end))
set(gca,'YDir', 'reverse')
str = {'spikes in Unit1: ',length(values1),'spikes displayed:',floor(length(values1)/100)};
annotation('textbox',[.2 .6 .3 .3],'String',str,'FitBoxToText','on');
subplot(2,2,2)
valuesHK2=values2';
plot(valuesHK2(:,1:100:end))
set(gca,'YDir', 'reverse')
str = {'spikes in Unit2: ',length(values2),'spikes displayed:',floor(length(values2)/100)};
annotation('textbox',[.7 .6 .3 .3],'String',str,'FitBoxToText','on');
subplot(2,2,3)
valuesHK3=values3';
plot(valuesHK3(:,1:100:end))
set(gca,'YDir', 'reverse')
str = {'spikes in Unit3: ',length(values3),'spikes displayed:',floor(length(values3)/100)};
annotation('textbox',[.2 0 .3 .3],'String',str,'FitBoxToText','on');
subplot(2,2,4)
valuesHK4=values4';
plot(valuesHK4(:,1:100:end))
set(gca,'YDir', 'reverse')
str = {'spikes in Unit4: ',length(values4),'spikes displayed:',floor(length(values4)/100)};
annotation('textbox',[.7 0 .3 .3],'String',str,'FitBoxToText','on');

rAverage combinatoric 4x [2]

figure('OuterPosition',figure_position1)
subplot(2,2,1)
scatter(rAverage2,rAverage3,[],rAverage1,'filled')
title('rAverage2,rAverage3,[],rAverage1')
subplot(2,2,2)
scatter(rAverage3,rAverage4,[],rAverage2,'filled')
title('rAverage3,rAverage4,[],rAverage2')
subplot(2,2,3)
scatter(rAverage4,rAverage1,[],rAverage3,'filled')
title('rAverage4,rAverage1,[],rAverage3')
subplot(2,2,4)
scatter(rAverage1,rAverage2,[],rAverage4,'filled')% spikerate over time rAverage1
title('rAverage1,rAverage2,[],rAverage4')



rAverage 1-4 timePlot [3]

figure('OuterPosition',figure_position1)
subplot(2,2,1)
plot(rAverage1*10)
title('spikerate over time rAverage1 in Hz')
subplot(2,2,2)
plot(rAverage2*10)
title('spikerate over time rAverage2 in Hz')
subplot(2,2,3)
plot(rAverage3*10)
title('spikerate over time rAverage3 in Hz')
subplot(2,2,4)
plot(rAverage4*10)
title('spikerate over time rAverage4 in Hz')

rAverage combinatoric 4x rAverage1_delta [4 & 5]

rAverage1_low=smooth(rAverage1,100);
rAverage2_low=smooth(rAverage2,100);
rAverage3_low=smooth(rAverage3,100);
rAverage4_low=smooth(rAverage4,100);
rAverage1_delta=rAverage1_low-rAverage1;
rAverage2_delta=rAverage2_low-rAverage2;
rAverage3_delta=rAverage3_low-rAverage3;
rAverage4_delta=rAverage4_low-rAverage4;
figure('OuterPosition',figure_position2)
subplot(2,2,1)
scatter(rAverage2_delta,rAverage3_delta,[],rAverage1_delta,'filled')
subplot(2,2,2)
scatter(rAverage3_delta,rAverage4_delta,[],rAverage2_delta,'filled')
subplot(2,2,3)
scatter(rAverage4_delta,rAverage1_delta,[],rAverage3_delta,'filled')
subplot(2,2,4)
scatter(rAverage1_delta,rAverage2_delta,[],rAverage4_delta,'filled')
figure('OuterPosition',figure_position1)
subplot(2,2,1)
plot(rAverage1_delta)
subplot(2,2,2)
plot(rAverage2_delta)
subplot(2,2,3)
plot(rAverage3_delta)
subplot(2,2,4)
plot(rAverage4_delta)

plot rAverage 1-4 LOW [6 & 7]

figure('OuterPosition',figure_position1)
plot([rAverage1_low rAverage2_low rAverage3_low rAverage4_low])
figure('OuterPosition',figure_position2)
plot([rAverage1 rAverage2 rAverage3 rAverage4])

spikerate over time rAverage2 [8]



figure('OuterPosition',figure_position2)
plot(rAverage2*10)
title('spikerate over time rAverage2')

trajectorie peripherie bienen / recBee [9]

figure('OuterPosition',figure_position1)
title('recBee trajectory over periferBees')
xlabel('video width in pixel')
ylabel('video hight in pixel')
hold on
plot(x(:,2:12),y(:,2:12),'c.')      % einfarbig
plot(x(:,1),y(:,1))                 % trajektorie Rec Bee
xlim([0 1600]);
ylim([0 1200]);
axis equal
hold off

neuro falsecolor over track rAverage1 [10]

figure('OuterPosition',figure_position1)
scatter(x(:,1),y(:,1),[],rAverage1,'filled')
title('trajectory of recBee, neuronal activity false color rAverage1')
colorbar
caxis([0 max1])

neuro falsecolor over track rAverage2 [11]

figure('OuterPosition',figure_position2)
scatter(x(:,1),y(:,1),[],rAverage2,'filled')
title('trajectory of recBee, neuronal activity false color rAverage2')
colorbar
caxis([0 max1])

unit1/unit2 TIMERESOLUTION [12]

figure('OuterPosition',figure_position2)
a = 10;
c = linspace(1,60,length(rAverage1));
scatter(rAverage1,rAverage2,a,c,'filled')
axis equal
axis square
title('Unit2 over Unit1, time cource color coded')
xlabel('sp.Frequency Unit1 in spikes/frame')
ylabel('sp.Frequency Unit2 in spikes/frame')
colorbar
clear a;
clear c;

ISI1 & ISI2 TIMERESOLUTION [13]



figure('OuterPosition',figure_position2)
c = linspace(1,60,length(rAverage1));
scatter(isi1,isi2,10,c,'filled')
title('ISI1 over ISI2, time cource color coded')
xlabel('ISI in sec')
ylabel('ISI in sec')
colorbar
clear c;

ISI1 VS ISI2 VS rAverage1 VS rAvewrage2 DIAGONAL HIST [14]

figure('OuterPosition',figure_positiondouble)
X=[isi1,isi2,isi3,isi4,rAverage1,rAverage2,rAverage3,rAverage4];
plotmatrix(X)
[S,AX,BigAx,H,HAx] = plotmatrix(X);
ylabel(AX(1),'ISI1')
ylabel(AX(2),'ISI2')
ylabel(AX(3),'ISI3')
ylabel(AX(4),'ISI4')
ylabel(AX(5),'rAverage1')
ylabel(AX(6),'rAverage2')
ylabel(AX(7),'rAverage3')
ylabel(AX(8),'rAverage4')
xlabel(AX(8),'ISI1')
xlabel(AX(16),'ISI2')
xlabel(AX(24),'ISI3')
xlabel(AX(32),'ISI4')
xlabel(AX(40),'rAverage1')
xlabel(AX(48),'rAverage2')
xlabel(AX(56),'rAverage3')
xlabel(AX(64),'rAverage4')

unit1/unit2 NOW IN 3D [15]

testrAverage1=ceil(density_plot_scaler*(rAverage1)/3);
testrAverage2=ceil(density_plot_scaler*(rAverage2)/3);
testrAverage1(testrAverage1==0)=1;
testrAverage2(testrAverage2==0)=1;
unit_hist=zeros(max(testrAverage1), max(testrAverage2));
for i=1:length(rAverage1)
    unit_hist(testrAverage1(i),testrAverage2(i))=unit_hist(testrAverage1(i),testrAverage2(i))+1;
end
unit_hist=sqrt(unit_hist);
figure('OuterPosition',figure_position1)
surface(unit_hist(2:end,2:end),'edgecolor','none')
%view(3)
title('Unit2 over Unit1 - density plot  WURZEL GEZOGEN!!!!!')
xlabel('sp.Frequency rAverage1 WURZEL GEZOGEN!!!!!')
ylabel('sp.Frequency rAverage2 WURZEL GEZOGEN!!!!!')
colorbar

unit1/unit2 NOW IN 3D TIMEBLOCKER (5min) 1/2 & 2/1 [16]

