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1. Introduction

The concept of particles being truly indistinguishable from each other is one of the hall-
marks and cornerstones of early quantum mechanics separating it from classical physics.
The realization that additional symmetry constraints need to be imposed when describ-
ing multiple identical particles led to a deeper understanding and intuitive explanation
of properties of matter. Especially the antisymmetry of fermionic systems has profound
consequences. The Pauli exclusion principle allows us to (at least roughly) understand
the formation of chemical bonds, the emergence of magnetism in solids or the stabil-
ity and solidness of matter as such. Understanding fermionic systems and their proper
description impacts our comprehension of physics on all scales; from the structure of
molecules or the precision of a single electron transistor to insights about the stability
of neutron stars. Furthermore we discovered and gained a deeper understanding into
numerous ordinary and exotic phases of matter by the theoretical, numerical and ex-
perimental study of various models and systems in the past century. Hence, since the
first days of quantum mechanics, it has been an important task of modern theoretical
physics to comprehend and describe fermionic systems.

The importance and omnipresence of fermionic systems is, however, complemented
by an intrinsic hardness of their description. This hardness is implicitly illustrated
by the fact that over the past decades a zoo of numerical methods and schemes have
been developed which are able to successfully simulate static and dynamic properties of
fermionic systems in different limiting cases only and severe approximations have to be
imposed for describing fermionic models analytically. Today we know that this seemingly
hardness is not an illusion or lack of imagination as it can be confirmed and quantified
using concepts of computational complexity theory. Even a quantum computer can not
approximate the ground state of all interacting fermionic systems efficiently and classical
computers are not able to describe all fermionic systems using the Hartree-Fock methods,
i.e., within one of their roughest approximations [1–3]. Multiple insights and tools allow
us to overcome these limitations. Restricting energy scales involved and realizing that
many effects and properties of physical systems are only sensitive to certain degrees of
freedom allows to formulate effective theories such as the Fermi liquid theory or to use
approximations as the Hartree-Fock approximation in order to faithfully capture many
aspects of a model [4, 5]. The possibility of such effective descriptions reveals that many
systems possess and underlying (often hidden) additional structure. Such structures can
for instance be given by symmetries or a locality of the Hamiltonian describing the system
and impact the correlations present in natural states, e.g., thermal or ground states.
Furthermore they emerge dynamically. The expected thermalization of generic quantum
systems allows us often to restrict ourselves to a thermalized equilibrium description of
a quantum system neglecting many or even any non-thermal parts of the initial state

8



and by this vastly simplifying its characterization.
In addition to these conceptual insight, powerful numerical tools have been developed

for approximating the ground state of a fermionic system or capturing its time evolution.
Due to the overall hardness of the tasks there is no ideal universal strategy to solve
these problems but different methods which need different underlying structures in the
simulated system operate in various niches. Methods such as density functional theory
(DFT), the configuration interaction (CI) or coupled cluster method [6, 7] allow to tackle
large but only moderately correlated systems. The correlation structure resolvable by
DFT for instance depends strongly on the approximation to the universal functional
used. Coupled cluster and CI on the other hand yield systematically extendable methods
which in principle interpolate between the mean field Hartree-Fock approximation and
exact solution of the system. Tensor network state (TNS) based methods are on the
other hand more flexible and able to capture strongly correlated settings and states at
the expense of higher computational costs. They are most efficient if the correlations
of the state to be approximated are restricted by area laws [8] while in finite systems
a systematic increase of the number of variational parameters interpolates between a
mean field approach and the exact solution. Next to providing a numerical tool, the
investigation of TNS motivated and led to different fundamental insights for instance
about the correlation structure of ground states [9] or can even provide the exact ground
state [10]. Their hybrid status of numerical and analytical tool allow to employ TNS to
a wide range of physical applications beyond the direct simulation of different quantum
systems such as the detection and classification of symmetry protected topological order
[11, 12] or the investigation of the AdS/CFT correspondence (see for instance [13]).

The additional structures exploited, either implicitly or explicitly, by the various meth-
ods discriminate the respective system from the hard instances of, for instance, the in-
teracting ground state problem and allow to either successfully describe its essential
features in analytic terms or to simulate it numerically. Identifying and understanding
these structures in more detail opens a window into interacting fermionic systems and
their associated physics and allows us to formulate more powerful numerical schemes
circumventing their generic hardness. It is the aim of this thesis to contribute further
pieces to both of these endeavors and to extend our knowledge about and to improve
our tools for simulating fermionic systems. The thesis contains three parts.

In the first part in Ch. 2 we provide an overall introduction into finite fermionic
systems. We collect results from different communities underlining the general discus-
sion above. We will carefully discuss the efficient solution of non-interacting systems
using mode transformations as well as the complexity of interacting systems and gen-
eral kinematic constraints such as the Pauli principle. Furthermore, we introduce the
notation and concepts needed in the following two parts which should be general and
flexible enough in order to numerically simulate realistic interacting systems and formu-
late mathematical assumptions and results in a rigorous as well as physically intuitive
fashion at the same time. We find the second quantized formulation of finite fermionic
systems to be ideal here and we introduce and discuss different notions of reduced states
for them. We expect the reader to have a good foundation in second quantization and
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linear algebra as we only remind on different concepts and link them among each other
but will not carefully introduce them from first scratch. Next to presenting a compre-
hensive collection of, to us, important aspects of fermionic systems we also provide a
few small novel insights into the structure of fermionic reduced states and the relation
of antisymmetry and the Pauli principle.

In Ch. 3 we focus on the detection of suitable efficient structures in fermionic systems
using tensor network methods. We start by reviewing TNS from a practical point of
view as a numerical tool. We discuss in detail how a density matrix renormalization
group algorithm (DMRG) can be implemented which allows for the simulation of general
interacting fermionic systems. We cover the basic routines needed and review how to
account for symmetries of the system. Furthermore, we discuss in detail how to extend
heuristic error measures to excited states in general and highlight the structure of local
minima of local TNS update schemes such as the DMRG. At the heart of this part
however lies the realization that in fermionic systems TNS capture correlations partially
in the wrong picture. In tensor network states the amount of correlation between different
fermionic modes is limited such that even a single Slater determinant, a fermionic particle
product state, might not be approximable by TNS if the wrong single particle basis is
chosen. We present a scheme of how to combine TNS and mode transformations which
allows to take into account high entanglement effects which go beyond strict area laws.
We explain how to extend an existing DMRG implementation and by this develop ground
state approximation and real time evolution schemes for non-local interacting fermionic
systems which optimize the single particle basis to the correlation structure of the state.
Their functioning is illustrated on physical examples and we show that if they are present
as an underlying structure we are able to identify more optimal single particle basis which
allow for a more efficient description of the system.

In the last part we want to understand the emergence of structures in fermionic systems
on more rigorous grounds. It is divided into two subparts which study on the one hand
structures induced by symmetries that allow for faithful mean field approximations and
on the other hand structures that emerge dynamically in the spirit of thermalization. It
is frequently observed that seemingly complex systems can be well approximated using
mean field methods such as the Hartree-Fock approximation. However, we typically do
not understand why such approximations work and can not predict the error obtained
from imposing it on a given specific system. In Ch. 4 we discuss different quantum
de Finetti theorems which are a tool to certify mean field approximations in specific
settings and well established for distinguishable and bosonic particles. Concretely, they
derive an i.i.d. product structure from a permutation invariance of the state of interest.
We show that in fermionic systems the intrinsic antisymmetry allows to derive similar
results even under the assumption of a relaxed definition of permutation invariance. We
discuss how the obtained mode product states are related to Gaussian states and link
the obtained theorem to mean field approximations and exemplify how it yields natural
extensions to existing theorems about the structure of fermionic states. In the second
subpart in Ch. 5 we investigate the non-equilibrium dynamics of fermionic systems.
Despite significant progress over the past decades, important questions are still open
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concerning the mechanism behind equilibration and thermalization of closed quantum
systems. It is for instance unclear under which conditions and after which time a generic
closed quantum system will thermalize and only conjectured how the system loses its
memory on a majority of its initial conditions. In order to progress in these challenging
problems, we consider the dynamics of free fermionic systems and find a to free systems
particular relaxation process. Initial states with short range correlations evolved in a free
system with sufficient transport will become locally Gaussian after a short time. Any
non-Gaussian initial correlation is quickly smeared over the complete system and by this
essentially lost for practical observables such that the non-equilibrium dynamics can be
captured within a purely Gaussian settings. We carefully discuss the requirements and
intuition behind the result. The Gaussification of free systems is reminiscent to the
convergence to a generalized Gibbs ensemble and we explain how in special cases it links
to equilibration and thermalization. It furthermore explains and predicts the occurrence
of Gaussian states in natural settings.

We conclude our discussion with an outlook of future research direction extending the
ideas of this thesis in Ch. 6. Furthermore we present details to the proofs and extended
comments on various topics in the appendix.
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2. Technical Introduction

In this first chapter we want to settle the basic notation and introduce the concepts used
in the remainder of this thesis. The used formalism should hereby be general enough
for describing realistic fermionic systems appearing from first principles in the context
of quantum chemistry and, at the same time, allow for deeper theoretical insights valid
in condensed matter physics systems. Concerning the technical aspects we hence aim to
take the middle ground in the sense that our formulations should not be too technical but
simultaneously also not based on uncontrolled approximations. Throughout this thesis
we want to state all assumptions needed for the derived results as clearly as possible and
still be able to connect them to intuitive physical properties.

We find that a formulation in terms of finite fermionic systems is best suited for our
needs. It appears naturally in the context of quantum chemistry where the number of
relevant degrees of freedom can often be assumed to be finite and allows to consider
lattice systems of condensed matter physics by taking the thermodynamic limit if nec-
essary. Furthermore, it allows us to complement analytic insights easily with numerical
calculations.

In the following, we will put a special emphasis on reviewing the computational com-
plexity of obtaining static and dynamic properties in fermionic systems. Whereas free
systems are found to be efficiently solvable on the level of individual particles, interact-
ing fermionic systems pose in general computationally hard problems. Furthermore, we
will carefully discuss different aspects of the fermionic state space. Next to technical
details such as the justification of the superselection rule or the reduction to subregions
of a system or few particles we review several kinematic constraints which generalize and
complement the well known Pauli exclusion principle. In order to keep the presentation
compact, we assume the reader to have a good foundation in second quantization and
linear algebra and repeat concepts only briefly in order to highlight important concep-
tual links or introduce the notation. For more details and background we recommend
[14, 15].

2.1. Basic Notation and Notions

In this section we want to establish some of the basic notation and concepts used in the
following of the thesis. We start by introducing our notation first for finite quantum
systems of distinguishable particles and simultaneously review a few basic concepts and
ideas which will reappear for fermionic systems later on. After that, we bundle a few
further miscellaneous technical concepts, notations and conventions used at different
places in this thesis concerning especially partitions of sets and the arrangement of sums
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and products.

2.1.1. Finite Quantum Systems of Distinguishable Particles

All results contained in this thesis are obtained for finite-dimensional quantum systems.
Therefore let us introduce the most basic notation and ideas used throughout this thesis
in the following. In the setting of V distinguishable particles, each to be described by
a finite-dimensional Hilbert space Cd, the full Hilbert space of the system is given by
H = ⊗Vk=1Cd. We use the standard Dirac notation and denote state vectors and their
dual by |ψ〉 ∈ H and 〈ψ| respectively, which makes it natural to denote the inner product
of |ψ〉, |φ〉 ∈ H by 〈ψ|φ〉. If not stated otherwise or clear from the notation, state vectors
will always be assumed to be normalized with respect to the norm induced from the
inner product of H. For any Hilbert space H we denote by D(H) the set of density
matrices, so non-negative, Hermitian operators with trace 1, and by B(H) the set of
linear operators on H, bounded in operator norm, i.e.,

∀A ∈ B(H) : ‖A‖ = sup
|ψ〉∈H:‖|ψ〉‖=1

‖A|ψ〉‖ <∞. (2.1)

An observable of the system corresponds to a Hermitian operator, so A ∈ B(H) with
A† = A, to which we associate the in principle via an experiment accessible expectation
value tr(ρA) with respect to the state ρ ∈ D(H). As usual for a general operator
A : (Cd)×V → (Cd)×V we denote by supp(A) ⊂ [V ] the support of A, i.e., the set of
copies of Cd on which A does not act as the identity. Furthermore, spec(A) denotes the
sequence of eigenvalues of A.

Given two states ρ1, ρ2 ∈ D(H) we want to measure their distance in the state space
using how well we can distinguish between both using physical operations, i.e., probing
expectation values of observables. When we want to quantify the difference of two states
we will therefore be interested in the one-norm of the difference ρ1−ρ2 which is connected
to expectation values via

‖ρ1 − ρ2‖1 = sup
A∈B(H):

A†=A,‖A‖=1

| tr ((ρ1 − ρ2)A) |. (2.2)

In addition we introduce the notion of locality. An operator A is called k-local, if it
acts non-trivially on some set of at most k constituents of the systems only and as the
identity for the remaining part of the system, i.e., | supp(A)| ≤ k. In many cases in the
following the specific value of k is not important and we will often only speak of local
operators. By this we mean that the operator under consideration is k-local for some
small k which is independent of the system size. Given a subregion S of the full lattice
[V ] and a state ρ ∈ D(H) we denote the reduced state on the subsystem associated to
the region S as trSc(ρ). Here and throughout the thesis we use for a given N ∈ N the
notation [N ] = {n ∈ N|n ≤ N}. The reduced state is then defined as the state in D(HS)
which has the same expectation values as ρ for any local observable A supported on
S only, so as the state which looks like ρ on S under any consideration. Denoting by
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τS : B(HS) ↪→ B(H) the embedding of operators acting on HS into the ones acting on
H by extending their actions trivially with the identity we the implicitly define trSc(ρ)
via the relation

∀A ∈ B(HS) : tr(trSc(ρ)A) = tr(ρτS(A)). (2.3)

An explicit expression for trSc(ρ) is easily constructed using the partial trace over Sc,
hence the notation.

One very remarkable difference between quantum mechanics and classical physics is
the appearance of new kinds of correlation phenomena arising from entanglement. These
were early noted to give rise to seemingly non-local effects and constitute a resource used
for quantum computation in modern conceptions [16]. For a pure state ρ = |ψ〉〈ψ| for
some |ψ〉 ∈ H in a finite system, the amount of entanglement established between a
subsystem S and the remaining systems can be measured considering entropies of the
reduced state trSc ρ. Given a density matrix ρ the Rényi entropies are defined for α > 0
by

Sα(ρ) =
1

1− α
ln tr ρα (2.4)

where the well known von Neumann entropy SvN is connected to the Rényi entropies by
the limit

lim
α→1

Sα(ρ) = − tr(ρ ln ρ) = SvN(ρ). (2.5)

The von Neumann entropy often plays an exceptional role among different correlation
measures due to its connection to the thermodynamic entropy and the quantification of
information and uncertainty on a conceptional side as well as special unique technical
properties such as strong subadditivity [16].

In many cases it is natural to assign a geometric structure to the system which leads
us to quantum lattice systems. In this case, the system consists of a finite patch of
an n-dimensional lattice Zn. To each of the V sites we then associate a local Hilbert
space Cd describing a particle on that site giving rise to the same global Hilbert space as
above. In addition to the global Hilbert space the lattice structure gives rise to a natural
definition of a geometric distance of different constituents of the system. Especially, we
can then introduce geometric locality, e.g., spatially local Hamiltonians which can be
written as H =

∑
S hS with hS acting non-trivially only on region S which is assumed

to have some finite diameter bounded by a constant. If not stated differently, in the
following with local Hamiltonian we will refer to a geometrically local one while we will
distinguish geometric and plain locality for general operators and observables if not clear
from the context.

Before we turn to fermionic systems and discuss in detail in how far the concepts intro-
duced here carry over or need to be adapted when additional antisymmetry constraints
are imposed on the state space we want to introduce some further notation.

2.1.2. Bookkeeping and Order: Partitions and Permutations

The idea of grouping elements in patches using partitions in order to account for different
contribution within a compact notation will repeatedly appear in different contexts in
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the following chapters. We therefore want to introduce a bit of notation here which at
the same time introduces some of the general mindset.

For N ∈ N we denote by SN the symmetric group collecting all possible permutations
of N elements. As usual sign(π) is the sign of a permutation π ∈ SN , which is 1 if π
involves an even number of transpositions and −1 otherwise. For a set J we denote the
set of all partitions of J by

P(J) = {P : P partition of J}. (2.6)

Hereby P = {p(1), . . . , p(|P |)} with p(j) ⊂ J for j ∈ [|P |] is a partition of J iff ∪jp(j) = J
and all p(j) are disjoint among each other. We will use partitions in order to bookkeep
fermionic operators and therefore want to specify how products and sequences arising
are arranged in order to keep track of potential signs from the anti-commuting character
of fermions. If J is ordered, we assume all parts p ∈ P for any P ∈ P(J) to be
ordered increasingly. Products, sums and sequences taken over the elements of a part
of a partition are then assumed to be taken in that order. In addition we assume that
products, sums and sequences taken over the partition, i.e.,

∑
p∈P for a P ∈ P(J),

are taken in the order that the minimal elements of each of the p forms an increasing
sequence. Furthermore, for a partition P ∈ P(J) we then define sign(P) ∈ {±1} as the
sign of the permutation that orders the sequence of elements of the different parts of the

partition, i.e., the sequence (j)j∈p,p∈P = (p
(1)
1 , . . . , p

(1)

|p(1)|, . . . , p
(|P |)
|p(|P |)|). Next to that we

define for m ∈ [|J |] the following subsets of P(J)

Pe(J) = {P ∈ P(J) : ∀p ∈ P : |p| is even}, (2.7)

Pm(J) = {P ∈ P(J) : ∀p ∈ P : |p| = m}, (2.8)

such that that for instance P2(J) will be the set containing all possible ways of dividing J
into pairs and for a pairing P ∈ Pm(J) we denote by sign(P) the sign of the permutation
which brings the ordered elements of J in an order such that paired elements are placed
next to each other (without changing the relative order inside each pair).

More specific notation which extends these definitions but is only sporadically used
will be introduced when needed.

2.2. Finite Fermionic Systems

The quantum states of N spin-1/2 fermions can be captured by a many-body wave
function Ψ ∈

∧N L2(R3×Z2) which assigns to the N tuples of positions and spin labels
(xa, σa) for a ∈ [N ] a complex amplitude. Here

∧
denotes the exterior power which

ensures, that Ψ is antisymmetric with respect to the exchange of particles, i.e.,

Ψ(. . . , (xa, σa), . . . , (xb, σb), . . .) = −Ψ(. . . , (xb, σb), . . . , (xa, σa), . . .), (2.9)

for any a, b ∈ [N ] where all other (xc, σc) for c 6= a, b are kept fixed in their position.
In many applications it is useful or even necessary to change from the wave function
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formulation of a quantum system to its second quantized formulation which we will use
throughout this thesis.

In order to reduce a fermionic quantum system to a finite fermionic system with M
modes, a set of orthonormal functions φj ∈ L2(R3×Z2) for j ∈ [M ] is chosen1 which serve
as single-particle states and span the single-particle Hilbert space H1 = span({φj |j ∈
[M ]}). Based on these single-particle states one defines the Slater determinants

Ψj1,...,jN ((x1, σ1), . . . , (xN , σN )) =
1√
N !

det
[
(φja(xb, σb))a,b∈[N ]

]
, (2.10)

with jr ∈ M for r ∈ [N ]. Note that Ψj1,...,jN ((x1, σ1), . . . , (xN , σN )) = 0 if any single-
particle mode j ∈ [M ] is contained more the once in {j1, . . . , jN} and the Slater de-
terminants are antisymmetric under the exchange of particles by the antisymmetry
of the determinant. The Slater determinants span a finite-dimensional space HN ⊂∧N L2(R3 × Z2). The problem at hand, for instance describing the time evolution of a
fermionic system or identifying the eigenstates of a Hamiltonian, is then solved in this
subspace only, by considering a projected Schrödinger equation. This whole procedure
is essentially a variant of the Galerkin method where test functions are used in order to
discretize a continuous operator problem [18].

The quality and physical relevance of results obtained in this subspace, depend natu-
rally strongly on its choice, i.e., the choice of the single-particle orbitals. This choice is
usually based on available analytic solutions of related model-systems, or itself part of
a variational principle. In the context of condensed matter systems, the localized Wan-
nier functions and approximations to them obtained from the non-interacting problem
are often chosen which lead to the tight-binding approximation where in the context of
quantum chemistry single-particle orbitals based on the analytic solution of the hydro-
gen atom are usually used [4, 6]. Depending on the application the relevant orbitals are
then selected based on a physical and chemical intuition or convention. Especially for
accurate ab-initio simulations of molecular systems, being able to choose an as small as
possible set of orbitals is closely tied to understanding the physical correlation properties
of the systems, e.g. the bonding properties of valence electrons.

For a fixed set of single-particle orbitals φj , we can define the Hilbert space of N
fermions for any N ∈ [M ] using the construction above. The collection of all these
spaces gives rise to the fermionic Fock space of the chosen M modes FM =

⊕M
N=0HN ,

where H0 ' C. The Fock space has the structure of the exterior algebra of the finite-
dimensional single-particle Hilbert space H1, i.e., FM =

⊕M
N=0

∧N H1 with
∧0H1 =

H0 ' C. Instead of using the above notation for Slater determinants it is convenient to
employ the occupation number representation, which introduces a short-hand notation

1In practice, further regularity conditions need to be imposed on the functions φ depending on the
analytic properties of the Hamiltonian (see [17, Ch. 1] for an introduction). As we will not be so
much concerned with explicitly discretizing a given problem we skip these details here.2

2In this thesis we will repeatedly make use of footnotes in order to clarify certain aspects or provide
more details which would obstruct the flow of the text to much. Usually you can skip a footnote if
you are fine with the marked text.
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for the in Eq. (2.10) defined Slater determinants according to

Ψj1,...,jN = |i1, . . . , iM 〉, (2.11)

with ij = 1 if j ∈ {j1, . . . , jN} and ij = 0 else and we assumed j1 < j2 < . . . < jN . If
the mode indices are not ordered, a global sign may appear according to rules of the
determinant in Eq. (2.10). Furthermore, we can define a set of creation and annihilation

operators {f †j}j∈[M ] and {fj}j∈[M ] which connect different particle number sectors of

the Fock space. Denoting the vacuum state by |0, . . . , 0〉 = |0〉 ∈
∧0H1, the action of

the creation and annihilation operators is defined by their property to build up Slater
determinants from the vacuum via

Ψj1,...,jN = f †j1 . . . f
†
jN
|0〉, (2.12)

for jr ∈ [M ] for r ∈ [N ]. The antisymmetry of the many-body wave function imposes the
canonical anti-commutation relations (CAR) on the creation and annihilation operators

{f †j , fk} = δj,k, {fj , fk} = 0, ∀j, k ∈ [M ]. (2.13)

All bounded operators acting on the chosen subspace of
⊕M

N=0

∧N L2(R3 × Z2) are

contained in the algebra spanned by {f †j}j∈[M ] and {fj}j∈[M ]. In practice, using the
notation of second quantization eliminates all references to the chosen single-particle
orbitals from the state vectors |ψ〉 ∈ FM as simply the existence of an abstract set
of M creation and annihilation operators acting on a Fock space of dimension 2M is
postulated. The concretely chosen single-particle basis influences then only the shape
of physically relevant operators, i.e., the couplings present in an Hamiltonian or other
observables.

In addition to allowing for an efficient bookkeeping of many-particle states with varying
particle number, second quantization allows also to build model systems easily which are
not directly derived from an explicit first quantized Hamiltonian and choice of single-
particle orbitals but are meant to capture essential physical aspects of more realistic
systems. In this thesis we will encounter both, systems which are derived from a first-
principle formulation as explained above and models which are used to explore essential
physical aspects of different quantum effects. In both cases we deal with finite fermionic
systems with M modes to which we associate as explained above a set of creation and
annihilation operators {f †j}j∈[M ] and {fj}j∈[M ] fulfilling the CAR in (2.13). It is often
convenient to define a set of 2M Majorana operators via

m2j−1 = f †j + fj , m2j = i
(
f †j − fj

)
, ∀j ∈ [M ], (2.14)

which satisfy the anti-commutation relation

{mj ,mk} = 2δj,k, ∀j, k ∈ [M ]. (2.15)

We will refer to both, Eq. (2.13) and (2.15) as canonical anti-commutation relations as
they are equivalent. The Majorana operators defined above form an orthonormal basis
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of the operator algebra of fermionic operators with respect to the Hilbert-Schmidt scalar
product. A general operator A ∈ B(FM ) acting on the fermionic Fock space FM can
therefore be expanded uniquely as

A =
2M∑
r=0

∑
1≤j1<...<jr≤2M

aj1,...,jrmj1 . . .mjr , (2.16)

where any physical operator involves only terms with r even as we will argue below.
In the case of A conserving the particle number, i.e., [A, N̂ ] = 0 with N̂ =

∑
j f
†
jfj it

is convenient to expand A in terms of normal ordered polynomials of the creation and
annihilation operators

A =
M∑
r=0

∑
1≤j1<...<jr≤M
1≤k1<...<kr≤M

aj1,...,jr,k1,...,krf
†
j1
. . . f †jrfkr . . . fk1 . (2.17)

In the context of fermionic systems the notion of support of an operator changes. Here
we say that an operator A has a support S ⊂ [M ] if an expansion of the operator in terms
of Majorana or creation and annihilation operators involves operators of the modes S
only. All notions of locality discussed in Sec. 2.1.1 carry over accordingly as we will
discuss in detail below.

In many practical applications, a concrete representation of a fermionic system, so of
its states and operators, in terms of complex numbers is needed which can then be used to
represent the system on a computer. One convenient and frequently used representation
of fermions is provided by the Jordan-Wigner transformation.

2.2.1. Jordan-Wigner Transformation

The Fock space of M fermions is isomorphic to the Hilbert space of M qubits C2M

as the Slater determinants written in occupation number representation can be directly
identified with the standard basis vectors of C2M . We can therefore find a representation
of the fermionic creation and annihilation operators in terms of the Pauli matrices

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(2.18)

acting locally on the qubits.
This is achieved by the Jordan-Wigner transformation [19] which promises the fol-

lowing: Given a set of M fermionic creation and annihilation operators {f †j}j∈[M ] and
{fj}j∈[M ] then

f †j =
1

2

(
j−1∏
k=1

Zk

)
(Xj − iYj), fj =

1

2

(
j−1∏
k=1

Zk

)
(Xj + iYj) (2.19)
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provides a matrix representation of these operators which is acting on C2M . Note that
the term transformation is a bit misleading as the Jordan-Wigner transformation rather

corresponds to the choice of a representation. Here, Xj = 1
⊗(j−1)
2 ⊗X⊗1⊗(M−j−1)

2 with
12 being the 2× 2 identity matrix denotes the Pauli-X matrix acting on the j-th qubit.

In several applications there exists a natural blocking of the modes into V disjoint
blocks of equal size p. The most common case would be the treatment of a set of spatial
orbitals which have an additional spin-1/2 degree of freedom, i.e., p = 2. We are then

interested in a representation of the fermionic operators acting on C(2p)V , i.e., a system
of V sites with local dimension 2p. Choosing a labeling of the pV modes such that the
consecutive modes p(j−1)+1, . . . , pj for j ∈ [V ] are blocked together, the corresponding
creation and annihilation operators are then represented by

f †j,σ =
1

2

[
j−1∏
k=1

(Z⊗p)k

][
Z⊗(σ−1) ⊗ (X − iY )⊗ 1⊗(p−σ)

2

]
j
, (2.20)

fj,σ =
1

2

[
j−1∏
k=1

(Z⊗p)k

][
Z⊗(σ−1) ⊗ (X + iY )⊗ 1⊗(p−σ)

2

]
j
. (2.21)

In the case of spatial orbitals with a spin-1/2 degree of freedom we therefore obtain for
the creation operator of a spin-up and spin-down particle (σ = 1, 2) in the j-th orbital

f †j,1 =
1

2

[
j−1∏
k=1

(Z⊗2)k

]
[(X − iY )⊗ 12]j , (2.22)

f †j,2 =
1

2

[
j−1∏
k=1

(Z⊗2)k

]
[Z ⊗ (X − iY )]j . (2.23)

2.2.2. Mode Transformations

The coefficients of a specific state vector in or operator acting on the Fock space depend
on the choice of basis of the single-particle Hilbert space H1. Transforming the modes
of the system by choosing a new basis of H1 will lead to a new set of fermionic creation
and annihilation operators. Stated more explicitly, given a (special) unitary matrix
U ∈ SU(M) we define a new set of creation and annihilation operators, which for

the time being we label by {f (U)
j
†}j∈[M ] and {f (U)

j }j∈[M ], in terms of the original ones

denoted as {f †j}j∈[M ] and {fj}j∈[M ] via

f
(U)
j =

M∑
k=1

U †j,kfk, f
(U)
j
† =

M∑
k=1

Uk,jf
†
k. (2.24)

It is easy to check that due to the unitarity of U the new operators indeed fulfill the
CAR. On a more abstract level, there exists a wider class of linear transformations which
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preserve the fermionic algebra than basis rotations in the single-particle Hilbert space.
Given an arbitrary (special) orthogonal matrix O ∈ SO(2M) the operators

m
(O)
j =

2M∑
k=1

Oj,kmk (2.25)

form again a set of Majorana operators fulfilling the respective anti-commutation rela-
tions in Eq. (2.15). Being more general, the transformation of the Majorana operators
in Eq. (2.25) contains of course the basis change in the single-particle Hilbert space
represented by Eq. (2.24). To be precise, choosing in (2.25) O = ehR⊗12+ihI⊗Y for
hR, hI ∈ RM×M antisymmetric and symmetric respectively with tr(hI) = 0 and Y de-
noting the Pauli-Y matrix yields the transformation in Eq. (2.24) for U = e−hR+ihI .

In the following if no confusion can arise, we will often make no distinction between the
different operatorsm(O) andm as they span isomorphic algebras. A mode transformation
as above induces a linear transformation of the Fock space which viewed as an active
rotation in a fixed frame changes the coefficients of physical observables and state vectors.
For later use in this thesis, where we will repeatedly encounter mode transformation in
different readings, we want introduce a few more formal aspects here.

The following lemma captures the transformation induced by a mode transformation
on the full fermionic Fock space.

Lemma 1 (Fock space representation of mode transformations). Given a fermionic
system with M modes, Majorana operators mj for j ∈ [2M ] and corresponding creation
and annihilation operators fk

† and fk for k ∈ [M ] as well as O ∈ SO(2M) with skew-
symmetric real logarithm ln(O) then

G(O) = exp

1

4

∑
j,k

mjmk ln(O)j,k

 (2.26)

corresponds to the transformation of the Fock space induced by the mode transforma-
tion O. For O = ehR⊗12+hI⊗iY with hR, hI ∈ RM×M antisymmetric and symmetric
respectively and tr(hI) = 0, the transformation reduces to

G(U) = G(O) = exp

∑
j,k

f †jfk ln(U †)j,k

 , (2.27)

with U = ehR−ihI .

Proof. Under the mode transformation O a product of Majorana operators transforms
as

mj1 . . .mjr =

2M∑
k1,...,kr=1

OTj1,k1
. . . OTjr,krm

(O)
k1

. . .m
(O)
kr
. (2.28)
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Defining h = ln(O) and using that hT = −h we obtain for the nested commutator 2M∑
j,k=1

1

4
mjmkhj,k,ml


n

=
∑
j

mj

(
hn
)
j,l
. (2.29)

By Hadamard’s lemma we then conclude

G(O)mlG(OT ) =
∞∑
n=0

2M∑
j=1

1

n!
mj

(
hn
)
j,l

=
2M∑
j=1

mjOj,l =
2M∑
j=1

OTl,jmj , (2.30)

meaning that products of Majorana operators and by linearity a general operator acting
A on FM transform as A→ G(O)AG(OT ).

The vector m = (mj , . . . ,m2M )j∈[2M ] of Majorana operators and the vector c =

(f †1, f1, . . . , f
†
M , fM ) of creation and annihilation operators are related by

m =
M⊕
i=1

(
1 1
i −i

)
c. (2.31)

Inserting this relation in the definition of G(O) for O = ehR⊗12+ihI⊗Y yields the above
result.

Given a basis transformation of the single-particle Hilbert space U ∈ SU(M), a single
Slater determinant transforms under this basis change as

f †j1 . . . f
†
jr
|0〉 → G(U)f †j1 . . . f

†
jr
|0〉 =

M∑
k1,...,kr=1

U †k1,j1
. . . U †kr,jrf

†
k1
. . . f †kr |0〉. (2.32)

For practical applications, e.g., within numerical schemes, it will however be useful to
have an explicit and more compact matrix representation of G(U) acting on FM ' C2M .
We obtain it by realizing that according to Eq. (2.32), G(U) acts on FM =

⊕M
N=0

∧N H1

as the natural endomorphism induced by the basis change U : H1 → H1.3 Therefore
G(U) acts on C2M as

G(U) =

M⊕
N=0

∧N
U †, (2.33)

where
∧N A ∈ C(MN)×(MN) denotes the N -th compound matrix of A ∈ CM×M and its

entries are given by determinants of the N ×N submatrices of A:(∧N
A

)
I,J

= det((Ai,j)i∈I,j∈J), (2.34)

3Given an endomorphism f : H → H on a vector or Hilbert space H the natural induced endomorphism∧N f :
∧N H → ∧N H acts as (

∧N f)(ej1 ∧ . . . ∧ ejN ) = f(ej1) ∧ . . . ∧ f(ejN ).
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for I, J ⊂ [M ] with |I| = |J | = N . Equation (2.33) hence tells us how a mode transfor-
mation acts on state vectors after a Jordan-Wigner transformation.

Similarly, we will need the explicit transformation of the coefficients of an operator
induced by a mode transformation. Above we argued that an operator A acting on FM
will transform under the mode transformation as

A→ G(U)AG(U †). (2.35)

Expanding the operator in terms of the creation and annihilation operators

A =

M∑
r=1

M∑
s=1

∑
1≤j1<...<jr≤M

∑
1≤k1<...<ks≤M

ar,s(j1,...,jr),(k1,...,ks)
f †j1 . . . f

†
jr
fk1 . . . fks . (2.36)

it is easy to see from Eq. (2.24) that the coefficients transform under the mode transfor-
mation as

a(U),r,s = (U †)⊗rar,sU⊗s. (2.37)

2.2.3. Superselection Rule

In fermionic systems various kinematic constraints arise. One very important constraint
is given by the so-called parity superselection rule. Splitting the fermionic Fock space in
two sectors FM = Feven

M ⊕Fodd
M with Feven

M =
⊕

nH2n and Fodd
M =

⊕
nH2n+1 the parity

superselection rule states, that there exists no physical scheme to distinguish the states
(|ψ1〉+ |ψ2〉)/

√
2 and (|ψ1〉− |ψ2〉)

√
2 with |ψ1〉 ∈ Feven

M and |ψ2〉 ∈ Fodd
M . It was first in-

troduced by Wick, Wightman and Wigner [20] in the context of relativistic field theories
where it is necessary in order to allow for an unambiguous implementation of Lorentz
transformations. It was later noted that in the context of non-relativistic finite sys-
tems, the presence of the parity superselection rule is necessary in order to preserve the
non-signaling assumption (see for instance [21, 22]). In finite systems the non-signaling
assumption amounts to that two simultaneous disjoint physical operations should com-
mute with each other. Let us illustrate the need of such a technical assumption in more
physical terms. As argued in [22], without a parity superselection rule, the Hermitian

and unitary operators f †1 + f1 and f †2 + f2 are admissible operations which clearly do

not commute. As a consequence the application of f †1 + f1 to the state (f †2|0〉+ |0〉)/
√

2

changes the expectation value of f †2 + f2 from +1 to -1 and by this would change the
local measurement statistics of an observer of the second mode instantaneously. In or-
der to rule out such effects we will employ the parity superselection rule throughout this
thesis. This can be done consistently by assuming that all physical operators such as
observables consist of terms with an even number of Majorana operators only. A state
vector (|ψ1〉 + eiφ|ψ2〉)

√
2 with φ ∈ R, |ψ1〉 ∈ Feven

M and |ψ2〉 ∈ Fodd
M will then yield

the same expectation values as the classical mixture ρ = |ψ1〉〈ψ1|/2 + |ψ2〉〈ψ2|/2. State
vectors are therefore assumed to be either element of Feven

M or Fodd
M whereas we allow for

classical mixtures of states from both sectors. Furthermore, any valid state ρ will then
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be an even operator, i.e., consist of terms with an even number of Majorana operators
only.

Note that the above argument implicitly assumes all observers to be equally powerful
in order to motivate the superselection rule. We assume the scenario in which a single
observer is able to perform any operation while all other parties are restricted to physical
ones (which would also lead to no signaling) to be unphysical.

2.3. Reduced Density Matrices

In fermionic systems two different kinds of reduced states appear. The first is related to
the notion of tracing out a certain number of modes of the systems and reducing a state
ρ which is defined on M modes to a state which is supported on the modes S ⊂ [M ]
only. We are therefore essentially interested in relating D(FM ) and D(F|S|). The restric-
tion to a local subregion of the total system allows us to meaningfully analyze systems
with a variable systems size and to capture their properties within the thermodynamic
limit. Further, it induces the notion of correlation between different modes in fermionic
systems; a topic which we will encounter throughout this thesis. The second kind of
reduced density matrices is connected to tracing out particles, which is straightforward
within the first quantized picture and in the setting of finite fermionic systems amounts
to restricting the action of a state to the Hilbert space of the remaining number of parti-
cles HN . Reductions to few-particle settings are conceptually very natural for fermionic
systems, as typical interactions such as the Coulomb repulsion may not feature a spatial
locality but act on two particles only. In addition as we will see below, in the special class
of non-interacting systems, a description of the single particle sector is often sufficient
for capturing the dynamical evolution and for the description of Gaussian states.

2.3.1. Reduction of Modes

The reduction of modes is an useful tool to talk meaningfully about a subsystem of
a larger fermionic system and allows us to address questions involving locality, e.g.,
the local distinguishability of two states, in these systems. Given a fermionic system
with M modes, the reduction of a state to a subsystem S ⊂ [M ] is defined the easiest
using an operational definition analogue to the one presented in Sec. 2.1.1. Given S =
{s1, . . . s|S|} ⊂ [M ], we define the natural embedding τS : B(F|S|) ↪→ B(FM ) with
τS : mj1 . . .mjr 7→ msj1

. . .msjr for any j1, . . . , jr ∈ [|S|]. We then define for a given
fermionic state ρ ∈ D(FM ) the reduced state tr[M ]\S ρ ∈ D(F|S|) implicitly by

trS [(tr[M ]\S ρ)A] = tr[ρ τS(A)] ∀A ∈ B(F|S|). (2.38)

Put differently, the reduced state is defined to reproduce all expectation values of ρ for
operators with support supp(A) ⊂ S, i.e., those which only involve the modes collected
in S. If clear from the context, we omit the reference to the full set of modes and simply
write Sc instead of [M ]\S.
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An explicit description of the reduced state can be constructed in different ways. In
general, using the characteristic function of a fermionic state within the Grassmann
calculus [23] we obtain the reduced state by integrating out the degrees freedom cor-
responding to the chosen set of modes. Alternatively, we can relabel the modes of the
system such that S = {1, . . . , |S|}. In this case the reduced state can be calculated
directly as the reduced state of the Jordan-Wigner transformed state using the ordinary
partial trace.

From the implicit definition above one can show that the resulting object, trSc ρ is
indeed a valid state, so trSc ρ ∈ D(F|S|).4

Having established how to reduce a state to a certain set of modes, let us also introduce
the notation for multiple copies of a state. Assume we have V many copies of a system
of p fermionic modes which we each denote by Sk = {kp, kp+1, . . . , (k+1)p−1} ⊂ [V p].
Given then a state ρ ∈ D(Fp) on p fermionic modes, we denote by ρ⊗V ∈ D(FV p) the
state on V p modes which is completely uncorrelated across different Sk and locally on
each Sk agrees with ρ, i.e., ρ = trSkc ρ

⊗V .5

2.3.2. Reduction of Particles

Just as the state reduced to a subset of modes is able to account for the action of local
operators supported on these modes, the state reduced to k particles captures the effect
of operators that act on k of fewer particles only. This notation is particularly useful for
the description of Gaussian states, which arise essentially from a single-particle picture
we will discuss in more detail below. It will also lead us to rather profound and important
questions concerning the kinematic structure of fermionic systems.

Assume a fermionic state ρ ∈ D(HN ) with a well defined particle number N . A k-
particle operator with k < N will not probe the full state but is only sensitive to certain
averaged information present. We define the k-body covariance matrix γ(k)[ρ] ∈ CMk×Mk

of ρ by the collection of all k-th moment of the state by

γ(k)[ρ]J,L = tr

∏
j∈J

f †j
∏
l∈L−1

fl ρ

 (2.39)

for J, L ∈ [M ]×k being sequences of length k, L−1 denotes the reversed sequence to L
(i.e., (1, 3, 2)−1 = (2, 3, 1)) and the products are performed in order of the corresponding
sequence. Given the k-body covariance matrix we define the k-particle reduced state

4The normalization tr(trSc ρ) = 1 follows from choosing A = 1 and the relation to original expec-
tation values of ρ ensures trSc(ρ) to be Hermitian and positive as τS(A) is Hermitian/positive for
Hermitian/positive A respectively.

5Tensor products have to be used with some care in the context of fermionic states due to their intrinsic
antisymmetry. Here we use them in the sense of the above implicit definition as combining states in
an uncorrelated fashion. Furthermore, due to the chosen ordering of the fermionic modes and the
superselection rule the ⊗ operation defined that way corresponds to the proper tensor product within
the Jordan-Wigner representation.
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ρ(k) as

ρ(k) =
∑

J,L∈[M ]×k

J,L increasing

γ(k)[ρ]J,L(
N
k

) ∏
l∈L

f †l |0〉〈0|
∏
j∈J−1

fj , (2.40)

where we denote a sequence J to be increasing if the elements are ordered increasingly.
One can verify that indeed ρ(k) ∈ D(Hk), i.e., tr ρ(k) = 1, ρ(k)† = ρ(k), ρ(k) ≥ 0 and
tr(N̂ lρ) = kl for all l ∈ N and N̂ denoting the total particle number operator.6 In
addition ρ(k) is related to ρ by having, up to a normalization factor, the same k-th
moments, i.e.,

γ(k)[ρ(k)] =
1(
N
k

)γ(k)[ρ]. (2.43)

It is clear from its definition in Eq. (2.40) and (2.39) that ρ(k) meets the criterion of
being able to reproduce all expectation values of ρ with k-particle operators. However,
the notion of a particle-reduced density matrix can be made more concrete. In the
first quantized picture we can relate ρ(k) to the integration over the degrees of freedom
of excessive particles. Assume a pure state defined by its wave function Ψ(x1, . . . , xN ),
where xi collects here for simplicity of notation all degrees of freedom of the j-th particle.
We can then define the k-particle reduced state by its density operator as

ρ(k)(x1, . . . , xk, x
′
1, . . . , x

′
k) =∫

Ψ(x1, . . . , xk, x
′
k+1, . . . , x

′
N )Ψ(x′1, . . . , x

′
k, x
′
k+1, . . . , x

′
N )dx′k+1dx

′
N , (2.44)

where by the (anti-)symmetry of Ψ it is irrelevant which N − k particles are integrated
over. The action of any k-particle operator on Ψ can then be obtained from ρ(k) alone.

Assume now that Ψ is a state of a fermionic system with M modes φj(x) for j ∈ [M ],
i.e., it can be expanded into the corresponding Slater determinants according to

Ψ(x1, . . . , xN ) =
∑

J∈[M ]×N

J increasing

αJΨJ(x1, . . . , xN ) =
1√
N !

∑
J∈[M ]×k

J injective

α̃J

N∏
l=1

φjl(xl), (2.45)

where we call a sequence injective if no element appears twice and α̃J = αJ↑sign(πJ)
with J↑ denoting the sorted sequence with the elements of J and πJ is the sorting

6Verifying the positivity is the only non-trivial part. For any |ψ〉 ∈ Hk we define the operator Aψ by

|ψ〉 =
∑

J∈[M ]×k

J increasing

αJ
∏
j∈J

f†j |0〉 = Aψ|0〉. (2.41)

We then obtain by the positivity of ρ

〈ψ|ρ(k)|ψ〉 =
∑

J,K∈[M ]×k

J,L increasing

αLγ
(k)[ρ]J,LαJ = tr

(
AψA

†
ψρ
)
≥ 0. (2.42)
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permutation. The reduced state can then be written as

ρ(k)(x1, . . . , xk, x
′
1, . . . , x

′
k) =

∑
A,B∈[M ]×k

A,B increasing

ρ
(k)
A,BΨA(x1, . . . , xk)ΨB(x′1, . . . , x

′
k), (2.46)

with

ρ
(k)
A,B =

1(
N
k

) ∑
J,K∈[M ]×N

J,K increasing
A⊂J,J\A=K\B

αJαKsign(πA (J\A))sign(πB (K\B)), (2.47)

where A ⊂ J and J\A have the obvious meaning of denoting that A is a subsequence
of J and the sequence of elements of J not in A and AJ denotes the joint sequence
(a1, . . . , a|A|, j1, . . . , j|J |). Starting from

|ψ〉 =
∑

J∈[M ]×N

J increasing

αJ
∏
j∈J

f †j |0〉 (2.48)

we find by direct calculation of the entries of the covariance matrix that indeed

|ψ〉〈ψ|(k) =
∑

A,B∈[M ]×k

A,B increasing

ρ
(k)
A,B

∏
a∈A

f †a|0〉〈0|
∏

b∈B−1

fb (2.49)

with the same coefficients as above. The same holds true for mixed states by linearity
and illustrates the interpretation of forming the reduced k-body states by integrating
out a portion of the particles.

2.4. Free Fermions and Gaussian States

Non-interacting fermionic system turn out to provide an essential tool for understanding
basic effects in fermionic systems appearing in nature. It is quite remarkable how many
different important physical insights can be gained from investigating non-interacting
fermions (see for instance numerous applications in [4]) despite the interactions present
in every realistic natural setting. An independent particle assumption is for instance
employed when we explain conduction properties of solids by their band structure. The
low energy theory of excitations in a Fermi liquid can often be well approximated to be
non-interacting; a general theme appearing at many places in condensed matter physics
where the low energy sector of interacting theories can be captured by emergent collective
excitations described by weakly or non-interacting quasiparticles. In addition one of the
historic hallmarks of quantum mechanics, the description of the excitation spectrum
of hydrogen, relies on the solution of a single (and therefore non-interacting) particle
problem. The physics of multiple non-interacting fermions is then dominated by the
antisymmetric character of the fermionic state space manifested in the well known Pauli
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principle. We will give a more detailed account for these effects later in this chapter in
Sec. 2.6.

Furthermore, free systems provide an important starting point for many more elabo-
rate analytic and numerical calculations. Starting from the description of free systems,
perturbation theory allows to include weak interaction effects. Mean field theory ap-
proaches to interacting systems ask for identifying the best non-interacting description
to the system at hand as we will discuss in Sec. 2.5 and suitable single-particle orbitals
used for the procedure of second quantization are often solution of non-interacting prob-
lems. Furthermore, deeper insights into the structure of interacting systems allow to
approximate the ground state of an interacting system by iteratively identifying the
ground state of a family of free proxy problems using the density functional theory
(DFT) (see for instance [7, Ch. 1] and [24] for an introduction).

Solving even a non-interacting particle problem analytically in the continuous case is
a demanding task and can only be done in a few selected instances. In finite systems on
the other hand the structure of the problem allows for an efficient numerical simulation
of single particle effects in these systems. From this, many properties can be calculated
with an effort that scales polynomially in the system size M despite the exponential size
of the Fock space as many aspects can be faithfully mapped to the single-particle Hilbert
space of the problem as we will explain below. The combination of being easy to solve
as well as able to capture essential effects of realistic systems render free systems to be
a perfect tool for conceptual theoretic investigation of fermionic systems; a tool we will
rely on later in Ch. 5.

The most general free Hamiltonians are given by

H =

2M∑
j,k=1

i

4
h

(2)
j,kmjmk, (2.50)

where without loss of generality we can always choose h(2) ∈ R2M×2M antisymmetric.
As h(2) is antisymmetric there exists a mode transformation O ∈ SO(2M) which block
diagonalizes h(2) such that

Oh(2)OT = Λ⊗ iY (2.51)

with Λ ∈ RM×M diagonal. Denoting the fermionic creation and annihilation operators

corresponding to the m
(O)
j by f

(O)
k
† and f

(O)
k with j ∈ [2M ] and k ∈ [M ] we obtain that

the transformed Hamiltonian

H =
M∑
j=1

i

2
Λj,jm

(O)
2j−1m

(O)
2j =

M∑
j=1

Λj,jf
(O)
j
†f

(O)
j − tr Λ

2
1 (2.52)

is diagonal and all eigenstates are given by Slater determinants formed with respect to

the operators f
(O)
j
† and f

(O)
j .7 In addition by Lem. 1, the time evolution operator

eiHt = G(e−h
(2) t) (2.53)

7Note that a general orthogonal rotation of the Majorana operators can change the vacuum state of
the system as particles might be identified as holes and vice versa. The Slater determinants are
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acts as a mode transformation on the Fock space. These two observations allow us to
identify the eigenenergies and eigenstates of H as well as performing the time evolution
induced by H solely by considering the mode space, i.e., single particle Hilbert space,
instead of the full Fock space.

We have seen that the eigenstates of a non-interacting system are of particular simple
structure as they take the form of a single Slater determinant if written in the correct
basis. As these Slater determinants might be formulated with respect to an unphysical
vacuum state it seems natural to ask, what parts of this structure are independent of the
single-particle basis. This question can be answered easily by realizing that Slater deter-
minants are important representatives of the larger class of fermionic Gaussian states.
Next to Slater determinants, all thermal mixtures of the eigenstates of a free system
are also Gaussian such that Gaussian states play an important role in the description of
the equilibrium properties of free systems at any temperature. Furthermore, a deeper
investigation of the structure of Gaussian states reveals (unsurprisingly regarding their
context) that they are fully described by their single particle restrictions leading to a
description of Gaussian states in terms of O(M2) parameters.

Definition 1. A state ρ ∈ D(FM ) on the Fock space of M modes is a Gaussian state if
there exists a mode transformation O ∈ SO(2M) such that the state takes the form

G(O) ρG(OT ) =

M∏
j=1

(
1

2
1+

i

2
ξjm

(O)
2j−1m

(O)
2j

)
, (2.54)

with ξj ∈ [−1, 1] for j ∈ [M ].

The thermal state e−βH/Z with Z = tr(e−βH) of a free Hamiltonian is a Gaussian
state as we have

1

Z
G(O)exp

 i

4

∑
j,k

h
(2)
j,kmjmk

G(OT ) =
M∏
j=1

(
1

2
1 +

i

2
tanh (Λj,j/2)m

(O)
2j−1m

(O)
2j

)
(2.55)

for O ∈ SO(2M) block-diagonalizing h(2) and Oh(2)OT = Λ ⊗ iY with Λ diagonal. In
addition Slater determinants and by this all eigenstates of a free Hamiltonian are pure
Gaussian states and obviously every state that is related to a Gaussian state by a mode
transformation will be again Gaussian by definition.

Compared to a general state whose number of parameters grows exponentially in the
system size, a Gaussian state has a very specific structure. According to the above defi-
nition, a Gaussian state is defined by specifying M many ξj and a mode transformation
O ∈ SO(2M). Expectation values with respect to ρ are then related to these parameters

then constructed based on the vacuum of the creation and annihilation operators f
(O)
j
† and f

(O)
j

associated to m
(O)
j via Eq. (2.14) which is defined as the state |ψ〉 ∈ FM with f

(O)
j |ψ〉 = 0 for all

j ∈ [M ].
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via Wick’s theorem. Wick’s theorem states that, as shown for instance in App. A, given
a Gaussian state ρ and any operators c1 . . . c2r which are linearly related to the Majorana

operators m
(O)
j from the definition of the Gaussian state then the expectation value of

c1 . . . c2r can be calculated from the second moments of ρ alone via

tr(c1 . . . c2rρ) =
∑

P∈Pm([2r])

sign(P)
∏

(p1,p2)∈P

tr(cp1cp2ρ), (2.56)

using the notation of Sec. 2.1.2.
Exploiting Wick’s theorem a Gaussian state ρ is specified alone by its second moments

in a given basis which are often collected in the covariance matrix

γ(ρ)j,k =
i

2
tr(ρ [mj ,mk]). (2.57)

For a state ρ with fixed particle number, the covariance matrix γ(ρ) is uniquely defined
by the single-body correlation matrix γ(1)[ρ] introduced above in Sec. 2.3.2 due to the
linear relation of creation and annihilation operators and Majorana modes. Gaussian
states with a fixed particle number are therefore uniquely specified by their correlation
matrix γ(1)[ρ] and Wick’s theorem. From the definition of a general Gaussian state
one quickly derives that its covariance matrix fulfills the conditions γ(ρ) ∈ R2M×2M ,
γ(ρ)T = −γ(ρ) and −γ(ρ)2 ≤ 1. In addition for every such matrix γ ∈ R2M×2M fulfilling
these two conditions, there is a Gaussian state ρ with γ(ρ) = γ.

There are three further common definitions of Gaussian states. As a state is fully
specified by all its expectation values a Gaussian state can be defined to be the state
with a certain covariance matrix γ which fulfills Wick’s theorem. As we define reduced
states to subregions of the full systems in Sec. 2.3.1 by their expectation values, it can
be directly seen that the reduction of a Gaussian state has to be Gaussian as well, as
it necessarily fulfills Wick’s theorem. Furthermore, a Gaussian state with a covariance
matrix γ is the state which maximizes the von Neumann entropy given the second
moments specified by γ. Introducing the calculus of anti-commuting variables, so-called
Grassmann numbers, Gaussian states can also be defined as states with a Gaussian
Grassmann representation [25]. All these definitions are equivalent (see App. A for
details) and highlight different important aspects of Gaussian states.

2.5. Interacting Fermions

Non-interacting systems are, however, able to capture only certain effects of fermionic
systems. Predictions made from non-interacting investigations usually have to be mea-
sured and tested against experimental investigations or predictions from interacting de-
scriptions in selected cases. This can be illustrated on a currently very active field of
research. The question in how far results on the localization of particles and a result-
ing breakdown of transport from disorder effects observed for non-interacting particles,
so-called Anderson localization, carry over to interacting particles has gained a lot of
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attention from an analytical, numerical and experimental perspective (see [26] and refer-
ences therein). In other words, how stable are the predictions from free fermions under
the inclusion of interaction effects. It is unclear if generic disorder alone prevents trans-
port in realistic interacting materials, i.e., if a stable so-called many-body localized phase
exists [27, 28].

Beyond that, including interactions properly into a model of the system is often cru-
cial in order to obtain a correct description of physical effects. This starts at the correct
description of quantum dots, effectively zero-dimensional objects whose physics can be
dominated by interaction effects, goes over to the formation of a Mott-insulator in the
course of an interaction driven quantum phase transition from a metallic into an insu-
lating phase to the correct description of one-dimensional fermions appearing in Carbon
nanotubes; in order to list only a few applications. Taking interactions into account
properly in ab-initio simulations is also crucial for obtaining quantitatively correct re-
sults for binding energies of molecules or explaining their bonding structures. In the
following, we therefore want to complement Sec. 2.4 about non-interacting fermions
with an introduction into interaction fermions here.

We will discuss the particle number conserving case only. The general Hamiltonian of
interacting fermions with two-particle interaction reads in its second quantized form

H =
M∑

j,k=1

ti,jf
†
ifj +

M∑
i,j,k,l=1

vi,j,k,lf
†
if
†
jflfk. (2.58)

Note that, as H contains single and two-body terms only, we are able to write the
expectation value of any state ρ ∈ D(FM ) in terms of the single and two-body covariance
matrices as

tr(Hρ) = tr(tγ(1)[ρ]T ) + tr(mat(v)γ(2)[ρ]T ), (2.59)

where mat(v) ∈ CM2×M2
denotes the rearrangement of the tensor v into a matrix with

entries mat(v)(i,j),(k,l) = vi,j,k,l. For a given state ρ with reduced 2-body density matrix

ρ(2), we are able to calculate the energy expectation value of ρ for a general interacting
Hamiltonian using Eq. (2.59) with knowing the O(M4) entries of ρ(2) only – circum-
venting the exponential size of the full Fock space. However, we will see below, that
this unfortunately does not yield a general efficient optimization method for the ground
state problem of interacting fermions.

Typical models of interest for us in the following will be for instance second quan-
tized versions of the electronic structure Hamiltonian for N electrons within the Born
Oppenheimer approximation,

H = −
N∑
j=1

1

2mj
∆i + V (xj) +

N∑
j,k=1
j 6=k

1

2

1

|xj − xk|
, (2.60)

where xj denotes the position of particle j and V is the external potential created from
the nuclei. Using an appropriate single-particle basis a second quantized Hamiltonian as
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in Eq. (2.58) is then derived as explained at the start of this chapter. These models al-
low us to perform ab-initio calculations for the electronic structure of molecular systems
in order to identify, for instance, bonding and spectroscopic properties of molecules or
solids. In addition we consider toy models of condensed matter systems. Most promi-
nently different version of the Fermi-Hubbard model will appear, which in its simplest
version for spin-polarized fermions in one spatial dimension reads

H =
M∑
j=1

[
t
(
f †jfj+1 + f †j+1fj

)
+ Unjnj+1

]
(2.61)

with nj = f †jfj denoting the occupation number operator of mode j and we employ
either periodic (fM+1 = f1) or open (fM+1 = 0) boundary conditions. The Hamiltonian
in (2.61) provides one of the simplest toy models of interacting fermions, the first term
capturing the kinetic energy of the particles while the second part implements a local
two-body interaction, modeling for instance a Coulomb repulsion. However, the methods
and results present in this thesis will not be restricted to specific Hamiltonians but be
generally applicable. Specific systems provide us then with illustrative examples and
motivate of course our investigations.

As in the case of non-interacting fermions we are interested in static properties, i.e.,
ground, low-lying excited or thermal states, as well as dynamic properties of interacting
fermions. However, different from the free setting, obtaining these properties for inter-
acting fermions either analytically or numerically is a very demanding and complex task
and over the past decades the development of numerical and analytical approximation
tools and ansatzes has been an important topic in theoretical physics. The question on
exactly how demanding it is to solve these problems can be nicely captured using the
tools of computational complexity theory as reviewed below. Furthermore, in the next
chapter we will briefly review different numerical approaches, and go into quite some
detail for one specific family of methods, employed for simulating interacting fermionic
systems. Before we do that however, we first discuss one of the most important and at
the same time simplest approximations imposed on interacting fermionic systems; the
particle mean field or Hartree-Fock approximation as it will reappear multiple times in
the course of this thesis.

2.5.1. Hartree-Fock Approximation

Mean field approximations in general ask for the best approximation of the state of a
system by a product state. In fermionic systems the role of this product state is most
commonly taken by an individual Slater determinant. The Hartree-Fock approximation
in finite fermionic systems seeks then the best single-particle basis such that a property of
choice, for instance the ground state energy, is best approximated using a fixed predefined
Slater determinant.

Consider the case of a fixed particle number N . In case of approximating the ground
state of the Hamiltonian given in Eq. (2.58), we choose without loss of generality |HF 〉 =

f †1 . . . f
†
N |0〉 in some initially chosen basis. We reach any Slater determinant with N
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particles by varying the single-particle basis using mode transformations. The Hartree-
Fock energy is hence defined as

EHF = min
U∈U(M)

[
tr
(
U †tUγ(1)[|HF 〉〈HF |]T

)
+ tr

(
(U † ⊗ U †)mat(v)(U ⊗ U)γ(2)[|HF 〉〈HF |]T

)]
. (2.62)

Inserting the concrete form of |HF 〉 allows to simplify the expression above a bit further
and there are several techniques of solving the above optimization problem numerically
using self-consistency schemes (see e.g. [6, p. 146]) or direct optimization algorithms on
Grassmann manifolds8 [29].

Next to using it only for capturing static properties, the time evolution of a quantum
system can also be performed within a mean field approximation. In the context of
the Hartree-Fock approximation, the single-particle basis will vary in time mimicking
the real time evolution of the interacting system by the one generated from a time-
dependent free Hamiltonian. We will not be much concerned with the details of solving
Hartree-Fock equations or schemes and therefore will not discuss them in further depth
here.

In several instances does the Hartree-Fock approximation provide a surprisingly good
account for essential features of the system. Dissociation curves, for instance, calculated
based on the Hartree-Fock approximation can yield pretty accurate predictions of equi-
librium configurations when compared with experimental data [6, Sec. 3.7]). However,
there exists only little knowledge about when and why a Hartree-Fock approximation
will work. We are unable to decide beforehand if the ground state energy of a given
Hamiltonian can be well approximated within a Hartree-Fock approach or not. This
lack of a general certificate of the Hartree-Fock approximation has a deeper reason as
we will argue in the upcoming section. For a specific class of systems, however, we can
obtain a bound to the error made by employing the Hatree Fock approximation in these
systems as discussed in Ch. 4 by exploiting fermionic versions of de Finetti’s theorem.
There we find that systems in which all parts of the system are coupled equally to each
other, a mean field description allows to capture local expectation values and that the
Hartree-Fock approximation provides an accurate description of ground states energy
densities.

2.5.2. Complexity Theory and Interacting Fermions

One might ask, how difficult are the problems regarding interacting fermions, e.g., cal-
culating the electronic structure of molecules etc. Next to referring to a large zoo of
methods solving certain instances of this problem illustrating that so far we were not
able to find an unified efficient solution one can invoke results on the computational

8As any internal rotation inside the fully occupied or the unoccupied orbitals yields no change of the
cost function, the optimization can be restricted to Gr(N,M) (see also App. D for a short recap on
Grassmann manifolds).
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complexity of fermionic systems obtained in the past decade. These results tell us how
efficient different computational models can solve a task, or more precisely, how diffi-
cult and hard it is to solve it. Most prominently, the classes NP and QMA contain
all problems for which a suggested solution can be checked in a time scaling polyno-
mially with the input size of the problem to be valid or not using a Turing machine
or a quantum computer respectively – while it is highly expected that there are cases
where these solution cannot be found in a polynomial time. For a complexity class C, a
problem is C-hard if any problem in C could be solved with polynomial effort once an
efficient solution for the initial problem is found and is denoted as C-complete if it is in
addition a member of C. For a further introduction into the basic notation of complexity
theory see for instance [3]. However, before we review the known results, let us note
that these results have to be considered with some caution. They concern the worst case
complexity of the problem at hand meaning that there can still be a method that solves
the majority of instances but fails at tailored examples. Complexity results as presented
here are therefore suited to formulate certain no-go arguments (such as: We will not be
able to find a simple parametrization of all two-body density matrices arising from pure
N -particle states on M modes for growing N and M).

We focus our discussion here solely on fermionic systems and only remark that the
results below rely on complexity results obtained for spin systems. Concerning the
approximation of ground states of interacting fermionic systems two fundamental results
are known.

- Given as inputs a particle number N , a number of orbitals M = poly(N), a
Hamiltonian H as in (2.58) and energy E, then testing if the Hartree-Fock energy
of H is below E up to a threshold ε scaling as ε = 1/poly(N) is NP-complete [1].
This result persists even if H is restricted to be translation invariant [30].

- Given as inputs a particle number N , a number of orbitals M = poly(N), a
Hamiltonian H as in (2.58) and energy E, then testing if the ground state energy
of H is below E up to a threshold ε scaling as ε = 1/poly(N) is QMA-complete
[2, 3].

Based on these results we can infer a few fundamental limitations to our ability of
describing fermionic systems.

- Given as inputs a particle number N , a number of orbitals M = poly(N), a single-
particle density and a Hamiltonian H then evaluating the universal exchange corre-
lation functional for the given single-particle density up to an error ε = 1/poly(N)
is QMA-complete [1].

- Given as inputs a particle number N and a number of orbitals M = poly(N),
deciding if a matrix γ ∈ CM2×M2

is the two-body correlation matrix of any state
|ψ〉 ∈ HN , i.e., γ(2)[|ψ〉〈ψ|] = γ, up to an error ε = 1/poly(N) is QMA-hard [2].

These two insights limit the applicability of two different approaches of simplifying the
computation of ground states of interacting fermionic systems. According to the first,
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the universal functional of DFT can not be constructed and every DFT calculation needs
to invoke approximations thereof. The second results shows us that despite being able to
reduce the effort for evaluating the energy expectation value to scaling as O(M4) with
Eq. (2.59), we are not able to tell if the input γ(2)[ρ] is valid, i.e., belongs to a pure state
with N particles on M modes. Note that from the hardness of the determination of the
ground state energy follows an at least equal hardness of the time evolution as otherwise
the energy could be inferred using phase estimation schemes [16, 31].

Instead of being demoralizing, these result should be seen as rough guides when deal-
ing with the simulation of (fermionic) quantum systems and draw certain boundaries. It
is quite notable and surprising that (classical) computers can not solve the ground state
energy problem even within the crudest approximation, the Hartree-Fock approxima-
tion. The existence of numerous classical methods and successful applications of those
however shows that the above results are indeed worst cases of a multifaceted problem.
Furthermore, recently quantum algorithms were designed that aim for solving the ground
state problem on a quantum computer – complementing the classical approaches with
the potential of outperforming them in large classes of problems [32, 33] while staying
of course unable to solve the full ground state energy problem in full generality. It is
this certain boundary which motivates us to seek to understand additional structure of
physical systems which allows for an often observed efficient description. In the last sec-
tion of this introduction to finite fermionic system we want to account for a very generic
structure present these systems which are captured by kinematic constraints. The ob-
tained results are of a very fundamental nature and can provide a physical intuition for
several effects but at the same time do not directly imply an efficient description due
to their generality. The upcoming chapters focus then on more specific approaches to
identify and understand the correlation structure of more restrictive settings and either
provide concrete algorithms or schemes to simulate interacting fermionic systems more
efficiently or aim at understanding rigorously the emergence of important structures.

2.6. Kinematic Constraints of Finite Fermionic Systems

The complexity and hardness of the description of fermionic systems makes it necessary
to understand their structure in a more detailed manner. In the last part of this technical
introduction we want to dwell a bit more on the underlying structure of the fermionic
state space and its implication on physical quantities. The qualifying feature of a state
to describe fermions is its intrinsic antisymmetry. A direct consequence of that is the
famous Pauli exclusion principle which states that two fermions cannot occupy the same
state at the same time. This simple principle directly links to fundamental aspects of
physics on all scales. It directly implies the Aufbau principle accounting for the structure
of the periodic table and explaining chemical and physical properties of the elements, it
explains thermal and electric properties of solids by the formation of Fermi seas as well
as the solidness of the matter surrounding us.

In finite fermionic systems the Pauli principle implies that for any fermionic state
ρ ∈ D(FM ) we can upper-bound the occupation of any mode i by 1, i.e., tr(f †ifiρ) ≤ 1
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∀i ∈ [M ], irrespective of the chosen single-particle basis. Put differently the eigenvalues
of the one-body covariance matrix are bounded by 1 from above, i.e., γ(1)[ρ] ≤ 1. We
want to refer to such a constraint to be kinematic, as it is not specific to any dynamical or
static properties of a specific system involving a specific Hamiltonian but originates from
the state space structure itself. The particular constraint γ(1)[ρ] ≤ 1 will be denoted as
Pauli constraint in the following.

It is often remarked that in fermionic systems the Pauli principle has to be replaced
by the more general concept of having an antisymmetric wave function and the Pauli
principle is then viewed among other results to be a consequence of this symmetry-
restriction. This is in fact not true as one can argue easily at least for finite fermionic
systems. Here, the Pauli principle directly implies the antisymmetric structure of the
state space and both concepts are equivalent as can be seen as follows.9

Proof. Choose a set of single-particle orbitals φi = |i〉 with i ∈ [M ] and consider the
full N -particle Hilbert space of distinguishable particles H⊗N1 = span({|i1〉 ⊗ · · · ⊗
|iN 〉|i1, . . . , iN ∈ [M ]}). The Pauli exclusion principle states that only states are ad-
missible in which no |i〉 appears more than once (otherwise two particles would occupy
the same state). We therefore define two states |ψ1〉, |ψ2〉 ∈ H⊗N1 to be equivalent, de-
noted by |ψ1〉 ∼ |ψ2〉, if |ψ1〉 = |ψ2〉+ |ϕ〉 with |ϕ〉 ∈ IN and IN = span{|j1〉⊗· · ·⊗ |jk〉⊗
|jk〉 ⊗ · · · ⊗ |jN−1〉|k ∈ [N − 1], |j1〉, . . . , |jN−1〉 ∈ H1}10. Note the subtlety that in the
definition of IN we allow for any states |jl〉 in H1 which displays the fact that the Pauli
principle applies to any single-particle basis. In contrast, in the case of hard-core bosons
the equivalence would be defined by using states from one specific orthonormal basis
of H1 only, the one in which the hard-core constraint is defined. The states respecting
the Pauli principle are then the equivalence classes with respect to the relation above,
i.e., HN = H⊗N1 /IN . This, however, is a standard definition for the exterior power, such

that HN =
∧N H1 (see for instance [15, Sec. 6.4]). Performing this construction for all

N yields the known Fock space.

Therefore, the Pauli principle directly yields the antisymmetric structure of the Fock
space without postulating it.

It was noticed early that in the case of the one-body reduced density matrix of mixed
states the Pauli constraints are not only necessary but also sufficient meaning that the
necessary and sufficient condition on γ ∈ CM×M such that there exists a state of N
fermions in M modes ρ ∈ D(HN ) with γ(1)[ρ] = γ are [34]

γ = γ†, tr(γ) = N, 0 ≤ γ ≤ 1. (2.63)

In light of Eq. (2.59) one might therefore ask how these conditions change if we restrict
ourselves to pure states or want to assess the conditions on higher order reduced density
matrices. This leads to the so-called k-body N -representability problems: What are the

9Thanks to Zoltán Zimborás for conjecturing this thought.
10It is sufficient to choose only neighboring orbitals to agree as we can always swap |x〉, |y〉 in |x〉 ⊗ |y〉,

up to further elements contained in IN by subtracting (|x〉 − |y〉) ⊗ (|x〉 − |y〉) ∈ IN from it and
therefore can construct for instance |x〉 ⊗ |y〉 ⊗ |x〉 from elements in IN .
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reduced k-body covariance matrices of a pure/mixed state ρ ∈ D(HN ) of N particles in
M modes? The interest in this question was actually mostly motivated by Eq. (2.59)
as a solution of the N -representability problem for k = 2 would allow to eliminate the
wave function from the ground state problem of interacting fermions. However, we have
also already argued in Sec. 2.5.2 that any parametrization of the set of all admissible
γ(2)[ρ] will be not efficient. Constraints such as the Pauli principle promise however to be
interesting from a physical perspective beyond the technical aspects of Eq. (2.59). The
range of fundamental and important physical effects which can be intuitively understood
based on the Pauli principle illustrates the physical significance of even rather simple
kinematic constraints. We will therefore shortly discuss the recent solution of the one-
body N -representability problem for pure states in the following. Furthermore, despite
the hardness of the two-body N -representability problem, it is of course possible to find
necessary constraints such that outer approximations on the set of admissible γ(2)[ρ]
can be formed as we will review below. We conclude this section with a discussion of
constraints emerging from locality. Let us emphasis however that in many cases the
practical applicability of the results we review here is often still to be shown and topic of
recent research [35–38]. The following paragraphs serve therefore mostly as a collection
of different approaches and constraints and discuss the current research.

2.6.1. One-Body Density Matrix Constraints

It was early noted that if we restrict ourselves to pure states, the solution of the one-body
N -representability problem differs from the one found for mixed states. In the case of
N = 3 and M = 6 it was found that a matrix γ ∈ C6×6 is 3-representable if it fulfills the
conditions in Eq. (2.63) and in addition the sorted eigenvalues λ1 ≥ · · · ≥ λ6 of γ have
to fulfill [39, 40]

λ1 + λ6 = 1, λ2 + λ5 = 1, λ3 + λ4 = 1, λ1 + λ2 + λ4 ≤ 2. (2.64)

This was the only known set of constraints until the one-bodyN -representability problem
of pure states was completely solved [41–43]. It was found that the eigenvalues of all
admissible one-body reduced density matrices, viewed as an vector in RM , lie in a convex
polytope and that this polytope is indeed smaller as the one defined by the constraints
of the mixed state problem in Eq. (2.63). The resulting condition on the spectrum of a
matrix are then necessary and sufficient for N -representability and generalize the result
for N = 3, M = 6. They are most conveniently cast into a form of a set of linear
constraints, often called generalized Pauli constraints∑

i∈[M ]

a
(k)
i λi ≥ a(k)

0 , (2.65)

where k labels different constraints, whose intersection forms a convex polytope. The

corresponding coefficients a
(k)
i can be found numerically for given N and M . The re-

sult is based on an abstract investigation of the Hilbert space representation of mode
transformations in Eq. (2.27). The adjoint of this map is used to project orbits in the
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(N,M) (3,6) (3,7) (4,8) (4,9) (5,10)

# constraints 4 4 15 60 161

Table 2.1. – Number of constraints found which characterize the polytope of sorted spectra of
one-body covariance matrices of states |ψ〉 ∈ HN =

∧N CM for different N and M [42].

dual algebra of U(dim(HN )), i.e., Hermitian operators in B(HN ) with a fixed spectrum,
onto the dual algebra of the mode transformations, the single-particle operators. It can
be shown that this map associates to any state ρ ∈ D(HN ) its single-particle covariance
matrix. Using a generalization of Konstant’s theorem it is then possible to characterize
the orbits of single-particle covariance matrices defined by their corresponding spectrum
contained in the projection of the orbit of a general state ρ ∈ D(HN ) with a fixed spec-
trum to the single particle level. This investigation leads to constraints as above on the
spectrum of the single-particle operator in order to be an admissible covariance matrix
of an actual pure state [41–43].