figure('OuterPosition',figure_position1)
for j=1:12



    subplot(2,12,j)
    unit_hist=zeros(max(testrAverage1), max(testrAverage2));
    for i=1+(floor(length(rAverage1)/12)*(j-1)):floor(length(rAverage1)/12)*j
        unit_hist(testrAverage1(i),testrAverage2(i))=unit_hist(testrAverage1(i),testrAverage2(i))+1;
    end
    unit_hist=sqrt(unit_hist);
    surface(unit_hist)
    k=.0765*(j-1)+.01;
    set(gca,'Position',[k .52 .075 .45])
    %set(gca, 'ZScale', 'log')
end
str = {'Unit2 over Unit1'};
annotation('textbox',[.8 .6 .3 .3],'String',str,'FitBoxToText','on','EdgeColor','none');
for j=1:12
    subplot(2,12,j+12)
    unit_hist=zeros(max(testrAverage1), max(testrAverage2));
    for i=1+(floor(length(rAverage1)/12)*(j-1)):floor(length(rAverage1)/12)*j
        unit_hist(testrAverage1(i),testrAverage2(i))=unit_hist(testrAverage1(i),testrAverage2(i))+1;
    end
    unit_hist=sqrt(unit_hist);
    surface(unit_hist')
    k=.0765*(j-1)+.01;
    set(gca,'Position',[k .02 .075 .45])
    %set(gca, 'ZScale', 'log')
end
str = {'Unit1 over Unit2'};
annotation('textbox',[.8 .1 .3 .3],'String',str,'FitBoxToText','on','EdgeColor','none');

unit1/unit2 spikeHistogramm - timeResolution [17]

figure('OuterPosition',figure_position1)
rAverage1_1000=smooth(rAverage1,1000);       % rolling average 5 werte gemittelt (standart)
rAverage2_1000=smooth(rAverage2,1000);
scatterhist(rAverage1_1000,rAverage2_1000,'MarkerSize',1)
axis square
axis equal
title('Unit2 over Unit1 rAverage 2min')
xlabel('sp.Frequency # Unit1 in spikes/frame')
ylabel('sp.Frequency # Unit2 in spikes/frame')
clear rAverage1_1000;
clear rAverage1_1000;

unit1/unit2 spikeHistogramm RolAverage [18]

figure('OuterPosition',figure_position2)
scatterhist(rAverage1,rAverage2,'MarkerSize',1)
axis square
axis equal
title('Unit2 over Unit1 rAverage')
xlabel('sp.Frequency # Unit1 in spikes/frame')
ylabel('sp.Frequency # Unit2 in spikes/frame')

isi1/isi2 spikeHistogramm interspikeIntervall [19]

figure('OuterPosition',figure_position2)



scatterhist(isi1,isi2,'MarkerSize',1)
axis square
axis equal
title('Unit2 over Unit1 ISI')
xlabel('interspikeInterval # Unit1 in sec')
ylabel('interspikeInterval # Unit2 in sec')

distance/speed periferBees

distance > 50 = sprünge - entfernen

speed=zeros(size(x));
for i=1:length(x)
    for j=1:12
        if distance(i,j)<distance_speed_threshold
            speed(i,j)=distance(i,j);
        end
    end
end
% rolling average speed zu rAverageSpeed
rAverageSpeed=zeros(size(x));
for i=1:12
    rAverageSpeed(:,i)=smooth(speed(:,i),rAverageSpeed_size);
end

Histogramm RecBee SPEED [20]

figure('OuterPosition',figure_position1)
hist(rAverageSpeed(:,1),1000)
title('walking speed, averaded, histo of RecBee')
xlabel('speed in pixel/frame')
ylabel('#')
xlim([0 10])

RecBee SPEED vs spiking [21]

rAverageSpeed_rAverage1 = [rAverageSpeed(:,1), rAverage1];
rAverageSpeed_rAverage1_sort=sortrows(rAverageSpeed_rAverage1);
speed_hist_rAverage1=zeros(floor(10*length(x)/binning_speed),binning_speed);
speed_hist_rAverage1(speed_hist_rAverage1==0)=nan;
max_speed=max(rAverageSpeed_rAverage1_sort(:,1));
step_speed=max_speed/binning_speed;
j=1;
k=1;
for i=1:length(x)
    if  rAverageSpeed_rAverage1_sort(i,1)<step_speed*j && rAverageSpeed_rAverage1_sort(i,1)...
            >= step_speed*(j-1)
        speed_hist_rAverage1(k,j)=rAverageSpeed_rAverage1_sort(i,2);
        k=k+1;
    else
        speed_hist_rAverage1(1,j+1)=rAverageSpeed_rAverage1_sort(i,2);
        j=j+1;
        k=2;
    end
end



speed_hist_rAverage1=speed_hist_rAverage1(:,1:end-1);
figure('OuterPosition',figure_position1)
subplot(3,1,1)
boxplot(speed_hist_rAverage1)
title('walking speed, averaded vs rAverage1 spike activity')
xlabel('speed from lowest to highest')
ylabel('spikes per frame')
 
speed_hist_rAverage1_amount=NaN(1,binning_speed);
for i=1:size(speed_hist_rAverage1,2)
    speed_hist_rAverage1_amount(i)=sum(isnan(speed_hist_rAverage1(:,i)));
end
subplot(3,1,2)
plot((size(speed_hist_rAverage1,1))-speed_hist_rAverage1_amount);
title('walking speed, ocurance')
xlabel('speed from lowest to highest')
ylabel('#')
 
rAverageSpeed_rAverage2 = [rAverageSpeed(:,1), rAverage2];
rAverageSpeed_rAverage2_sort=sortrows(rAverageSpeed_rAverage2);
speed_hist_rAverage2=zeros(floor(10*length(x)/binning_speed),binning_speed);
speed_hist_rAverage2(speed_hist_rAverage2==0)=nan;
j=1;
k=1;
for i=1:length(x)
    if  rAverageSpeed_rAverage2_sort(i,1)<step_speed*j && rAverageSpeed_rAverage2_sort(i,1)...
            >= step_speed*(j-1)
        speed_hist_rAverage2(k,j)=rAverageSpeed_rAverage2_sort(i,2);
        k=k+1;
    else
        speed_hist_rAverage2(1,j+1)=rAverageSpeed_rAverage2_sort(i,2);
        j=j+1;
        k=2;
    end
end
speed_hist_rAverage2=speed_hist_rAverage2(:,1:end-1);
subplot(3,1,3)
boxplot(speed_hist_rAverage2)
title('walking speed, averaded vs rAverage2 spike activity')
xlabel('speed from lowest to highest')
ylabel('spikes per frame')

Histogramm periferBees SPEED [22]

rAverageSpeedrow=zeros(length(x)*11,1);
for j=2:12                         % all in one row for histogramm
    for i=1:size(x)
        rAverageSpeedrow(i+(size(x)*(j-2)))=rAverageSpeed(i,j);
    end
end
figure('OuterPosition',figure_position2)
hist(rAverageSpeedrow,1000)
xlim([0 10])
ylim([0 20000])
title('walking speed, averaded, histo of periferBees')
xlabel('speed in pixel/frame')
ylabel('#')



angle distro of rec bee PolarPlot [23]

figure('OuterPosition',figure_position2)
rad_angle=degtorad(angle(:,1));
rose(rad_angle,180)
title('angular distribution of RecBee')

turning directions [24]

turn=zeros(length(x),1);
smooth_angle=smooth(angle(:,1),turning_angle_smooth);
for i=1:length(x)-60
    turn(i)=angle(i,1)-angle(i+1,1);
end
direction_hist=hist(turn);      % 2 and 9 turn oder 360; 5-decrease, 6 increase
disp('left turns:')
disp(direction_hist(5))
disp('right turns:')
disp(direction_hist(6))
disp('left turnsovers:')
disp(sum(direction_hist(1:2)))
disp('right turnsovers:')
disp(sum(direction_hist(9:10)))
 
 
% angle over time RecBee
figure('OuterPosition',figure_position1)
subplot(2,1,1);
plot(angle(:,1));
xlabel('time in frames')
ylabel('angle of recBee in degree')
title('angular orientation over time of RecBee')
testtext=0;
angle_full=angle(:,1);
for i=1:length(x)-1
    if angle_full(i)-angle_full(i+1)>200
        angle_full(i+1:end)=angle_full(i+1:end)+360;
        testtext=testtext+1;
    elseif angle_full(i+1)-angle_full(i)>200
        angle_full(i+1:end)=angle_full(i+1:end)-360;
    end
end
subplot(2,1,2);
str = {'overall turns: ',floor((angle_full(end)-angle_full(1))/360)};
annotation('textbox',[.2 0 .3 .3],'String',str,'FitBoxToText','on','EdgeColor','none');
plot(angle_full)
xlabel('time in frames')
ylabel('angle of recBee in degree')
title('angular orientation over time of RecBee cumulative (360° = 0°)')