This nicely solves the one-body N -representability problem from a mathematical point
of view. However there are a few drawbacks from a practical point of view. There is

no closed expression known for the coefficients a
(k)
i and they have to be determined for

every N and M . Even worse, the number of constraints seems to increase drastically in
N and M as displayed in Tab. 2.1 and they are therefore only known for small systems.
The scaling of the number of constraints as a function of N and M is up to now unknown
and an understanding of it would yield important insight into the possibility of designing
algorithms around the generalized Pauli principles.

It is currently one emerging area of research to try to infer how important these new
constraints are in physical systems. Due to their single-particle nature, the constraints
apply directly to non-interacting systems. If we minimize a linear function in γ(1)[ρ],
e.g. the energy functional, the optimum will lie on a facet of the polytope. Then, some
of the generalized Pauli constraints are saturated and they determine the structure of
the corresponding ground states. However, in non-interacting systems ground states are
always Slater determinants and the corresponding spectra are already captured by the
Pauli principle, rendering this example trivial.

Surprisingly, specific interacting systems can be found in which these single-particle
kinematic constraints are at least almost saturated. It was for instance argued that the
first excited state of beryllium saturates a non-trivial generalized Pauli constraint [35].
Evaluating the generalized Pauli constraints under the inclusion of spin it was further
suggested that the reduced saturation magnetization in different ferromagents can be
explained by saturated single-particle constraints. Furthermore, it was argued that for
increasing temperature the state of the system moves along the facets and that changes
the magnetic properties of a material are connected to the lifting or saturation of a
generalized Pauli constraint [36].

Furthermore, harmonically interacting particles were found to yield ground states that
are close to a facet of the polytope [37]. Here the question arises whether a saturated
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constraint is trivial, in the sense that the old fashioned Pauli constraints already imply
them, or only captured by the new inequalities [38]. It is an open research question, if
algorithms can be formulated that exploits this structure, optimizing for instance over
individual facets only and if larger classes of interacting model exist whose physics is
considerably and non-trivially constrained by these single-particle effects.

2.6.2. Two-Body Density Matrix Constraints

Concerning the investigation of interacting fermionic systems we would of course be
more interested in the solution of 2-body N -representability problem. Here we already
know that the parametrization of the exact set will be infeasible to obtain practically.
However, it is still possible to formulate necessary conditions which allow to give outer
approximations on the set of reduced two-body density matrices. Ultimately these con-
ditions give rise to a hierarchy of constraints which in total are also sufficient. The
constraints are formulated in the form of positivity relations of matrices which depend
on the two-particle reduced density matrix. The basic insight underlying these condi-
tions is that for any state ρ ∈ D(HN ) not only γ(2)[ρ] has to be positive, i.e., γ(2)[ρ] ≥ 0,
but all expectation values of the form tr(

∑
iAiAi

†ρ) will be. Using A1 =
∑

j,k bj,kfjfk

or A1 =
∑

j,k bj,kf
†
jfk and realizing that the expressions are positive for all coefficients b

one obtains the so-called Q and G conditions [44](
tr(fifjf

†
l f
†
kρ)
)

(i,j),(k,l)
≥ 0,

(
tr(f †ifjflf

†
kρ)
)

(i,j),(k,l)
≥ 0, (2.66)

which, by exploiting the CAR of the fermionic operators, give positivity conditions
on a matrix which depends linearly on γ(2)[ρ]. Inserting A1 =

∑
i,j,k bi,j,kf

†
if
†
jf
†
k and

A2 =
∑

i,j,k bi,j,kfifjfk yields in the same way the T1 condition [44, 45] where the

seemingly depends on γ(3)[ρ] cancels upon exploiting the CAR. In the same way the T2
and a hierarchy of higher conditions can be derived [44, 46]. Going a level higher in
the hierarchy will take into account more of the antisymmetry restrictions of the full
state and tightens the approximation on the set of reachable two-body reduced density
matrices by the expense of the introducing more constraints. These positivity constraints
can then be accounted for by semidefinite programming techniques (see e.g [47, 48]) and
allow in principle to construct lower bounds on ground state energies which complement
upper bounds on the energy from the optimization over restricted sets of states which
will be explored in more detail in the upcoming chapter.

2.6.3. Local Constraints from Hermiticity

The previous two sections dealt with constraints on the full spectrum of particle reduced
density matrices of fermionic states based on the antisymmetry of the state. The question
arises whether these constraints can be combined with a local structure which is present
in many physical systems. One simple result allowing for deriving local constraints is
the result by Schur and Horn [49, 50]. It states that for any Hermitian matrix A ∈ Cn×n
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the diagonal is majorized by its spectrum, i.e., (Ai,i)i∈[n] ≺ spec(A), where for a, b ∈ Rn
we say that a majorizes b, b ≺ a, if

k∑
i=1

b↓ ≤
k∑
i=1

a↓ ∀k < n and

n∑
i=1

b↓ =

n∑
i=1

a↓ (2.67)

with b↓ and a↓ denoting the decreasingly order sequences with the elements of a and b.
The result is based solely on the Hermiticity of the matrix in question, e.g. a reduced
density matrix. It can for instance be used to directly bound in any single-particle
basis the occupation numbers tr(f †ifiρ) of a Gaussian state with known spectrum of the
one-body reduced density matrix, e.g., a thermal state of a free model.

The question arises if expectation values which are more complex than single densities
can be bounded. Can we for instance establish bounds for operators supported on larger
regions and account for the overlap of different regions consistently? One set of such
bounds is provided by the following theorem.

The following result was obtained in collaboration with Etienne Werly but was unfor-
tunately already known to Thompson [51].

Theorem 2. Let A ∈ Cn×n be Hermitian and denote by λ = spec(A) the spectrum of A.
For any I ⊂ [n] we denote by λI the subsequence (λi)i∈I and by µI the spectrum of the
principle submatrix of A with indices defined by I, i.e., µI = spec((Ai,j)i∈I,j∈I). Then
for any k, l ∈ N with l ≤ k ≤ n

(el(µI))I⊂[n]:|I|=k ≺ (el(λI))I⊂[n]:|I|=k (2.68)

where el( · ) denote the elementary symmetric polynomials defined by

el(x1, . . . , xk) =
∑
J⊂[k],
|J |=l

∏
j∈J

xj . (2.69)

Proof. The simplest version of the proof follows partially along the argumentation of
[51]. Let U ∈ U(n) diagonalize A. Using the functionality of the wedge product we
obtain for any I ⊂ [n] with |I| = k(∧k

(α1−A)
)
I,I

=
∑
J⊂[n],
|J |=k

(∧k
U
)
I,J

(∧k
(α1− Λ)

)
J,J

(∧k
U †
)
J,I
, (2.70)

where Λ denotes the diagonal matrix diag(λ1, . . . , λn). From the relation of the ele-
mentary symmetric polynomials and the coefficients of the characteristic polynomial we
conclude (∧k

(α1−A)
)
I,I

= det(α1−A|I,I) =

k∑
l=0

(−1)lel(µI)α
k−l (2.71)
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and a direct expansions shows that

(∧k
(α1− Λ)

)
J,J

=
∏
j∈J

(α− λj) =
k∑
l=0

(−1)lel(λJ)αk−l. (2.72)

Comparing the coefficients of αk−l yields that

el(µI) =
∑
J⊂[n],
|J |=k

WI,Jel(λJ). (2.73)

From WI,J = (
∧k U)I,J

∧k U †J,I being doubly-stochastic follows the majorization relation
as claimed.

This result extends the insights about possible occupation numbers in fermionic sys-
tems. It can for instance be applied to the setting of Gaussian states where expectation
values split according to Wick’s theorem into sums of products of second moments. To
illustrate this, assume a pure Gaussian state ρ with single-particle covariance matrix
γ(1)[ρ] and fixed particle number. Consider the expectation value of f †if

†
jfjfi which

factors according to Wick’s theorem into

tr(ρf †if
†
jfjfi) = tr(ρf †ifi) tr(ρf †jfj)− tr(ρf †ifj) tr(ρf †jfi) = det(γ(i, j)) (2.74)

with γ(i, j) = (γ(1)[ρ]a,b)a∈{i,j},b∈{i,j} being the 2× 2 submatrix of γ(1)[ρ] containing the
elements of the crossings of the i-th and j-th rows and columns only. The determinant
det(γ(i, j)) equals, however, e2(spec(γ(i, j))) such that Thm. 2 bounds the possible val-
ues of such two- (or even more) particle operators. With this we are for instance able to
bound Gaussian expectation values of local Hamiltonians. In practice, however, these
bounds are only moderately useful as usually the exact expectation value can be derived
by exploiting the structure of the Gaussian state which allows to reduce these calcula-
tions to the single particle Hilbert space (compare Sec. 2.4). Furthermore the insight
above does not allow to formulate a variational scheme as the constraints of Thm. 2 are
only necessary and not sufficient. It is therefore subject of current research to on the
one hand site explore the structure of such constraints in more detail in order to poten-
tially gain sets of sufficient constraints and on the other hand to obtain more general
physical constraints along the lines of the argumentation above in non-trivial cases, e.g.,
in non-Gaussian settings or for higher order correlation functions. Furthermore, note
that the constraints of Thm. 2 result from Hermiticity alone. They can hence also be
applied to the two-particle reduced density matrix and result in new sets of constraints
for those. Exploring in how far these constraints combined with the conditions derived
from the antisymmetry are able bound two particle properties of general states presents
an interesting direction of future research.
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2.7. Summary

In this chapter we discussed the basic formalism needed in order to meaningfully cap-
ture different concepts of finite fermionic systems and introduced the notation that will
reappear in the different parts of this thesis. We will see in the upcoming chapters,
that the introduced notation is versatile enough to bridge the gap between very applied
settings where we want to approximate static or dynamic properties of specific systems
from first principles and very theoretical questions around the non-equilibrium dynamics
of closed quantum systems and the validity of mean field approximations. We empha-
sized in particular the state space structure and the relation of different formulations
and representations by introducing the Jordan-Wigner representation and rotations of
the single-particle basis which will be useful later in numerical as well as theoretical
investigations.

We then continued to discuss more physical aspects of fermionic systems by distin-
guishing free models from interacting fermions. We briefly explained how to solve free
fermionic systems by choosing the appropriate single-particle basis, leading us to the
concept of Gaussian states, and highlighted in contrast the underlying features and
complexity of interacting fermionic systems. A deeper look at the state space structure
revealed that the antisymmetry constraints of fermionic systems lead to a rich structure
of kinematic constraints which extend the Pauli principle. We especially discussed the
known constraints of the one and two-body covariance matrix as well as locally emerging
constraints.
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3. Capturing Correlations with Tensor
Network States

Many problems in physics and applied mathematics give rise to very high-dimensional
spaces which need to be accounted for by numerical methods. One of the most prominent
examples of such problems is the approximation of the ground state of a quantum many-
body system in a Hilbert space with a dimension that grows exponentially with the
system size – but we could also think in general about the solution of large systems of
differential equations, etc. [52]. Tackling these tasks by direct brute force approaches
typically yields rather limited methods such as exact diagonalization for the ground state
problem and the story would end here, if we could not reasonably assume that additional
structures are present. One very common structure encountered is that the problem at
hand typically contains only a limited number of parameters, as it could otherwise not
even be formulated. Hamiltonians considered in many-body quantum mechanics are
typically formulated with a number of parameters that scales at maximum polynomially
in the system size. It is therefore natural to hope, that we are able to describe their
ground states also with few parameters only once an appropriate parametrization is
found. We have however also already argued in Sec. 2.5.2 that such a parametrization
will not suffice to capture all systems of interacting fermions but at best only a large
but restricted class of models.

In the context of simulating interacting fermionic systems, different approaches have
been developed in the past decades in order to restrict the number of parameters in a
physically meaningful manner which gave rise to a multitude of schemes and algorithms
[6]. The Hartree-Fock method restricts its ansatz class to a single Slater determinant and
optimizes the single-particle orbitals from which the Slater determinant is constructed.
By this, effectively the best non-interacting description for the considered model is found.
Physical quantities calculated based on a Hartree-Fock approximation often capture re-
alistic systems quite accurately. However, they are prone to violating global symmetry
constraints (see [5] for an instructive discussion) and neglect any non-Gaussian correla-
tions present in the initial state. Next to being able to reproduce certain aspects of a
realistic system, the Hartree-Fock solution of a system often serves as a basis for more
exact schemes. The configuration interaction (CI) and coupled cluster (CC) methods
apply excitation operators with a small number of free parameters and specific structure
to a reference Slater determinant (for instance a Hartree-Fock solution) and optimize the
corresponding parameters. Here, depending on the computational resources available, a
systematic increase of the number of parameters is possible which interpolates between
rough approximations and the exact simulation of the system. Both methods perform
particularly well in systems where a good initial guess is available. Strongly correlated
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settings where several Slater determinants are of equal high importance for the final
state are however often only poorly captured and less efficient multi-reference methods
need to be employed.

DFT exploits the Hohenberg-Kohn theorem which establishes a one-to-one correspon-
dence between an external potential given for instance by positively charged cores and
the one-particle reduced density matrix of the ground state wave function of interact-
ing electrons subjected to the said potential [7, Ch. 1]. The problem then reduces to
identifying the proper one-particle reduced density matrix which contains a number of
parameters that grows only polynomially in the system size by solving a non-interacting
proxy problem. Formally, however DFT is only capable of obtaining the ground state
of an interacting problem and can only heuristically access excited states. Moreover,
as discussed in Sec. 2.5.2, the universal exchange functional, needed in order to for-
mulate the non-interacting proxy problem, can not be evaluated efficiently such that
any DFT calculation relies on approximations thereof. In weakly correlated settings,
heuristic functionals are known which allow for a fast and reliable simulation of large
systems. The obtained results however formally remain heuristic and not based on first
principles. Furthermore, in settings with strong correlations DFT calculations usually
fail to produce correct results such that despite its fundamental beauty, DFT involves
uncontrolled approximations and is applicable to specific cases only.

The approaches which gain efficiency though a restriction to certain ansatz-classes are
contrasted by the schemes which try to circumvent the problem of the exponential size
of the Hilbert space by using statistical techniques. Traditional Monte Carlo schemes
however suffer in general from the sign problem in fermionic systems and are less versatile
than in systems of distinguishable particles. Recently, schemes have been developed to
partially overcome the sign problem by sampling directly coefficients in the abstract
Fock space such that Monte Carlo methods can be applied for describing the electronic
structure of small molecules [53] even in strongly correlated settings.

As the last set of methods let us introduce the schemes which we will discuss in detail
in the upcoming chapter. In recent years it was shown that tensor network schemes can
successfully be applied to simulate interacting fermionic systems and compensate some
of the shortcomings of other established methods. From a technical point of view, effi-
cient tensor network descriptions of a high-dimensional problem can be found once the
coefficient tensor, be it the one of a quantum state or the solution of a general differential
equation, has a low rank structure. In more physical terms this translates to the require-
ment that the state approximated by a tensor network decomposition is supposed to be
only moderately correlated on large length scales, where we will make this notion more
precise in the following. The restrictions imposed by the use of tensor network states
(TNS) hence have a clear physical intuition. In the context of non-locally interacting
fermionic systems, tensor network states are found to naturally capture strongly cor-
related multi-reference settings. This advantage compensates the higher computational
costs of using tensor network based schemes such that methods as the density matrix
renormalization group (DMRG) algorithm joined the canon of established tools [54–57].

In this chapter we review the basic concepts of tensor network methods from a practical
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perspective with a particular focus on the simulation of non-local quantum systems. In
doing so we also present a few smaller technical insights concerning the convergence
behavior of the DMRG algorithm and the estimation of errors when computing excited
states. We further argue that the requirement of TNS fulfilling an area law for all
correlations leads to a too restrictive variational set of states in the context of fermionic
systems. In the extreme, a simple Hartree-Fock approximation can outperform a tensor
network approach if the wrong initial single-particle basis is chosen. We lift this strong
dependence of the obtained results on the initial basis by extending the DMRG algorithm
with rotations of the singe-particle basis. Combining multiple approaches for this task
we set up a scheme that performs close to a black box tool and identifies the best set
of orbitals in order to represent the target state as a TNS almost independently from
the initially chosen single-particle basis. The presentation aims to be as self contained
as possible and explains based on pseudo-code how to implement a ready-to-use DMRG
method. In App. C we comment on the code structure developed in the course of this
work in more detail.

3.1. Tensor Network States

In the following we introduce and review the basic concepts and notation needed in order
to implement a working version of a DMRG algorithm for long range Hamiltonians. For
this we will mostly keep the perspective of applied numerics but will also comment on
the physical restrictions imposed by the use of tensor network states in order to allow
for a more intuitive understanding. We will discuss tensor network states for finite-
dimensional distinguishable particles. This contains by the Jordan-Wigner transforma-
tion finite fermionic models as explained in Sec. 2.2.1. Assume therefore a collection of
V finite-dimensional quantum systems with Hilbert spaces H[j] ' Cdj for j ∈ [V ]. For
each j ∈ [V ] let {|ij〉|ij ∈ [dj ]} denote an orthonormal basis of H[j]. A general state

vector |ψ〉 ∈
⊗V

j=1H[j] is then defined by a coefficient tensor c ∈ Cd1 ⊗ · · · ⊗ CdV as

|ψ〉 =

d1∑
i1=1

· · ·
dV∑
iV =1

ci1,...,iV |i1〉 ⊗ · · · ⊗ |iV 〉. (3.1)

The coefficient tensor being exponentially large in the system size V renders it unprac-
tical to use c directly in numerical schemes. One way forward to overcome this issue
systematically is to find low tensor-rank decompositions or approximations to the coef-
ficient tensor. The coefficient tensor is then represented as a tensor network.

3.1.1. Tensor Network Decompositions

We choose to represent a tensor network decomposition of a tensor c of order1 V by a
weighted graph (V, E ,K) with vertices V, weighted edges E ⊂ V × V × N and half edges

1The order of a tensor denotes the number of vector spaces it maps multilinearly to a scalar, i.e., the
dimension of the array needed in order to represent the tensor.
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Figure 3.1. – Illustration of a tensor network decomposition of a tensor of order 4 by the
corresponding graph. The full tensor c is then given by its components ci1,i2,i3,i4 =∑
α1,...,α5

A
[1]
i1,α1

A
[2]
α1,α2,α3A

[3]
α2,α4,α5A

[4]
i3,i4,α3,α4

A
[5]
i4,α5

where the sum over αk ranges from 1
to rk. Note that in an abuse of notation, half edges are here labeled by the physical index
ij corresponding to the space H[j] instead of the label j of the space. If they are not of
concrete importance we will drop the labels on the half edges and edges in the following.

K ⊂ V× [V ], where for every j ∈ [V ] there exists exactly one half edge (v, j) ∈ K [57, 58].
To each vertex v of the chosen decomposition we associate a component tensor A[v] of
an order given by the coordination number of v. The dimension of each index of A[v] is
hereby given by the weight of the corresponding edge or the dimension of the associated
space H[j] for a half edge. We will denote the indices {αj |j ∈ [|E|]} associated to edges
to be virtual while the ones corresponding to half-edges as physical indices. We contract
over all virtual indices such that two virtual indices joined by an edge are summed over
while the open physical indices correspond to the indices of the full tensor c. Drawing
the graph with all vertices and edges corresponds then essentially to the tensor network
depicted in the Penrose graphical notation. This graphical notation provides a very
compact and common tool which simplifies the notation as explained in Fig. 3.1. It is
clear that given a tensor network decomposition (V, E ,K) of a high-dimensional tensor c,
it might be possible to save computational resources by not specifying and modifying the
large tensor c directly but only indirectly via the components A[v] of the tensor network.
The efficiency advantage granted by the tensor network decomposition is then obviously
controlled by the number of entries in the tensors A[v], or to be precise by the weights of
the edges so the dimension {rj |j ∈ [|E|]} of the virtual indices which are usually referred
to as bond dimension or in the mathematical literature as rank. In the following we will
either use the notation rj for j ∈ [|E|] or re for e ∈ E in order to denote a specific bond
dimension of a tensor network decomposition.

Clearly, there are a multitude of different decompositions of a given tensor as for in-
stance purely virtual components, meaning tensors A[v] with only virtual indices, can be
added in any number to the network. However there are only a few common decompo-
sitions used in the literature as they either allow for very compact decomposition or for
the definition of a well defined tensor rank and other useful properties. The by far most
common decomposition is the matrix product state (MPS) decomposition [8, 59–63],
also known as tensor train decomposition in the mathematical community where it was
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b)a)

Figure 3.2. – We show the graphs of different tensor network decompositions. a) The open
boundary MPS decomposition of a tensor of order 5 is shown. b) A general tree tensor net-
work decomposition of an order 7 tensor is displayed with physical indices in each component
A[v].

independently rediscovered [64]. Here the network is represented by a connected tree
and the components A[v] are tensors with a maximal order 3 and exactly one physical
index per component (compare Fig. 3.2). A second, more complex, decomposition with
similar properties is given by the tree tensor network states (TreeTNS) decomposition.
Here the graph of the decomposition is a general tree with again exactly one physical
index per component (see again Fig. 3.2). Furthermore, there exists the hierarchical
Tucker format which is mostly used in the applied mathematics community, where the
graph of the decomposition is a tree with physical indices only at the leaves and purely
virtual components in the bulk. The canonical decomposition of a tensor c defined by

c =
r∑

α=1

A[1]
α ⊗A[2]

α ⊗ · · · ⊗A[V ]
α , (3.2)

for A
[j]
α ∈ Cdj can be viewed as a special case of the hierarchical Tucker format with one

fixed core tensor joining all virtual legs. Note that every tensor can be decomposed in
any of the formats if we do not restrict the allowed bond dimensions [52, 65].

On the formal side, many problems relevant for numerical applications involving ten-
sors can be shown to be NP-hard [66], including for instance finding the best rank one
approximation of a tensor of order > 2 or finding the minimal rank needed for a canon-
ical decomposition of a tensor of order > 2. Let us however again emphasize that such
hardness results, usually have to be considered with caution as discussed in Sec. 2.5.2.

Furthermore, from a numerical perspective it is of course interesting to have a closer
look at the set of all possible tensors that can be reached by a fixed tensor network
decomposition upon varying the entries of the components A[v] of the tensor network.
For practical applications it is desirable that the corresponding sets of tensors form
variational smooth manifolds which is indeed the case for most of the examples above
[67, 68].2 In the context of numerical variational schemes we also desire closedness

2To be precise, in order to obtain a smooth manifold we need an additional full rank assumption,
meaning that we only consider tensors for which it would have been not possible to describe the same
tensor with the same tensor network decomposition using lower weights on the edges. Considering the
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properties of the corresponding sets. The canonical decomposition in Eq. (3.2), for
instance, suffers from the so-called border rank problem. A sequence of tensors with a
fixed bond dimension in the canonical decomposition can converge to a tensor with a
larger bond dimension [52, Sec. 9.4]. This effect is usually based on cancellations and
can result in numerical instabilities when we try to approximate tensors using tensor
networks. Hence, in the context of TNS, the canonical decomposition is so far mostly of
theoretical interest. In addition, the reachable set for a tensor network decomposition
with cycles in the underlying graph is known to be not closed [52, 58] which can lead to
similar instabilities.

Physicists are often less intrigued by those mathematical concerns and widely use dif-
ferent kinds of tensor network decompositions which contain cycles and find them to
perform very well in practice. For two-dimensional lattice systems projected entangled
pair states (PEPS) [59, 69] are frequently used, which are based on a decomposition
according to a two-dimensional grid with a physical degree of freedom at each node
and additional 4 virtual indices on tensors in the bulk. Furthermore, MPS with peri-
odic boundary condition, [70, 71], so MPS where each tensor is of order 3, have been
proven to be useful for one-dimensional systems with periodic boundary conditions and
multiscale entanglement renormalization ansatz (MERA) states [72], which use a de-
composition similar to the hierarchical Tucker format with additional nodes that form
loops in the different levels of the tree, allow for the simulation of critical systems [73].
The decomposition chosen in order to represent quantum states with tensor networks
depends therefore in practice usually on the geometry and symmetries of the underlying
system. We will see in the next section that next to the obvious appeal of using a de-
composition graph similar to the lattice of the system this choice ensures that the TNS
is able to represent natural correlation structures of the system as the network inherits
the physical locality structure.

3.1.2. Correlations in Tensor Network States

Given a tensor network decomposition (V, E ,K), we defined the corresponding set of
tensor network states as the states |ψ〉 ∈

⊗V
j=1H[j] whose coefficient tensor c can be

decomposed according to (V, E ,K). For explicit considerations we will restrict ourselves
mostly to MPS. The set of MPS with bond dimensions {rj |j ∈ [V ]} is then given by all
states which are of the form

|ψ〉 =
∑

i1,...,iV

r1∑
α1=1

· · ·
rV−1∑

αV−1=1

A
[1]
i1,α1

A
[2]
i2,α1,α2

· · ·A[V ]
iV ,αV−1

|i1〉 ⊗ · · · ⊗ |iV 〉 (3.3)

with arbitrary components A[j] ∈ Cdj×rj−1×rj , with formally r0 = rV = 1 and {|ij〉|j ∈
[dj ]} with dj = dim(H[j]) being an orthogonal basis of H[j]. Given a set of component

set of all possible tensors that can be reached with a fixed tensor network decomposition, including
the ones that would have a simpler description, gives rise to algebraic varieties with those tensors
that have a simpler description as singular points. Note that the set of all tensors with a fixed tensor
network decomposition does not constitute a linear subspace or convex set as we will explicitly see
in upcoming section for the MPS decomposition.
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tensors {A[j]|j ∈ [V ]} with appropriate dimensions we denote by |(A[j])j〉 the corre-
sponding MPS which might be unnormalized.

For MPS we can easily see that the restriction of the maximal bond dimension to a
fixed value leads directly to a bound on how correlated subsystems can be. Let |ψ〉 be
an MPS of maximal bond dimension r. Given any j ∈ [V − 1], we split the systems
into the sites [j] and the remaining part [j]c. From the definition of an MPS we directly
obtain a decomposition of |ψ〉 into

|ψ〉 =

rj∑
α=1

|A[1], . . . , A[j]〉α ⊗ |A[j+1], . . . , A[V ]〉α (3.4)

with unnormalized

|A[1], . . . , A[j]〉α =
∑
i1,...,ij

∑
α1,...,αj−1

A
[1]
i1,α1
· · ·A[j]

ij ,αj−1,α
|i1〉 ⊗ · · · ⊗ |ij〉, (3.5)

|A[j+1], . . . , A[V ]〉α =
∑

ij+1,...,iV

∑
αj+1,...,αV−1

A
[j+1]
ij+1,α,αj+1

· · ·A[V ]
iV ,αV−1

|ij+1〉 ⊗ · · · ⊗ |iV 〉. (3.6)

The Schmidt rank of the state for such a bipartition is therefore upper bounded by r, as
|(A[k])k∈[j]〉α span for α ∈ [rj ] a subspace of ⊗jk=1H

[k] of maximal dimension rj ≤ r. As a
consequence the von Neumann entropy SvN of the reduced state tr[j] |ψ〉〈ψ| has then by
the Schur-concavity of SvN the maximal value of ln(r) irrespective of the subsystem size.
Therefore the physical consequence of enforcing a specific tensor network description on
a state |ψ〉 is a limitation of the correlations present in |ψ〉. The same argument and
result hold for TreeTNS with a maximal bond dimension, only that the bipartitions need
to be chosen according to the arrangement of the sites inside the tree.

For more general bipartitions of the corresponding system and other tensor network
states such as MERA states and PEPS, the Schmidt rank of chosen bipartitions are
bounded by the product of the dimension of the cut edges in the graph. In the case of
PEPS the Schmidt rank and by this for instance also the von Neumann entropy scale at
maximum with the length of the cut through the network, but not with the volume of
the patch enclosed by the cut. MPS and PEPS are therefore said to fulfill an area law
for the contained correlations as the amount of correlation present in these states for any
bipartition only scales with the size of the surface area and not with the volume of its
parts. This is in stark contrast to generic quantum states. Drawing a quantum state at
random from ⊗Vj=1H[j] one finds with high probability a state whose correlations do not
fulfill an area law but a volume law [74, 75], meaning that the amount of correlations of
a subsystem with its surrounding will scale with the total size of the subsystem so that
every constituent is correlated with every part of the system in an unstructured way.
Such states illustrate the limits and restrictions of tensor network methods as they are not
efficiently representable and typically also only badly approximable by tensor network
states as essentially the full exponential complexity of the Hilbert space is explored.

However, naturally occurring states can often be well approximated by tensor network
states. On the one hand, this is seen simply from the success of different tensor network
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methods in many instances [8, 59–63], on the other hand it is proven by rigorous results on
the correlation structure of ground states of one-dimensional local Hamiltonians [9, 76].
Assuming a gap between the unique ground state and the first excited state it is possible
to show that the Rényi entropies Sα defined in Eq. (2.4) fulfill an area law for α ≤
αcrit < 1 [9]. On the other hand, if a state exhibits an area law for any Rényi entropy
with α < 1 then it can be efficiently approximated with an MPS with a bond dimension
that scales only polynomially with the system size and algebraically in the desired error
threshold [9, 77]. Local properties of such a state, so expectation values with local
observables like the terms of a local Hamiltonian, can however already be correctly
reproduced with a bond dimension independent of the system size which explains the
enormous success of MPS as numerical tool for obtaining ground state energies of local
one-dimensional systems. Recently, algorithms have been formulated which reliably
identify MPS approximations to ground states of local one-dimensional gapped systems
of distinguishable particles in a time that scales only polynomially in the system size
[78, 79]. These algorithm complement more heuristic methods such as the more efficient
but less controlled DMRG which we will discuss below in more detail.

In higher-dimensional systems neither of the two results holds in such generality. It is
still at maximum conjectured that typical ground states of local systems fulfill an area
law in two dimensions and even an area law of every Rényi entropy will not imply the
approximability of the corresponding state by a PEPS [80], which would seem to be the
natural candidate.

In the MERA, additional purely virtual components are added to the network which
renormalize the entanglement on different length scales [72]. These additional degrees of
freedom allow MERA states in one-dimensional systems to contain correlations that go
beyond a strict area law and allow for correction to the area law that scale logarithmically
with the subsystem size even with fixed bond dimensions. MERA is therefore well suited
to treat one-dimensional critical systems where such violations of area laws are expected
[73, 81]

The result above concerning the natural occurrence of MPS in physical systems needs
locality as an underlying structure in the Hamiltonian. For many systems of interest,
originating for instance from the investigation of solids, this is a sane assumption (at
least within approximative descriptions). However, only little is known once we reach the
realm of non-local systems, which are encountered for instance in the context of quantum
chemistry. If we are interested in the ground state configuration of N electrons inside a
molecule, one generically encounters non-local Hamiltonians without a strict underlying
geometry, i.e., we can usually not speak naturally of neighboring sites or having a n-
dimensional system. In these cases no general results on the correlation structure of the
ground states of such systems are known. However, tensor network methods can still
be applied to these systems as they provide a numerical tool, capable of representing
strong correlations once the bond dimension is high enough and intrinsically allow for
an error control by scaling the bond dimension appropriately. If applied to non-local
systems, tensor network state methods do provide controlled schemes which allow for
approximations of ground and excited states. However, the bond dimensions needed
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A[1] A[2] A[3]

A[2]

=

X̂ [1]X [1] X [2] X̂ [2]A[1] A[3]

X̂ [j−1] A[j] X [j]

Ã[j]

=

a) b)

Figure 3.3. – Illustration of the gauge freedom of MPS. For a given MPS decomposition with
components {A[j]|j ∈ [V ]} we can insert right-invertible transformations X [j] and their right
inverse X̂ [j] as shown in a) on 3 sites without altering the global tensor. For the new MPS
components Ã[j] defined in b) we obtain then that |(A[j])j∈[V ]〉 = |(Ã[j])j∈[V ]〉.

are often very large such that in these cases the used code is operated at the limits of
the corresponding implementation as the correlation structure in realistic states often
only poorly matches the one of MPS. The method developed in this chapter allows to
partially overcome this limitation of tensor network methods and to efficiently handle
highly entangled states if an additional structure is present. In order to discuss the
resulting algorithm in detail we will first introduce further technical details about MPS
and existing algorithms for approximating ground states with them. In the remainder of
this section we further discuss the structure of MPS and introduce normal forms that are
crucial for practical purposes and review the incorporation of global symmetries, such
as having states with a fixed particle number, into tensor network states.

3.1.3. Matrix Product States: Normal Forms and Operations

Repeating the definition for convenience, given for a specific set of bond dimensions
{rj |j ∈ [V−1]} valid component tensors {A[j]|j ∈ [V ]} of an MPS, the MPS |(A[j])j∈[V ]〉 ∈⊗V

j=1H[j] is defined by

|(A[j])j∈[V ]〉 =

d1∑
i1=1

· · ·
dV∑
iV =1

r1∑
α1=1

. . .

rV−1∑
αV−1=1

A
[1]
i1,α1

A
[2]
i2,α1,α2

· · ·A[V ]
iV ,αV−1

|i1〉⊗ · · ·⊗ |iV 〉 (3.7)

with {|ij〉|j ∈ [dj ]} denoting an orthonormal basis of H[j]. The decomposition of
a specific state |ψ〉 into an MPS is not unique meaning that given any MPS with
components A[j] with j ∈ [V ], we can construct new component tensors Ã[j] with
|(A[j])j∈[V ]〉 = |(Ã[j])j∈[V ]〉. As depicted in Fig. 3.3 we can insert for any j ∈ [V − 1]

between the two components any transformation X [j] ∈ Crj×k with a right-inverse X̂ [j],
i.e., X [j]X̂ [j] = 1rj without altering the global tensor resulting from contracting the MPS
over all virtual indices. For general TNS this of course generalizes to the freedom that
we can insert such transformations at any edge in the network. Staring from some initial
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A[j]

A[j]

=

A[j]

A[j]

=

a) b)

Figure 3.4. – Illustration of the condition on the component A[j] of an MPS for being left
normalized (shown in a)) and right normalized (shown in b)).

component tensors {A[j]|j ∈ [V ]}, we can define a new set of tensors {Ã[j]|j ∈ [V ]} by
contracting the original components with transformations X [j] of our choice as illustrated
in Fig. 5.1 while the MPS stays unchanged meaning that |(A[j])j∈[V ]〉 = |(Ã[j])j∈[V ]〉. This
non-uniqueness of a tensor network representation and the resulting gauge freedom of
tensor network decompositions has several implications.

First of all note that the bond dimension can be altered. By choosing transformations
X ∈ Crj×r̃j with r̃j ≥ rj , the new components Ã[j] constitute an MPS representation of
|(A[j])j∈[V ]〉 with bond dimensions r̃j . It is easy to see that there exists for every tensor

c an MPS decomposition with minimal bond dimensions. If c ∈
⊗V

j=1 Cdj is the tensor
to be decomposed, then for every MPS decomposition of c the bond dimensions rj are
restricted by the ranks of different matrices obtained from rearranging the elements of
c according to

rj ≥ rank
(

(ci1,...,iV )(i1,...,ij)∈[d1]×···×[dj ],(ij+1,...,iV )∈[dj+1]×···×[dV ]

)
, (3.8)

by the uniqueness of the matrix rank. In addition such a decomposition can always be
constructed [65]. Note that this result is expected from the relation of correlation, i.e.,
entanglement, in an MPS and its bond dimensions. We can therefore define the set of
all MPS that have a sequence of minimal bond dimensions (rj)j∈[V ] and denote it by
M((rj)j∈[V ]).