Activity1 per angel [25 & 26]

figure('OuterPosition',figure_position1)
angle_resolution_corr=360/angle_resolution;
angleUnits=zeros(floor((length(x)/100)*angle_resolution_corr),angle_resolution);
angleUnits(angleUnits == 0) = NaN;



for j=1:angle_resolution
    h=1;
    for i=1:length(x)
        if angle(i,1) > (j-1)*angle_resolution_corr && angle(i,1) <= j*angle_resolution_corr
            angleUnits(h,j)=rAverage1(i);
            h=h+1;
        end
    end
end
boxplot(angleUnits,'plotstyle','compact','whisker',3)
ylabel('distro of spike Activity Unit1')
xlabel('angle of recBee in degree')
title('amound of spikes per frame of Unit 1 per angle RecBee')
 
% Activity2 per angel
figure('OuterPosition',figure_position2)
angle_resolution_corr=360/angle_resolution;
angleUnits=zeros(floor((length(x)/100)*angle_resolution_corr),angle_resolution);
angleUnits(angleUnits == 0) = NaN;
for j=1:angle_resolution
    h=1;
    for i=1:length(x)
        if angle(i,1) > (j-1)*angle_resolution_corr && angle(i,1) <= j*angle_resolution_corr
            angleUnits(h,j)=rAverage2(i);
            h=h+1;
        end
    end
end
boxplot(angleUnits,'plotstyle','compact','whisker',3)
ylabel('distro of spike Activity Unit1')
xlabel('angle of recBee in degree')
title('amound of spikes per frame of Unit 2 per angle RecBee')

activity1 over angle in timeColor [27 & 28]

figure('OuterPosition',figure_position1)
a = 10;
c = linspace(1,60,length(rAverage1));
scatter(rAverage1,angle(:,1),a,c,'filled')
ylim([0 360])
xlabel('spiks per frame of Unit1')                           %Label the horizontal axis
ylabel('angle of recBee')                                    %Label the vertical axis
title('angular distr. of spikeActivity of Unit1, color-timecourse')
colorbar
clear a;
 
% activity2 over angle in timeColor
figure('OuterPosition',figure_position2)
a = 10;
c = linspace(1,60,length(rAverage2));
scatter(rAverage2,angle(:,1),a,c,'filled')
ylim([0 360])
xlabel('spiks per frame of Unit1')                            %Label the horizontal axis
ylabel('angle of recBee')                                     %Label the vertical axis
title('angular distr. of spikeActivity of Unit2, color-timecourse')
colorbar
clear a;



distance to the closest periferBee over spike Activity [29]

distance_to_main_sort=distance_to_main;
distance_to_main_sort(distance_to_main == 0) = nan;           % get rid of 0's by jumps/bee changes
for i=1:length(x)
    distance_to_main_sort(i,2:12) = sort(distance_to_main_sort(i,2:12)); 
                                                              % all other then the recBee sorted
end
distance_to_main_sort_rAverage = [distance_to_main_sort(:,2),rAverage1,rAverage2]; 
                                                              % closest distance, unit1, unit2
distance_to_main_sort_rAverage = sortrows(distance_to_main_sort_rAverage);
dist_hist_rAverage1=zeros(floor(10*length(x)/binning_dist),binning_dist);
dist_hist_rAverage1(dist_hist_rAverage1==0)=nan;
dist_hist_rAverage2=zeros(floor(10*length(x)/binning_dist),binning_dist);
dist_hist_rAverage2(dist_hist_rAverage2==0)=nan;
max_dist=max(distance_to_main_sort_rAverage(:,1));
step_dist=max_dist/binning_dist;
j=1;
k=1;
for i=1:length(x)
    if  distance_to_main_sort_rAverage(i,1)<step_dist*j && distance_to_main_sort_rAverage(i,1)...
            >=step_dist*(j-1)
        dist_hist_rAverage1(k,j)=distance_to_main_sort_rAverage(i,2);
        dist_hist_rAverage2(k,j)=distance_to_main_sort_rAverage(i,3);
        k=k+1;
    else
        dist_hist_rAverage1(1,j+1)=distance_to_main_sort_rAverage(i,2);
        dist_hist_rAverage2(1,j+1)=distance_to_main_sort_rAverage(i,3);
        j=j+1;
        k=2;
    end
end
figure('OuterPosition',figure_positiondouble)
subplot(3,1,1)
boxplot(dist_hist_rAverage1)
ylabel('spiks per frame of Unit1')
xlabel('distance of closest periferBee')
title('distance to closest periferBee vs spikes per frame rollAverage, unit1')
dist_hist_rAverage1_amount=NaN(1,binning_dist);
for i=1:binning_dist
    dist_hist_rAverage1_amount(i)=sum(isnan(dist_hist_rAverage1(:,i)));
end
subplot(3,1,2)
plot((size(dist_hist_rAverage1,1))-dist_hist_rAverage1_amount);
ylabel('#')
xlabel('distance of closest periferBee')
title('distance to closest periferBee vs #')
subplot(3,1,3)
boxplot(dist_hist_rAverage2)
ylabel('spiks per frame of Unit1')
xlabel('distance of closest periferBee')
title('distance to closest periferBee vs spikes per frame rollAverage, unit2')

plotting the closest bees with neuronal activity as color on tracks [30 & 31]

combiTest=cat(3,distance_to_main,x,y,angle);
for i=1:length(x)



    temp(:,:)=combiTest(i,2:end,:);
    temp= sortrows(temp); % all other then the recBee sorted
    combiTest(i,2:end,:)=temp;
    clear temp;
end
 
figure('OuterPosition',figure_positiondouble)
subplot(2,1,1)
hold on
scatter(combiTest(:,2,2),combiTest(:,2,3),[],rAverage1,'filled')
scatter(combiTest(:,1,2),combiTest(:,1,3),[],'k','filled')
title('trajectory of periferBee CLOSE, neuronal activity false color rAverage1')
colorbar
caxis([0 max1])
hold off
subplot(2,1,2)
hold on
%scatter(combiTest(:,3,2),combiTest(:,3,3),[],rAverage2,'filled')
scatter(combiTest(:,2,2),combiTest(:,2,3),[],rAverage2,'filled')
scatter(combiTest(:,1,2),combiTest(:,1,3),[],'k','filled')
title('trajectory of periferBee CLOSE, neuronal activity false color rAverage2')
colorbar
caxis([0 max1])
hold off
 
figure('OuterPosition',figure_positiondouble)
subplot(2,1,1)
hold on
scatter(combiTest(:,7,2),combiTest(:,7,3),[],rAverage1,'filled')
scatter(combiTest(:,6,2),combiTest(:,6,3),[],rAverage1,'filled')
scatter(combiTest(:,5,2),combiTest(:,5,3),[],rAverage1,'filled')
scatter(combiTest(:,4,2),combiTest(:,4,3),[],rAverage1,'filled')
scatter(combiTest(:,3,2),combiTest(:,3,3),[],rAverage1,'filled')
scatter(combiTest(:,2,2),combiTest(:,2,3),[],rAverage1,'filled')
scatter(combiTest(:,1,2),combiTest(:,1,3),[],'k','filled')
title('trajectory of periferBees, neuronal activity false color rAverage1')
colorbar
caxis([0 max1])
hold off
subplot(2,1,2)
hold on
scatter(combiTest(:,7,2),combiTest(:,7,3),[],rAverage2,'filled')
scatter(combiTest(:,6,2),combiTest(:,6,3),[],rAverage2,'filled')
scatter(combiTest(:,5,2),combiTest(:,5,3),[],rAverage2,'filled')
scatter(combiTest(:,4,2),combiTest(:,4,3),[],rAverage2,'filled')
scatter(combiTest(:,3,2),combiTest(:,3,3),[],rAverage2,'filled')
scatter(combiTest(:,2,2),combiTest(:,2,3),[],rAverage2,'filled')
scatter(combiTest(:,1,2),combiTest(:,1,3),[],'k','filled')
title('trajectory of periferBees, neuronal activity false color rAverage2')
colorbar
caxis([0 max1])
hold off

plotting the closest bees with neuronal activity as color on tracks relative to recBee [32
& 33]

angle and position of periferBee RELATIV to egocentric recBee

x_rel=NaN(size(x));



y_rel=NaN(size(x));
angle_rel=NaN(size(x));
for i=1:length(x)
    if isnan(angle(i,1))
    else
        x_rel(i,:)=x(i,:)-x(i,1);
        y_rel(i,:)=y(i,:)-y(i,1);
        angle_rel(i,:)=mod(angle(i,:)-angle(i,1),360);
        R=rotx(angle(i,1));
        for j=2:12
            temp_a=[1;x_rel(i,j);y_rel(i,j)];
            temp_b=R*temp_a;
            y_rel(i,j)=temp_b(3);
            x_rel(i,j)=temp_b(2);
        end
    end
end
 
combiTest_rel=cat(3,distance_to_main,x_rel,y_rel);
for i=1:length(x)
    temp(:,:)=combiTest_rel(i,2:12,:);
    temp= sortrows(temp); % all other then the recBee sorted
    combiTest_rel(i,2:12,:)=temp;
    clear temp;
end
 
figure('OuterPosition',figure_positiondouble)
subplot(2,1,1)
hold on
scatter(combiTest_rel(:,5,2),combiTest_rel(:,5,3),[],rAverage1,'filled')
scatter(combiTest_rel(:,4,2),combiTest_rel(:,4,3),[],rAverage1,'filled')
scatter(combiTest_rel(:,3,2),combiTest_rel(:,3,3),[],rAverage1,'filled')
scatter(combiTest_rel(:,2,2),combiTest_rel(:,2,3),[],rAverage1,'filled')
hold off
title('trajectory of periferBees, neuronal activity false color rAverage1')
subplot(2,1,2)
hold on
scatter(combiTest_rel(:,5,2),combiTest_rel(:,5,3),[],rAverage2,'filled')
scatter(combiTest_rel(:,4,2),combiTest_rel(:,4,3),[],rAverage2,'filled')
scatter(combiTest_rel(:,3,2),combiTest_rel(:,3,3),[],rAverage2,'filled')
scatter(combiTest_rel(:,2,2),combiTest_rel(:,2,3),[],rAverage2,'filled')
hold off
title('trajectory of periferBees, neuronal activity false color rAverage2')
 
figure('OuterPosition',figure_positiondouble)
subplot(2,1,1)
hold on
scatter(combiTest_rel(:,2,2),combiTest_rel(:,2,3),[],rAverage1,'filled')
hold off
title('trajectory of periferBee CLOSEST, neuronal activity false color rAverage1')
subplot(2,1,2)
hold on
scatter(combiTest_rel(:,2,2),combiTest_rel(:,2,3),[],rAverage2,'filled')
hold off
title('trajectory of periferBee CLOSEST, neuronal activity false color rAverage2')

PSTH closest contact - peak delta > 10pxls && closness < 50pxls [34 & 35]

[closest_peak,closest_peak_i] = findpeaks(-1*smooth(distance_to_main_sort(:,2),50)); 



                                                                % find peaks, negativ so close = max
contact=zeros(length(x),1);
PSTH_contact_unit1=zeros(floor(length(closest_peak_i)/10),50);
PSTH_contact_unit1(PSTH_contact_unit1 == 0) = nan;     % get rid of 0's
PSTH_contact_unit2=PSTH_contact_unit1;
PSTH_contact_rAverage1=PSTH_contact_unit1;
PSTH_contact_rAverage2=PSTH_contact_unit1;
j=1;
for i=5:length(closest_peak_i)-10
    if    (closest_peak(i)+distance_for_contact)>0     % if a peak is closer then last its real max
        contact(closest_peak_i(i)) = closest_peak(i);  % all 0's but max
        PSTH_contact_rAverage1(j,:)=rAverage1(((closest_peak_i(i)-25):(closest_peak_i(i)+24)));
        PSTH_contact_rAverage1(j,:)=PSTH_contact_rAverage1(j,:)-PSTH_contact_rAverage1(j,25);
        PSTH_contact_rAverage2(j,:)=rAverage2(((closest_peak_i(i)-25):(closest_peak_i(i)+24)));
        PSTH_contact_rAverage2(j,:)=PSTH_contact_rAverage2(j,:)-PSTH_contact_rAverage2(j,25);
        j=j+1;
    end
end
 
figure('OuterPosition',figure_positiondouble)          % plot closness over time, cycle contact(isch)
hold on
plot(-1*(distance_to_main_sort(:,2)))
plot(contact,'o','MarkerSize',12)
ylim([-50 0])
title('plot closness over time, cycle contact(isch)')
hold off
 
figure('OuterPosition',figure_positiondouble)
subplot(2,1,1)
boxplot(PSTH_contact_rAverage1)                        % PSTH of rAverage1 @ closeness
str = {'contacts: ',size(PSTH_contact_rAverage1,2)};
annotation('textbox',[.5 .3 .2 .2],'String',str,'FitBoxToText','on','EdgeColor','none');
title('PSTH of rAverage1 @ closeness +/- 25 bin')
%set(gca,'Position',[.53 .53 .44 .44])
subplot(2,1,2)
boxplot(PSTH_contact_rAverage2)                        % PSTH of rAverage2 @ closeness
title('PSTH of rAverage2 @ closeness +/- 25 bin')
%set(gca,'Position',[.53 .03 .44 .44])

neuro activity before and after contact [36]

figure('OuterPosition',figure_positiondouble)
j=0;
PSTH_contact_rAverage1_bin=zeros(size(PSTH_contact_rAverage1,1),2);
for i=1:size(PSTH_contact_rAverage1,1)
    PSTH_contact_rAverage1_bin(i,1)=0.05*sum(PSTH_contact_rAverage1(i,1:20));
    PSTH_contact_rAverage1_bin(i,2)=0.05*sum(PSTH_contact_rAverage1(i,31:50));
end
subplot(2,1,2)
boxplot(PSTH_contact_rAverage1_bin)
title('20 bins befor and 20 bins after contact summed boxplot rAverage1')
 
for i=1:size(PSTH_contact_rAverage1,2)
    if PSTH_contact_rAverage1_bin(i,1)<PSTH_contact_rAverage1_bin(i,2)
        PSTH_contact_rAverage1_bin(i,:)=PSTH_contact_rAverage1_bin(i,:)+1;
        j=j+1;
    end
end
subplot(2,1,1)



plot(PSTH_contact_rAverage1_bin')
str = {'up: ',j,'down: ',length(PSTH_contact_rAverage1_bin(~isnan(PSTH_contact_rAverage1_bin(:,1))))-j};
annotation('textbox',[.5 .4 .3 .3],'String',str,'FitBoxToText','on','EdgeColor','none');
title('20 bins befor and 20 bins after contact summed, sorted & counted ascending/descending rAverage1')

behavior analysis, contact+-step

j=0;
for i=1:length(x)
    if contact(i) ~= 0
        j=j+1;
    end
end
contact_counter=j;
behavior_contact=zeros(contact_counter,step_behavior,10);
behavior_contact_norm=behavior_contact;
j=1;
for i=1+(step_behavior/2):length(x)
    if contact(i) ~= 0
        behavior_contact(j,:,1)=x(i-(step_behavior/2):i+(step_behavior/2)-1,1);
        behavior_contact(j,:,2)=y(i-(step_behavior/2):i+(step_behavior/2)-1,1);
        behavior_contact(j,:,3)=angle(i-(step_behavior/2):i+(step_behavior/2)-1,1);
        behavior_contact(j,:,4)=rAverageSpeed(i-(step_behavior/2):i+(step_behavior/2)-1,1);
        behavior_contact(j,:,5)=x(i-(step_behavior/2):i+(step_behavior/2)-1,2);
        behavior_contact(j,:,6)=y(i-(step_behavior/2):i+(step_behavior/2)-1,2);
        behavior_contact(j,:,7)=angle(i-(step_behavior/2):i+(step_behavior/2)-1,2);
        behavior_contact(j,:,8)=rAverageSpeed(i-(step_behavior/2):i+(step_behavior/2)-1,2);
        behavior_contact(j,:,9)=rAverage1(i-(step_behavior/2):i+(step_behavior/2)-1);
        behavior_contact(j,:,10)=rAverage2(i-(step_behavior/2):i+(step_behavior/2)-1);
        j=j+1;
    end
end
for i=1:contact_counter
    for j=1:10
        behavior_contact_norm(i,:,j)=behavior_contact(i,:,j)-behavior_contact(i,(step_behavior/2),j);
    end
end
 