However, even after fixing the bond dimensions, the MPS representation of a certain
state |ψ〉 ∈ M((rj)j∈[V ]) is still not unique. Given a valid MPS representation of |ψ〉
with the components A[j] for j ∈ [V ], the components

Ã
[j]
ij ,α̃j−1,α̃j

=

rj−1∑
αj−1=1

rj∑
αj=1

[(X [j−1])−1]α̃j−1,αj−1A
[j]
ij ,αj−1,αj

X
[j]
αj ,α̃j

(3.9)

for arbitrary X [j] ∈ GL(rj ,C) with |X [0]| = |X [V ]| = 1, yield the same MPS, i.e.,
|(A[j])j∈[V ]〉 = |(Ã[j])j∈[V ]〉 = |ψ〉. In order to investigate this on the level of the compo-

nent tensors let us define the spaces of components A[j] ⊂ Cdj×rj−1×rj compatible with
a given set of minimal bond dimensions via

A[j] = {A ∈ Cdj×rj−1×rj | rank((Aij ,αj−1,αj )(αj−1,ij),(αj)) = rj ∧
rank((Aij ,αj−1,αj )(αj−1),(ij ,αj)) = rj−1}, (3.10)

51



Algorithm 1 – Algorithm to left and right normalize an MPS until site j

1: procedure left normalize((A[k])k∈[V ], j)
2: for k = 1 to j do

3: U [k],Σ[k], V [k] ← SVD
(

(A
[k]
ik,αk−1,αk

)(ik,αk−1),(αk)

)
4: A[k] ← (U

[k]
(ik,αk−1),αk

)ik,αk−1,αk

5: if k + 1 ≤ V then

6: A[k+1] ←
(

rk∑
α=1

Σ
[k]
αk,αkV

[k]
αk,αA

[k+1]
ik+1,α,αk+1

)
ik+1,αk,αk+1

7: else
8: A[V ] ← V [V ]A[V ]

9: procedure right normalize((A[k])k∈[V ], j)
10: for k = V to j do

11: U [k],Σ[k], V [k] ← SVD
(

(A
[k]
ik,αk−1,αk

)(αk−1),(ik,αk)

)
12: A[k] ← (V

[k]
αk−1,(ik,αk

))ik,αk−1,αk

13: if k − 1 ≥ 1 then

14: A[k−1] ←
(rk−1∑
α=1

A
[k−1]
ik−1,αk−2,α

U
[k]
α,αk−1Σ

[k]
αk−1,αk−1

)
ik−1,αk−2,αk−1

15: else
16: A[1] ← A[1]U [1]

such that theA[j] for j ∈ [V ] contain all tensors which yield a full rank MPS with minimal
bond dimension {rj |j ∈ [V ]}. We can now divide out the from the transformation in

Eq. (3.9) induced action by of×V
j=1GL(rj ,C) on the parameter manifold

⊗V
j=1A[j]

of the component which gives M((rj)j∈[V ]) =
⊗V

j=1 Crj−1×dj×rj/×V
j=1GL(rj ,C) the

structure of a smooth manifold [57, 68]. The closure M((rj)j∈[V ]) corresponds to the
set of all states which can be represented as an MPS with bond dimensions (rj)j∈[V ]

and forms an algebraic variety (see for instance [57]). In practice we can lift the gauge
freedom of MPS by choosing canonical forms [82] and use it in order to define normal
forms. We will only need the latter for the following. A component A[j] is called left
or right normalized if it fulfills the conditions depicted in Fig. 3.4. Using the gauge
invariance of an MPS we can bring it into a mixed normalized form with respect to
any j ∈ [V ], meaning that all components on sites k < j are left normalized and all
components on sites k > j are right normalized. In practice, depending on the desired
normalization, the individual components A[j] are iteratively rearranged into matrices,
decomposed using the singular value decomposition (SVD)3 and parts of the results
of the SVD are absorbed into the component A[j+1] or A[j−1] as explained in Alg. 1.
The normalized form has several immediate advantages and applications. If an MPS is
given in a mixed normalized form with respect to site j, the calculation of expectation

3Every matrix A ∈ Cn×m with rank r can be decomposed into U,Σ, V with UΣV = A, U ∈ Cn×r,Σ ∈
Rr×r and V ∈ Cr×m with U†U = 1r, V V

† = 1r and Σ diagonal with Σj,j > 0 for j ∈ [r].
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a)

b)

〈(B[j])j |(A[j])j〉 =

A[1] A[2] A[3] A[4]

B[1] B[2] B[3] B[4]

〈(A[j])j |O|(A[j])j〉 =

A[1] A[2] A[3] A[4]

O[1] O[2] O[3] O[4]

A[1] A[2] A[3] A[4]

Figure 3.5. – Illustration of the tensor networks for calculating the scalar product of the two
MPS |(A[j])j〉 and |(B[j])j〉 in a) and in b) the expectation value of the MPO decomposed
operator O with respect to the MPS |(A[j])j〉. In b) a general MPO decomposition of an
operator O is shown. The resulting components O[j] are tensors of order 3 or 4 after splitting
the physical indices into two indices as explained in Sec. 3.1.3.

values of observables supported on j only simplifies drastically and can be done in a time
independent of the system size as we can insert the relations in Fig. 3.4 starting from the
left and right boundary. Secondly, if a state is completely right or left normalized the
vectors |(A[k])k∈[j]〉α or |(A[k])k∈[V ]\[j]〉α defined in Eq. (3.5) and (3.6) are orthonormal
for all j ∈ [V ]. Starting from a right normalized MPS and applying the left normalization
until site j, will not only result in a mixed normalized MPS with respect to site j+1 but
also all singular value matrices Σ[k] obtained during the left normalization, correspond to
the Schmidt values of the state with respect to the bipartition [k] and [k]c. Converting a
given MPS with bond dimensions rj and physical dimensions dj into a normalized form
and by this the calculation of the Schmidt coefficients can be done in a time scaling as
O(V dr3) with d = max({dj |j ∈ [V ]}) and r = max({rj |j ∈ [V − 1]}).

Next to determining the Schmidt coefficients with respect to a left-right partition of
the system, we are able to perform other operations efficiently within the MPS framework
[8]. Consider two MPS of the same physical system with maximal physical dimensions

d = max({dj |j ∈ [V ]}) and bond dimensions r
(1)
j and r

(2)
j with j ∈ [V − 1] and r =

max({r(a)
j |j ∈ [V − 1], a ∈ {1, 2}}). The two MPS can be added to a new MPS, where

the bond dimensions rj of the new MPS are upper bounded by rj ≤ r
(1)
j + r

(2)
j and the

time needed scales as O(V dr2). Note that as in general the bond dimension increases
under addition, M((rj)j∈[V ]) is neither a linear subspace of the full Hilbert space nor
convex. Furthermore, we can evaluate the scalar product of the two MPS according to
the scheme showed in Fig. 3.5. If performed in the correct order the contraction of the
network in Fig. 3.5 a) can be achieved in a time scaling as O(V dr3).

The construction of MPS is quite general. It can also be applied to the Hilbert space of
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operators acting on
⊗V

j=1H[j]. In order to avoid confusion the resulting decomposition
is denoted as matrix product operator (MPO) decomposition and the physical indices
of dimension d2

j are split into two indices in order to highlight the character of an MPO
of being a linear map between MPS (see also Fig. 3.5 b)). As an example, note that for
H[j] = C2 for all j ∈ [V ] a product of Pauli operators such as Z ⊗ · · · ⊗Z ⊗ (X − iY )⊗
12 ⊗ . . . can be written as an MPO with maximal bond dimension r(O) = 1 due to the
product structure. In addition every operator that acts only on a finite region S ∈ [V ]
acquires an MPO decomposition with a maximal bond dimension r(O) ≤ d|S|. Given

an MPO of bond dimensions r
(O)
j with r(O) = max({r(O)

j |j ∈ [V − 1]}) we are able to

calculate its expectation value with an MPS in a time scaling as O(V r(O)[d2r(O)r2+dr3])
by contracting the network displayed in Fig. 3.5 b).

3.1.4. Symmetric Tensor Network States

The incorporation of symmetries of a system such as a fixed particle number or spatial
reflection symmetries into MPS or TNS in general is interesting and important from a
conceptional and a practical point of view. On a conceptual level the investigation of
how symmetry groups act on TNS allows for an detection and analysis of symmetry
protected topological order theoretically [11] and also practically [12].

The implementation of symmetries into TNS and by this the possibility to restrict
ourselves to a defined symmetry sector has on the other hand clear practical advantages
for numerical investigations. First, the concrete question at hand, often includes the
restriction to a symmetry sector, e.g. find the lowest eigenenergy of a state with N
electrons. Secondly, the restriction to a specific symmetry sector allows to reduce the
number of parameters as only a fraction of the full Hilbert space is concerned, which
however will in general still be exponentially large in the system size.

It is possible to incorporate general symmetries that act locally on the individual
constituents H[j] of the full Hilbert space and split them into irreducible representations
(irreps). To be precise we need that the unitary representation of the symmetry operation

Ug on the full Hilbert space decomposes as Ug =
⊗V

j=1 U
[j]
g for all g ∈ G with G being

the symmetry group under consideration which is assumed to be finite or compact in
the following.4 A state |ψ〉 ∈

⊗V
j=1H[j] is invariant under this symmetry if

V⊗
j=1

U [j]
g |ψ〉 = eiφg |ψ〉 (3.11)

where the eiφg forms a one-dimensional unitary representation of G 5. We can ensure

4As an example consider the case of a fixed magnetization of the total mz quantum number in a spin-
1/2 system (which translates by the Jordan-Wigner transformation to a fixed total particle number
in the fermionic system). The corresponding symmetry group would be U(1) with the representation⊗V

j=1 e
ig(Z+12)/2 with Z being the Pauli-Z matrix and g ∈ [0, 2π] ' U(1) that splits the local space

C2 in the two irreducible components span(|m[j]
z = −1/2〉) and span(|m[j]

z = 1/2〉).
5Continuing with the example of a fixed magnetization, if |ψ〉 has the magnetization m then eiφg =
eig(m+V )/2 with V denoting the system size which is an irrep of U(1) labeled by (m+ V )/2 ∈ N
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this property for a TNS if we demand it to be composed of symmetric components A[j]

(see for instance [83, 84]). Assume a tensor network decomposition according the graph
(V, E ,K). Assign then a direction to each edge of the graph and label all half edges as
ingoing. We denote by in(v) and out(v) the set of in- and out-going edges and half edges
to a vertex v ∈ V and denote by H[e] the vector space associated to the edge or half edge
e ∈ E ∪K with dim(H[e]) = re for edges and dim(H[e]) = de for half edges. Furthermore,
we need unitary representations of the group on the virtual spaces H[e] with e ∈ E which
is induced by the representation on the physical spaces.6 From the above we then have
an unitary representation of G associated to every edge and half edge which we denote
by U [e] with e ∈ E ∪ K. A component tensor A[v] for v ∈ V is then called symmetric if
it is invariant under the joint action of the representation of the same element g ∈ G on
all spaces as depicted in Fig. 3.6 a). A TNS constructed from symmetric components
will then be a symmetric state as argued in Fig. 3.6 b).

The condition Fig. 3.6 a) imposes a structure on the component A[j] by Schur’s lemma
[85, p. 57]7. In order to see this note that due to the representations of G, the physical
spaces Cdj and virtual space Crk for j ∈ [V ] and k ∈ [|E|] decompose into multiples of
irreducible subspaces Hλ, where λ labels the according irrep. To be precise, every space
H[e] with e ∈ E ∪ K decomposes as

H[e] =
⊕
λ

D
[e]
λ ⊗Hλ (3.12)

where degeneracy space D
[e]
λ accounts for the fact that Hλ might appear multiple times

in H[e].8 The representation of G on H[e] splits then as

U [e]
g =

⊕
λ

1
dim(D

[e]
λ )
⊗ Uλ,g. (3.13)

Collecting for a given vertex v ∈ V all spaces corresponding to ingoing and outgoing

edges and half edges into two big tensor product spaces H[v]
in =

⊗
e∈in(v)H[e] and H[v]

out =⊗
e∈out(v)H[e], the component A[v] can be viewed as a linear transformation from H[v]

in to

H[v]
out. The group G then acts by the product representation onH[v]

in andH[v]
out which again

decompose into irreducible subspaces. Note that if either in(v) or out(v) are empty we

set H[v]
in = C or H[v]

out = C accordingly with G acting trivially on it. If A[v] is a symmetric
tensor, it commutes with the action of G and decomposes therefore by Schur’s lemma
into a structure factor determined by the irreducible subspaces and into a parameter

6The possible representations on the virtual spaces originate from the ones on the physical spaces. In
the case of a fixed magnetization and an MPS, the first virtual space can contain the components
|mz = −1/2〉 and |mz = 1/2〉. The second virtual space can, after the addition of a second spin,
contain the contributions |mz = 0〉 and |mz = ±1〉 and so on.

7Schur’s lemma states that given a group G that acts with the irreps U1 and U2 on the complex vector
spaces H1 and H2 and a linear transformation A : H1 → H2 with U1

gA = AU2
g for all g ∈ G then

either A = 0 or dim(H1) = dim(H2), U1 and U2 are equivalent and A = c1 for some c ∈ C.
8In the example of a fixed magnetization, the space of two qubits C2⊗C2 splits into span(|mz = −1〉)⊕

(C2 ⊗ span(|mz = 0〉))⊕ span(|mz = 1〉).
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A[v]

a)

U
[ev1 ]
g

U
[ev2 ]
g

U
[ev3 ]
g
†

U
[ev4 ]
g

= A[v]

b)

=

Figure 3.6. – a) Illustration of the conditions on the components A[v] of a tensor network for
being a symmetric tensor. Given the component A[v] with ingoing edges or half edges ev1,
ev2 and ev4 and an outgoing edge ev3, A[v] is symmetric if it is invariant under the joint
multiplication with the unitary representations as shown above. Note that on ingoing
edges the representation is chosen to act as U [evk], while on outgoing edges with the ad-
joint U [evk]† (which are indicated in darker color). The condition generalizes to more or
fewer ingoing and outgoing edges in the obvious way. b) Illustration of a tensor network
with two physical indices and three components where we suppress all labels for better

visibility. If we act with the symmetry operators U
[1]
g and U

[2]
g on the physical spaces, we

can always insert the according representatives on the virtual spaces in the network due
to the unitarity of the representations, where we use the same color coding as in a). If
all components are now symmetric tensors as displayed in a), the resulting state will fulfill

U
[1]
g ⊗ U [2]

g |A[1], A[2], A[3]〉 = |A[1], A[2], A[3]〉, i.e., it is invariant with φg = 0 for all g ∈ G
in Eq. (3.11). We can account for the additional phase factor in Eq. (3.11) by adding one
additional index of dimension 1 to any of the components and let the symmetry group G
act on it with the representation eiφg – in an MPS decomposition we would typically add
this index to the last site.

factor originating from the degeneracy spaces. A[v] shaped as the linear transformation

from H[v]
in to H[v]

out as explained above then decomposes into a direct sum of independent
contributions and we obtain the sparsity structure imposed on the level of the tensor
A[v] by splitting the combined indices again. The structure appearing for general groups
on the level of the tensor is then quite involved as general Clebsch-Gordan coefficients
and multiplicities will appear in the product representation. It is worked out in full
generality with details on the practical implementation in Ref. [84]. For Abelian groups
on the other hand the resulting scheme is quite straightforward [86]. The reason for this
is that all irreps are one-dimensional and tensor product of two irreps is again an irrep.
We denote by λ1 ⊗ · · · ⊗ λk the label of the unique irrep that results from building the
tensor product of the irreps corresponding to all λ1, . . . , λk. All spaces decompose again

as in Eq. (3.12) with dim(Hλ) = 1 and therefore
∑

λ dim(D
[e]
λ ) = dim(H[e]). We then

split the index corresponding to H[e] into a tuple (λ, αλ) where λ ranges over all irreps
appearing in the decomposition of H[e] and αλ ∈ [dim(D[e])λ]. Given any v ∈ V and
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abbreviating |in(v)| = a and |out(v)| = b, the symmetric component A[v] then splits into

A
[v]

(λi1,αλi1
),...,(λia,αλia

),(λo1,αλo1
),...,(λob ,αλob

)
= A

[v,λi1,...,λ
i
a,λ

o
1,...,λ

o
b ]

α
λi1
,...,α

λia
,αλo1

,...,α
λi
b

δλi1⊗···⊗λia,λo1⊗···⊗λob
, (3.14)

where the entries of the tensors A[v,λi1,...,λ
i
a,λ

o
1,...,λ

o
b ] are up to the usual gauge freedom of

tensor networks, independent of each other and we denote by λi and λo the irreps of
the corresponding ingoing and outgoing spaces. The component A[v] splits therefore in
a direct sum of smaller tensors A[v,λi1,...,λ

i
a,λ

o
1,...,λ

o
b ] which can be practically implemented

by splitting all indices into tuples as in Eq. (3.14) and use a block-sparse tensor format
for the direct implementation. All calculations can then be reduced to the smaller com-
ponent tensor and all we need to specify of a given symmetry is how two representations
are fused for edges that go into the same direction, i.e., we need to specify λ1 ⊗ λ2, and
for edges that go into opposite directions and how the local physical spaces decompose
into different symmetry sectors.9

3.2. Density Matrix Renormalization Group and Related
Algorithms

The DMRG algorithm was first developed independently of tensor network states. In
its original formulation [87] the DMRG algorithm relied on an iterative update of the
single or two-site reduced density matrix and truncation of the space it is supported
on. The DMRG turned out to be able to approximate the ground state of local spin
systems such as the Heisenberg model with an impressive accuracy. The connection to
MPS was established in the following [88, 89] and lead to a deeper understanding of the
method and also at least partially motivated the research on the correlation structure
in one-dimensional systems summarized in Sec. 3.1.2. In its modern formulation [8],
the DMRG algorithm is one of several tensor network algorithms used in computational
physics. In essence, it constitutes a heuristic iterative eigensolver of a high-dimensional
matrix acting on a tensor product space which approximates low-lying eigenvectors by
an MPS. The second very popular approach of finding ground states in MPS manifolds,
relies on the imaginary time evolution. This can be either done using the time evolving
block decimation (TEBD) method by applying decompositions of the time evolution
operator for small time steps [65] or by integrating the on the MPS manifold projected
flow generated by the Schrödinger equation [90]. Recently, a connection between the
imaginary time evolution based on TEBD and DMRG has been established [91]. This
scheme allows us now to also perform a (real or imaginary) time evolution using a DMRG
for all Hamiltonians the DMRG algorithm can be applied to (including non-local ones).

In this section we focus on the basic techniques needed in order to understand and
implement a DMRG algorithm for long range Hamiltonians, with a specific focus on the

9Again for the fixed magnetization the physical space of a single qubit splits into span (|mz = −1/2〉)
and span (|mz = 1/2〉) with labels λ = 0, 1 and the irrep labels of two edges going in the same
direction fuse as λ1 + λ2 where for edges with opposite direction we have λingoing − λoutgoing.
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Hamiltonian of interacting fermions in Eq.(2.58). The essential steps are described and
the resulting computational costs and heuristic error measure discussed. In addition
we present insights that have been gained concerning the convergence properties of
DMRG. More specifically we will find that a badly initialized DMRG does not converge
to the correct solution although we do not restrict the computational resources, and we
comment on how to extend the error measures to individual excited states.

3.2.1. Ground State Search

Within the MPS picture [8], the s-site DMRG algorithm corresponds to an iterative up-
date of s many component tensors on consecutive sites such that the energy expectation
value of the resulting MPS is approximately minimal, given that the component tensors
on all other sites are kept unchanged. Usually we set s = 1, 2.

3.2.1.1. Micro Iteration Step

Fix s ∈ [V ] and k ∈ [V − s] and assume we are given an MPS with the components
A[j] with j ∈ [V ] in a mixed normalized form with respect to site k. We introduce for
X ∈ Cdk···· dk+s×rk−1×rk+s the abbreviation

|X〉(A
[j])j

k,s = |A[1], . . . , A[k−1], X,A[k+s], . . . , A[V ]〉. (3.15)

We are then interested in the optimal tensor Xopt which minimizes the energy expecta-

tion value of |X〉(A
[j])j

k,s while being normalized. Defining the Lagrangian

Lk,s(X,X) = 〈X|(A
[j])j

k,s H|X〉(A
[j])j

k,s + λ(〈X|(A
[j])j

k,s |X〉(A
[j])j

k,s − 1) (3.16)

the optimal tensor Xopt minimizes (3.16) under the given constraint. Arranging all
entries ofX in a vector and denoting it by X, we can write (3.16) in the form X†H(k,s)X−
λ(X†X − 1) where the matrix H(j,k) is defined in Fig. 3.7 a) and the scalar product
in (3.16) simplifies due to the normalization as displayed in Fig. 3.7 b). Taking the
derivative with respect to X† [92] we find that the extrema are given by the solutions of

H(k,s)X− λX = 0, (3.17)

which is an ordinary eigenvalue problem of H(k,s). Solving for the normalized eigenvector
Xmin corresponding to the smallest eigenvalue λmin, we find that Xopt = Xmin with

〈Xopt|
(A[j])j
k,s H|Xopt〉

(A[j])j
k,s = λmin.

3.2.1.2. Single Site DMRG

For a given k in case of the single-site DMRG (s = 1) the resulting optimum Xopt can
be reshaped into a tensor of order 3 (or 2 at the boundaries) again and we update the
MPS by replacing A[k] by X. Bringing the resulting MPS in the mixed normalized form
with respect to site k + 1 we identify and insert the optimal tensor for site k + 1 by the
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a)

b)

A[1] A[2] X A[5]

A[1] A[2] X A[5]

H

H(3,2)

= H(3,2)

X

X

A[1] A[2] X A[5]

A[1] A[2] X A[5]

=

X

X

Figure 3.7. – a) Illustration of the energy expectation value 〈X|(A
[j])j

k,s H|X〉(A
[j])j

k,s for k = 3

and s = 2. We define the matrix H(3,2) to be the part of the tensor network encircled by
the dashed line, where all red and blue edges are combined to one index respectively. The
energy expectation value can then be written as X†H(3,2)X. b) Assuming that the MPS is

given in a mixed normalized form with respect to site 3 (or 4), the norm of |X〉(A
[j])j

k,s can
be simplified as shown. Inserting the normalization conditions Fig. 3.4 on the left and right

iteratively, yields that 〈X|(A
[j])j

k,s |X〉(A
[j])j

k,s = X†X by combining all red edges to one index.

above scheme. This process is iterated over the full system. Once the right boundary of
the system is reached, we continue by performing updates of the tensors on sites V − 1,
V − 2, etc. We sweep over the system back and forth and perform local updates. We
denote the cycle of starting from site 1 and reaching it again after 2(V − s) steps as
a macro iteration. Using the single-site DMRG we will in each micro iteration step
decrease the value of the energy expectation value while staying inside the manifold
M((rj)j∈[V ]) where (rj)j∈[V ] are the bond dimensions of the initial MPS. The initial
components can be chosen either at random, i.e. random tensors that might respect the
symmetry constraints, or based on an initial intuition or precalculations.

3.2.1.3. Two Site DMRG: Projections and Discarded Weights

In case of the two-site DMRG, i.e., s = 2, an additional step is needed. The op-
timum Xopt ∈ Cdkdk+1rk−1rk+1 found along the lines explained in the previous sec-
tion can not be directly inserted as an MPS component but needs to be decomposed
first. Reshaping the tensor Xopt by combining the left virtual and physical index
and the right virtual and physical index we obtain the matrix mat(Xopt) with entries
mat(Xopt)(ik,αk−1),(ik+1,αk+1) = Xopt(ik,ik+1,αk−1,αk+1). Note that the singular values of

mat(Xopt) correspond to the Schmidt spectrum of |Xopt〉
(A[j])j
k,2 for the bipartition of the

system in [k] and [k]c as the MPS is in a mixed normalized form. However, typically
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rank(mat(Xopt)) ≥ rk such that if we decompose mat(Xopt) by an SVD and reshape
the results into new components A[k] and A[k+1] we would locally increase the bond
dimension. We can deal with this issue in three different ways. We keep the exact solu-
tion Xopt at the cost of an increasing bond dimension. We approximate the mat(Xopt)
up to a predefined error with a matrix of lower rank before the decomposition or we
best-approximate the matrix mat(Xopt) by a matrix of fixed predefined rank.

The first option is rather unpractical as mat(Xopt) will be typically full rank due to
small numerical errors and the bond dimension would grow exponentially during several
macro iterations. The second and third option are similar in spirit and lead to the two
different strategies which are actually used for a two-site DMRG. Due to the normalized
form we obtain for an error induced on the states by changing the tensor X

‖|X1〉
(A[j])j
k,2 − |X2〉

(A[j])j
k,2 ‖2 = ‖mat(X1)−mat(X2)‖2. (3.18)

It is therefore practical to either for a given error ε find a the lowest rank possible which
allows for a low rank approximation of mat(Xopt) with an error not larger than ε by
solving

find minimal r ∈ N : min
X∈W :

rank (mat(X))≤r

‖mat(Xopt)−mat(X)‖2 ≤ ε (3.19)

and denote the minimizing X by Xapprox
opt or for a predefined maximal bond dimension r

minimize the error directly according to

Xapprox
opt = arg min

X∈W :
rank (mat(X))≤r

‖mat(Xopt)−mat(X)‖2, (3.20)

where W = Cdk×dk+1×rk−1×rk+1 . Both solutions can be found easily using the SVD.
Given a matrix A ∈ Cn×m with SVD UΣ(A)V = A and denote by Σr(A) the matrix in
which the smallest rank(A)− r singular values are set to zero then

UΣr(A)V = arg min
X∈Cn×m:
rank(X)=r

‖A−X‖2 (3.21)

and the error is given by the discarded singular values according to ‖A−UΣr(A)V ‖22 =∑rank(A)
l=r+1 σ↓l (A)2, where σ↓(A) denotes the sequence of decreasingly ordered singular

values of A [93]. Based on this result, we can solve the above minimization problems
either by discarding singular values until the error reaches ε or by simply discarding the
smallest rank(mat(Xopt)) − r singular values. The discarded singular values constitute
the discarded weight

εk =

rank(mat(X)opt)∑
l=r+1

σ↓l (mat(X)opt)
2, (3.22)

which allows for a heuristic error estimation [94, 95] as it captures the truncation error

induced by projecting the solution of the micro step |Xopt〉
(A[j])j
k,2 to an MPS manifold

with lower bond dimensions.
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Algorithm 2 – Basic components of a DMRG micro step. First, given the current MPS the
locally optimal update is calculated. Secondly, a found update is projected to a lower rank
depending on the direction of the sweep, where we use the convention +1 for a right sweep
and −1 for a left sweep. Ur, Σr and Vr are the restrictions of U , Σ and V to r rows and/or
columns.

1: procedure DMRG step((A[j])j∈[V ], k)

2: bring |(A[j])j∈[V ]〉 in mixed normalized form with respect to site k

3: prepare H(k,2) (see App. B.1)
4: Xopt ← lowest eigenvector(H(k,2))
5: return Xopt

6: procedure project(X,direction)
7: U,Σ, V ← SVD(mat(X))
8: fix r by restricting εk or set to min(rmax, rank(mat(X)))
9: if direction = −1 then

10: return UrΣr, Vr
11: else
12: return Ur, ΣrVr

This notion of being a projection can be made more precise. We can view the rank r
solution mat(Xapprox

opt ) = UΣr(mat(Xopt))V , where UΣ(mat(opt))V = mat(opt), as the
result of a projection as

mat(Xapprox
opt ) = UrUr

†mat(Xopt), (3.23)

with Ur being the matrix containing the columns of U associated to the largest r singular
values in Σ(Xopt). UrUr

† is then an orthogonal projection connecting mat(Xapprox
opt ) with

mat(Xopt).
After this projection, we step to the next site k ± 1 and continue with sweeps as in

the case of the single-site DMRG – Alg. 2 summarizes the essential steps of the micro
step of a two-site DMRG.

3.2.1.4. Application to Quantum Chemistry: Efficiency and Costs

The DMRG performs local updates of the components and its structure allows for a very
efficient approximation of the ground states of local one-dimensional systems. For local
Hamiltonians, the micro iteration step can be performed in a time that is independent
of the system size if we use disk memory of the order of O(V r2) with r = max({rj |j ∈
[V − 1]}). We are therefore in the very comfortable situation of having an efficient
method in order to approximate ground states of local Hamiltonians within an ansatz
class which provably allows for efficient approximation of the desired states.

This picture changes for non-local Hamiltonians. As explained above we have no
rigorous bound on the needed bond dimensions. Secondly, the costs of performing a
DMRG calculation increases and will scale with higher powers of the system size.
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H(k,2) =
∑
p

H
(k,2)
L,p H

(k,2)
R,p⊗ ⊗⊗

H
(k,2)
C,p

Figure 3.8. – Illustration of the decomposition needed of the matrix H(k,2) introduced in
Fig. 3.7 in order to implement an practical two-site DMRG. The matrix H(k,2) is split into

triples (H
(k,2)
L,p , H

(k,2)
C,p , H

(k,2)
R,p ) which allow to bookkeep for instance all terms that act on

the central and right part of the system always with the same operators and summarize
their action on the left part as explained in App. B.1 for interacting electrons. The scheme
presented in App. B.1 can be directly generalized to other Hamiltonians given by coefficient
tensors and low polynomials of commuting or anticommuting on-site operators.

The most time consuming part in a micro step is the calculation of Xopt. Using
iterative eigenvalue solvers such as the Lanczos or the Davidson method we can calculate
the eigenvector corresponding to the lowest eigenvalue of a matrix A solely by having
an oracle that can calculate AX for any vector X.10 The number of times this oracle
is called depends only weakly on the size of the matrix if a reasonable initial guess
is provided.11 In order keep the matrix vector product efficient we factor the partially
contracted Hamiltonian H(k,s) as shown in Fig. 3.8 [96], as we can then calculate H(k,s)X
in a time O(Pd2r2(d + r)) where P denotes the number of terms in the decomposition
and r and d are the maximal bond and physical dimension occurring as usual. In
App. B.1 we explain how to obtain a decomposition of H(k,2) of an interacting fermionic
Hamiltonian as in Eq. (2.58) on M modes that contains O(M2) terms where usually
M ∝ V . We obtain this decomposition in a time O(M2(dr3 + d2r2) + M3r2), where
r = max({rj |j ∈ [V − 1]}) and d = max({d|j ∈ [V ]}). The evaluation of the matrix
vector product H(k,2)X can then be performed in a time scaling as O(M2(d2r3 + d3r2)).

In the course of the research documented in this thesis a substantial code structure has
been developed. We present the developed code and discuss included features in App. C.
If not referenced otherwise, results presented in the following have been obtained with
this code.

3.2.2. Convergence of DMRG

The result for local minima on low rank manifolds for the DMRG algorithm originates
from several discussions with Max Pfeffer. The convergence behavior of the DMRG
algorithm is mostly only understood from practical investigation of specific examples

10Note that storing the full matrix H(k,s) in memory or fully diagonalizing it is only possible for small
bond dimensions which would strongly limit the applicability of DMRG.

11After the first sweep, the current component, or product of components for a two-site DMRG, usually
provides a good initial guess.

62



(e.g. [94, 95]) and a rigorous convergence analysis of the scheme is still lacking. If
applied to natural examples, the truncated weight of a converged DMRG calculation is
found to be related to the relative energy error by a polynomial dependence [94, 95],
which indicates a generic steady convergence upon increasing the available resources,
i.e., bond dimension. The rigorous understanding and formal convergence behavior
is on the other hand only poorly understood. Existing results are rather restrictive.
The analysis of the easier problem of finding the best MPS approximation to a given
state using a single-site DMRG like update scheme [97] provides a first step but needs
rather restrictive assumptions and is only valid on fixed rank manifolds. Algorithms
which yield a guaranteed best approximation of the ground state of local gapped one-
dimensional systems [78, 79] are less efficient than the DMRG and their results do not
easily carry over to more general settings such as non-local Hamiltonians. One of the
main obstacles for a deeper theoretical investigation of the DMRG algorithm is the
structure of the set of states. In the vicinity of rank deficient MPS, i.e., states which
can be well approximated using an MPS with smaller bond dimension, the curvature
of the MPS fixed rank manifold diverges. Furthermore, rank adaptive schemes such
as the two-site DMRG do not operate on simple manifolds but algebraic varieties. In
order to overcome these complications, recently a desingularization method for matrix
varieties has been designed which operators on a larger flattened manifold structure
[98]. In addition the geometric structure of tensor varieties has been more rigorously
investigated leading to a description of the tangent cones [99]. Unifying these current
trends in one combined picture has the potential of achieving a more rigorous and deeper
understanding of DMRG and tensor network methods as a whole in the near future and
is subject of current research.

Concerning the general convergence of the DMRG algorithm we here want to comment
shortly on the best case scenario and want to investigate a rather simple question. Given
unlimited resources, i.e., allowing for an arbitrary growth of the bond dimensions and
runtime, does the two-site DMRG algorithm converge to the global optimum, given that
the initial state is not perfectly orthogonal to the ground state? The answer to this
question is, surprisingly, no. The local update structure of the DMRG induces local
minima from which the algorithm can not escape. The simplest example for this can
already be given on 3 sites with physical dimension d = 2.12 Consider the non-orthogonal
target and initial state

|ψt〉 =
1√
5

(|0〉 ⊗ |0〉 ⊗ |0〉+ 2|1〉 ⊗ |1〉 ⊗ |1〉), |ψi〉 = |0〉 ⊗ |0〉 ⊗ |0〉, (3.24)

which are for instance realized by a Hamiltonian H = −|ψt〉〈ψt| and a ground state
search calculation initialized with |ψi〉. Note that |ψt〉 and |ψi〉 can be represented by
MPS with bond dimension 2 and 1 respectively. If we however now use a single- or
two-site DMRG in order to approximate the ground state of H starting from |ψi〉 one
can easily verify that |ψi〉 is a local minimum of the DMRG. The calculation will not
move away from |ψi〉 and the algorithm is stuck at |ψi〉 for the Hamiltonian above. Even

12Thanks to Benjamin Kutschan for proposing the following refined example.
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worse, |ψi〉 is not even the best bond dimension 1 approximation to |ψt〉 which is clearly
given by |1〉 ⊗ |1〉 ⊗ |1〉. In order to leave the above local minimum, we would need to
update all three sites simultaneously and allow for a growth of both bond dimensions, r1

and r2, in one single step. From this we conclude that due to the local update structure
of the DMRG additional local minima on low rank manifolds are induced which are not
even the optimum on the corresponding low rank manifold. Note that this is, as usual,
different to the matrix case, i.e., a problem on 2 sites. If we find convergence of the two-
site DMRG on a manifold of matrices with a rank lower than the maximal admissible
bond dimension, then true optimality follows and the minimum is not induced by the
optimization scheme itself [100]. This result is quite intuitive as in this case a two-site
scheme implements a global optimization step [100].

The example above can obviously be generalized to more complex settings and cor-
responds to an early developed intuition that if certain information is missing in the
initial or current state, then the DMRG can get stuck in local minima. Therefore noise
is often added to the solution of the micro step in order to be able to escape such minima
[96]. It is however unclear if this can be done consistently. The question to be answered
would then be: Are local minima in the spirit of the one constructed above a null set
on the corresponding fix rank manifolds and are these all of the local minima? These
questions are currently open and need to be answered in view of obtaining a full fletched
convergence analysis of any local update scheme for tensor network states such as the
DMRG.

3.2.3. Excited States

Using DMRG it is possible to not only approximate the ground state of a system
but also a few of the lowest excited states. The resulting family of states |ψk〉 are
approximated by a family of MPS which differ in only one component tensor, e.g.,
|ψk〉 = |A[1,k], A[2], . . . , A[V ]〉, where we typically combine the different A[j,k] into a ten-
sor of order 4 (order 3 at the boundaries) and by this add to one component an additional
index which labels the different states. The additional index is always placed on one of
the components we update in a current micro iteration step and the additional index is
shifted along the chain using SVDs as illustrated in Fig. 3.9 during a sweep. Assume that
we want to calculate the m lowest energy states. The micro iteration step then changes
from calculating only the lowest eigenvector to calculating the lowest m eigenvectors
X(m) of H(k,s). The resulting tensor is decomposed as shown in Fig. 3.9 and small or
excessive singular values are truncated depending on the scheme used as described in
Sec. 3.2.1.3.13 The truncated weights obtained are however only a joint measure of ac-
curacy for all states but contains no information about the projection error of each of
the targeted states.

The following result on how to access the projection error of each individual excited
states was obtained together with Max Pfeffer.

13Note that now also in the case of a single-site DMRG a truncation scheme needs to be employed as
the additional index implies an increase of the bond dimensions during the sweeps otherwise.
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(X(p))p∈[m]

=

=

left sweep

right sweep

Figure 3.9. – During the calculation of m low energy states with a DMRG we obtain in a
micro step the joint tensor (X(p))p∈[m] of the lowest eigenvector of H(k,s). We consider the
case of a two-site DMRG here. Depending on the direction of the sweep, the additional
index labeling the different states is pushed into the left or right new MPS component by
performing an SVD for a matrixfication with respect to the left and right of the dashed
lines.

It is possible to access the individual projection error for each state. As explained
in Sec. 3.2.1.3, if the projected solution mat(Xapprox

opt ) ∈ Cdkrk−1×dk+1rk+1 has a rank r

we find a projection UrUr
† with Ur ∈ St(r, dkrk−1), where St(p, n) denotes the Stiefel

manifolds (see also App. D), such that mat(Xapprox
opt ) = UrUr

†mat(Xopt). In addition we
find that Ur is the minimizer of

εk = min
U∈St(r,dkrk−1)

‖mat(Xopt)− UU †mat(Xopt)‖22, (3.25)

with εk being the truncated weight.
Denoting the matrixfications discussed in Fig. 3.9 of the joint tensor (X(p))p∈[m] by

mat((X(p))p∈[m]) we obtain the global truncated weight εk as

εk = min
U∈St(r,h)

‖mat((X
(p)
opt)p∈[m])− UU †mat((X

(p)
opt)p∈[m])‖22, (3.26)

with h = dkrk−1 or h = dkrk−1m depending on the direction of the sweep. By the
structure of the cost function it is easy to show that

εk = min
U∈St(r,h)

m∑
p=1

‖mat(X
(p)
opt)− UU †mat(X

(p)
opt)‖22, (3.27)

meaning that the global truncation error is the sum of all individual projection errors

ε
(p)
k . Denoting the minimizer of Eq. (3.27) by Ur we can directly calculate the individual

truncation errors by

ε
(p)
k = ‖mat(X

(p)
opt)− UrUr†mat(X

(p)
opt)‖22. (3.28)

It is easy to show along the lines of the argumentation to Eq. (3.18), that ε
(p)
k corresponds

to the error of the individual excited states when approximating mat((X
(p)
opt)p∈[m]) with
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Figure 3.10. – Investigation of the 16 lowest lying eigenenergies of the one-dimensional spinless
Fermi-Hubbard model defined in Eq. (2.61) with open boundary conditions on 64 sites for
varying interaction strength U at half-filling. All eigenstates are approximated during one
DMRG run with maximal bond dimension rmax = 256. On the left we show the in sum
minimal energy configuration reached during 10 sweeps for different interaction strengths
where the hopping amplitude t was set to 1. We subtract the approximated ground state
energy E(GS) at each U for a clearer presentation. On the right we show the projection
error of each excited state as defined in Eq. (3.28) summed up over the full sweep in which
the minimal energy is encountered.

the lower rank optimum UrUr
†mat((X

(p)
opt)p∈[m]). In practice Ur is obtained from the

SVD explained in Fig. 3.9 and truncation schemes explained in Sec. 3.2.1.3.

The knowledge of ε
(p)
k allows then for a heuristic convergence analysis of each excited

state as presented in Fig. 3.10 and to address questions around the way individual excited
states are approximated within a DMRG as shown in Fig. 3.11 and discussed below. In
Fig. 3.10 we show that for a local Hamiltonian we are able to approximate low lying
excited states accurately already at rather low bond dimensions. If we would naively
split the maximal bond dimension of 256 between all 16 states shown in Fig. 3.10, we
would obtain an effective bond dimension of 16 per state. However, due to the locality
of the Hamiltonian, we can expect that the ground state can be well approximated by
an MPS and that low lying excited states are close to elements of the tangent space of
the ground state [68, 101]. Hence ground and excited states are expected to be closely
related and are anticipated and found to be well approximable by a family of MPS of
the form |A[1,k], A[2], . . . , A[V ]〉 with common A[2], . . . , A[V ] due the shared features. In
the case considered in Fig. 3.10 we find that the approximability of the low energy sector
varies strongly with the interaction strength of the Fermi-Hubbard model. The projec-
tion errors encountered decrease by orders of magnitude with increasing U which is to be
expected as the insulating phase should allow for an efficient real space representation of
the eigenstates. Note for instance that once an eigenstate state of the low U limit leaves
the range of the tracked 16 states with increasing U we see clear drops of the discarded
weights as the new states are expected to be more localized in real space. Furthermore,
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Figure 3.11. – Investigation of the 4 lowest lying eigenenergies of the one-dimensional spinless
Fermi-Hubbard model with open boundary conditions on 32 sites with an additional state
shifted into the spectrum as explained in Eq. (3.29). The interaction strength U and hopping
amplitude t of the Fermi-Hubbard model are set to 1. We choose three different states |ψs〉
which are easily, moderately and with some difficulty approximable by an MPS as discussed
in Fig. 3.12. The eigenenergy E of the shifted state |ψs〉 is chosen to be E = λ(E3−E0)+E0

with E0 and E3 being the ground state energy and energy of the 3rd excited state of the
unperturbed Hamiltonian H. In the left panel we show the eigenenergies of the four lowest
eigenstates at half filling in dependence of the shift λ. For clarity we mark the energy of the
shifted state by a cross and the spectrum is the same for all three shifted states. In the right
panel we show the projection error of each excited state (again summed over the full sweep
in which the minimal energy is found) for different shifts λ. In order to allow for a better
comparison we plot the results for all three different shifted states |ψs〉 in one panel. For
λ ≤ 1, i.e., E ≤ E3 we find that the three different states lead to different projection errors
which accumulate around 5 · 10−10 in the “easy” case, around 10−9 in the “medium” and
around 5 · 10−8 in the “hard” case. For λ > 1 all three settings lead to the same projection
error. We indicate again the projection error associated to the shifted state by a cross.

we find that all states are almost equally well approximated and the projection errors are
typically of the same order of magnitude. However, the lowest eigenstates are approxi-
mated the best and we find a slightly but systematically increasing error with increasing
energy. This could have two causes. Firstly, the corresponding eigenstates could simply
be less efficiently approximable by MPS and hence lead to larger projection errors in
a fixed bond dimension calculation. Secondly, the DMRG could favor low lying states.
Such a bias could for instance result from an internal hierarchy of orthogonality relations,
e.g., the constraint that higher excited states need to be approximately orthonormal to
the states with lower energy which is a limiting factor for naive schemes that determine
the eigenvectors in separate calculations.

In order to address this question further we perform the test shown in Fig. 3.11. We
alter the Hamiltonian of the system by replacing H with

H ′ = H +
(
E + 〈ψs|H|ψs〉

)
|ψs〉〈ψs| −H|ψs〉〈ψs| − |ψs〉〈ψs|H (3.29)
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Figure 3.12. – Sorted Schmidt spectra σ(k) of the three states used in Fig. 3.11 for each
bipartition of the chain into [k] and [k]c with k = 1, . . . , 31. The dashed vertical lines at
indices r indicate the number of Schmidt values needed in order to keep the weight of the
discarded Schmidt values

∑
k

∑∞
l=r+1 σ(k)2l below 10−3, 10−6 and 10−9 respectively (where

the left line corresponds to the value r needed for the threshold 10−3, the central line to 10−6

and the right one to 10−9 – the numbers indicate the corresponding index r). We find that
the shifted state |ψs〉 in the “easy” case on the left is expected to be well approximable by an
MPS as the Schmidt spectrum decays strongly. The “medium” and “hard” instance in the
center and on the right are increasingly difficult to approximate as the Schmidt spectrum
is still chosen to decay exponentially but falls of more slowly.

for a given state |ψs〉. It is easy to check that |ψs〉 is an eigenvector of H ′ with eigenvalue
E. Furthermore, if we choose |ψs〉 orthonormal to the low lying eigenstates if H, we find
that H ′ has the same low energy sector except that |ψs〉 is shifted into the spectrum of
H ′ at a position controlled by the parameter E. In Fig. 3.11 we show the results for
the eigenenergies and projection errors for three different states |ψs〉 which are easily,
moderately or with some difficulty approximable by an MPS as discussed in Fig. 3.12.14

From the projection errors shown in Fig. 3.11 we can conclude two general aspects of
the DMRG.

Firstly, we find that if one target state is difficult to approximate, the errors of all
approximated states increases. Furthermore does the error of an individual state depend
on the difficulty to approximate it as for instance the projection error of |ψs〉 increases
relative to the error of the other states with increasing difficulty.

Secondly, we see that the projection error of a state is independent of the position of
the state in the spectrum. For an increasing shift λ in Fig. 3.11 we find that |ψs〉 takes
the position of the ground state as well as first, second and third excited state. However,
the projection errors are (up to the drop at λ = 1) independent of the shift λ and by

14The different states were constructed as the sum of multiple MPS with exponentially decaying pref-
actors. By increasing the bond dimension of the random summands, we obtain a slower decay of the
Schmidt spectra of the corresponding resulting state as displayed in Fig. 3.12. Each resulting state
has an overlap of at most 10−12 with a low lying eigenstate of H.
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this the position of the shifted state |ψs〉 within the spectrum.
From this we conclude, that the DMRG approximates multiple eigenstates of an Hamil-

tonian truly jointly within one run and does not possess an internal orthonormality hi-
erarchy. Furthermore, it distributes its available resources over the different states in
order to allow for an approximately equal approximation.

3.3. Mode Transformation in Tensor Network States on
Fermionic Systems

The method presented in this section and results displayed in Fig. 3.16 originate from
joint work with Libor Veis, Örs Legeza and Jens Eisert which is published in [102].

For non-local fermionic systems originating for instance from quantum chemistry, we
have no promise that ground or low-lying excited states are well approximable by MPS.
However, taking a step back, DMRG is simply an eigensolver which allows us to ap-
proximate the few lowest eigenvalues and eigenvectors and systematically increase the
accuracy. It is therefore natural to test DMRG outside of its comfort zone – with remark-
able success (see for instance the reviews [54–57]). In the context of electronic structure
calculation from quantum chemistry DMRG turns out to be applicable to strongly corre-
lated problems for which other traditional methods fail to provide exact results [54–57].
The same applies for systems in higher-dimensional lattices or problems originating from
nuclear physics [103, 104]. On the other hand, the resources needed to run a DMRG
calculation increase quickly with the system size, such that only small systems can be
considered. Current state of the art implementations typically are used for systems of
≈ 100 spin orbitals and ≈ 50 electrons in them and are quickly outperformed by CC,
DFT or other methods for weakly correlated systems.

If a fermionic problem lacks locality, new challenges arise in the context of TNS based
methods. TNS and in particular MPS are formulated with respect to a fixed decomposi-
tion of the global Hilbert space into local spaces which translates by the Jordan-Wigner
transformation to a specific single-particle basis of the fermions. However it is unclear
in advance, which single-particle basis we should pick.15 If a fixed single particle ba-
sis is chosen we cannot efficiently represent many rotated Slater determinants using
MPS. In the extreme case, a poorly chosen initial single-particle basis could result in
an approximation of the ground state that is less accurate than a simple Hartree-Fock
approximation despite a large bond dimension. This issue, that seemingly simple states
(individual Slater determinants), may not be captured efficiently results from the fact
that TNS are designed to efficiently represent states with limited correlations between
individual modes but may struggle with correlations which are simple within the par-

15That the choice of the single-particle basis is important becomes clear when we are asked to find the
best MPS of bond dimension 1 with a fixed particle number that approximates the ground state.
The resulting state will be a Slater determinant in the chosen basis and we know that the resulting
minimal energy found depends strongly on the single-particle basis (compare to the Hartree-Fock
methods discussed in Sec. 2.5.1 whose objective it is to identify the optimal single-particle basis for
a Slater determinant approximation of the ground state).
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ticle picture of fermionic systems. Here we show that we can overcome this limitation
of TNS and lift the ambiguity of the initial single particle basis. By combining MPS
with mode transformations we develop a tensor network based scheme that allows to
go a step beyond the restrictive area laws of correlations in TNS and at the same time
enables to represent a large portion of the correlations of fermionic systems in the correct
way. In doing so we in addition are able to identify single-particle basis sets in which
correlations are stronger localized which has the potential to give us further insights
into the correlation structure of molecules and bondings in future work. When TNS
and mode transformation are combined they complement and compensate weaknesses
of each other. Mode transformations can generate high entanglement between different
modes in a state (which is limited if only the TNS is considered) and the underlying
TNS is able to capture very general non-Gaussian correlation which can not be captured
by the Hartree-Fock method, i.e., a mode transformation alone.

Take a fermionic system with M modes and V sites, where we assume for the simplicity
of notation that each site supports p modes, i.e., M = V p. Given an interacting fermionic
Hamiltonian H as in Eq. (2.58) and a sequence of maximal bond dimensions (rj)j∈[V ]

we aim for solving(
|(A[j]

min)j∈[V ]〉, Umin

)
= arg min
|(A[j])j〉∈M((rj)j)

U∈U(M)

〈(A[j])j∈[V ]|G(U)†HG(U)|(A[j])j∈[V ]〉, (3.30)

where the G(U) is the transformation induced on the Fock space by the mode transfor-
mation U introduced in Sec. 2.2.2.

There are already different schemes in use which optimize the single-particle basis
intertwined with a DMRG. The most common ansatz is to use a specific starting basis
that based on some intuition should allow for an efficient MPS approximations of the
ground state. Natural candidates which are in use are localized or split-localized orbitals,
where orbitals that are occupied and unoccupied in the Hartree-Fock solution are jointly
or separately localized, plain Hartree-Fock orbitals or different types of natural orbitals
[105]. We then perform simple DMRG runs for one or multiples of these bases and
continue to work with the best result. In a second approach one starts from a fixed
basis and tries to optimize the ordering of the sites such that strongly correlated sites
are placed next to each other [106, 107]. For this, one calculates for the final state |ψ〉
of a DMRG run the mutual information

I(|ψ〉)j,k = SvN(tr{j,k}c |ψ〉〈ψ|)− SvN(tr{j}c |ψ〉〈ψ|)− SvN(tr{k}c |ψ〉〈ψ|) (3.31)

between all sites, which measures how correlated two sites are by essentially testing
how close their joint reduced state comes to a product state. Subsequently, an ordering
is identified which minimizes cost functions such as

∑
j,k Ij,k|j − k|2, i.e., minimizing

the distance of strongly correlated sites, and an additional DMRG run is performed in
the reordered basis. Both schemes need multiple DMRG runs in order to optimize a
given basis without changing the computational costs of the DMRG, but can already
yield significant improvements if applied to realistic systems [108, 109]. A third scheme
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optimizes the basis slightly more intertwined with the DMRG but increases its computa-
tional costs. Here the one- and two-body correlation matrices γ(1) and γ(2) of the current
state are formed such that the energy can be computed according to Eq. (2.59) which
gives rise to the DMRG self-consistent field (SCF) method in more general settings [110].
Similar to the Hartree-Fock method, one solves the problem

Umin = arg min
U∈U(M)

tr(U †tUγ(1)) + tr(U † ⊗ U †mat(v)U ⊗ Uγ(2)), (3.32)

using for instance a conjugate gradient scheme on the manifold U(M) [111]. Updating
the couplings of the Hamiltonian will globally adapt the basis to the partially converged
state and can be done multiple times during a DMRG run. However computing the
reduced density matrices, rotating the orbitals and updating the presummed operators
induces a computational overhead which adds to the normal scaling of the DMRG a term
of order O(M5) [110]. All these approaches are prone to get stuck in local minima for the
basis optimization – which is not very surprising as already finding the optimal Hartree-
Fock basis is NP complete (compare Sec. 2.5.2). In addition their implementation is
rather complementary to the DMRG and they either increase the computational costs
or consider only very restrictive sets of unitaries, e.g. permutations or choosing the
best basis from a small set of guesses. We present a method that optimizes within a
DMRG run both, the MPS and the physical basis iteratively without increasing the
computational costs. In addition the scheme can be combined with the ones above to a
joint method that in practice gets less trapped in local minima.

In order to naturally combine mode transformations and DMRG, the problem of
finding a global mode transformation needs to be split up into local sub-problems. We
here focus on the two-site DMRG. Given a site k ∈ [V − 1] for which we are updating
the components A[k] and A[k+1] in the current micro step of the DMRG, we will solve
for X ∈ Cdk×dk+1×rk−1×rk+1 local problems of the form

U
(k,2)
opt = arg min

U∈U(2p)
f (k)(X(U)), (3.33)

where f (k) is a cost function discussed below and

X(U)ik,ik+1,αk−1,αk+1
=

2p∑
jk,jk+1=1

G(U)(ik,ik+1),(jk,jk+1)Xjk,jk+1,αk−1,αk+1
. (3.34)

Note that in Eq. (3.34) we assume G to be the transformation induced on the Fock space
F2p of 2p modes and X(U) is constructed such that it is related to the transformation
of the global space via

|X(U)〉(A
[j])j

k,2 = G(1pk ⊗ U ⊗ 1M−(k+2)p)|X〉
(A[j])j
k,2 . (3.35)

Solving such local problems repeatedly we build up a global unitary Utot =
(
U

(1,2)
opt ⊗

1M−2p

)(
12p ⊗ U (2,2)

opt ⊗ 1M−4p

)
. . . (compare Fig. 3.13 a) ).
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3.3.1. Cost Function

The micro step of the DMRG already yields the optimal update for the (joint) compo-
nents which minimizes the energy – hence, the energy is not a convenient cost function
for the mode transformations here. However, the solution Xopt of a micro step needs to
be projected to a lower rank tensor as explained in Sec. 3.2.1.3. Xopt contains therefore
residual information of the additional important directions in the global Hilbert space
which are projected out by the restrictions of the ansatz. We therefore choose a cost
function which tries to minimize the projection error and by this tries to use as much
as possible of this traditionally discarded residuals. In total, the global mode trans-
formation should then adapt the single-particle basis such that the target state can be
approximated by an MPS more efficiently.

The most convincing results where obtained when choosing the cost function

f
(k)
1 (X) = ‖Σ(mat(X))‖1, (3.36)

where Σ(A) denotes again the singular values of A. f
(k)
1 is related to the Rényi-1/2

entropy of |X〉(A
[j])j

k,2 for a bipartition of the system into [k] and [k]c via

S1/2

(
tr[k]c

[
|X〉(A

[j])j
k,2 〈X|(A

[j])j
k,2

])
= 2 ln(f

(k)
1 (X)) (3.37)

By successively minimizing f
(k)
1 for different cuts k through the system we hence not only

minimize the projection error of each micro step but also allow for a more efficient approx-
imation of the target state as S1/2 over a given cut directly bounds the bond dimensions
needed for approximating the given state by an MPS as discussed in Sec. 3.1.2. In addi-

tion to f
(k)
1 , one can use in very high-dimensional problems f

(k)
4 (X) = −‖Σ(mat(X))‖44

as it has a simple representation as a tensor network and allows for an analytic computa-

tion of the gradient [102]. Note that although f
(k)
4 does not give rise to certified bounds

on the needed bond dimensions the minimization of both cost functions has roughly the
same effect as ‖Σ(mat(X))‖2 = 1: small singular values are suppressed and large singu-
lar values increased. With this we enforce a stronger decay of the Schmidt spectrum of
a bipartiting cut separating the modes [k] and [k]c which is the essential feature needed
for an efficient approximation of a state by an MPS.

3.3.2. Optimization Set

In Eq. (3.33) the optimization is performed over all U ∈ U(2p). However, the optimiza-
tion set can and has to be adjusted to the cost functions chosen above and to symmetries
present in the system if they are exploited by the DMRG. As both cost functions above
measure the correlations of the regions [k] and [k]c only, they are insensitive to opera-
tions that act only on one of the two regions, i.e., f (k)(X(U)) = f (k)(X(U [U1 ⊕ U2]))
where U1, U2 ∈ U(p). The optimization can therefore be restricted to the right coset

Gr(p, 2p) = U(p)× U(p)\U(2p), (3.38)
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Algorithm 3 – Algorithm for combining mode transformations and a two-site DMRG given an
initial MPS and a maximal number of DMRG steps. W denotes the corresponding opti-
mization set adapted to the symmetries of the system and we use the procedures introduced
in Alg. 2.

1: procedure DMRG with mode trafo((A[j])j∈[V ],max steps)
2: k ← 1
3: for n = 1 to max steps do
4: direction← (−1)n//(V−2)

5: Xopt ← DMRG step
(

(A[j])j∈[V ], k
)

6: U
(k,2)
opt ← arg min

U∈W
f (k)(Xopt(U))

7: if f (k)(Xopt(U
(k,2)
opt )) > f (k)(Xopt(1)) then

8: U
(k,2)
opt ← 1

9: A[k], A[k+1] ← project(Xopt(U
(k,2)
opt ),direction)

10: update couplings and presummed operators with Uopt (see App. B.2)
11: k ← k + direction

which is the Grassmann manifold of p-dimensional subspaces of a 2p-dimensional space.
In App. D we comment in general on Gr(p, n) and describe the optimization algorithms
we use to optimize over them.

If symmetries are exploited during the DMRG, the components A[j] come with a
specific structure. In order to preserve this structure, only mode transformations that
do not mix different symmetry sectors are admissible. That is, the mode transformation
has to commute with the generators of the symmetry. Consider the generic scenario
in quantum chemistry applications with p = 2, i.e., each site supports one spin-up and
spin-down mode, the most frequently exploited symmetries are a global U(1)× U(1) or
SU(2). In these cases the local mode transformations commuting with the symmetries
are of the form

U =


U

(1)
1,1 0 U

(1)
1,2 0

0 U
(2)
1,1 0 U

(2)
1,2

U
(1)
2,1 0 U

(1)
2,2 0

0 U
(2)
2,1 0 U

(2)
2,2

 , (3.39)

so up to a reordering of sites U = U (1) ⊕U (2) where U (1) ∈ Gr(1, 2) acts on the spin-up
and U (2) ∈ Gr(1, 2) on the spin-down electrons on the sites k and k+ 1 only16, where in
case of a global SU(2) symmetry we in addition have to ensure U (1) = U (2).
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Figure 3.13. – a) displays the ansatz class we optimize over in the two-site DMRG with mode
transformation. In addition to the MPS we allow for an additional change of the single-
particle basis by the mode transformation Uglobal which is composed of a sequence of local
mode transformations. In b) the additional steps needed for optimizing the single-particle
basis in parallel to the MPS are shown. Instead of directly projecting a found solution Xopt

in the micro step (dashed arrow), we optimize the basis locally in order and project the
solution in the optimized single-particle basis.

3.3.3. Algorithm and Examples

The resulting scheme is summarized in Fig. 3.13 and Alg. 3. For a given k ∈ [V − 1] we
calculate as usual the lowest eigenvector Xopt of H(k,2). Instead of directly projecting

the solution Xopt we first solve (3.33) and then project Xopt(U
(k,2)
opt ). In order to keep the

energy expectation value constant, we also rotate all operators with the transformation,

so for instance calculate the couplings of H(1pk ⊕ U
(k,2)
opt ⊕ 1M−(2+k)p) using Eq. (2.37).

In App. B.2 we show how the presummed operators needed for the DMRG have to be
transformed in order to account for the changed couplings and that this can be done
in a time scaling as O(M3r2). In total we therefore obtain an algorithm that performs
a two-site DMRG in parallel to a single-particle basis optimization similar in spirit to
the Hartree-Fock method. The resulting method is, as to be expected, again prone to
getting stuck in local minima. This can happen already for a local optimization step as
displayed in Fig. 3.14. Here we see that multiple local minima might exists for each local
optimization problem. The check in line 7 of Alg. 3 ensures that the minimum found
does not increase the projection error compared to not rotating the single-particle basis

16This result should be quite intuitive as we can only talk about a fixed number of spin-up and down
electrons if we do not mix them into hybrids by a mode transformation.

74



0 π/4 π/2 3π/4
θ2

0

π/4

π/2

3π/4

θ 1

3.36

3.44

3.52

3.60

f (1)

0 π/4 π/2 3π/4
θ2

0

π/4

π/2

3π/4

θ 1

2.10

2.16

2.22

2.28

f (1)

0 π/4 π/2 3π/4
θ2

0

π/4

π/2

3π/4

θ 1

2.10

2.15

2.20

f (1)

a) b) c)

Figure 3.14. – Plot of three typical situations encountered during the minimization of the cost
functions f (1). We run Alg. 3 for a system of 6 fermions in 12 modes with an interacting
Hamiltonian as in Eq. (2.58) with random couplings t and v. We display the cost function
over Gr(1, 2) using the parametrization explained in App. D. The orange cross indicates
the minimum identified by a Nelder-Mead method. During the optimization of the single
particle basis by local transformations, we typically encounter graphs of the cost function
as displayed in a)-c). In a) and b), a non-trivial basis update can be found that reduces the
Rényi-1/2 entropy over the considered cut. Note that in both, a) and b), local minima are
present and the optimization scheme might actually converge only to a local minimum as
shown in b). In c) we show an almost trivial case which is often encountered after several
updates in situations where a no further local optimization of the basis is possible at the
considered cut.

and is found to yield a stable scheme in practical applications. In addition we find that a
scheme which combines different optimization methods for the single-particle basis is less
sensitive to local minima. In order to explore the performance of the proposed method
further we present three different examples below. First, a toy model is used in order
to illustrate the underlying idea of the combination of TNS and mode transformations
more concretely by showing that the correct single-particle basis does allow to reduce the
entanglement present in the state to be approximated. Secondly, we test our method
on a realistic example from quantum chemistry. Here, we discuss in more detail the
potential of the individual and combined schemes and show that we can significantly
reduce the resources needed or increase the accuracy of the obtained results. Thirdly,
the insight that a real time evolution can be closely related to the two-site DMRG [91]
allows us to formulate a time evolution scheme within an adaptive single-particle basis on
the MPS manifold. We then show that for moderately interacting systems, the varying
single-particle basis can account for a lot of the entanglement created during the time
evolution such that the resources needed are again drastically reduced.

3.3.3.1. Toy Example: The Fermi-Hubbard Model

Let us illustrate the essential profit and idea behind the change of the single-particle
basis during a DMRG by using a well understood toy model, the one-dimensional spin-
less Fermi-Hubbard model defined in Eq. (2.61). In the limit of no interactions the
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Figure 3.15. – Entanglement of the ground state of the one-dimensional spinless Fermi-Hubbard
model defined in Eq. (2.61) on 32 sites with open boundary condition in different single-
particle basis. By x, t, and k we denote the real space, the eigenbasis of the kinetic energy
and the momentum space (obtained from a discrete Fourier transform of the real space),
respectively. We plot the von Neumann entropy for a bipartiting cut at the center of the
chain for different interaction strengths, where the hopping amplitude was fixed to 1. The
data points are displaced in x direction for better visibility. In addition we show the results
of applying adaptive mode transformations, starting out in all three different initial basis.
In order to adapt the basis we use Alg. 3 and perform a global basis update minimizing
the energy functional as in Eq. (3.32) every 4 sweeps. All calculations are performed with
maximal bond dimension 128 at half filling with U(1) symmetric MPS.

Hamiltonian is diagonalized by a Fourier, or in finite systems with open boundary con-
dition a Fourier-like, transformation. Written in this basis the ground state is a single
Slater determinant without entanglement between different modes. In the limit of infi-
nite interactions however (or vanishing hopping amplitude), charge density wave states
which in the real space occupation number representation take the form |1, 0, 1, 0, . . . 〉
are states with minimal energy and possess no correlation between different modes for
a real space formulation. However, written in the corresponding opposite basis, i.e., the
real space basis for weak interactions or the momentum space for strong interactions,
yields a representation with significant correlations. In Fig. 3.15 we show how the half
chain cut von Neumann entropy of the ground state changes for different single-particle
basis. We see a strong dependence of the correlations build up in the ground state
on the interacting strength interpolating between the two easily understood regimes.
In the real space basis we obtain a clear change of the half chain entropy around the
phase transition at U = 2t between the localized Mott phase for strong interactions
and the delocalized metallic phase at weak interactions [112, Sec. 5.4.5]. Adapting the
basis during the DMRG calculations allows to smoothly interpolate between the two
regimes. Around the phase transition, correlations are built up, reflecting the criticality
of the system while deep in the corresponding phase most correlations can be removed
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using the appropriate single-particle basis. This nicely and intuitively illustrates that
by choosing the correct initial basis we are able to reduce correlations present and can
hope for more efficient approximations of the ground state. Note further that it can be
advantageous to move away from a local formulation. At low interaction strengths we
find that less correlations are built up for a formulation in momentum space which has
a non-local Hamiltonian.

3.3.3.2. Interacting Fermions in Quantum Chemistry

As a more realistic proof of principle we want to consider an example involving non-local
interactions and choose a ring of 6 beryllium atoms. This system was investigated in
[108] were a strong dependence of the convergence behavior of a DMRG calculation on
the single-particle basis was noted. It was observed, in agreement with other studies
[109], that a basis build up from localized orbitals, obtained using a Foster-Boys local-
ization scheme on the Hartree-Fock orbitals, yields a strong improvement of the overall
convergence of a DMRG calculation compared to the use of plain Hartree-Fock orbitals.
Furthermore, a ring of beryllium atoms features, just as the Hubbard model, a change
in its correlation structure, here mediated by the interatomic distance. For short dis-
tances σ-bond like orbital structure emerges between pairs of atoms where in the limit
of large distances individual atomic orbitals are the dominant contribution [108]. At an
interatomic distance of about 2.6 Å the correlation effects are the strongest due to an
avoided crossing of the ground and first excited state and the favored orbitals switch
from molecular to atomic orbitals [108]. We therefore use four different initial basis
configurations. The canonical Hartree-Fock and localized version of each of the two
dominant contributions. The corresponding integrals t and v were created and provided
by Edoardo Fertitta; for details we refer to [108]. Starting in these different basis sets
we use Alg. 3 in combination with additional basis optimization techniques. The results
and corresponding routines used are presented and discussed in Fig. 3.16 and 3.17.

The drop of the bond dimension in the left panel of Fig. 3.16 by almost two orders of
magnitude shows that Alg. 3 allows us to significantly reduce the resources needed during
a ground state approximation when we employ a fixed accuracy in a realistic setting and
start in an unfavorable initial basis. In the right panel it is shown that Alg. 3 allows us
to improve the accuracy starting from both a non-optimal and a close to optimal initial
basis in a calculation with limited resources. It is important to note that we obtain an
improved accuracy in the ground state energy even when using localized orbitals which
are often believed to be optimal. However also note that we do not find the globally
optimal single particle basis. Starting from the canonical Hartree-Fock basis, in the right
panel of Fig. 3.16 the optimized basis leads to a worse energy approximation than the
localized basis (in an optimized ordering). In short, we get stuck in a local minimum
which however is significantly better than the initial starting point.

In Fig. 3.17 we show that we can overcome certain convergence issues of the purely
local scheme. There we show results for different optimization schemes which use various
combinations of the three basic basis optimization approaches: the local mode updates
via Alg. 3, the mutual information based reordering and the SCF-like energy based
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Figure 3.16. – Investigation of the convergence behavior of the two-site DMRG ground state
approximation in a stretched configuration with interatomic distance of 3.3 Å. We only
investigate the in this regime dominant canonical and localized configurations of the atomic
orbitals. The results were obtained with the QC-DMRG code of Örs Legeza including
additional convergence amplifiers such as the dynamical block state selection approach [95]
and the configuration interaction based dynamically extended active space procedure [113].
The calculations were performed by Libor Veis. Starting in the different initial single-
particle basis two ordinary DMRG sweeps have been performed followed by eight additional
sweeps which optimize the single-particle basis using Alg. 3. The single-particle basis is then
reordered based on the mutual information pattern of the approximated ground states. All
calculations have been performed with open boundary U(1)×U(1) symmetric MPS and we
use local mode transformation preserving the SU(2) symmetry of the Hamiltonian. The left
panel shows the bond dimension needed for a calculation starting in the canonical Hartree-
Fock basis at bounded discarded weight ε ≤ 10−6 with minimal bond dimension 64. The
light blue line (HF orbitals) corresponds to 10 sweeps performed in the Hartree-Fock basis.
In addition we display the bond dimension needed when adapting the single-particle basis
according to the described scheme in its 1st and 10th iteration. The right panel shows the
relative error of the approximated ground state energy at a bounded bond dimension of
r ≤ 256, where the reference value was obtained by a calculation with a bond dimension
2048 in the localized basis. The dark blue and dark orange line correspond to calculations in
the canonical Hartree-Fock and localized orbitals respectively. In light blue and light orange
we plot the results obtained from the adaptive single-particle basis scheme after the 15th
and 10th iteration starting in the Hartree-Fock and localized basis respectively. In the left
panel we find that adapting the single particle basis allows to reduce the resources needed
by more than two orders of magnitude while keeping the accuracy of the calculation fixed.
Furthermore, we are able to improve both the non-optimal Hartree-Fock and the localized
basis substantially such that the ground state energy approximation improves by roughly
an order of magnitude as shown in the right panel.
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Figure 3.17. – Study of the ground state energy obtained with different DMRG schemes opti-
mizing the single-particle basis at different configurations of the Be6 ring. We display the
minimal relative error obtained in each different optimization run for several interatomic
distances around the avoided crossing were we displace the data in x-direction for better
visibility. The different symbols indicate the different initial single-particle basis, the molec-
ular canonical Hartree-Fock basis (canonical 1), the atomic Hartree-Fock basis (canonical
2) and the corresponding localized ones. The different colors denote the different basis op-
timization approaches. We display the minimal relative energy error encountered where as
reference we use the best energy obtained from a calculation with bond dimension 1024 in
the corresponding ideal localized basis provided by Örs Legeza using his QC-DMRG code.
We performed 44 sweeps in every run (considerably less total steps than in Fig. 3.16) and
used U(1)× U(1) symmetric open boundary MPS with a maximal bond dimension of 128.
The local mode transformation respected only the U(1)×U(1) of the Hamiltonian. For the
blue runs we use a plain two-site DMRG calculation with a reordering of the basis every
5 sweeps. In red we plot the result using a two-site DMRG with additional global basis
updates every 2 sweeps and a reordering every 7 sweeps. The orange data was essentially
obtained as the data in Fig. 3.16 with local mode updates after two initial convergence
sweeps and a reordering every 7 sweeps (after each reordering we pause the local updates
for one sweep). The green data was obtained by combining all methods where every 3 and
7 sweeps we performed a global energy based update or reorder the basis respectively. The
blue data points obtained in the plain initial bases illustrate nicely the change of the favored
configuration from 1 to 2 at around 2.60 Å. Using SCF-like updates alone (red data) yields
an instable behavior in this example. Starting in localized single particle bases we find here
that the obtained solution are often worse than using reorderings only. If we use local mode
transformation only (orange data) we obtain more stable results but the converged energies
can contain a strong dependence on the initial basis (at 2.75 Å they spread over an order
of magnitude). The combined scheme on the other hand (green data) does provide a more
robust method which yields results that are clearly less dependent on the initially chosen
basis and reliably finds favorable single particle bases.
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rotation obtained by solving the optimization problem in Eq. (3.32). Note that in the
blue data, obtained in the different basis up to reorderings only, we see the transition from
one preferred single-particle basis to the other at around 2.6 Å. Furthermore, we obtain
that in most cases the different strategies lead to improvements in the approximability
of the ground state energy. Note furthermore, that in this example the local mode
transformation yield better and more stable results than the global energy based updates
(orange vs. red data points). The only scheme that truly overcomes the strong memory
effects from the initial bases is the combined scheme which yields in this example an
up to two orders of magnitude improvement in the relative energy error. Even in this
correlated setting this combined scheme identifies in almost all cases a single-particle
basis which is superior to the best localized initial basis. Hence the combined scheme
using local mode transformations, mutual information based reorderings and SCF-like
global updates comes the closest to a black box scheme for optimizing the single-particle
basis in conjunction with a DMRG based ground state approximation and allows to
obtain highly accurate results with strongly restricted resources.

3.3.3.3. Time Evolution

All time evolution schemes based on tensor network algorithms are limited to short
times as in a generic quantum system correlations spread over time rendering their
approximability by MPS less efficient and in practice infeasible after certain times. As
mentioned earlier, recently a connection between established time evolution schemes and
DMRG has been derived [91]. As a result a heuristic algorithm was formulated which
allows to perform a time evolution of non-local quantum systems by slightly adapting the
routines of the two-site DMRG. This is in stark contrast to established tensor network
time evolution schemes which are only able to simulate the time evolution generated
by local Hamiltonians. As a consequence, the scheme presented in [91] can be applied
irrespectively of the single-particle basis in which a fermionic problem is formulated such
that we can design a heuristic hybrid method which tracks the time evolution generated
from a Hamiltonian not only by inducing a flow on the MPS components but also by
adapting the basis.

We will not review the details of the basic time evolution scheme here. Let us only
note that given a Hamiltonian H and initial state |ψ〉 for which we have access to the
reduced Hamiltonians H(k,2) we are able to design a symmetric first order integrator for
a time step dt of the time dependent Schrödinger equation by performing a single sweep
over the system [91]. Using a composed symmetric integrator which decomposes the step
dt into smaller parts such that multiple runs of the integrator, i.e., sweeps, are employed
we are able to reduce the error in each time step [114, Ch. 5]. In short, performing
a preset number of sweeps through the system we are able to calculate the evolution
of |ψ(t)〉 to |ψ(t + dt)〉. During this procedure, the bond dimension increases typically
unboundedly in time, reflecting the spreading of present correlations in the system and
rendering the approximation of the time evolved state by an MPS less accurate. Fixing
the bond dimension to a finite value in order to regain efficiency then again leads to
truncation errors.
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Figure 3.18. – Comparison of the time evolution in a fixed single-particle basis with increasing
number of parameters to the described algorithm with a varying basis. We simulate the time
evolution of the one-dimensional spinless Hubbard model defined in Eq. (2.61) with periodic
boundary condition on 24 sites and interaction U = 0.25J . As initial state we choose a
charge density wave which has the occupation number representation |ψ(0)〉 = |1, 0, 1, 0, . . . 〉
in the on-site basis. We track the imbalance of the state over time. We compare the
exact solution in blue obtained with exact diagonalization with the MPS calculation in the
fixed real space basis with bond dimensions r = 8, 16, 32, 64, 128 and a calculation in a
varying basis with maximal bond dimension r = 8. For the time evolution we used a step
size dt = 0.01J and used a composite integrator of fourth order [114, Ch. 5] in all MPS
calculations.