behavior_contact_mean=zeros(length(behavior_contact(:,1,1)),2,length(behavior_contact(1,1,:)));
behavior_contact_mean_norm=behavior_contact_mean;
for i=1:length(behavior_contact(:,1,1))
    for j=1:10
        behavior_contact_mean(i,1,j)=mean(behavior_contact(i,1:(step_behavior/2),j));
        behavior_contact_mean(i,2,j)=mean(behavior_contact(i,(step_behavior/2)-1:step_behavior,j));
    end
end
for i=1:length(behavior_contact(:,1,1))
    for j=1:10
        behavior_contact_mean_norm(i,1,j)=mean(behavior_contact_norm(i,1:(step_behavior/2),j));
        behavior_contact_mean_norm(i,2,j)=...
            mean(behavior_contact_norm(i,(step_behavior/2)-1:step_behavior,j));
    end
end

behavior analysis, contact+-step [37]

figure('OuterPosition',figure_positiondouble)



str = {'each contact(close) +- step, x y angle speed REC, x y angle speed perifer close,'...
    'rAverage1 & rAverage2'};
annotation('textbox',[.1 0 .9 .99],'String',str,'FitBoxToText','on','EdgeColor','none');
j=1;
for i=1:10
    subplot(5,4,j)
    plot(behavior_contact(:,:,i)')
    subplot(5,4,j+1)
    boxplot(behavior_contact_mean(:,:,i))
    j=j+2;
end

behavior analysis, contact+-step NORMALIZED [38]

figure('OuterPosition',figure_positiondouble)
str = {'each contact(close) +- step, x y angle speed REC, x y angle speed perifer close,'...
    'rAverage1 & rAverage2 NORM'};
annotation('textbox',[.1 0 .9 .99],'String',str,'FitBoxToText','on','EdgeColor','none');
j=1;
for i=1:10
    subplot(5,4,j)
    plot(behavior_contact_norm(:,:,i)')
    subplot(5,4,j+1)
    boxplot(behavior_contact_mean_norm(:,:,i))
    j=j+2;
end

behavior analysis, contact+-step NORMALIZED UP & DOWN rAverage1 [39]

behavior_contact_mean_norm_rauf1=zeros(contact_counter,step_behavior,10);
behavior_contact_mean_norm_rauf1(behavior_contact_mean_norm_rauf1==0)=nan;
behavior_contact_mean_norm_runter1=zeros(contact_counter,step_behavior,10);
behavior_contact_mean_norm_runter1(behavior_contact_mean_norm_runter1==0)=nan;
j=1;
k=1;
for i=1:length(behavior_contact(:,1,1))
    if behavior_contact_mean_norm(i,1,9) < behavior_contact_mean_norm(i,2,9)
        behavior_contact_mean_norm_rauf1(j,:,:)=behavior_contact_norm(i,:,:);
        j=j+1;
    else
        behavior_contact_mean_norm_runter1(k,:,:)=behavior_contact_norm(i,:,:);
        k=k+1;
    end
end
figure('OuterPosition',figure_positiondouble)
str = {'each contact(close) +- step, x y angle speed REC, x y angle speed perifer close,'...
    'rAverage1 & rAverage2 sortet to rAverage1 left down right up'};
annotation('textbox',[.1 0 .9 .99],'String',str,'FitBoxToText','on','EdgeColor','none');
rauf_counter1=length(behavior_contact_mean_norm_rauf1(~isnan(behavior_contact_mean_norm_rauf1...
    (:,1,10))));
runter_counter1=length(behavior_contact_mean_norm_runter1(~isnan(behavior_contact_mean_norm_runter1...
    (:,1,10))));
str = {'rAverage1 up:',rauf_counter1,'down:',runter_counter1};
annotation('textbox',[.1 .05 .9 .92],'String',str,'FitBoxToText','on','EdgeColor','none');
j=1;
for i=1:10
    subplot(5,4,j)



    plot(behavior_contact_mean_norm_rauf1(:,:,i)')
    subplot(5,4,j+1)
    plot(behavior_contact_mean_norm_runter1(:,:,i)')
    j=j+2;
end

behavior analysis, contact+-step NORMALIZED UP & DOWN rAverage2 [40]

behavior_contact_mean_norm_rauf2=zeros(contact_counter,step_behavior,10);
behavior_contact_mean_norm_rauf2(behavior_contact_mean_norm_rauf2==0)=nan;
behavior_contact_mean_norm_runter2=zeros(contact_counter,step_behavior,10);
behavior_contact_mean_norm_runter2(behavior_contact_mean_norm_runter2==0)=nan;
j=1;
k=1;
for i=1:length(behavior_contact(:,1,1))
    if behavior_contact_mean_norm(i,1,10) < behavior_contact_mean_norm(i,2,10)
        behavior_contact_mean_norm_rauf2(j,:,:)=behavior_contact_norm(i,:,:);
        j=j+1;
    else
        behavior_contact_mean_norm_runter2(k,:,:)=behavior_contact_norm(i,:,:);
        k=k+1;
    end
end
figure('OuterPosition',figure_positiondouble)
str = {'each contact(close) +- step, x y angle speed REC, x y angle speed perifer close,'...
    'rAverage1 & rAverage2 sortet to rAverage2 left down right up'};
annotation('textbox',[.1 0 .9 .99],'String',str,'FitBoxToText','on','EdgeColor','none');
rauf_counter2=length(behavior_contact_mean_norm_rauf2(~isnan(behavior_contact_mean_norm_rauf2...
    (:,1,10))));
runter_counter2=length(behavior_contact_mean_norm_runter2(~isnan(behavior_contact_mean_norm_runter2...
    (:,1,10))));
str = {'rAverage2 up:',rauf_counter2,'down:',runter_counter2};
annotation('textbox',[.1 .05 .9 .92],'String',str,'FitBoxToText','on','EdgeColor','none');
j=1;
for i=1:10
    subplot(5,4,j)
    plot(behavior_contact_mean_norm_rauf2(:,:,i)')
    subplot(5,4,j+1)
    plot(behavior_contact_mean_norm_runter2(:,:,i)')
    j=j+2;
end
%min(property)

histo rAverage1 vs distance closest - density plot [41] distance perifer rA1

figure('OuterPosition',figure_position1)
property=distance_to_main_sort(:,2);
property_step=0.5;
fullrAverage1=ceil(density_plot_scaler*(rAverage1));
fullrAverage1(fullrAverage1==0)=1;
fullproperty=ceil(property_step*(property));
fullproperty(fullproperty==0)=1;
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(rAverage1)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;



end
hist_block(1,1)=0;
subplot(2,5,1)
surface(sqrt(hist_block(2:end,2:end)'))
title('rAverage1 vs distance closest - density plot')
xlabel('sp.Frequency rAverage1')
ylabel('property')
set(gca,'Position',[.02 .51 .19 .44])

histo rAverage2 vs distance closest - density plot distance perifer rA2

fullrAverage1=ceil(density_plot_scaler*(rAverage2));
fullrAverage1(fullrAverage1==0)=1;
fullproperty=ceil(property_step*(property));
fullproperty(fullproperty==0)=1;
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(rAverage1)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,6)
surface(sqrt(hist_block(2:end,2:end)'))
title('rAverage2 vs distance closest - density plot')
xlabel('sp.Frequency rAverage1')
ylabel('property')
set(gca,'Position',[.02 .02 .19 .44])

histo rAverage1 vs x - density plot x coordinate recBee rA1

property=x(:,1);
property_step=0.5;
fullrAverage1=ceil(density_plot_scaler*(rAverage1));
fullrAverage1(fullrAverage1==0)=1;
fullproperty=ceil(property_step*(property));
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(rAverage1)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,2)
surface(sqrt(hist_block(2:end,2:end)'))
title('rAverage1 vs x coordinat - density plot')
xlabel('sp.Frequency rAverage1')
ylabel('property')
set(gca,'Position',[.22 .51 .19 .44])

histo rAverage2 vs x - density plot x coordinate recBee rA2

fullrAverage1=ceil(density_plot_scaler*(rAverage2));
fullrAverage1(fullrAverage1==0)=1;
fullproperty=ceil(property_step*(property));



fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(rAverage1)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,7)
surface(sqrt(hist_block(2:end,2:end)'))
title('rAverage2 vs x coordinat - density plot')
xlabel('sp.Frequency rAverage2')
ylabel('property')
set(gca,'Position',[.22 .02 .19 .44])

histo rAverage1 vs y - density plot y coordinate recBee rA1

property=y(:,1);
property_step=0.5;
fullrAverage1=ceil(density_plot_scaler*(rAverage1));
fullrAverage1(fullrAverage1==0)=1;
fullproperty=ceil(property_step*(property));
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(rAverage1)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,3)
surface(sqrt(hist_block(2:end,2:end)'))
title('rAverage1 vs y coordinat - density plot')
xlabel('sp.Frequency rAverage1')
ylabel('property')
set(gca,'Position',[.42 .51 .19 .44])

histo rAverage2 vs y - density plot y coordinate recBee rA2

fullrAverage1=ceil(density_plot_scaler*(rAverage2));
fullrAverage1(fullrAverage1==0)=1;
fullproperty=ceil(property_step*(property));
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(rAverage1)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,8)
surface(sqrt(hist_block(2:end,2:end)'))
title('rAverage2 vs y coordinat - density plot')
xlabel('sp.Frequency rAverage2')
ylabel('property')
set(gca,'Position',[.42 .02 .19 .44])

histo rAverage1 vs angle - density plot angle recBee rA1



property=angle(:,1);
property_step=0.5;
fullrAverage1=ceil(density_plot_scaler*(rAverage1));
fullrAverage1(fullrAverage1==0)=1;
fullproperty=ceil(property_step*(property));
fullproperty(fullproperty<0)=0;
fullproperty=fullproperty+1;
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(rAverage1)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,4)
surface(sqrt(hist_block(2:end,2:end)'))
title('rAverage1 vs angle recBee - density plot')
xlabel('sp.Frequency rAverage1')
ylabel('property')
set(gca,'Position',[.62 .51 .19 .44])

histo rAverage2 vs angle - density plot angle recBee rA2

fullrAverage1=ceil(density_plot_scaler*(rAverage2));
fullrAverage1(fullrAverage1==0)=1;
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(rAverage1)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,9)
surface(sqrt(hist_block(2:end,2:end)'))
title('rAverage2 vs angle RecBee - density plot')
xlabel('sp.Frequency rAverage1')
ylabel('property')
set(gca,'Position',[.62 .02 .19 .44])

histo rAverage1 vs distance closest - density plot [42] distance perifer isi1

figure('OuterPosition',figure_position2)
property=distance_to_main_sort(:,2);
property_step=0.5;
fullrAverage1=ceil(density_plot_scaler*(isi1)*100);
fullrAverage1(fullrAverage1==0)=1;
%fullrAverage1(fullrAverage1>100)=100;
 
fullproperty=ceil(property_step*(property));
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(isi1)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,1)



surface(sqrt(hist_block(2:end,2:end)'))
title('isi1 vs distance closest - density plot')
%xlabel('isi in sec')
ylabel('property')
set(gca,'Position',[.02 .51 .19 .44])

histo rAverage2 vs distance closest - density plot distance perifer isi2

fullrAverage1=ceil(density_plot_scaler*(isi2)*100);
fullrAverage1(fullrAverage1==0)=1;
fullproperty=ceil(property_step*(property));
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(isi2)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,6)
surface(sqrt(hist_block(2:end,2:end)'))
title('isi2 vs distance closest - density plot')
%xlabel('sp.Frequency rAverage1')
ylabel('property')
set(gca,'Position',[.02 .02 .19 .44])

histo rAverage1 vs x - density plot x coordinate recBee isi1

property=x(:,1);
property_step=0.5;
fullrAverage1=ceil(density_plot_scaler*(isi1)*100);
fullrAverage1(fullrAverage1==0)=1;
fullproperty=ceil(property_step*(property));
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(isi1)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,2)
surface(sqrt(hist_block(2:end,2:end)'))
title('isi1 vs x coordinat - density plot')
%xlabel('sp.Frequency rAverage1')
ylabel('property')
set(gca,'Position',[.22 .51 .19 .44])

histo rAverage2 vs x - density plot x coordinate recBee isi2

fullrAverage1=ceil(density_plot_scaler*(isi2)*100);
fullrAverage1(fullrAverage1==0)=1;
fullproperty=ceil(property_step*(property));
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(isi2)



    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,7)
surface(sqrt(hist_block(2:end,2:end)'))
title('isi2 vs x coordinat - density plot')
%xlabel('sp.Frequency rAverage1')
ylabel('property')
set(gca,'Position',[.22 .02 .19 .44])

histo rAverage1 vs y - density plot y coordinate recBee isi1

property=y(:,1);
property_step=0.5;
fullrAverage1=ceil(density_plot_scaler*(isi1)*100);
fullrAverage1(fullrAverage1==0)=1;
fullproperty=ceil(property_step*(property));
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(isi1)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,3)
surface(sqrt(hist_block(2:end,2:end)'))
title('isi1 vs y coordinat - density plot')
%xlabel('sp.Frequency rAverage1')
ylabel('property')
set(gca,'Position',[.42 .51 .19 .44])

histo rAverage2 vs y - density plot y coordinate recBee isi2

fullrAverage1=ceil(density_plot_scaler*(isi2)*100);
fullrAverage1(fullrAverage1==0)=1;
fullproperty=ceil(property_step*(property));
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(isi2)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,8)
surface(sqrt(hist_block(2:end,2:end)'))
title('isi2 vs y coordinat - density plot')
%xlabel('sp.Frequency rAverage1')
ylabel('property')
set(gca,'Position',[.42 .02 .19 .44])

histo rAverage1 vs angle - density plot 000rAverage1 VS isi2

property=rAverage1;
property_step=10;
fullrAverage1=ceil(density_plot_scaler*(isi1)*100);



fullrAverage1(fullrAverage1==0)=1;
fullproperty=ceil(property_step*(property));
fullproperty(fullproperty<0)=0;
fullproperty=fullproperty+1;
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(isi1)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,5)
surface(sqrt(hist_block(2:end,2:end)'))
title('isi1 vs rAverage1 - density plot')
%xlabel('sp.Frequency rAverage1')
ylabel('property')
set(gca,'Position',[.82 .51 .16 .44])

histo rAverage2 vs angle - density plot 000rAverage1 VS isi2

fullrAverage1=ceil(density_plot_scaler*(isi2)*100);
fullrAverage1(fullrAverage1==0)=1;
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(isi2)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,10)
surface(sqrt(hist_block(2:end,2:end)'))
title('isi2 vs rAverage1 - density plot')
%xlabel('sp.Frequency rAverage1')
ylabel('property')
set(gca,'Position',[.82 .02 .16 .44])

histo rAverage1 vs angle - density plot angle recBee isi1

property=angle(:,1);
property_step=0.5;
fullrAverage1=ceil(density_plot_scaler*(isi1)*100);
fullrAverage1(fullrAverage1==0)=1;
fullproperty=ceil(property_step*(property));
fullproperty(fullproperty<0)=0;
fullproperty=fullproperty+1;
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(isi1)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,4)
surface(sqrt(hist_block(2:end,2:end)'))
title('isi1 vs angle recBee - density plot')
%xlabel('sp.Frequency rAverage1')
ylabel('property')



set(gca,'Position',[.62 .51 .19 .44])

histo rAverage2 vs angle - density plot angle recBee isi2

fullrAverage1=ceil(density_plot_scaler*(isi2)*100);
fullrAverage1(fullrAverage1==0)=1;
fullproperty(isnan(fullproperty))=1;
fullrAverage1(isnan(fullrAverage1))=1;
hist_block=zeros(max(fullrAverage1), max(fullproperty));
for i=1:length(isi2)
    hist_block(fullrAverage1(i),fullproperty(i))=hist_block(fullrAverage1(i),fullproperty(i))+1;
end
hist_block(1,1)=0;
subplot(2,5,9)
surface(sqrt(hist_block(2:end,2:end)'))
title('isi2 vs angle RecBee - density plot')
%xlabel('sp.Frequency rAverage1')
ylabel('property')
set(gca,'Position',[.62 .02 .19 .44])

rAverage change up or down quickly! plots [43 & 44 & 45 & 46]