Taking this scheme for granted, we can perform individual time steps dt of the evo-
lution. In order to allow for a varying basis we use a slight modification of Alg. 3. If
we would use a scheme as intertwined as the one formulated for the two-site DMRG
and adapt the single-particle basis during one global time step, we would lose the sym-
metry of the integrator which results in a loss of accuracy. Instead we adapt the ba-
sis after a fully performed time step dt which slightly changes the MPS. For this we
perform a mode-sweep which only adapts the single-particle basis along the lines of
Alg. 3 without performing a DMRG step in line 5 of Alg. 3 but instead using the sim-
ple contraction of the current MPS components as tensor Xopt, i.e., we alter line 5

to Xopt(ik,ik+1),αk−1,αk+1
←
∑

αk
A

[k]
ik,αk−1,αk

A
[k+1]
ik+1,αk,αk+1

. Interchanging between mode
sweeps and time sweeps, i.e., adapting the single-particle basis to the current correla-
tions in |ψ(t)〉 and performing then the next time step |ψ(t)〉 → |ψ(t + dt)〉, yields a
scheme which allows for the time evolution of an MPS formulated within a time de-
pendent single-particle basis. In this respect it can be seen as a heuristic MPS version
of algorithms such as the multiconfigurational time dependent Hartree method which
integrates the Schrödinger equation by varying the single-particle basis and adapting the
CI expansion coefficients of the wave function simultaneously [115, 116]. In Fig. 3.18 we
show an exemplary application of the described scheme to the one-dimensional Fermi-
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Hubbard model. In reminiscence to previous numerical and experimental investigation
of relaxation processes in the Hubbard model (see for instance [117]) we investigate the
evolution of the imbalance ∆N defined by

∆N(t) =
Neven(t)−Nodd(t)

N
, (3.40)

where Neven(t) =
∑

j even〈ψ(t)|nj |ψ(t)〉 denotes the expected particle number on all even
sites, Nodd on all odd sites respectively. It is shown that if the interactions present in
the system are not too strong, adapting the single-particle basis while performing a time
evolution allows to significantly extend the validity of the time evolution and allows to
save a tremendous amount of resources. The calculation performed at bond dimension
r = 8 in a varying single-particle basis yields better results than the calculation in a fixed
basis at bond dimension r = 128, saving more than an order of magnitude in the bond
dimension (recall that memory cost and computation time scale roughly as O(r2) and
O(r3)). Compared to a calculation at the same bond dimension, the time for which we
capture the evolution correctly extends significantly. Performing the same calculation
with increasing interaction strength however, shows that using an adaptive basis yields
similar computational advantages although the correctly simulated time window is less
extended. This is due to more dominant two-particle effects which create correlations
that can not be captured by a rotated single-particle basis. From this we expect that in
the presence of moderate interactions, time dependent hybrid schemes which not only
optimize the MPS components but also the single-particle basis to be significantly more
efficient than comparable, established tensor network algorithms.

3.3.4. The Bird’s-Eye View

Let us take a step back and consider the discussed schemes and obtained results on a
more abstract level. From a technical and mathematical point of view we achieved to
unite tensor network manifolds with the structure of an exterior product space. The opti-
mization of the single-particle basis in conjunction with updates of the MPS components
aims at best approximating a target vector by an MPS while rotating and deforming the
underlying MPS manifold in order to find a more efficient parametrization and to re-
duce the distance to the target state. In doing so, we exploited algorithms and methods
developed for the optimization on manifolds with unitary constraints, joining these two
different branches of applied mathematics and numerical physics. The ultimate reason
for why this is possible lies in the fact that we do not substantially change the structure
of the cost function of the DMRG, the Rayleigh quotient, i.e., we do not create higher
order coupling terms in the Hamiltonian.

From a physical point of view let us note that, from the perspective of non-interacting
fermionic systems, MPS capture correlations in the wrong picture and do not allow for
the most efficient approximation of a target state, e.g., a single Slater determinant can
require an arbitrary high bond dimension to represent it. We resolve this by adding
Gaussian transformations as an additional ingredient to the DMRG scheme. The mode
transformations allow us to overcome the necessity of an area law or restricted correlation
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of the target state in the for us natural basis for an efficient approximation. However,
it is replaced with the need of suitable, i.e., area law like, correlations in some single-
particle basis, not necessarily the one we would or can formulate the problem in. We
therefore include efficiently parameterizable high entanglement effect into the tensor
network description and extend its capabilities by this. Our results show that it can be
advantageous to abandon locality in the description in order to increase the accuracy
(compare the results discussed in Fig. 3.18).

On a more concrete level let us note that the local mode transformations have different
advantages and disadvantages. Most importantly they can be closely intertwined with
the DMRG updates and adapt the single-particle basis to the correlation structure of the
state irrespective of the associated cost functions or deeper purpose of the used algorithm
which yields flexibility and allows especially for their extension to time evolution schemes.
In addition they do not yield much overhead in the computational costs and do not
change the asymptotic scaling of the DMRG algorithm. However, for increasing system
size they are only of limited use due to their local nature. Especially, the number of
DMRG steps required in order to represent a generic global mode transformation does
increase with the system size. In addition the scheme is, as other discussed methods,
prone to get stuck in local minima. We can overcome both limitations by unifying the
local updates of Alg. 3 with global energy based schemes and reorderings of the basis.
The combination of these three methods provide a suitably robust black box method
(compare Fig. 3.17) as the different optimization strategies are sensitive to different local
minima.

The presented scheme is rather general. For fermionic systems it can be generalized
to other tensor network decompositions; be it tree tensor networks or two-dimensional
decompositions such as PEPS. Furthermore, based on the results found, it seems de-
sirable to include possible structures in more general settings. When tensor network
algorithms are employed for solving problems of applied mathematics, taking into ac-
count additional algebraic structure of the state space has the potential to improve their
convergence rates and the approximability of the desired solution.

3.4. Summary

Over the past decades, a zoo of different numerical approaches for the simulation of
non-local interacting fermionic systems has been developed. All these methods, invoke
different approximations in order to make the computationally hard task of identify-
ing the ground state of an interacting fermionic system tractable. As discussed, the
approximations restrict the set of representable states, where such restrictions can be
conveniently understood based on the correlation structures they allow us to resolve.

One, in terms of the representable correlation structure, very general variational set
of states is given by tensor network states. They enable us to tackle highly correlated
settings and allow for a heuristic error control by systematically increasing the number of
parameters. With this, tensor network methods are found to be successfully applicable to
non-local and strongly correlated settings. The necessity of an area law in all correlations
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within the approximated state however, has to be compensated by a steadily increasing
number of parameters. This renders tensor network methods usually less efficient in
weakly correlated settings but a versatile and valuable tool for strong correlations in
systems of moderate size. They allow for the approximation of ground and excited
states as well as for simulating the time evolution of the given system using the DMRG
algorithm and variants thereof.

In this chapter we carefully introduced and discussed the most important concepts
of TNS, MPS and DMRG from a practical numerical perspective. We explained how
a DMRG algorithm can be implemented which is capable of simulating non-local in-
teracting fermionic systems efficiently while accounting for (Abelian) symmetries of the
system. We further discussed a few structural insights into the DMRG scheme which al-
low us to infer the projection error of individual excited states and identify local minima
of the DMRG routine originating from its concept of performing local updates only. The
latter will be important when it comes to establishing a rigorous convergence analysis of
the DMRG method which would allow to apply it far away from its original setting of
local one-dimensional quantum systems as an independent eigensolver for large matrices.

Furthermore, we argued that MPS do not capture correlations in fermionic systems
as efficiently as possible. As fermionic systems are usually simulated based on a lattice
of individual modes within the Jordan-Wigner picture, the choice of the single-particle
basis has a significant effect on the correlation structure of the final state. We pre-
sented a scheme which allows to adapt the single-particle basis according to the needs
of the MPS. This method can be closely intertwined with the usual DMRG scheme and
generalizes to methods of simulating the real time evolution of quantum systems. We
showed that in practical applications we are indeed able to identify single-particle bases
in which more efficient approximations of ground and time evolved states are possible
and obtained in specific example a reduction of the needed parameters by several orders
of magnitude. Combined with other established schemes for updating the single-particle
basis we obtained a methods which performs close to black box tool and chooses the
correct single-particle basis. We hence are able to obtain more accurate results with less
resources and lift the ambiguity of the initial basis which usually has to be chosen based
on intuition, experience or, in the worst case, convention. In what sense the obtained
orbitals can be used beyond their technical advantages for more physical insights, for
instance give rise to a different perspective on chemical bondings, is subject of current
research.
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4. Towards an Understanding of Mean
Field Approaches via a Fermionic de
Finetti Theorem

In the previous chapter we have seen how to numerically capture strongly correlated
systems and approximate their properties based on refined schemes. In many instances
however such an involved description is not necessary. Systems appearing in nature do
in fact often possess an utterly simple structure compared to the complexity available
in the full state space. In many cases effective descriptions of interacting systems in
terms of very few parameters can be found. In the extreme case one finds that essential
properties of the system are already captured by mean field approaches. Despite many
issues such as spin contamination in open shell settings or the violation of other global
symmetries [5], practical experience (see for instance [6, Sec. 3.7] and references therein)
shows that the in Sec. 2.5.1 discussed Hartree-Fock approximation is often already able
to account for many features of the system correctly and only small corrections are
needed in cases where we want more than a rough and intuitive understanding of the
system. It is however unclear, what the underlying structures are that a system needs
in order to be well captured by mean field approaches. In fermionic systems we are not
able to decide beforehand if a mean field approach is sufficient and if so, to which degree
we can trust it. We hence know that in several systems a simple underlying structure
exists and even know how to exploit it, but it seems fair to say that we do not properly
understand it.

This chapter aims at shedding some light on this important question and take a small
step into the direction of its solution. We present a setting where we are able to bound
mean field approaches for a specific set of systems. Our main tool which we will employ
for this is a fermionic de Finetti theorem which at the same time is the main technical
result of this chapter. Our investigation is hereby motivated by the success of quantum
versions of de Finetti’s and related theorems in bounding and understanding mean field
approaches for distinguishable particles.

Quantum de Finetti theorems allow us to link, in their easiest formulation, a strong
symmetry constraint on a state to the correlations present in local reductions of the
system. In detail, if a system is invariant under the permutation of its constituents the
state is locally only classically correlated, i.e., it can be well approximated by a separable
state. This directly connects to the intuition that mean field approaches should work
best in systems in which all constituents are interacting equally with each other, which
in the extreme can also be viewed as a system of infinite spatial dimension. In fermionic
systems, such a symmetry constraint is found to impose further restrictions due to the
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antisymmetric nature of the state. We will show here that a fermionic mode de Finetti
theorem can be derived based on a more elaborate definition of permutation invariance
which does not interfere with the canonical anti-commutation relations. The obtained
theorem then allows us to approximate a permutation invariant state by a mode separable
state, i.e., a state that can be written as a convex combination of fermionic product states
in the sense of Sec. 2.3.1. In special cases these states can be linked to pure Gaussian
states, which are the variational set of the Hartree-Fock approximation. Furthermore,
we discuss how a de Finetti theorem is used to expand and generalize established results
for fermionic systems on the example of fermionic central limit theorems which capture
the static emergence of Gaussian states. Note however, that the investigations presented
in the following only open a window towards a deeper understanding of realistic systems
which are approximable by mean field methods. The assumptions needed on the system
to be captured by our setting are rather strict such that much of the value of the following
lies in conceptual insights as we will explain.

We will start our discussion by reviewing well understood and established de Finetti
type theorems for distinguishable particles and how they help in bounding mean field
approaches. Using the basic quantum de Finetti theorem for distinguishable particles we
then derive a fermionic mode de Finetti theorem. We continue to discuss the structure
of the obtained separable states in more details and show that we are in special cases
able to bound fermionic mean field approaches.

4.1. Quantum de Finetti Theorems

De Finetti’s theorem originally roots in probability theory and relates the joint distri-
bution of multiple random variables which is invariant under permutation of the events
to a combination of identical and independent processes. In detail it is shown that an
extendable permutation invariant sequence of random events, meaning that their prob-
ability does not depend on the order of the events, can be well described by a mixture
of independent identical copies of a common abstract model which depends on a sin-
gle stochastic parameter (see for instance [118] for an introduction). A non-trivial and
for instance also non-Markovian example of an extendable permutation invariant dis-
tribution would be the one resulting from Pólay’s urn model, i.e. drawing balls from
an urn with replacing the drawn ball by n copies. De Finetti’s theorem was extended
to a large number of different settings and cases for instance to exchangeable distribu-
tions of finitely many random variables, more general notions of permutation invariance,
e.g. multiple sequences which are only internally permutation invariant, and to Markov
processes (see [119] for a short introduction into different ramifications of the classical
de Finetti theorem). In addition it allows to bridge gaps between subjective Baysian
approaches versus more traditional frequentist interpretation of probability theory as it
proves that one can assign an underlying common model to a sequence of exchangeable
variables, an assumption which is natural in a frequentist interpretation but a priori
denied within the Baysian view [118].

It was later realized that similar statements hold in quantum mechanical systems
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[120–122]. In the context of quantum state tomography de Finetti type theorems help,
just as in the case of classical probability distribution, to establish a foundation for
an operational and epistemic interpretation and description of the tomography process,
eliminating for instance the reference to unknown quantum states [122]. Furthermore,
permutation invariance can often either be enforced by specific preparation protocols or
naturally be assumed to hold for different systems. Along these lines, quantum versions
of de Finetti’s theorem allow to generalize and extend established schemes. Quantum
state tomography is then able to construct a faithful model of the system if a permutation
invariance of the measured subsystems is assumed instead of the ideal independence of
copies [123]. In addition, quantum de Finetti theorems allow to extend the security proof
of quantum key distribution protocols known for i.i.d. scenarios to general settings and
by this to rigorously prove the practical security of such protocols [124, 125].

A quantum state is called permutation invariant, if it is invariant under an arbitrary
permutation of the constituents. Consider for instance a state ρ on V distinguishable
particles each described by an Hilbert space Cd, i.e., ρ ∈ D(CdV ), then ρ is permutation
invariant if for any operators Aj ∈ B(Cd) with j ∈ [V ] and permutation π ∈ SV we have

tr(ρA1 ⊗A2 ⊗ · · · ⊗AV ) = tr(ρAπ(1) ⊗Aπ(2) ⊗ · · · ⊗Aπ(V )), (4.1)

or in short, if the permutation does not change ρ, i.e. πρπ† = ρ. A state ρ ∈ D(CdV ) is
called extendable permutation invariant if for any V ′ > 0 there exists a state ρ′ on V +V ′

particles which is permutation invariant and tr[V ]c ρ
′ = ρ. Note that every extendable

permutation invariant state is of course permutation invariant itself but the converse is
not true. An extendable permutation invariant state can be shown to be separable, i.e. to
contain no entanglement and all correlations present result from being a classical mixture
[120–122]. Next to being able to capture extendable permutation invariant states, the
reductions of a permutation invariant state of fixed size can be investigated [126–128].
Here one finds that the following theorem, which will be the backbone of our discussion
further below.

Theorem 3 (De Finetti theorem for finite systems of distinguishable particles [127]).
Given a permutation invariant state ρ on V distinguishable particle of dimension d,
i.e. ρ ∈ CdV , then there exists an r < ∞ and sequences σl ∈ D(Cd) and al ∈ [0, 1] for
l ∈ [r] with

∑r
l=1 al = 1 such that for any k ∈ [V ] we have∥∥∥∥∥tr[k]c(ρ)−

r∑
l=1

alσ
⊗k
l

∥∥∥∥∥
1

≤ 2
d2k

V
. (4.2)

The reduced states of a permutation invariant state are well approximated by a con-
vex combination of i.i.d. product states and all remaining entanglement vanishes in the
limit V → ∞, i.e., of being extendable permutation invariant. Note that due to the
permutation invariance Thm. 3 is of course insensitive to which subset of [V ] of size k
is chosen and we choose the initial k sites out of convenience. Triggered by this finite
size quantum de Finetti theorem different ramifications followed. If we change for in-
stance the norm in Thm. 3 from the trace distance (distinguishing quantum states by
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any operation or measurement) to the operational distinction using only local quantum
operations and classical communication (LOCC norms) one obtains that the error will
scale as log(d) instead of d [129–131]. This adaption yields more flexibility and results
in quasipolynomial time algorithms for the detection of entanglement [129, 131]. Fur-
thermore, one can relax the requirement of obtaining an i.i.d. product state. One can
derive a de Finetti like theorem with a modified scaling of the error if one approximates
the reductions tr[k]c ρ of a permutation invariant state with the convex combination and
permutations of states which act as i.i.d. copies of local states on l < k sites and are
arbitrary on the remaining k− l sites, i.e., states of the form σ⊗k⊗ρ′. The error for such
an approximation is exponentially suppressed in k − l, i.e., the size of the subsystem on
which the states are not further specified [123]. Such an extension allows to generalize
the hypothesis in hypothesis testing schemes [132] and to consider large subsystems with
k ∈ O(V ) [123].

Next to being useful in the context of quantum information theoretic considerations,
quantum de Finetti theorems yield bounds on mean field approximations. Consider
a system of V distinguishable particles with a (not necessarily geometrically) k-local
Hamiltonian

H =
1

|P |
∑
S∈P

hS , (4.3)

where P is a collection of subsets of [V ] of maximal size k and all ‖hS‖ ≤ 1. Assume that
H has a permutation invariant ground state space projector ρ. According to Thm. 3
there exist states σl and probabilities al such that we can approximate

2
d2k

V
≥ 1

|P |
∑
S∈P

∣∣∣∣∣tr
(
hS

[
r∑
l=1

alσ
⊗|S|
l − trSc(ρ)

])∣∣∣∣∣ ≥
∣∣∣∣∣tr
(
H

[
r∑
l=1

alσ
⊗V
l − ρ

])∣∣∣∣∣
≥ min

σ∈D(Cd)
tr(Hσ⊗V )− eGS, (4.4)

with eGS denoting the ground state energy density of H. The quantum de Finetti
theorem allows us to bound the error of a mean field approximation to the ground state,
i.e. approximating the ground state by a product state in permutation invariant systems.
It is however important to note that this insight is mostly of conceptual interest. Having
a permutation invariant ground state space projector is a very restrictive assumption.
Intuitively mean field approaches should be able to approximate the ground state of
a system the better each part of the system is coupled to the rest. The permutation
invariant systems are the extreme cases of this intuition. However, for distinguishable
particles the gap between these extreme cases and realistic systems can be overcome. It
can be shown that the strict assumption of being permutation invariant can be relaxed
to having a well connected interaction graph [133]. The result gives rise to more general
versions of de Finetti like theorems for non-permutation invariant states by considering
the minimal local deviation of a general state from a separable state averaged over the
full system.

Bosonic systems are intrinsically permutation invariant due to the constraint of being
symmetric under the exchange of particles which can be expressed as πρ = ρ for all per-
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mutations π and bosonic states ρ. Under this stronger version of permutation symmetry,
slightly more powerful de Finetti theorems can be derived [127, 128, 134] and be em-
ployed in order to justify and bound the error of the use of the discrete Gross-Pitævskii
equation (see for instance [134]). The fact that we can easily bound particle mean field
ansatzes, i.e. approaches based on particle product states, in bosonic systems is based
on the two properties that bosonic systems feature an intrinsic symmetry on the level of
particles and can contain less physical modes than particles. The latter is necessary due
to the dependence of de Finetti like theorems on the local Hilbert space dimension, here
the size of the single particle Hilbert space, that needs to be countered by the systems
size, i.e., particle number. In fermionic systems both features are absent. It is therefore
unclear and remains subject of future research if fermionic particle de Finetti theorems
can be formulated. When considering a permutation invariance with respect to the ex-
change of single particle modes, however, we find that fermionic systems possess a clearer
structure. The set of fermionic states which are invariant under the permutation of sin-
gle particle modes has been characterized in two different perspectives. On the on hand
on the level of a C∗ algebraic description [135] and on the other hand a parametrization
based on second quantization and the investigation of lattice Hamiltonians was derived
[136]. In both cases a full permutation invariance with respect to the permutation of the
modes is assumed which, as we will discuss in detail below, interferes with the intrinsic
antisymmetry of fermionic systems. Furthermore, the previous investigations focused
on the thermodynamic limit V → ∞ and concrete finite system bounds in the spirit of
Thm. 3 are not available. The status for the fermionic de Finetti theorems discussed
above is therefore comparable to the situation for distinguishable particles before the
formulation of finite size theorems by [126, 127]. In the next section we partially fill the
highlighted gaps. We derive a finite size fermionic de Finetti theorem in the spirit of
Thm. 3 and especially show that for fermionic systems we can use a relaxed version of
permutations invariance which does not conflict with the canonical anti-commutation
relations.

4.2. A Fermionic Mode de Finetti Theorem

The following result was obtained in collaboration with Zoltán Zimborás and Jens Eisert
and is published in [137]. Let us first introduce the needed machinery and notation. As
already pointed out above, assuming a permutation invariance in fermionic systems on
the level of modes in the spirit of permutation invariance for distinguishable particles
interferes with the anti-commutation relations. Consider a fermionic state ρ on V sites
with p modes per site that is fully permutation invariant, i.e. πρπ† = ρ for any permu-
tation of modes π. Denote for j ∈ [V ] and σ ∈ [2p] with mj,σ a Majorana operator
supported on site j with σ labeling the local modes. Then the assumption of a full
permutation invariance in combination with the canonical anti-commutation relations
implies that for j1 6= j2

tr(ρmj1,σmj2,σ) = tr(ρmj1,σmj2,σ) = − tr(ρmj1,σmj2,σ) = 0, (4.5)
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i.e. expectation values of the above form vanish to 0 and we lose a part of the anti-
commuting character of fermionic states by assumption. The first important point we
want to stress here is that this assumption is not necessary for fermionic systems and
we obtain a de Finetti theorem for a larger class of states. We will use the following
definition for fermionic permutation invariant states:

Definition 2 (Permutation invariant fermionic states). Given a fermionic system with
V sites, p modes per site and Majorana operators mj,σ with j ∈ [V ] and σ ∈ [2p] we call
a fermionic state permutation invariant if for all r ∈ [V p] we have

(1) that all expectation values are invariant under order preserving redistribution of
operators over the lattice, i.e. for all (j1, σ1) < · · · < (j2r, σ2r) with jk ∈ [V ] and
σk ∈ [2p] and permutations π ∈ SV which preserve that order, i.e. (π(j1), σ1) <
· · · < (π(j2r), σ2r) we get

tr(ρmj1,σ1 . . .mj2r,σ2r) = tr(ρmπ(j1),σ1
. . .mπ(j2r),σ2r

), (4.6)

(2) that locally even operators can be swapped arbitrarily meaning that for all (j1, σ1) <
· · · < (j2r, σ2r) with jk ∈ [V ] and σk ∈ [2p] that fulfill |{l : jl = j}| is even for all
j ∈ [V ] and all permutations π ∈ SV we have

tr(ρmj1,σ1 . . .mj2r,σ2r) = tr(ρmπ(j1),σ1
. . .mπ(j2r),σ2r

). (4.7)

By not swapping odd operators we therefore avoid the interference between permu-
tation invariance and antisymmetry of fermionic systems. Note that Def. 2 of course
contains fully permutation invariant states. Concerning the general structure of permu-
tation invariant states let us note that any permutation invariant state is obviously also
translation invariant (when using the permutation invariance of Def. 2 only for open
boundary conditions). Furthermore, a permutation invariant state displays no spatial
dimensionality as all its expectation values do not depend on a metric, i.e. the distance
of the operators. These states feature no decay of correlations and correspond in this
sense, depending on the choice of jargon, to zero or V -dimensional systems. It is also
important to note that Def. 2 not only contains the case of fully permutation invariant
fermionic states but goes beyond it. Assume p = 1, the state

ρ =
1

2V

1+ i tan
( π

2V

)
µ
∑

j,l∈[V ]:
j<l

mj,1ml,1

 (4.8)

for µ ∈ [−1, 1]1 has the non-trivial expectation values

tr(ρma,1mb,1) =

{
tan

(
π

2V

)
µ if a > b

− tan
(
π

2V

)
µ if b > a

. (4.9)

1Note that the factor i tan(π/2V ) is needed in order to ensure positivity and Hermiticity. For large
system sizes V it behaves approximately like iπ/2V .
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Hence it is permutation invariant according to Def. 2 but fails to be fully permutation
invariant.

We will see below that for states which are permutation invariant according to Def. 2
all quantum correlations vanish locally upon increasing the system size including their
antisymmetric character originating from the indistinguishability of fermions. In order
to prove our final de Finetti theorem we will in fact first need to show that all notions
of antisymmetry are suppressed in a permutation invariant state. To do this let us
introduce the parity operators for each site j ∈ [V ]

Pj =

p∏
σ=1

(1− 2f †j,σfj,σ) = (−i)p
p∏

σ=1

mj,2σ−1mj,2σ. (4.10)

Given an operator P we define for s = ± the maps CsP : B(FM )→ B(FM ) with

CsP (A) =
1

2

(
A+ sPAP

)
. (4.11)

Together with the parity operators we can define the symmetric projection of a permu-
tation invariant state. First note that the maps CsPj for s = +/− erase all terms with an

odd/even number of Majorana operators on site j of an operator which can be verified
by computing for j ∈ [V ]

C
+/−
Pj

(mj,σ1 . . .mj,σr) =

{
mj,σ1 . . .mj,σr if r even/odd

0 if r odd/even
. (4.12)

Furthermore, consider the map

C = C+
PV
◦ · · · ◦ C+

P1
. (4.13)

This map constitutes a quantum channel which can be verified easily by noting that it
has a Kraus decomposition with the Kraus operators 2−V Pj1 . . . Pjr for all r = 0, . . . , V
and j1 > · · · > jr ∈ [V ]. To be precise C is the channel which erases the part of
a fermionic state that is sensitive to the intrinsic antisymmetry. This can be seen by
considering a general operator A ∈ B(FM ) and realizing that

tr(C(ρ)A) = tr(ρC(A)) (4.14)

by the cyclicity of the trace and fact that the Kraus operators of C are real. As C+
Pj

filters all terms from A with an odd number of Majorana operators on site j we conclude
that C(ρ) has for operators that are even on all sites the same expectation values as ρ
and all expectation values with operators which are odd on at least one site vanish.
Hence, all expectation values of C(ρ) that are sensitive to the order of operators and
therefore display the antisymmetry of the system are 0. Equipped with this notation we
are now able to formulate, understand and prove the suppression of quantum correlations
between modes in fermionic permutation invariant states.
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4.2.1. Suppression of Oddness and a Fermionic de Finetti Theorem

Let us first state the two essential results, the suppression of terms sensitive to the
antisymmetry of a permutation invariant state followed by a mode de Finetti theorem
and discuss them and their proofs on an intuitive basis. The full proofs are collected
in the subsequent section for completeness. First we obtain that if ρ is permutation
invariant then it is locally indistinguishable from C(ρ) in the following sense:

Lemma 4. Given a fermionic system on V ≥ 6 sites with p modes per site and a
permutation invariant state ρ then we find that for any k ∈ [V ]

‖ tr[k]c(ρ)− tr[k]c(C(ρ))‖1 ≤
2√
3

22p(k − 1)3/2

V
, (4.15)

where C = C+
P1
◦ · · · ◦ C+

PV
with Pj being the parity operator of site j ∈ [V ] as discussed

above.

The essential intuition underlying the proof is very simple. Consider an expectation
value which involves at some site a single Majorana operator mj,σ. By the permutation
invariance we can essentially freely shift this site over the lattice (if we forget for a
moment the restriction of not swapping sites with odd operators for simplicity) such
that instead of calculating one expectation value we can consider the average of all
terms where the mj,σ is placed on any site. However,

∑
j∈[V ]mj,σ has an operator norm

of
√
V only (which can be easily realized by noting that

√
V
−1∑

j∈[V ]mj,σ results from
a Fourier transformation of the single-particle basis and constitutes a valid Majorana

operator). Hence, the average over an odd operator is suppressed in norm as
√
V
−1

. If
we expand a physical operator in the Majorana basis, all terms are either even on all sites
or odd on at least two sites such that we obtain a global suppression of the order V −1.
The full proof, laid out in the next section exploits this observation and shows in all rigor
that it is true for more general situations than the one discussed here. Technically the
lemma follows then from a combinatorial argument using the permutation invariance of
the state and a version of the Cauchy-Schwarz inequality.

The above is a result of the global antisymmetry constraint on the state as it allows us
to construct local non-commuting operators, which are needed for such a construction.
In contrast, a similar line of argumentation does not hold in systems of distinguishable
particles. Here, the operator norm of the average of any local operator will be constant
and given by the norm of the local operator itself. We would hence not expect to be
able to formulate a de Finetti theorem for distinguishable particles based on a notion of
permutation invariance in the spirit of Def. 2. It is rather the additional antisymmetry
constraint of fermionic systems which allows us to relax the definition of permutation
invariance.

Secondly, using the suppression above it is clear that ρ can be well approximated by
C(ρ) which constitutes a permutation invariant state of distinguishable particles after a
Jordan-Wigner transformation. Hence, we can apply the established de Finetti theorem
easily and obtain:
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Theorem 5 (A fermionic de Finetti theorem). Given a fermionic system on V ≥ 6 sites
with p modes per site and a permutation invariant state ρ ∈ D(FV p) there exists a r ∈ N
and sequences of states ξ1, . . . , ξr ∈ D(Fp) and weights a1, . . . , ar ∈ [0, 1] with

∑
l al = 1

such that for all k ∈ [V ]∥∥∥∥∥tr[k]c ρ−
r∑
l=1

alξ
⊗k
l

∥∥∥∥∥
1

≤ 2
22pk

V
+

2√
3

22p
√
k − 1

3

V
(4.16)

where ξ⊗kl ∈ D(Fkp) denotes the state which results from copying ξl to each of the k sites
as explained in Sec. 2.3.1.

The proof follows essentially the above laid out intuition. We apply the de Finetti
theorem of distinguishable particles to the Jordan-Wigner transformed permutation in-
variant state C(ρ) and map the result back to a fermionic formulation.

4.2.2. Proof of Lem. 4 and Thm. 5

Before we prove Lem. 4 and Thm. 5 formulated in the previous section let us introduce
two technical lemmata which we will need.

First, let us note that the maps CsP are contractive with respect to the operator norm
if ‖P‖ ≤ 1, i.e., we obtain:

Lemma 6. For two general operators A and P with A = A† and ‖P‖ ≤ 1 we find that
for s = ± the operators

CsP (A) =
A+ sPAP

2
(4.17)

have an operator norm that is bounded by ‖CsP (A)‖ ≤ ‖A‖.

Proof. By direct calculation we find that

‖CsP (A)‖ ≤ ‖A‖
2

+
‖PAP‖

2
≤ ‖A‖

2
+
‖P‖ ‖A‖ ‖P‖

2
≤ ‖A‖. (4.18)

Secondly, as a final ingredient we need the following consequence of the Chauchy-
Schwarz inequality:

Lemma 7. For two operators ρ and A with ρ = ρ†, ρ ≥ 0 and tr(ρ) = 1 we find

‖ tr(ρA)‖2 ≤ tr(ρAA†). (4.19)

Proof. As ρ is Hermitian and positive,
√
ρ exists and is Hermitian. We obtain then from

the Cauchy-Schwarz inequality

‖ tr(
√
ρ†
√
ρA)‖2 ≤ | tr(√ρ†√ρ)|| tr(A†√ρ†√ρA)|. (4.20)

The claim follows with the normalization and positivity of ρ and the cyclic invariance of
the trace.
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4.2.2.1. Proof of Lem. 4

Let us repeat out of convenience the lemma:

Lemma. Given a fermionic system on V ≥ 6 sites with p modes per site and a permu-
tation invariant state ρ then we find that for any k ∈ [V ]

‖ tr[k]c(ρ)− tr[k]c(C(ρ))‖1 ≤
2√
3

22p(k − 1)3/2

V
, (4.21)

where C = C+
P1
◦ · · · ◦ C+

PV
with Pj being the parity operator of site j ∈ [V ] as discussed

above.

Proof. The result above is trivial for k = 1 as the single site reduction of ρ and C(ρ) are
indeed the same as by Eq. (4.14) their expectation value agree for all physical (and there-
fore even) on-site observables. Set therefore k > 1 for the following. Using Eq. (4.14)
we can rewrite the one-norm difference of the two states as∥∥tr[k]c(ρ)− tr[k]c [C(ρ)]

∥∥
1

= sup
A:‖A‖=1,A†=A

suppA⊂[k]

∣∣ tr([A− C(A)]ρ)
∣∣. (4.22)

Our first goal is now to decompose a general physical operator A into different com-
ponents which are then bound individually in a second step exploiting the permutation
invariance of the state ρ. Given any physical Hermitian operator A with support in [k]
and ‖A‖ = 1 we decompose A into the operators

Al = C−Pl ◦ C
+
Pl−1
◦ C+

Pl−2
◦ · · · ◦ C+

P1
(A) (4.23)

for l ∈ [k − 1] and
Ak = C+

Pk
◦ · · · ◦ C+

P1
(A) = C(A). (4.24)

Note that by construction

A =

k∑
l=1

Al (4.25)

as A is overall even and for instance Ak + Ak−1 = C+
Pk−2

◦ · · · ◦ C+
P1

(A) giving rise to
a recursive simplification of the whole sum. In addition we have by Lem. 6 that the
individual norms are bounded by ‖Al‖ ≤ ‖A‖ ≤ 1 for all j ∈ [k]. Furthermore we know
that for l ∈ [k−1], if we decompose Al in the Majorana operator basis, the decomposition
will involve only terms that contain an even number of Majorana operators supported
on every site in [l− 1] and an odd number of Majorana operators acting on site l itself.