rAverage1_up=rAverage1;
for i=10:length(rAverage1)
    if rAverage1(i)-rAverage1(i-1) > .2    % if spikes go up
        rAverage1_up(i)=rAverage1_up(i);
    else
        rAverage1_up(i)=nan;
    end
end
rAverage1_down=rAverage1;
for i=10:length(rAverage1)
    if rAverage1(i-1)-rAverage1(i) > .2    % if spikes go down
        rAverage1_down(i)=rAverage1_down(i);
    else
        rAverage1_down(i)=nan;
    end
end
 
dist_test_up=distance_to_main_sort(:,2);
dist_test_down=distance_to_main_sort(:,2);
dist_test_neither=zeros(length(x),1);
for i=1:length(x)
    if isnan(rAverage1_up(i))
        dist_test_up(i)=0;
    end
end
for i=1:length(x)
    if isnan(rAverage1_down(i))
        dist_test_down(i)=0;
    end
end
for i=1:length(x)
    if dist_test_down(i) == 0 && dist_test_up(i) == 0
        dist_test_neither(i)=distance_to_main_sort(i,2);
    end
end



figure('OuterPosition',figure_positiondouble)
subplot(2,1,1)
bin_distance_to_main_thisplot=30;
zeroline=zeros(bin_distance_to_main_thisplot,1);
hist([dist_test_up dist_test_down],bin_distance_to_main_thisplot)
upper_lim=(mean(hist([dist_test_up dist_test_down],bin_distance_to_main_thisplot)));
ylim([0 upper_lim(2)])
title('spike rate rise (blue) or falls(red) over distence to main SORT histo')
subplot(2,1,2)
hold on
spike_change_hist1=hist([dist_test_up dist_test_down],bin_distance_to_main_thisplot);
plot((spike_change_hist1(:,1)-spike_change_hist1(:,2)));
plot(zeroline)
hold off
title('spike rate rise (positiv) or falls (negativ) over distence to main SORT histo')
 
 
dist_test_up=x(:,1);
dist_test_down=x(:,1);
dist_test_neither=zeros(length(x),1);
for i=1:length(x)
    if isnan(rAverage1_up(i))
        dist_test_up(i)=0;
    end
end
for i=1:length(x)
    if isnan(rAverage1_down(i))
        dist_test_down(i)=0;
    end
end
for i=1:length(x)
    if dist_test_down(i) == 0 && dist_test_up(i) == 0
        dist_test_neither(i)=x(i,1);
    end
end
figure('OuterPosition',figure_positiondouble)
subplot(2,1,1)
bin_x_thisplot=300;
zeroline=zeros(bin_x_thisplot,1);
hist([dist_test_up dist_test_down],bin_x_thisplot)
upper_lim=(mean(hist([dist_test_up dist_test_down],bin_x_thisplot)));
ylim([0 upper_lim(1)])
title('spike rate rise (blue) or falls(red) over x-position recBee histo')
subplot(2,1,2)
hold on
spike_change_hist1=hist([dist_test_up dist_test_down],bin_x_thisplot);
plot((spike_change_hist1(:,1)-spike_change_hist1(:,2)));
plot(zeroline)
hold off
title('spike rate rise (positiv) or falls (negativ) over x-position recBee histo')
 
 
dist_test_up=x_rel(:,2);
dist_test_down=x_rel(:,2);
dist_test_neither=zeros(length(x),1);
for i=1:length(x)
    if isnan(rAverage1_up(i))
        dist_test_up(i)=0;
    end
end
for i=1:length(x)



    if isnan(rAverage1_down(i))
        dist_test_down(i)=0;
    end
end
for i=1:length(x)
    if dist_test_down(i) == 0 && dist_test_up(i) == 0
        dist_test_neither(i)=x_rel(i,2);
    end
end
figure('OuterPosition',figure_positiondouble)
subplot(2,1,1)
bin_x_rel_thisplot=30;
zeroline=zeros(bin_x_rel_thisplot,1);
hist([dist_test_up dist_test_down],bin_x_rel_thisplot)
upper_lim=(mean(hist([dist_test_up dist_test_down],bin_x_rel_thisplot)));
ylim([0 upper_lim(2)])
title('spike rate rise (blue) or falls(red) over x-position perifer RELATIVE histo')
subplot(2,1,2)
hold on
spike_change_hist1=hist([dist_test_up dist_test_down],bin_x_rel_thisplot);
plot((spike_change_hist1(:,1)-spike_change_hist1(:,2)));
plot(zeroline)
hold off
title('spike rate rise (positiv) or falls (negativ) over x-position perifer RELATIVE histo')
 
 
dist_test_up=angle(:,1);
dist_test_down=angle(:,1);
dist_test_neither=zeros(length(x),1);
for i=1:length(x)
    if isnan(rAverage1_up(i))
        dist_test_up(i)=0;
    end
end
for i=1:length(x)
    if isnan(rAverage1_down(i))
        dist_test_down(i)=0;
    end
end
for i=1:length(x)
    if dist_test_down(i) == 0 && dist_test_up(i) == 0
        dist_test_neither(i)=angle(i,2);
    end
end
figure('OuterPosition',figure_positiondouble)
subplot(2,1,1)
bin_angle_thisplot=30;
zeroline=zeros(bin_angle_thisplot,1);
hist([dist_test_up dist_test_down],bin_angle_thisplot);
upper_lim=(mean(hist([dist_test_up dist_test_down],bin_angle_thisplot)));
ylim([0 upper_lim(2)])
title('spike rate rise (blue) or falls(red) over angle of RecBee histo')
subplot(2,1,2)
hold on
spike_change_hist1=hist([dist_test_up dist_test_down],bin_angle_thisplot);
plot((spike_change_hist1(:,1)-spike_change_hist1(:,2)));
plot(zeroline)
hold off
title('spike rate rise (positiv) or falls (negativ) over angle of RecBee histo')



Activity1 per angel_rel [47 & 48]

figure('OuterPosition',figure_position1)
angle_resolution_corr=360/angle_resolution;
angleUnits_rel=NaN(floor((length(x)/100)*angle_resolution_corr),angle_resolution);
for j=1:angle_resolution
    h=1;
    for i=1:length(x)
        if angle_rel(i,2) > (j-1)*angle_resolution_corr && angle_rel(i,2) <= j*angle_resolution_corr
            angleUnits_rel(h,j)=rAverage1(i);
            h=h+1;
        end
    end
end
boxplot(angleUnits_rel,'plotstyle','compact','whisker',3)
ylabel('distro of spike Activity Unit1')
xlabel('angle of closest periferBee in degree')
title('amound of spikes per frame of Unit 1 per angle_REL periferBee')
 
% Activity2 per angel
figure('OuterPosition',figure_position2)
angle_resolution_corr=360/angle_resolution;
angleUnits_rel=NaN(floor((length(x)/100)*angle_resolution_corr),angle_resolution);
for j=1:angle_resolution
    h=1;
    for i=1:length(x)
        if angle_rel(i,2) > (j-1)*angle_resolution_corr && angle_rel(i,2) <= j*angle_resolution_corr
            angleUnits_rel(h,j)=rAverage2(i);
            h=h+1;
        end
    end
end
boxplot(angleUnits_rel,'plotstyle','compact','whisker',3)
ylabel('distro of spike Activity Unit1')
xlabel('angle of closest periferBee in degree')
title('amound of spikes per frame of Unit 2 per angle_REL periferBee')

headdircetion implementation | Track of recBee with headdirection as blue line [49]

figure('OuterPosition',figure_positiondouble)
arrows=nan(length(x),5);    % x recbee y recbee trash(z-axis) y arrowhead x arrowhead
arrows(:,1)=x(:,1);
arrows(:,2)=y(:,1);
hold on
%arrows(:,4)=y(:,1)+1;       % one up so 0°, gets turned by angle(i,1) later
 
for i=1:length(x)-1
    if isnan(angle(i,1))
    else
        R=rotx(angle(i,1));
        arrows(i,3:5)=R*[0;10;0];      % building the arrow starting from [0 0 0] 
        arrows(i,4)=arrows(i,4)+arrows(i,2); % adding the arrow to the current pos of RecBee
        arrows(i,5)=arrows(i,5)+arrows(i,1); % y and x are twisted
        arrows(i,3)=arrows(i,2);
        arrows(i,2)=arrows(i,5);
        plot(arrows(i,1:2),arrows(i,3:4),'Color',[((rAverage1(i)/max2)),0,(1-(rAverage1(i)/max2))])
    end



end
hold off
title('headdirection on /as track of Recbee')

headdircetion implementation | Track of periferBees with headdirection as blue line [50]

figure('OuterPosition',figure_positiondouble)
arrows=nan(length(x),5);    % x recbee y recbee trash(z-axis) y arrowhead x arrowhead
arrows(:,1)=combiTest(:,2,2);
arrows(:,2)=combiTest(:,2,3);
hold on
%arrows(:,4)=y(:,1)+1;       % one up so 0°, gets turned by angle(i,1) later
for i=1:length(x)
    if isnan(combiTest(i,2,4))
    else
        R=rotx(combiTest(i,2,4));
        arrows(i,3:5)=R*[0;10;0];              % building the arrow starting from [0 0 0] 
        arrows(i,4)=arrows(i,4)+arrows(i,2);   % adding the arrow to the current pos of RecBee
        arrows(i,5)=arrows(i,5)+arrows(i,1);   % y and x are twisted
        arrows(i,3)=arrows(i,2);
        arrows(i,2)=arrows(i,5);
        plot(arrows(i,1:2),arrows(i,3:4))
    end
end
scatter(combiTest(:,2,2),combiTest(:,2,3),[],log10(rAverage1),'filled')
hold off
title('headdirection on track of periferBees with sp.Activity rAverage1Recbee')

rAverage1 hist over time [51]

figure('OuterPosition',figure_positiondouble)
subplot(2,2,1)
clear histoarray;
k=1;
bins=100;
under_even=floor(-1+length(isi1)/300)*300;
histoarray=nan(under_even/300,bins);
for i=1:300:under_even
    histoarray(k,:)=hist(rAverage1(i:i+499),bins);
    k=k+1;
end
histoarray=log10(histoarray);
histoarray(histoarray==-Inf)=0;
contourf(histoarray,200,'EdgeColor','none');
title('rAverage1 hist over time ROOTED')

rAverage2 hist over time

subplot(2,2,2)
clear histoarray;
k=1;
bins=100;
under_even=floor(-1+length(isi1)/300)*300;
histoarray=nan(under_even/300,bins);
for i=1:300:under_even



    histoarray(k,:)=hist(rAverage2(i:i+499),bins);
    k=k+1;
end
histoarray=log10(histoarray);
histoarray(histoarray==-Inf)=0;
contourf(histoarray,200,'EdgeColor','none');
title('rAverage2 hist over time ROOTED')

isi1 hist over time

subplot(2,2,3)
clear histoarray;
k=1;
bins=100;
under_even=floor(-1+length(isi1)/300)*300;
histoarray=nan(under_even/300,bins);
for i=1:300:under_even
    histoarray(k,:)=hist(isi1(i:i+499),bins);
    k=k+1;
end
histoarray=log10(histoarray);
histoarray(histoarray==-Inf)=0;
contourf(histoarray,20,'EdgeColor','none');
title('isi1 hist over time ROOTED')

isi2 hist over time

subplot(2,2,4)
clear histoarray;
k=1;
bins=100;
under_even=floor(-1+length(isi1)/300)*300;
histoarray=nan(under_even/300,bins);
for i=1:300:under_even
    histoarray(k,:)=hist(isi2(i:i+499),bins);
    k=k+1;
end
histoarray=log10(histoarray);
histoarray(histoarray==-Inf)=0;
contourf(histoarray,20,'EdgeColor','none');
title('isi2 hist over time ROOTED')

video Overlays & plots to show syncrony data alignment and use the 4Th Dimension
when nessesary

needs workspace & video

video with real background red periferBees, greenRecBee rAverage1&2 box-size

tic
clear video
clear speicherbar
videoFReader = vision.VideoFileReader('cutMGPEG1408191255_020-1.avi');



info = mmfileinfo('cutMGPEG1408191255_020-1.avi');
vid_delta=int16(abs(10*info.Duration-length(x(:,1))));
overall_time=abs(10*info.Duration-length(x(:,1)));
 
overall_time= 200;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%200 frames fit the memory, NO MORE!!
 
video(1,1:int16(overall_time)) = struct('cdata',zeros(1200,1600,3,'uint8'),...
    'colormap',[]);
for frame=1:overall_time
    video(1,frame).cdata = step(videoFReader);
    
    video(1,frame).cdata(-floor(rAverage1(frame+vid_delta))...
        +1195-(y(frame+vid_delta,1))...
        :floor(rAverage1(frame+vid_delta))...
        +1205-y(frame+vid_delta,1),...
        -floor(rAverage2(frame+vid_delta))...
        +x(frame+vid_delta,1)-5 ...
        :floor(rAverage2(frame+vid_delta))...
        +x(frame+vid_delta,1)+5,2)=1;
    
    for i=2:12
        video(1,frame).cdata(1195-(y(frame+vid_delta,i))...
            :1205-y(frame+vid_delta,i),...
            x(frame+vid_delta,i)-5:x(frame+vid_delta,i)+5,1)=1;
    end
end
vid = VideoWriter(['vid1_' num2str(rand()) '.avi']);
vid.FrameRate = 10;
vid.Quality = 100;
open(vid)
writeVideo(vid, video);
close(vid);
toc

trajectory of blue-recBee; red-closesd bee; green-rest of bees; pink-contact

figure('OuterPosition',[100 10 800 500])      % windwos size more important for memory then i=1:end...
clear M;
k=1;
for i=1:3000
    plot(combiTest(i*10:i*10+100,3:12,2),combiTest(i*10:i*10+100,3:12,3),'.g')
    xlim([0 1600])
    ylim([0 1200])
    hold on
    plot(combiTest(i*10:i*10+100,2,2),combiTest(i*10:i*10+100,2,3),'.r')
    
    if sum(abs(contact(i*10:i*10+100,1)))>0
        plot(x(i*10:i*10+100,1),y(i*10:i*10+100,1),'ms','MarkerFaceColor','m')
    else
        plot(x(i*10:i*10+100,1),y(i*10:i*10+100,1),'.b')
    end
    
    hold off
    M(k) = getframe;
    k=k+1
end
close
vid = VideoWriter(['vid_2_' num2str(rand()) '.avi']);
vid.FrameRate = 10;



vid.Quality = 100;
open(vid)
writeVideo(vid, M);
close(vid);
 
figure('OuterPosition',[100 10 800 500])         % windwos size more important for memory then i=1:end
arrows=nan(length(x),5);                         % x recbee y recbee trash(z-axis) 
arrows(:,1)=combiTest(:,1,2);
arrows(:,2)=combiTest(:,1,3);                    % 1.bee for tests
clear M;
k=1;
videoFReader = vision.VideoFileReader('cutMGPEG1408191255_020-1.avi');
info = mmfileinfo('cutMGPEG1408191255_020-1.avi');
vid_delta=int16(abs(10*info.Duration-length(x(:,1))));
for i= vid_delta:10:vid_delta+6000                % in steps of 10 //secoundwise
    fresh_pic.cdata = step(videoFReader);
    R=rotx(combiTest(i,1,4));
    arrows(i,3:5)=R*[0;50;0];                     % building the arrow starting from [0 0 0] 
    arrows(i,4)=arrows(i,4)+arrows(i,2);          % adding the arrow to the current pos of RecBee
    arrows(i,5)=arrows(i,5)+arrows(i,1);          % y and x are twisted
    arrows(i,3)=arrows(i,2);
    arrows(i,2)=arrows(i,5);
    imshow(fresh_pic.cdata)
    hold on
    
    plot(arrows(i,1),1200-arrows(i,3),'or')
    plot(arrows(i,1:2),1200-arrows(i,3:4))
    xlim([0 1600])
    ylim([0 1200])
    
    M(k) = getframe;
    k=k+1;
    hold off    
    
    step(videoFReader);
    step(videoFReader);
    step(videoFReader);
    step(videoFReader);
    step(videoFReader);
    step(videoFReader);
    step(videoFReader);
    step(videoFReader);
    step(videoFReader);
end
close
vid = VideoWriter(['vid_2_' num2str(rand()) '.avi']);
vid.FrameRate = 10;
vid.Quality = 100;
open(vid)
writeVideo(vid, M);
close(vid);

save the workspace

save('workspaceFULL_5rA.mat');
analyse_time=toc;
disp(['    ',num2str(floor(analyse_time)), ' sec'])
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