Next we decompose the operators Al for l ∈ [k−1] further in order to have more control
over the resulting components. For this step it is crucial to note that the Majorana
operators themselves are Hermitian operators with eigenvalues ±1 as m2

j,σ = 1. We
therefore can decompose Al into the components C±ml,1(Al) with ‖C±ml,1(Al)‖ ≤ 1. One

can convince oneself that when expanded in the Majorana basis C−ml,1(Al) contains only
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terms which involve the Majorana operator ml,1 whereas C+
ml,1

(Al) is the collection of
all terms of Al that do not contain ml,1. Both operators are then split into the four
components C±ml,2(C+

ml,1
(Al)) and C±ml,2(C−ml,1(Al)) for which we know which of them

involves the operator ml,1 or ml,2 and which does not. Iterating this for all ml,σ at fixed
l we obtain a decomposition of every Al into

Al =

p∑
r=1

∑
1≤σ1<···<σ2r−1≤2p

ml,σ1 . . .ml,σ2r−1Bl,(σh)h∈[2r−1]
(4.26)

with every Bl,(σh)h∈[2r−1]
having a norm bounded by 1 and being even on the sites

1, . . . , l − 1, acting trivially on site l and being an overall odd operator.
In the next step we exploit the permutation invariance of the state ρ in order to show

that every term of the decomposition of Al in Eq. (4.26) is suppressed roughly as
√
k/V

in the system size. For this we assume (k − 1) ≤ V/2 and introduce a special subset
of the permutations of the sites of the lattice. As the technical details will look rather
convoluted let us discuss them first. For a fixed l ∈ [k − 1] we will decompose the set
of available sites [V ] into three components, a left, a right and a central one where all
sites in the left part have a smaller index than those in the central part and all in the
central part have a smaller index than those in the right part. The permutations will
then permute the site l into the central part of the lattice which has a size of about
V/2. The sites 1, . . . , l − 1 are permuted as a block into the left part whereas the sites
l + 1, . . . , k are permuted into the right part without changing the relative order of any
pair of sites. In addition, consecutive sites will stay consecutive, expect of site l. The
position of the site l permuted into the central part and position of the sites permuted
to the other two is uncorrelated. Furthermore, the position of the sites permuted into
the left part is uniquely defined by the ones that are permuted to the right part and
for different permutations the sites permuted to the left and right part are either all
permuted to the same sites or to disjoint sets. To make this concrete let us denote for
i, j ∈ [V ] by τ ji ∈ SV the swap of site i and j. In addition we introduce the abbreviations
nk = bV/2(k − 1)c, for x ∈ [nk] b

l
x = V − (x− 1)(k − l), clx = nk(l − 1)− (x− 1)(l − 1)

and Slc = {j ∈ [V ]|nk(l − 1) < j ≤ V − nk(k − l)}. We then define for every l ∈ [k − 1],
a ∈ Slc and x ∈ [nk] the permutations πla,x, π

l
x ∈ SV by

πla,x = τ1
clx−l+2 ◦ · · · ◦ τ

l−1
clx
◦ τ la ◦ τ l+1

blx−k+l+1
◦ · · · ◦ τkblx (4.27)

πlx = τ1
clx−l+2 ◦ · · · ◦ τ

l−1
clx
◦ τ l+1

blx−k+l+1
◦ · · · ◦ τkblx . (4.28)

A visualization of the permutations is displayed in Fig. 4.1. Given that for any l ∈ [k−1],
a ∈ Slc and x ∈ [nk] the permutation πla,x does not change the relative order of any
site in [k] we obtain from the permutation invariance of ρ that for any r ∈ [p] and
1 ≤ σ1 < · · · < σ2r−1 ≤ 2p

tr
(
ρml,σ1 . . .ml,σ2r−1Bl,(σh)h∈[2r−1]

)
= tr

ρ 1

|Slc|nk

∑
a∈Slc

nk∑
x=1

πla,x
[
ml,~σBl,~σ

] , (4.29)
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l

x=2 x=1 x=2 x=1
Slc

[k]

Figure 4.1. – Illustration of the permutations needed in the proof of lemma 4 for V = 22,
k = 6 and l = 4. The above chain illustrates the starting condition where in green, blue and
orange we highlight the sites [l− 1], l and the rest of [k] respectively. Any permutation πla,x
will then permute the system to one of the configurations depicted in the lower chain. The
site l is permuted into the set Slc highlighted in blue, the sites to the left and right of l are
permuted, depending on the choice of x, to the green and orange parts in the corresponding
bins. Note that x defines the position for both parts and the target sites form disjoint sets
for different x.

where we introduced the shorthand notationml,~σ = ml,σ1 . . .ml,σ2r−1 for vectors of modes
~σ = (σh)h∈[2r−1]. Using lemma 7 we then directly obtain

∣∣tr (ρml,~σBl,~σ
)∣∣2 ≤ tr

ρ 1

|Slc|2n2
k

∑
a,b∈Slc

nk∑
x,y=1

πla,x
[
ml,~σBl,~σ

] (
πlb,y

[
ml,~σBl,~σ

]) † (4.30)

= tr

ρ 1

|Slc|2n2
k

∑
a,b∈Slc

nk∑
x,y=1

ma,~σπ
l
x

[
Bl,~σ

]
πly

[
Bl,~σ

†
]
m†b,~σ

 . (4.31)

The sum over x and y is symmetric where for x 6= y the operators πlx
[
Bl,~σ

]
and πly

[
Bl,~σ

†]
anti-commute due to the disjoint support and oddness of Bl,~σ. A similar argument
holds for the sum over a and b which yields that only terms with a = b and x = y
lead to a non vanishing contribution. Using that ρ is permutation invariant and that
‖ml,~σBl,~σBl,~σ

†m†l,~σ‖ ≤ ‖A‖
2 ≤ 1 we then conclude

∣∣tr (ρml,~σBl,~σ
)∣∣2 ≤ 1

|Slc|nk
. (4.32)

where nk ≈ V/2(k − 1) and |Slc| ≈ V/2. Applying this bound for all l ∈ [k − 1] to each
of the 22p/2 many terms in Eq. (4.26), we obtain

‖ tr[k]c(ρ)− tr[k]c(C(ρ))‖1 ≤
22p(k − 1)

2
√
|Slc|nk

, (4.33)

as the C(A) term in Eq. (4.22) is canceled by the Ak contribution.
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In order to simplify the bound consider k−1 ≤ V/2. In addition we need that for any
n ∈ N the relative error of the floor function can be bounded as

max
w∈[n]

n
w −

⌊
n
w

⌋
n
w

≤ 1

2
(4.34)

as the maximizer of the error is given by w = bn/2c+ 1. We obtain then

1

|Slc|nk
=

1
V 2

2(k−1)

1⌊
V

2(k−1)

⌋
V

2(k−1)

− 1
2

⌊
V

2(k−1)

⌋
V

2(k−1)

⌊
V

2(k−1)

⌋
V

2(k−1)

≤ 2(k − 1)

V 2

1

1
2 −

1
2

(
max
w∈[V ]

V
w
−bVw c
V
w

)2 (4.35)

≤ 4(k − 1)

V 2

4

3
(4.36)

which yields the bound in the theorem. As the bound yields a value larger 2 for k− 1 >
V/2 for all V ≥ 6 it applies trivially to all k.

4.2.2.2. Proof of Thm. 5

Let us again, out of convenience, repeat the theorem:

Theorem (A fermionic de Finetti theorem). Given a fermionic system on V ≥ 6 sites
with p modes per site and a permutation invariant state ρ ∈ D(FV p) there exists a r ∈ N
and sequences of states ξ1, . . . , ξr ∈ D(Fp) and weights a1, . . . , ar ∈ [0, 1] with

∑
l al = 1

such that for all k ∈ [V ]∥∥∥∥∥tr[k]c ρ−
r∑
l=1

alξ
⊗k
l

∥∥∥∥∥
1

≤ 2
22pk

V
+

2√
3

22p
√
k − 1

3

V
(4.37)

where ξ⊗kl ∈ D(Fkp) denotes the state which results from copying ξl to each of the k sites
as explained in Sec. 2.3.1.

Proof. The proof of the theorem is now rather straightforward. By Lem. 1 we know that

∥∥tr[k]c ρ− tr[k]c C(ρ)
∥∥

1
≤ 2√

3

22p
√
k − 1

3

V
. (4.38)

In addition it is clear that C(ρ) is a state that is locally even. Therefore it is fully
permutation invariant by condition (2) of Def. 2 as all expectation values with operators
that do not act as even operator on all sites vanish. Therefore C(ρ) gives rise to a
permutation invariant state on (C2p)⊗V by a blocked Jordan-Wigner transformation.
Applying the de Finetti theorem for distinguishable quantum systems yields immediately
that there is a r ∈ N, a1, . . . , ar ∈ [0, 1] with

∑
l al = 1 and ξ̃1, . . . , ξ̃r ∈ D(C2p) such that∥∥∥∥∥tr[k]c C(ρ)−

r∑
l=1

alξ̃
⊗k
l

∥∥∥∥∥
1

≤ 2
22pk

V
. (4.39)
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The states ξ̃l might under the Jordan-Wigner transformation not transform back to
fermionic states as they could involve odd parts violating the superselection rule. How-
ever we can use a channel that is the reduction of the Jordan-Wigner transformed ver-
sion of the channel C in order to project out these parts. For this, define the channel
C̃k = C+

(Z⊗p)k
◦ · · · ◦ C+

(Z⊗p)1
. Observe that C̃(tr[k]c C(ρ)) = tr[k]c C(ρ) as under the

Jordan-Wigner transformation we obtain C̃k = C+
Pk
◦ · · · ◦ C+

P1
. The contractiveness of

the one-norm distance under channels gives us then directly∥∥∥∥∥tr[k]c C(ρ)−
r∑
l=1

alC̃(ξ̃⊗kl )

∥∥∥∥∥
1

≤ 2
22pk

V
. (4.40)

Defining ξl = C+
Z⊗p(ξ̃l) yields then the result.

4.3. Structure of the Mode Product States and Applications

The mode product states and convex combinations thereof encountered in Thm. 5 are on
first sight not very natural states for fermionic systems and especially in view of bounding
mean field approaches such as the Hartree-Fock approximation we are interested in their
underlying structure and potential connection to Gaussian states. It turns out that in
certain limiting cases we can indeed connect mode product states to Gaussian states as
we explain in the following. During this discussion we highlight two implications of the
mode de Finetti theorem: The control of mean field approximations in special cases and
the extension of the applicability of a fermionic central limit theorem which captures the
convergence of the collection of i.i.d. copies of a state towards a Gaussian state.

4.3.1. Few Local Modes and Mean Field Approximations

First note that in view of the tensor product representation of quantum states, a mode
product state corresponds to a matrix product operator of bond dimension one. There-
fore part of our discussion directly applies to this set of states. The product states of
Thm. 5 are of course special by their additional i.i.d. structure.

The first limiting case we want to discuss concerns the number of modes per sites p.
Given a fermionic permutation invariant state ρ with corresponding r, states ξl ∈ D(Fp)
and weights al ∈ [0, 1] resulting from Thm. 5 we want to denote by ρ(k) the mode

separable state ρ(k) =
r∑
l=1

alξ
⊗k
l . Then, in the extreme case of p = 1 we obtain that all

ξl are of the form ξl = bl|0〉〈0|+ (1− bl)|1〉〈1| for some bl ∈ [0, 1] according to the parity
superselection rule. Then ρ(k) takes the form

ρ(k) =

1∑
i1,...,ik=0

c
(k)
i1,...,ij

|i1, . . . , ik〉〈i1, . . . , ik| (4.41)

with
∑
c

(k)
i1,...,ij

= 1 and c
(k)
i1,...,ij

≥ 0. Put differently, ρ(k) is the convex combination of
Slater determinants. More general, for p ≤ 3 we have that the ξl are necessarily convex
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combinations of pure Gaussian states [138]. This property is then directly inherited by
ρ(k).

This has the following implication on mean field approximations. Similar to the case
of distinguishable particles, the mode de Finetti theorem allows us to bound the error
of a ground state energy approximation using mode product states. To be precise let us
denote by P a collection of subsets of maximal size k of the full system [V ]. Consider a
Hamiltonian of the form

H =
1

|P |
∑
S∈P

hS , (4.42)

with hS being supported non-trivially on S only and being bounded by ‖hS‖ ≤ 1.
Assuming a permutation invariant ground state space projector we can approximate the
error of a mean field approximation along the lines of Eq. (4.4) using Thm. 5 and obtain

eGS − min
ξ∈D(Fp)

tr(Hξ⊗V ) ≤ 2
22pk

V
+

2√
3

22p
√
k − 1

3

V
. (4.43)

For p ≤ 3, ξ⊗V will be the convex combination of pure Gaussian states such that we can
bound by the linearity of the expectation value

eGS − min
ρ∈D(FpV ):

ρ pure Gaussian

tr(Hρ) ≤ 2
22pk

V
+

2√
3

22p
√
k − 1

3

V
. (4.44)

Hence, in these systems we are able to bound the error of using a Hartree-Fock ap-
proximation in order to obtain the ground state energy. Note however, that this result
and example has more of an illustrative character than being of practical physical in-
terest. It shows that an insight into the correlation structure of fermionic state in the
spirit of the mode de Finetti theorem does allow for bounding the error of mean field
approximations based on mode or particle product states in special cases. The specific
assumptions made on the setting are, however, more or less unnatural. It has for in-
stance been argued that the normalization assumed in Eq. (4.42) leads to an unwanted
suppression of terms in certain settings in fermionic systems [136] and more importantly
the assumption of having a permutation invariant ground state in the first place is very
restrictive and usually not matched in realistic systems. The result currently has to be
seen as supporting the basic intuition that mean field type approaches are well justified
in settings of high connectivity, i.e., systems in which everyone is coupled to everyone,
and by this reveals one of the sufficient ingredients needed for mean field approaches. In
order to bridge the gap between this intuition and realistic examples, generalizations of
the above result in the spirit of [133] are needed, which are subject of ongoing research.

4.3.2. Extension of Hudson’s Theorem

The second important limiting case we want to discuss concerns the size of the subsystem.
For k = 1 the resulting mode product states can be any fermionic state ξ ∈ D(Fp)

99



which can be trivially seen from the fact that for any ξ ∈ D(Fp) the state ρ = ξ⊗V

is permutation invariant and results in ρ(1) = ξ. More interesting is the case of large
subsystems. Here we obtain that mode product states behave like Gaussian states if we
probe them only with modes that are averaged over the full subsystem. This can be
made rigorous by an extension of Hudson’s central limit theorem which shows in its basic
version that the restriction to the 0 Fourier mode of states of the form ρ⊗k converges
for k → ∞ to a Gaussian state [139]. This essentially means that for a state ρ⊗k its
moments with respect to the operators 1/

√
k
∑k

j=1 fj,σ are the moments of a Gaussian
state, i.e. decompose according to Wick’s theorem up to an error decaying in k. Hence, if
we probe the whole system equally weighted over large regions, we expect mode product
states to appear Gaussian.

In order to make this notion more precise and to capture the convergence to a Gaussian
state more conveniently we introduce the notation of cumulants. Given a fermionic
system with M modes, Majorana operators mj with j ∈ [2M ] and a state ρ ∈ D(FM )
we define for j1, . . . , jw ∈ [2M ] with w even the cumulants Kρ

w(mj1 , . . . ,mjw) via

tr(mj1 . . .mjwρ) =
∑

P∈Pe([w])

sign(P)
∏
p∈P

Kρ
|p|((ml)l∈p), (4.45)

where Pe([w]) denotes the set of partitions of [w] into parts of even size (recall Sec. 2.1.2).
Note that the definition of the cumulant is multi-linear in the operators, which can be
proven easily using a recursion, meaning that for instance

Kρ
w

(
2M∑
k=1

Ak,jmj ,mj2 , . . . ,mjw

)
=

2M∑
j=1

Ak,jK
ρ
r (mj ,mj2 , . . . ,mjw), (4.46)

which means that the definition above is invariant under mode transformations and
can also be applied to fermionic creation and annihilation operators as they are linear
combinations of Majorana modes. For a Gaussian state ρ, all cumulants except of
the second ones are zero as one would expect. This can be seen the following. For
w = 4, 6, 8, . . . , 2M insert Wick’s theorem in order to obtain

tr(mj1 . . .mjwρ) =
∑

P∈P2([w])

sign(P)
∏
p∈P

Kρ
|p|((ml)l∈p), (4.47)

where we used that Kρ
2 (mj1 ,mj2) = tr(mj1mj2ρ). This cancels in the definition of the

higher cumulants all terms which involve second moments only and shows upon iteration
that the remaining part, the higher cumulants, are zero.

The established fermionic central limit theorem developed by Hudson [139] concerns
in its original formulation only the Fourier 0-mode of a mode product state. Below we
argue that this behavior can in fact be extended to all Fourier modes. We then obtain
that the mode product state converges to a product of decoupled copies of Gaussian
states, each of which is supported on conjugate pairs of momenta only. Let us note
that if not the discrete Fourier transformation but a tensor product of Hadamard gates
is used, the state can be fully decoupled such that ρk converges to ρ⊗k0 with ρ0 being
Gaussian (this result is essentially contained in [140]).
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Lemma 8 (Extension of Hudson’s central limit theorem). Assume a fermionic system
with V sites, p modes per site and a state ρ ∈ D(Fp) on a single site. The product state
ρ⊗V ∈ D(FV p) is then approximately described by a product

⊗
q ρq with ρq Gaussian

states to be specified in the following sense.
Denote by f †j,σ and fj,σ with j ∈ [V ] and σ ∈ [p] the creation and annihilation operators

of the systems and introduce the shorthand notation f cj,σ with c = ±1 and f−1
j,σ = f †j,σ

and f1
j,σ = fj,σ. We then introduce the Fourier modes of the lattice

acq,σ =
1√
V

V∑
j=1

e
2πi
V
jqf cj,σ (4.48)

for q = −b(V − 1)/2c, . . . , bV/2c. Furthermore, we denote by f cσ for σ ∈ [p] and c = ±1
the creation and annihilation operators of a fermionic system with p modes.

We then find for r ∈ [V p], and triples (q1, c1, σ1) < · · · < (q2r, c2r, σ2r) with σl ∈ [p],
cl = ±1 and ql as above that the cumulants of the Fourier modes with respect to the state
ρ⊗V are suppressed as

Kρ⊗V

2r (ac1q1,σ1
, . . . , ac2rq2r,σ2r

) =
1

V r−1
Kρ

2r(f
c1
σ1
, . . . , f c2rσ2r

)δ∑2r
l=1 clql modV,0 (4.49)

Meaning that in the Fourier modes ρ⊗V has up to an error decreasing in V the same

moments as ρ0⊗ρV/2⊗
⊗b(V−1)/2c

q=1 ρq,−q with ρ0 = ρV/2 and ρq,−q = ρq′,−q′ all Gaussian
and defined by the second moments of ρ where ρV/2 is only present if V is even.

Before we comment on the implication of Lem. 8 let us discuss the basic structure of
the proof which can be found with all details in App. E. The result that the product
state ρ⊗V is Gaussian in the Fourier modes is rather intuitive. Consider a product of 2r
fermionic operators in the Fourier basis. Expressed in the original operators this yields a
sum over terms in which the original operators are distributed over the different copies of
the system. Due to the state being an even operator we find that the leading contribution
is given by terms with two or zero operators on each copy. Here the prefactor V −r cancels
with the sum over the r different copies the pairs are supported on and the resulting
contribution is the same as for the Gaussified version of ρ as only second moments are
probed. The next contribution comes from terms in which next to pairs of operators
one copy supports four operators. Those terms are then suppressed by V −1 compared
to the leading contribution as we have one less copy supporting operators to sum over
when counting the number of such contributions, meaning that non-Gaussian correlation
will be suppressed as V −1. That the state decouples in the Fourier basis should also
be not surprising due to the translational invariance of ρ⊗V . That the internal degrees
of freedom and coefficients from the Fourier transform do not disturb this intuition is
shown in App. E by proving the above lemma rigorously.

From Lem. 8 we can derive the intuition that if we probe ρ⊗k in modes which are evenly
smeared over all copies, the resulting moments will look very close to the ones of the
Gaussified version of ρ – probing single copies on the other hand might of course reveal
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non-Gaussian correlations as we could then restrict ρ⊗k to fewer copies and increase
the error in Lem. 8. In view of the structure of i.i.d. mode product states of Thm. 5
Lem. 8 implies that if we probe operators that can be written using a few Fourier mode
operators of Lem. 8 only, then they will appear to be Gaussian up to an error that decays
in the subsystem size as k−1.

Hence, combining Thm. 5 and Lem. 8 yields a generalization of a result which is
typical for de Finetti type theorems. Lem. 8 is restricted to i.i.d. product states. Using
however the mode de Finetti theorem we conclude that its applicability can be easily
extended to more general, namely permutation invariant, states. Combining Thm. 5 and
Lem. 8 yields the immediate corollary that if a state ρ ∈ D(FpV ) is the reduction of a
permutation invariant state on a much larger system (i.e. if ρ is extendable permutation
invariant for some larger finite system size) then it appears to be the convex combination
of Gaussian states if probed by the Fourier modes.

4.4. Summary

In this chapter we discussed the presence of a simple correlation structure imposed by
symmetry in fermionic systems. We obtained for finite fermionic systems the mode de
Finetti theorem in Thm. 5 much in the spirit of the case of distinguishable particles
(compare Thm. 3). From the symmetry of a fermionic state under permutations of
the single-particle modes we derived that all quantum correlations are suppressed with
growing system size if we restrict our attention to local observables and combinations
thereof. This includes in particular the anti-commuting character of the fermions which
originates from their indistinguishability. Let us emphasize that local here does not
refer to spatially local, a notion which is almost obsolete in the considered systems due
to the permutation invariance, but only to being local in the sense of being supported
on a limited number of modes. We extend previous results by considering finite size
effects and more importantly by extending here the class of states considered by using
a definition of permutation invariance tailored to fermionic systems which does not
interfere with the antisymmetry of fermionic states. By this we are able to analyze in
detail the suppression of the anti-commuting character which results in the possibility
of employing simplifying descriptions of the corresponding quantum states.

We connect the result to two applications. First, we bound mean field approaches
either based on product states in general or in special cases on pure Gaussian states
to appropriate Hamiltonians. This allows to link our result in specific instances to the
Hartree-Fock approximation and to find classes of models which are faithfully approx-
imated within it. Furthermore, we extend the class of states to which we can apply
structure theorems which are formulated for identical copies of fermionic state such as
the fermionic central limit and extensions thereof. The combination of such theorems
with versions of the quantum de Finetti theorem yields a generalization of these struc-
tural insights.

Note however that next to the implication on mean field approximations and the ex-
tensions of theorems such as the fermionic central limit theorem, a significant share of
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the importance of Thm. 5 relies at the moment on technical aspects. The fact that a
finite size de Finetti theorem can be formulated for fermionic system without demanding
a full permutation invariance but from a symmetry restriction which does not conflict
with the canonical anti-commutation relations is expected to be of even bigger impor-
tance when we aim to generalize the result to more generic settings. Direct implication
for physical systems, i.e. bounding mean field approaches to realistic systems, need these
generalizations of the above theorem. Either in the spirit of [133] based on the struc-
ture of the interaction graph of the system or generalizations to the particle picture
by formulating a truly fermionic particle de Finetti theorem, based on antisymmetry
instead of symmetry. Both ambitious goals will need and rely on an in depth discussion
of the interplay of antisymmetry and a generalized notation of permutation invariance
for which we view Thm. 5 as a first step.
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5. Gaussification: Relaxation under Free
Hamiltonians

One of the most general physical concepts which is present on all scales and touches es-
sentially every branch of physics is the phenomenon of equilibration and thermalization.
It is generically observed that physical systems, no matter if they are captured by clas-
sical or quantum mechanics, tend towards an equilibrium configuration. Furthermore,
this equilibrium can often be well understood in terms of thermal ensembles which de-
pend only on a few parameters. Very different initial conditions thermalize to the same
configuration such that almost all memory on the specific initial condition is lost. We
find the dynamical emergence of effective descriptions which, in the extreme case, only
depend on a global energy constraint.

Modern experimental techniques allow to probe the relaxation or non-equilibrium pro-
cesses in well controlled quantum systems [117, 141–145] and are able to resolve some of
the details of equilibration and thermalization of closed quantum systems. Understand-
ing however the emergence of these thermal ensembles based on a microscopic theory,
is up to today, an open and challenging problem and the hope to obtain a derivation of
statistical mechanics based on the principles of quantum mechanics is so far unmatched.
Even worse, in the context of quantum mechanics further conceptual difficulties appear.
The unitarity of the time evolution in closed quantum systems leads to an enormous
amount of constants of motion which strongly restricts the global dynamics and the
emergence of equilibrium ensembles becomes unclear on the first sight. We discuss ap-
proaches on how to resolve this apparent contradiction below. Moreover, although a
certain understanding of the equilibration of closed quantum systems has been gained
in recent years, we are not able to resolve this process properly in time. On a rigorous
level, we are often only able to predict that a system will indeed equilibrate but can
not control the time scale on which this happens such that the stability of the obtained
predictions upon taking the thermodynamic limit is not guaranteed.

In order to advance with the above questions we investigate in this chapter relax-
ation processes in a restricted set of models. Considering the dynamics governed by
free Hamiltonians we prove that in non-interacting systems a peculiar relaxation process
appears. We find that after a short, meaning independent of the system size, relaxation
time generic initial states will be locally indistinguishable from Gaussian states. In phys-
ical terms, the result is based on the assumption that the system supports a sufficient
form of transport and that the initial states contains only appropriately decaying corre-
lations. The Gaussification of free systems has two major implications. First, it explains
how Gaussian states appear naturally and that in the description of the physics of free
systems we can often safely restrict ourselves to the fully Gaussian setting. Secondly,
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although the Gaussian state we find the system to converge to is in general time depen-
dent, the result is reminiscent to the convergence towards a generalized Gibbs ensemble
(GGE) [146] as we converge in any point in time to the maximum entropy state. If
in addition the system equilibrates, as it will happen for instance in fully translation
invariant settings, we obtain by this an actual convergence towards a GGE and hence
explain the thermalization of a large class of free systems on controlled time scales.

Below we will first review different concepts for the description of equilibration and
thermalization processes in closed quantum systems. Subsequently, we restrict ourselves
to the setting of free fermionic systems and discuss the conditions under which we find
these systems to Gaussify. After introducing the assumptions and presenting the intu-
ition of the proof we conclude by discussing the physical implications in more detail.

5.1. Equilibration and Thermalization of Closed Quantum
Systems

Let us first briefly review the current understanding of generic relaxation processes in
quantum many-body systems obtained in recent years. We will restrict ourselves to the
important concepts and results and in doing so we of course only scratch the surface
of a rich and wide field. For very careful and formal reviews of the equilibration the-
ory of closed quantum systems, which give also a more detailed account its historical
development, we refer to [147, 148].

As already highlighted above, the unitarity of the time evolution of closed quantum
mechanical systems poses a challenge towards explaining phenomena such as equilibra-
tion and thermalization in these system. In a global view, the time evolution generated
from a time-independent Hamiltonian just leads to the rotation of a quantum state in
the full Hilbert space with a constant rate of change. Hence, on the first sight it is
unclear how this observation can be linked to our daily experience of finding systems in
equilibrium.

Furthermore, from practical experience we know that the equilibrium configuration
of a large physical system can conveniently be captured in terms of a thermodynamic
ensemble which depends only on very few parameters, in the extreme case only on the
global energy expectation value which fixes the temperature of the system. The notion
of thermalization is even more surprising in the context of closed quantum systems. Any
quantum system evolved under a time-independent Hamiltonian possesses for instance
a number of independent integrals of motions which grows exponentially in the system
size as the overlap of the initial state with every eigenspace of the systems Hamiltonian
is constant in time. In addition, the unitary time evolution does not alter the global
entropy of a quantum system, e.g. a pure initial state will stay pure at all times. Hence,
common notions of ergodicity [147, 149] do not apply to quantum systems and have to
be revised.

One solution to these problems is based on a change of perspective. Instead of consid-
ering the global system, the notion of equilibration and thermalization can be understood
when considering the properties of finite subsystems instead of the global ones; a route
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that also allows to overcome the ergodicity hypothesis in classical systems [149, 150].
Such a restriction is also encouraged by the fact that many quantities observable for
closed quantum systems are composed of local parts. The total particle number is the
sum of all local ones, currents are either measured as change of particle numbers or as
local fluxes through a region etc. It is then at least conceivable that a system effectively
serves as its own heat bath such that thermalization can generically occur on the level
of subsystems, not interfering with the global constraints pointed out above.

To make this notion more precise let us introduce the concept of equilibration on
average. Given a time-dependent signal s(t) obtained from a physical system, e.g. the
expectation value of an observable with respect to a time-dependent state, we are inter-
ested in its rough behavior over time. For this we consider its time average

sT =
1

T

T∫
0

s(t)dt (5.1)

and define the infinite time average as s∞ = limT→∞ s
T . Consider then an initial state

ρ = ρ(0) which is evolved under some Hamiltonian H =
∑

k EkPk, where Ek and Pk
denote the eigenenergies of H and projectors on the eigenspaces respectively. One finds
then, that the infinite time average of the expectation value of any observable A is
captured by the expectation of A with respect to the state

ρ∞ = lim
T→∞

T∫
0

ρ(t)dt =
∑
k

PkρPk, (5.2)

meaning that tr(ρ(t)A)
∞

= tr(ρ∞A) as can be verified easily by observing that any
factor of the form eit(Ek−Ek′ ) averages to zero. Assuming that all eigenenergies are non-
degenerate such that Pk = |k〉〈k| one finds the simplified form ρ∞ =

∑
k〈k|ρ|k〉 |k〉〈k|,

i.e. ρ∞ is diagonal in the eigenbasis of H with the same diagonal elements as ρ. Note
that by this, ρ∞ has the same overlaps with the eigenspaces of H and hence especially
the same energy expectation value as the initial state ρ. In addition, one can show that
ρ∞ is the state which maximizes the von Neumann entropy, given these constraints (see
for instance [147, Thm. 2.3.1]).

So far we have not argued that any signal received from a physical system might
indeed equilibrate as its average could of course be a rather bad approximation of its
overall behavior. However, one finds the general result that for any observable A given a
Hamiltonian H with non-degenerate energy gaps, and an initial state ρ that has a non-
vanishing overlap with a large number of eigenstates of H then the (infinite) time average
is indeed a good description of the overall behavior of tr(Aρ(t)) in the sense that the
average deviation [tr(Aρ(t))− tr(Aρ∞)]2

∞
is small [151, 152]. Note that the assumption

of having non-degenerate energy gaps and overlap with many eigenstates of H is quite
intuitive as it avoids the build up of resonances in the eit(Ek−Ek′ ) factors and ensures
that enough of them participate in order to effectively dephase the state. However,
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the requirement of non-degenerate energy gaps excludes structured systems such as
free models as here any energy gap will have a degeneracy which grows exponentially
in the system size. Using the operational definition of the trace norm one finds that
ρ(t) and ρ∞ are on average locally indistinguishable meaning that for any local region
S of the system ‖ trSc ρ(t)− trSc ρ∞‖1

∞
is small. The error decreases algebraically

with (
∑

k〈k|ρ|k〉2)−1, i.e. the number of eigenstates |k〉 of H the initial state ρ has a
significant overlap with, and increases exponentially with the size of the region S [152].
It is however important to note that by proving the smallness of the fluctuations of
expectation values around their infinite time average we indeed find that the infinite
time average does describe the configuration of the system at most times but obviously
we loose any temporal information in the sense that we cannot say when a system will
first look locally equilibrated. Furthermore, note that in any finite system, quantum
or classical, versions of Poincaré’s recurrence theorem enforce that a system leaves it
equilibrium configuration as it has to return arbitrary closely to its initial values after a
large but finite time [153] such that the equilibration has to set in well before that time.
Moreover, a closer look at the details of the bound on the fluctuations around the time
average leads to an equilibration time that grows exponentially with the system size.
Hence, the relaxation times obtained from such an argumentation quickly diverge with
the system size such that no statements can be made for the thermodynamic limit. One
can argue that under a further smoothness assumption on the system, one would expect
finite equilibration times in the infinite system based on the intuition of dephasing [154,
155] but the precise assumptions on H, A and ρ(0) to be made are unclear. Note that
in general, the assumptions leading to equilibration laid out above are rather technical
in the sense that they can not be related to physical properties of the system which
can be checked within an experimental setup, such as correlation properties etc. and are
also hard to verify numerically and analytically. Hence, identifying settings where these
assumptions can be cast in more physical terms, i.e. based on correlation structures in
the initial state or transport properties of the system and deriving controlled relaxation
times are the major goals of our upcoming investigation.

For this we will use a second, more controlled but at the same time more demanding
approach to capture the equilibration of quantum systems. In this formulation we de-
mand that a signal s(t) is close to an equilibrium value after a short relaxation time trelax

for a whole time interval [trelax, trec] until recurrences occur after some recurrence time
trec. One can show that free bosonic system exhibit such an equilibration during a time
interval with a relaxation time trelax independent of the system size and trec growing
unboundedly with it under the assumption that the dynamics is governed by a local
Hamiltonian supporting a sufficient transport and an initial state which has correlations
that decay with the distance of the probed parts of the system [156–158]. Below we
obtain a corresponding result for fermionic systems.

As noted above, the equilibrium state ρ∞ maximizes the von Neumann entropy under
the constraint that the desired state has the same form as ρ in each eigenspace of H.
It hence respects all constants of motion in the system and depends on a number of
parameters that grows exponentially with the system size. In contrast a thermalized
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system is expected to be captured by a thermal ensemble that only depends on a few
parameters, in the extreme case only the total energy. Under what precise conditions the
equilibrium state ρ∞ will be locally indistinguishable from a thermal state ρ = e−βH/Z
with Z = tr(e−βH) is still under debate. One favored explanation for the thermalization
of generic quantum systems is provided by the eigenstate thermalization hypothesis
(ETH). Adopting the formulation of [159], the ETH assumes that the eigenstates |k〉 of
a general interacting, non-degenerate Hamiltonian at an energy Ek in the bulk of the
spectrum of H are already locally indistinguishable from the thermal state e−βkH/Zk.
If the initial state now does have a significant overlap with many eigenstates of H but
also only with eigenstates from a narrow energy window, then in systems fulfilling the
ETH it will be locally indistinguishable from a thermal state essentially by assumption.
Several numerical studies (see [160, Sec. 4] for a review) support the ETH for complex
enough and generic systems. Furthermore, more rigorous links have been established
which provide further evidence that the ETH does indeed capture essential aspects of
thermalizing systems. It was shown that if one assumes thermalization to happen for all
initial states which lead to equilibration and are supported in a narrow energy window
only [147, Sec. 2.7.2] or all product states [161] then the ETH becomes in fact necessary,
hence equivalent to thermalization.

The ETH attempts to explain thermalization of closed quantum systems on very gen-
eral grounds. However, at the moment it corresponds to more of a rewriting of the whole
problem than a solution and proving the ETH, either in general or in specific settings
seems to be as challenging as the original task. A second possible route for approaching
the problem of explaining thermalization is given by considering more specific settings.
If we are willing to restrict the class of initial states for which thermalization occurs, a
different argument can be employed. One can show that a special class of initial states
thermalize if the subsystem under consideration it is only weakly coupled to the remain-
ing system and if the density of states of the remaining system is exponentially decaying
in energy [162]. Here a state ρ is an admissible initial state if its reduced state trS

cρ∞ is
close to the projector on an energy window [E,E+ ∆] of the subsystem and coupling of
subsystem and remaining part HSR need to fulfill ‖HSR‖ � β−1 � ∆. It seems fair to
say that both approaches towards explaining thermalization are again founded on rather
technical assumptions which follow a certain physical intuition but have to be connected
to numerically, analytically or experimentally testable properties of a specific system in
future work.

In the following section we elaborate on the physical assumptions behind relaxation
processes in closed and finite quantum systems. For this we consider the setting of free
Hamiltonians as it gives rise to a simplified structure of the time evolution as explained
in Sec. 2.4 and a clear and well defined notion of transport. We find that under the
dynamics of a free Hamiltonian, a fundamental relaxation process besides equilibration
and thermalization occurs namely that a general initial state will appear to be Gaussian
after a short time. From this relaxation we are able to derive bounds on equilibration
times of free models and provide a physical picture for mixing processes leading to the
occurrence of maximal entropy states much in the spirit of thermalization.
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5.2. Relaxation of Free Fermionic Systems

Understanding the non-equilibrium dynamics of generic interacting quantum systems
and uncovering the details of relaxation processes such as equilibration and thermaliza-
tion is an important and fundamental but also challenging objective of current research.
Due to the complexity of the general task, we consider a restricted and technically easier
to handle setting in the following. We want to assume that the dynamics of the sys-
tem is governed by a non-interacting Hamiltonian. In Sec. 2.4 we explained that the
dynamics of such systems is highly structured and can be captured in terms of mode
transformations. It is this structure however that imposes additional constraints on the
non-equilibrium dynamics. Most prominently, the covariance matrix and collections of
higher moments will only be conjugated by an appropriate unitary in order to capture
their time evolution such that their spectral properties are conserved. Hence, the eigen-
values of the covariance matrix and by this the occupation of the natural orbitals are
constants of motion. Different from the general constants of motion in interacting sys-
tems which we expect to be irrelevant on local scales, free systems will even locally have
a memory of these constants of motion. This leads to the observation that for free sys-
tems we never expect the system to fully thermalize but instead to relax to a generalized
Gibbs ensemble (GGE) [146], meaning the maximal entropy state under the constraint
that all second moments are determined by the covariance matrix of the initial state. As
discussed in Sec. 2.4, the maximal entropy state with a predefined covariance matrix γ
is the Gaussian state defined by γ. In free systems, thermalization is therefore expected
to be replaced by the convergence towards a Gaussian equilibrium state which is fixed
by the second moments of the initial state. In bosonic systems, this expectation can
be rigorously confirmed and it is indeed found that under the time evolution generated
by a non-interacting Hamiltonian, the system locally equilibrates towards a Gaussian
state after a relaxation time which stays finite upon taking the thermodynamic limit
[156–158].

Below we will argue that starting from any non-critical initial state the dynamics
under a non-interacting local fermionic Hamiltonian that supports a sufficient form of
transport, lets the system Gaussify in the sense that after short and finite time the state
is locally indistinguishable from a Gaussian state. The assumptions imposed on the
system are essentially equivalent fermionic versions of the ones needed in the bosonic
setting. Gaussification is a relaxation process equally fundamental as equilibration itself
and more general than thermalization (or more precisely convergence towards a GGE)
in free systems as the Gaussian state the system approaches will in general be time-
dependent and follow a non-equilibrium dynamic. We find that the system Gaussifies
after a finite relaxation time trelax and stays Gaussian until a recurrence time that grows
unboundedly with the system size. The dynamics of the emerging Gaussian state under
the non-interacting Hamiltonian is then easily captured by the evolution of the second
moments. Hence, in settings where the second moments of the initial states equilibrate,
we find that the full system equilibrates and also provably converges towards a GGE. The
structure of free systems allows us to connect the technical assumptions needed for the
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Gaussification of a system directly to its physical properties. The proof itself contains
some cumbersome details and combinatorics in order to obtain a rigorous bound but the
essential physical process leading to the decay of non-Gaussian correlation and by this
the local loss of memory of the initial condition will become quite clear. By this we are
able to capture a very general relaxation process in physical and intuitive terms. Before
we discuss the physical implications of Gaussification further, we will first carefully
explain the necessary assumptions on the system in the following section. Furthermore,
we explain the structure of the proof, which can be found in the appendix in full detail.
We then conclude by discussing some technical aspects and, most importantly, physical
implications on systems of fermionic particles.

5.2.1. Conditions and Intuition for Gaussification

As mentioned above we find that under the assumption of transport a non-critical initial
state will Gaussify under the dynamics created by a local non-interacting Hamiltonian.
Let us make the notion of Gaussification and the assumptions more precise. For this
let us consider an n-dimensional regular lattice of V sites with p fermionic modes per
sites and denote by M = V p the total number of modes in the system. Furthermore,
we denote for j, k ∈ [M ] by d(j, k) the distance of two modes which is given by the
distance of the two sites on which the corresponding modes are supported on the lattice.
Moreover, we introduce the notation that for a general fermionic state ρ we denote by
ρG the Gaussified version of ρ in the sense that ρG is the Gaussian state with the same
second moments as ρ i.e. γ(ρ) = γ(ρG). As it is typical for the investigation of non-
equilibrium processes, the systems we want to consider are defined by some initial state
ρ = ρ(0) and a Hamiltonian governing the dynamics of the system.

First we discuss the assumption on the initial state. We want to assume that the
initial state does not support long-range correlations but to only feature exponentially
decaying correlations according to the following definition.

Definition 3 (Exponentially decaying correlations). Given a fermionic system defined
on a lattice of V sites with natural distance d(·, ·) we define a state ρ to exhibit exponen-
tially decaying correlations with constants cclust and ξclust > 0 if for any observables A
and B with ‖A‖ = ‖B‖ = 1 we find

| tr(ρAB)− tr(ρA) tr(ρB)| ≤ cclust| supp(A)|| supp(B)|e−
d(A,B)
ξclust , (5.3)

where d(A,B) denotes the minimal distance of the supports of A and B.

One very obvious candidate of states featuring exponentially decaying correlations
are of course mode product states discussed extensively in Ch. 4 as different sites are
fully uncorrelated. Less trivial, and hence more important examples of states with
exponentially decaying correlations are states that can be written as injective matrix
product state1. Note however that this does not generalize to more complex injective

1Motivated by results on translational invariant MPS [82] we call an MPS injective if the transfer
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tensor network states as for instance critical injective PEPS with only algebraically
decaying correlations can be constructed [163]. Furthermore, we will show below that
if ρ has exponentially decaying correlations then its Gaussified version ρG will have
exponentially decaying correlations as well however with a prefactor that depends in a
factorial instead of linear fashion on the size of the support (see Lem. 14 in the App. F
for details). This result is of course not surprising as any expectation value of ρG is
via Wick’s theorem related to the second moments of ρ which of course display an
exponential decay. Beyond these technical candidates let us also mention some more
physical ones. It can be rigorously proven that if a local Hamiltonian has a unique
ground state and a stable spectral gap, meaning that the gap between ground states and
first excited states can be uniformly bounded when the system size is increased, then
this ground state has exponentially decaying correlations [164, 165]. Moreover, one can
show that for any local Hamiltonian there exists a finite critical temperature from which
on the thermal state of the Hamiltonian features exponentially clustering correlations
[166].

These physical examples also illustrate how the following results can be tested exper-
imentally. The ground state or thermal state of a suitable model could be prepared as
an initial state followed by a sudden change of the systems Hamiltonian. Such a sce-
nario of a quench would allow for preparing an appropriate non-equilibrium initial state
independent of the non-interacting Hamiltonian whose dynamics we want to investigate.

The class of Hamiltonians we want to investigate are local and supposed to feature a
kind of ergodic transport which allows to explore the system evenly. Assuming locality
for the Hamiltonian has a profound implication. For any local Hamiltonian on a quantum
lattice system one can show that the dynamics sets a general upper bound on the speed
with which correlations can spread over the system. Such bounds are usually cast into
the form of Lieb-Robinson bounds (see for instance [167] for a review) which state that
the support of a local operator that is evolved under a local Hamiltonian spreads up
to exponentially small error only linearly in time. These bounds capture essentially the
intuition of a finite velocity of quasi-particles in solids but are more restrictive in the
sense that they apply to all energy scales. For non-interacting fermionic systems with a
local Hamiltonian one can show that:

Theorem 9 (Lieb-Robinson bounds of local quadratic fermionic Hamiltonians). Given
an n-dimensional lattice of V sites with natural distance d(·, ·) and p fermionic modes
per site. Denote by mj the Majorana operators of the system with j ∈ [M ] for M = V p.
If the evolution of the system is given by a quadratic Hamiltonian as in Eq. (2.50) which

operators T [s] ∈ Cr
2
s−1×r

2
s of every site s ∈ [V ] defined as

T
[s]

(α,α′),(β,β′) =

d∑
i=1

A
[j]
i,α,βA

[j]

i,α′,β′ (5.4)

has an unique eigenvalue of largest magnitude. It is then easy to see that any expectation value
of the form tr(ρAB) agrees with tr(ρA) tr(ρB) up to an error that scales as γ−d(A,B) with γ being
the smallest gap between the largest and second largest eigenvalue occurring for any T [s] on sites s
between the supports of A and B.
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Figure 5.1. – Illustration of the Lieb-Robinson cone and the transport properties of a local non-
interacting model. As Hamiltonian we choose the one-dimensional Hubbard model defined
in Eq. (2.61) without interactions U = 0 and periodic boundary conditions. In the right
panel we show the time evolution of the magnitude of one row of the mode transformation

U(t) = eith
(2)

which governs the dynamics of the systems, where h(2) denotes the coupling

matrix of the non-interacting Hamiltonian i.e. H =
∑
j,k h

(2)
j,kf

†
jfk, for V = 301. The

maximal value is indicated by the smoothed blue curve and is near the wave front. In the
upper left panel we show the evolution of the maximal amplitude near the wave front in
time for different system sizes (V = 101, 201, 301 indicated by the corresponding symbols
and we denote by c the corresponding central site index). The lower left panel displays
for each considered system size the maximal value in the inner region of the Lieb-Robinson
cone (defined by the two orange dashed lines in the right panel). In both plots we added
lines that are proportional to t−1/3 and t−1/2 as guides to the eye. In both plots on the left
side recurrences occur when the wave front starts to interfere with itself. The recurrence
time for which this happens however grows with the system size.

is local, i.e. there exists an l independent of V such that d(j, k) > l ⇒ h
(2)
j,k = 0, then

there are constants clr, vlr and ξlr > 0 and a recurrence time trec such that ∀t ∈]0, trec]
and j, k ∈ [M ]

|e−h(2)t
j,k | ≤ clre

− |d(j,k)−vlrt|
ξlr , (5.5)

with trec →∞ for V →∞ and d(j, k) denotes for modes j, k ∈ [M ] the distance of sites
on which j and k are supported.

Proof. The proof follows directly from applying the more general Lieb-Robinson bounds
stated in [168] for anti-commuting operators to {mj(t),mk} = (e−h

(2)t)j,k.

Lieb-Robinson bounds yield very generic upper bounds on the propagation of any
correlation within a system but they especially do not guarantee it. Disordered systems
as well as free hopping Hamiltonians fulfill the same Lieb-Robinson bounds despite
showing distinct transport properties, the latter an ergodic exploration of the system
while Anderson localization prevents transport in disordered ones [169]. It turns out
that in order to find generic relaxation in free systems we also need to assume that the
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systems features a certain minimal transport and that the Lieb-Robinson bounds are
up to certain threshold tight. To be precise we use the following definition for a system
which allows for transport.

Definition 4 (Delocalizing transport of quadratic Hamiltonians). Assume an n-dimen-
sional lattice of V sites with p fermionic modes per site with Majorana operators mj

with j ∈ [M ] for M = V p. A quadratic Hamiltonian as in Eq. (2.50) is said to exhibit
delocalizing transport with constants ctrans and dtrans > 0 and recurrence time trec if
∀t ∈]0, trec] and j, k ∈ [M ]

|(e−h(2)t)j,k| ≤ ctranst
−dtrans (5.6)

and trec →∞ for V →∞.

We show in App. G that a n-dimensional free nearest neighbor hopping Hamiltonian,
implementing the usual kinetic energy on a regular lattice, exhibits delocalizing trans-
port in the sense of Def. 4 with a decay of dtrans = n/3. In Fig. 5.1 we further illustrate
the transport properties as well as the Lieb-Robinson cone for the one-dimensional near-
est neighbor hopping Hamiltonian. The example shows effectively how the support of
the annihilation operator fj(t) =

∑
k Uj,kfk spreads in time. The Lieb-Robinson cone

is clearly visible and the maximal amplitude which decays as t−1/3. We find in addition
that the weight on the majority of sites is even more strongly suppressed in time; ap-
proximately as t−1/2. Note that for a local Hamiltonian which possesses Lieb-Robinson
bounds, the decay constant dtrans is bounded due to the orthogonality of the mode trans-
formation governing the time evolution by the following argument. For a given mode
j ∈ MM the size of the Lieb-Robinson cone around the site on which the mode is
supported on scales in time as tn for a n-dimensional lattice. Hence, (e−h

(2)t)j,k can be
assumed to vanish (up to an exponentially small error) for k outside of this cone. How-

ever, the orthogonality of e−h
(2)t demands that

∑
k |e
−h(2)t
j,k |2 = 1 such that if all elements

e−h
(2)t

j,k for k inside the cone are equally suppressed we conclude that dtrans ≤ n/2.
Prepared with these assumptions and definitions we can now formulate the following

theorem.

Theorem 10. Consider a fermionic system defined on an n-dimensional regular lattice
of V sites where each site is equipped with p fermionic modes. Assume that the dynamics
of the system is given by a non-interacting local Hamiltonian giving rise to delocalizing
transport with decay constant dtrans > n/4. Given a region S ⊂ [V ] of the lattice we
then find that any fermionic state ρ with exponentially decaying correlations and for all
0 < ε < 4dtrans − n we can define a constant C independent of the system size V such
that

‖trSc ρ(t)− trSc ρG(t)‖1 ≤ Ct
−(4dtrans−n−ε) (5.7)

for all t ∈]0, trec] where ρG(t) denotes the time-dependent Gaussian state with the same
second moments as ρ(t) and trec →∞ for V →∞.
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Under the stated assumptions we hence find that the initial state becomes locally
indistinguishable from its Gaussified version, where the constant C depends only on the
size of the region S and constants of the problem, so ctrans, cclust, vlr, etc. The constant
is especially independent of the total systems size V such that we find that even in the
infinite system, the state is essentially captured by its Gaussified version after a short
time. Before we discuss the physical implications we sketch the proof in the remainder
of this section and add a few technical comments in the following one.

The proof of the above theorem follows along rather intuitive lines. A complete and
rigorous version of the proof can be found in the App. F. First we rewrite the prob-
lem using the operational definition of the one-norm into an expectation value of an
operator supported on the subsystem S only. Every such operator can be expanded
into the Majorana basis such that we can capture their time evolution easily using the
mode transformation eh

(2)t. The locality of the Hamiltonian allows us to restrict our
attention to the Lieb-Robinson cone around the subsystem S and neglect any other part
of the system by accepting an exponentially suppressed error. The exponential decay
of correlations present in the initial state ρ and by this also in its Gaussified version
ρG yields then that an expectation value that probes regions which are more than the
correlation length apart factor into essentially independent expectation values, again up
to an exponential small error. Here, the delocalizing transport ensures that the combi-
natorics works out in the sense that there are more and more contributions which probe
far apart regions on the lattice at later times. Hence, we arrive at different combina-
tions of terms which consist of products of individual local expectation values that are
weighted by the corresponding matrix elements of the propagator eh

(2)t distributed over
the Lieb-Robinson cone around S. The delocalizing transport ensures now that these
contributions decay if fourth or higher moments are probed which follows roughly from
the following combinatorial argument. The Lieb-Robinson cone has a typical size of tn

for an n-dimensional lattice while the prefactor of a fourth moment decays due to the
delocalizing transport as t−4dtrans . We can therefore bound the different configuration of
one fourth moment which is factored from the remaining terms roughly by t−4dtrans+n

such that for dtrans > n/4 we obtain an algebraic decay. Showing that appearing sec-
ond moments can be summarized in a large but finite additional factor and that the
constraint that different factored expectation values are not distributed freely but have
to have a minimal distance does not interfere with this intuition relies on more careful
bookkeeping and more elaborate combinatorial estimates.

The key steps of the proof are hence exploiting Lieb-Robinson bounds in order to focus
the attention on a subregion of the lattice which grows in time but is independent of the
total system size. Then one shows that by the exponentially decaying correlations the
expectation value of every time-evolved local operator can be written as the mixture of
several local contributions. Delocalizing transport ensures that these local contribution
decay fast enough if they involve at least one fourth moment. If a term consists of second
moments only, ρ and ρG lead to the same contribution by construction.
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5.2.2. Technical Comments on Gaussification

Let us add a few technical comments on the proof and the resulting theorem. First, let
us note that the result is reminiscent to a central limit theorem. After exploiting the
exponentially decaying correlations, we obtain that any expectation value can be written
as the a mixture of products of numerous individual local contribution. From this we
then find that in leading order the expectation value is captured by the Gaussified state
which is the state that maximizes the von Neumann entropy when fixing the second
moments.

Furthermore, note that the decay in time is governed by an algebraic law and hence
does not yield a real time scale of relaxation (which would be present in an exponential
decay in time). Still we find for a predefined accuracy δ that we can choose a time trelax

if the system size is large enough such that for all t ∈ [trelax, trec] ρ(t) and ρG(t) are
locally indistinguishable up to an error δ, i.e. ‖ trS

cρ(t) − trS
cρG(t)‖1 ≤ δ. The time

trelax is then determined by the prefactor C and error threshold δ.
When stating Thm. 10 we did not give a detailed account of the constant C. This is

mostly due to the fact that the major goal of the theorem is to prove that there exists
such a constant which is independent of the system size. A more detailed look into
the constant by collecting the different contributions in App. F reveals that C depends
factorially on the size of the subregion S and hence quickly leads to bounds which exceed
any experimental relevant time scale and intuition. It is unclear which contributions to
this strong subsystem size dependence are an artifact of our proof strategy and which are
necessary. A more detailed investigation would be needed if one would want to derive
a general more realistic bounds. However, our current proof relies on bounding the
error made for individual products of Majorana or fermionic creation and annihilation
operators (Ref. [170] contains the details of the latter). The final bound is then obtained
as a worst case estimate based on this bound which increases the prefactor further.
Having said that it is hence possible for specific observables to obtain a smaller, though
still exponentially large in |S|, prefactor from the considerations in App. F.

5.2.3. Physical Implications and Relation to Thermalization

Let us now consider Thm. 10 from a more physical point of view. As we already pointed
out before, Gaussification is not equivalent to equilibration or convergence to a GGE
as the Gaussian state a system converges to is in general time-dependent. However, ac-
cording to Thm. 10 we can describe the non-equilibrium dynamics of the system within
the Gaussian setting only, although the initial state might be far from Gaussian. For
practical applications this provides of course an immense simplification of the problem.
The number of degrees of freedom we need to account for in order to capture all local
properties of the system up to a controlled error is reduced such that the considered sys-
tems are more accessible for analytical as well as numerical investigations. Reminiscent
to the loss of memory of the initial conditions in a thermalizing process, the information
of all non-Gaussian correlations is lost and we converge to the state which at each point
in time maximizes the von Neumann entropy. Gaussification can then be understood as

115



Figure 5.2. – Numerical investigation of the Gaussification of a nearest neighbor density-density
correlator with increasing system sizes. As initial state we choose the ground state of the
one-dimensional Hubbard model defined in Eq. (2.61) with interaction strength U = 2
and an additional on-site disorder potential

∑
j hjnj with hj drawn independently from a

Gaussian distribution with zero mean and variance 1/4. As Hamiltonian we choose the
nearest neighbor hopping Hamiltonian (Eq. (2.61) with U = 0). The hopping amplitude
was set to 1 for both Hamiltonians. All calculations are performed with periodic boundary
conditions and for consistency we have drawn 128 random coefficients hj once and used
the first V of them to define the corresponding model. We show the evolution of the non-
Gaussian contributions to the nearest neighbor density-density correlations on site 27 and
28. The black line indicates a t−1 decay as guide to the eye.

a convergence towards a time-dependent GGE and nicely displays a dynamical instance
of Janyes’ principle. It is interesting to note that Thm. 10 can be viewed as our second
generalization of the fermionic central limit theorem (next to the one obtained in the pre-
vious chapter with the help of the derived de Finetti theorem) which this time emerges
dynamically in time. Only in special cases does Gaussification imply equilibration. If
we consider a system with a translation invariant Hamiltonian and translation invariant
second moments then it is easy to verify that ρG(t) = ρG(0) for all times t. Hence, by
Thm. 10 we obtain that ρ(t) equilibrates locally. In addition it proves that the system
equilibrates to the expected GGE. This of course holds true in any setting where one
can prove by additional means that the second moments equilibrate after some time.

Gaussification will be visible in the evolution of a higher moments and hence can be
experimentally observed [171] with a signature as the one shown in Fig. 5.2. Here we
show that the non-Gaussian contributions to a fourth moment decay algebraically in
time until a recurrence occurs due to the collision of the two wave-fronts of the Lieb-
Robinson cone. As expected, this recurrence is shifted to later times with increasing
system size. It is interesting to note that we indeed find an algebraic decay which shows
that the fact that our bound in Thm. 10 is only algebraically and not exponentially
decaying in time is not an artifact of our proof but reflects the physical reality of free
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Figure 5.3. – Investigation of the Gaussification of a nearest neighbor density-density correlator
in the presence of disorder. We use the same initial state as in Fig. 5.2 on V = 128 sites. As
free Hamiltonian we choose the nearest neighbor hopping Hamiltonian (Eq. (2.61) with U =
0) with an additional on-site disorder potential ∆

∑
j hjnj with hj ∈ [0, 1] chosen uniformly

at random. The black line indicates a t−1 decay as guide to the eye. With increasing
disorder strength ∆, larger portions of the initial non-Gaussian correlations remain due to
localization effects.

systems. Note however, that from our bound we would expect a decay as t−1/3 as the
nearest neighbor hopping Hamiltonian supports delocalizing transport with dtrans = 1/3
only (compare Fig. 5.1 and App. G). It is hence surprising on the first sight that we find
an even stronger suppression for the correlator in Fig. 5.2. We can explain this behavior
within our framework. As shown in Fig. 5.1 we find that only at the wave-front of the
Lieb-Robinson cone weights are suppressed with dtrans = 1/3. Inside the cone and hence
the majority of contributions is suppressed more strongly with dtrans = 1/2. Assuming
an effective dtrans = 1/2 in our bound yields the observed t−1 decay.

Furthermore, let us argue in what sense the initial assumption to Thm. 10, transport
and decaying correlation in the initial state, are indeed necessary and underline this
with the corresponding physical pictures. The requirement of the system supporting
delocalizing transport is rather intuitive. If the system would feature no transport at
all, for instance due to Anderson localization effects in the presence of disorder [169],
then non-Gaussian features will be preserved within small localized regions such that
the system only Gaussifies up to the point in time where the dynamics explored these
localized regions. With decreasing localization length, i.e. due to increasing disorder, this
cutoff time is reached earlier as displayed in Fig. 5.3. On the other hand if the system
contains only ballistically expanding particles with a linear dispersion relation E(k) = vk
and group velocity v, then we will find transport in the system which does not spread.
It is then clear that at a given point in time t in a local region S we see only the local
correlations from the regions vt away from S of the initial state translated to S and hence
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expect to be able to resolve initial non-Gaussian features. Hence violating or weakening
the assumption of delocalizing transport without assuming additional structure leads to
non-Gaussifying settings.

The same holds true for the assumed (exponentially) decaying correlations. Intuitively
they require that the initial state has enough overlap with several eigenstates of the
system (which are delocalized in the presence of transport). If we drop the assumption
of exponentially decaying correlations we can easily construct initial conditions which
do not Gaussify. Consider for instance the one-dimensional nearest neighbor hopping
Hamiltonian with periodic boundary conditions and a single mode per site. Denoting the
real space creation and annihilation operators of the system by f †j and fj respectively
with j ∈ [V ] labeling the sites, we define the Fourier modes

a†q =
1√
V

V∑
j=1

e
2πi
V
jqf †j , aq =

1√
V

V∑
j=1

e−
2πi
V
jqfj , (5.8)

for q = 0, 1, . . . , V − 1. We assume V to be dividable by 4 and choose the momentum
eigenstates

|ψ1〉 =

3V
4
−1∏

q=V
4

a†q|0〉, |ψ2〉 =

V
2∏

q=0

a†2q|0〉, (5.9)

i.e. the ground state |ψ1〉 in the half filling sector and a highly excited state, and consider
the state ρ = 1/2(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|). A lengthy but uneventful calculation shows that
for k, l ∈ [V ] with k 6= l we find

| tr(ρnknl)− tr(ρnk) tr(ρnl)| =
1

V 2

δk−l,odd

1− cos
[

2π
V (k − l)

] +
δ|k−l|,V

2

8
, (5.10)

| tr(ρnknl)− tr(ρG nknl)| =
1

2V 2

δk−l,odd

1− cos
[

2π
V (k − l)

] +
δ|k−l|,V

2
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where nk = f †kfk. For large system sizes we see that the correlations | tr(ρnknl) −
tr(ρnk) tr(ρnl)| decay essentially as 1/(l−k)2 and are peaked at a distance k− l = V/2,
hence, not exponentially decaying. Furthermore, the state is invariant under the time
evolution, i.e. ρ(t) = ρ(0) as the Fourier modes are the eigenmodes of the system and
ρ is the projector on two different momentum eigenstates. Hence, we obtain that the
non-Gaussian correlation | tr(ρnknk+1) − tr(ρG nknk+1)| ≈ 1/(8π2) stays constant over
time and is locally detectable.

Note that on the other hand the assumed locality of the Hamiltonian is most likely
not strictly necessary. In our setting we are happy to assume it as many realistic mod-
els are well approximated by local Hamiltonians. Technically the locality implies by
Lieb-Robinson bounds that we can reduce our attention to a subregion of the system
independent of the system size. If we would want to abandon locality for some reasons,
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we would need to replace it with some other form of upper bound on the speed of the
spreading of correlations which is naturally expected in most systems.

In view of more general systems we expect from the intuition obtained here that
relaxation processes and the loss of memory of initial conditions is tied to the correlation
structure of the initial state and transport properties of the Hamiltonian. The intuition
that many independent contributions start to mix quickly in time and by this allow for
an effective ensemble description of the system is then expected to carry over to more
general settings, i.e., interacting models. Note however, that this step is at the moment
only schematically outlined. One important open problem in this area is to obtain a
proper definition of transport in interacting systems where the picture of individual
well defined particles exploited here has to be revised and there are most likely next to
technical difficulties also conceptual challenges to be overcome.

5.3. Summary

In the above chapter we discussed different relaxation processes in closed quantum sys-
tems. During the expected thermalization of many-body quantum systems, a system
loses its memory of almost all initial conditions after a short relaxation time and allows
for an effective description of the state of the system in terms of thermal ensembles. It
is however unclear how precisely these effective descriptions emerge from the unitary
dynamics of closed quantum systems.

In order to shed some light on these old and fundamental questions of quantum me-
chanics, we invoke the study of a simpler setting which allows to relate technical as-
sumptions to physical interpretations more easily – the setting of free Hamiltonians. If
the interactions present in a system can be neglected, we find that a local Hamiltonian
which features a spreading transport that slowly but surely explores large portions of
the system leads to the for free systems genuine relaxation process of Gaussification.
We find, as summarized in Thm. 10, that an initial state which features exponentially
decaying correlations will be locally indistinguishable from a Gaussian state after a short
time. All non-Gaussian correlations will delocalize over the system and be only accessi-
ble by global, specifically tailored measurements. It is important to emphasize that the
resulting state is in general time dependent.

As a first important result we hence view that in such free systems the whole local
non-equilibrium dynamics can up to a bounded error be well described within a purely
Gaussian setting. As discussed in Sec. 2.4, this implies a tremendous simplification and
an efficient description of the system. Furthermore, our theorem implies that Gaussian
states appear naturally even from highly non-Gaussian initial states such that they can
be assumed to be the initial state in the description of a non-interacting system if the
system parameters have been kept fixed for some time. Secondly, in cases where the
second moments of the initial state equilibrate, e.g. if the models and initial states are
translation invariant, Gaussification directly implies equilibration and convergence of
the state towards a GGE. For free systems we hence find that a suitable transport and
correlation structure of the initial state are sufficient for the emergence of an ensemble
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description after a well controlled relaxation time.
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6. Outlook and Open Research Question

In this thesis we explored different directions of identifying and understanding the more
detailed structure of fermionic systems. We first introduced in Ch. 2 a common gen-
eral notation for finite fermionic systems and discussed in detail the structure of non-
interacting models, the complexity of interacting systems and families of general kine-
matic constraints arising from the indistinguishable character of fermions. Subsequently
we introduced various numerical schemes which approximate the ground state of inter-
acting fermionic systems with a strong focus on tensor network methods in Ch. 3. Most
notably, we combined tensor network states with mode transformations which leads
to a larger variational class of states that include strong entanglement effects in order
to approximate target states. We discussed multiple schemes and their corresponding
advantages in order to adapt the single particle basis such that more efficient approxima-
tions can be found much in spirit of the Hartree-Fock approximation. In Ch. 4 and 5 we
studied the emergence of natural structures. In Ch. 4 we formulated a mode de Finetti
theorem which deduces the suppression of all quantum correlations between different
fermionic modes from a permutation invariance. We argue that due to intrinsic anti-
symmetry of fermionic systems such a theorem can be derived under a relaxed version of
permutation invariance and link our result conceptually to mean field approximations.
In Ch. 5 we argued that under the evolution of a free Hamiltonian supporting transport
a generic initial state will locally relax to a Gaussian state and described by this in
detail a fundamental relaxation process in closed quantum systems on general grounds.
Note that in both cases, the results are of rather general nature. Their major merit is
the rigorous prediction of the approximability of energy densities and the appearance of
separability in large permutation invariant systems and the explanation that and why we
can expect Gaussians states to appear in nature and not the exact error for mean field
approximations derived in a finite system or the relaxation time of a specific system. We
summarized our findings in more detail at the end of the corresponding chapters and will
not repeat these summaries here. Instead we want to conclude with an extended outlook
and present further research questions around and emerging from the topics discussed in
this thesis. The complexity and prospects vary strongly among the different questions
and directions discussed below from rather small variations or modifications of existing
approaches to long and involved research programs.

The finding that the antisymmetry of the fermionic wave function is manifested in
a rich structure of the reduced density matrices and gives rise to numerous new kine-
matic constraints bears a great potential. On the one hand side these constraints could
potentially explain the response of physical systems to the change of its parameters by
the saturation of certain constraints and movement along facets resulting from these
constraints. On the other hand the structure imposed by the constraints on the re-
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duced one-body density matrix could be used within numerical methods by restricting
optimization schemes to the states whose one-body reduced density matrix lies on or
near certain facets. These hopes however are accompanied by challenges and problems.
The sheer number of constraints is one major obstacle preventing progress along these
lines. In order to overcome this limitation further research concerning the structure of
the constraints is needed. Are there relaxed version of the constraints which suitably
interpolate between the Pauli constraints and the full set of constraints obtained from
Klyachko? Is there a way to efficiently predict for a model which constraints might
be relevant in a certain parameter regime and which not, e.g., if an interacting model
undergoes pinning [37], is there a way to predict the corner of the polytope we will
find its ground state in using mean field or similar methods? Furthermore, it would
be interesting to systematically investigate if typical variational sets used in numerical
schemes which simulate interacting fermionic systems can be understood from the per-
spective of these additional constraints. The solution of a Hartree-Fock approximation
will of course lie in a fixed corner of the polytope and CI or CC wave functions with
only few excitations will be close to this point. It is however unclear if these states
and states with higher excitations, will favor facets or be homogeneously smeared inside
the polytope. The same question holds of course for MPS. For instance, do MPS with
low bond dimensions aggregate inside the polytope or are these structures more or less
uncorrelated. Fair sampling techniques over MPS manifolds are needed here in order to
assess the generic structures appearing. In addition, it is only insufficiently understood
how physical structures such as locality of correlations or translation invariance affect
the structures found in the one or two-body reduced density matrix.

The success of tensor network based schemes outside the realm of approximating
ground states of local gapped one-dimensional Hamiltonians shows that they provide an
efficient tool in high dimensional settings and are in principle applicable to a wide range
of numerical problems. Here, however the origins of DMRG and related methods weighs
heavily as they are formulated for and tailored to eigenvalue or real time evolution
problems only. Small changes in the DMRG micro iteration step however allow to
formulate at least on paper more flexible schemes that are able to minimize more general
functions than Rayleigh quotients over the MPS manifold. By this novel optimization
methods exploiting and targeting low rank structures can be constructed. However, in
order to build a general optimization toolbox we need a better understanding of the
convergence behavior of local update schemes. As discussed in Sec. 3.2.2, an analysis
of induced local minima and the structure of the tangent cones is needed to obtain a
broader understanding of rank adaptive schemes. In the light of the generalizations of
tensor network schemes via the incorporation of mode transformations presented in Ch. 3
the next important step would be the analysis of the geometry of the combined parameter
manifold. Formulating variational methods for real or imaginary time evolution on the
joint manifolds of MPS and mode transformations A× U(M) would allow to formulate
more rigorous versions of the methods discussed in Sec. 3.3 and will especially yield
real time evolution schemes that outperform traditional MPS based methods as shown
in Sec. 3.3.3.3. Applying the combined single particle optimization scheme in larger
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settings could of course also help to choose a suitable active space1 for the calculations
of the electronic structure in systems from quantum chemistry. In addition if employed
together with an MPS with low bond dimension, the scheme allows to generalize the
Hartree-Fock approximation in such a way that the optimized single particle basis takes
into account the most important corrections to the Hartree-Fock solution. The obtained
single particle basis could then improve the performance of other approximation schemes
such as CC, CI or DFT in more correlated settings.

Before we discuss the more concrete directions of future research let us note that
by virtue of the Jordan Wigner transformation, the results presented in Ch. 4 and
Ch. 5 can be translated to distinguishable particles. If a the dynamics of a system of
qubits is governed by a Hamiltonian that maps to a non-interacting fermionic model
supporting delocalizing transport, for instance the XX model, and possesses an initial
state which maps to a fermionic state respecting the super selection rule, then the
dynamic of the system is well captured by Thm. 10 and the system will Gaussify in the
fermionic picture. Furthermore, our de Finetti theorem in Thm. 5 extends quantum de
Finetti theorems of distinguishable particles as it applies directly to spin states which are
not fully permutation invariant but only invariant in the weaker sense of Def. 2 and map
again to a proper fermionic state under the Jordan-Wigner transformation. Beyond that,
as already discussed in Ch. 4, in order to obtain bounds on mean field approximations
of realistic models generalizations of the mode de Finetti theorem Thm. 5 are needed. A
generalization along the lines of [133] based on the connectivity of the interaction graph
seems possible at least if the norm in the desired bound is changed to LOCC norms
which would allow for an large local dimension and to employ arguments based on the
symmetry under the exchange of particles instead of modes. In order to overcome the
limitations of the used norm and to obtain more general results a fully antisymmetric
de Finetti theorem would be needed.

Concerning the Gaussification of free systems, next to obvious questions about how
the bound might be tightened or if similar results would hold in continuous systems,
one interesting connection to systems of solid state physics would be the question if our
definition of transport can be brought into a more traditional view. Can we formulate
a similar theorem for Gaussification based on the band structure of a given model?
Furthermore, the current discussion leaves the question of equilibration of free models
largely unsettled. It seems plausible that the combination of traditional tools of the
equilibration theory of closed quantum systems with insights obtained in the context of
Gaussification could lead to sufficient conditions for the equilibration of free models and
allow for the formulation of equilibration times. Such a deeper understanding combined
with our result could directly imply the convergence towards a GGE for many systems.
A translation of the obtained results to interacting models is far more challenging. Here
many-body localized systems with their local integrable structure might represent an

1In order to automatize the selection of a good finite subspace of
∧N L2(R3 × Z2) often a large set of

single particle orbitals is chosen. From them a smaller active space is chosen in which the ground
state is approximated as accurate as possible using DMRG or other means and the passive orbitals
are either fully occupied or empty.
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intermediate stepping stone for the transition from the investigation of free models to
fully interacting systems.
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A. Wick’s Theorem and Equivalence of
Definitions of Gaussian States in Finite
Systems

In this appendix we present a proof of Wick’s theorem for finite fermionic systems and
comment on the equivalence of the different definitions of Gaussian states.

A.1. Wick’s Theorem

Given M ∈ N, let f †j and fj for j ∈ [M ] denote fermionic creation and annihilation
operators fulfilling the CAR and define the corresponding Majorana operators mk for
k ∈ [2M ]. Let ξj ∈ [−1, 1] for j ∈ [M ] and

ρ =
M∏
j=1

(
1

2
1+

i

2
ξjm2j−1m2j

)
(A.1)

be a Gaussian state. We can then calculate the expectation value of an arbitrary product
of Majorana operators mj1 . . .mj2r according to Wick’s theorem.

Theorem 11 (Wick’s theorem). Given the system and Gaussian state ρ defined above
we obtain for r ∈ N

tr(mj1 . . .mj2rρ) = Pf(γ(m)[j1, . . . , j2r]) =
∑

P∈P2([2r])

sign(P)
∏

(p1,p2)∈P

tr(mjp1
mjp2

ρ), (A.2)

with the correlation matrix

γ(m)[j1, . . . , j2r]a,b =


tr(mjamjbρ) if a < b

− tr(mjbmjaρ) if b < a

0 else

, (A.3)

for a, b ∈ [2r].

Note that if all operators mj1 . . .mj2r are different, the entries of the correlation matrix
are contained in the covariance matrix, as γ(m)[j1, . . . , j2r]a,b = tr([mja ,mjb ]ρ)/2.

Proof. We assume that the operators mj1 , . . . ,mj2r are ordered such that j1 ≤ j2 ≤
. . . ≤ j2r. Define the clusters Ck = {l|jl ∈ {2k − 1, 2k}} for k ∈ [M ]. It is easy to see
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that the expectation value decouples over the different clusters due to the structure of ρ
such that

tr(mj1 . . .mj2rρ) =
M∏
k=1

tr

ρ ∏
l∈Ck

mjl

 . (A.4)

If any cluster Ck has an odd size, the expectation value yields zero, in accordance with
Eq. (A.3) as for every permutation π there exists at least one factor with jπ(2l−1) and
jπ(2l) belonging to different clusters which yields tr(mjπ(2l−1)

mjπ(2l)
ρ) = 0. Given any

non-empty cluster Ck. We prove by induction that tr(ρ
∏
l∈Ck mjl) = Pf(γ(m)[(jl)l∈Ck ]).

If Ck = {l, l + 1} we obtain

tr
(
mjlmjl+1

ρ
)

= Pf

(
0 tr

(
mjlmjl+1

ρ
)

− tr
(
mjlmjl+1

ρ
)

0

)
, (A.5)

which is true by the definition of the Pfaffian. Assuming that the claim is true for
|Ck| = 2n we consider |Ck| = 2n + 2. Choose a ∈ Ck such that mja = mja+1 . Note
that such an a exists as |Ck| > 2. We obtain then from the anti-commutation relation
of Majorana operators that

tr

ρ ∏
l∈Ck

mjl

 = tr

ρ ∏
l∈Ck\{a,a+1}

mjl

 . (A.6)

Defining the matrix B ∈ R|Ck|×|Ck| with Bi,j = δi,j − δi,aδj,a+1 we obtain that

(BTγ(m)[(jl)l∈Ck ]B)x,y =


γ(m)[(jl)l∈Ck ]x,y if x, y 6= a+ 1

1 if x = a, y = a+ 1

−1 if x = a+ 1, y = a

0 else

. (A.7)

By this only terms with (a, a + 1) ∈ P contribute in the expansion of the Pfaffian and
we obtain

Pf(γ(m)[(ja)a∈Ck ]) =
1

det(B)
Pf(BTγ(m)[(ja)a∈Ck ]B) (A.8)

= Pf(γ(m)[(ja)a∈Ck\{l,l+1}])) = tr

ρ ∏
l∈\Ck{a,a+1}

mjl

 , (A.9)

as det(B) = 1 and the last equality corresponds to the assumption of the induction
step. Using Pf(A⊕ B) = Pf(A) Pf(B) finishes the proof for ordered indices. Note that
if j1, . . . j2r are not ordered, we can always order them without changing the relative
order of any ja and jb with ja = jb which introduces a sign only. Changing the order
of rows and columns of the correlation matrix accordingly, introduces the same sign for
the Pfaffian.
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Lemma 12. This result is stable under linear transformations, meaning that for any
T ∈ C2r×2M with

ck =
2M∑
j=1

Tk,jmj (A.10)

we obtain for a Gaussian state ρ

tr(c1 . . . c2rρ) = Pf(γ(c)[1, . . . , 2r]). (A.11)

Wick’s theorem therefore applies to any set of Majorana and fermionic creation and
annihilation operators.

Proof. The proof follows directly from inserting the definition of the c’s in the expectation
value, applying Wick’s theorem there and reorganizing the terms appropriately.

A.2. Definitions of Gaussian States

As highlighted in Sec. 2.4, fermionic Gaussian states have different equivalent definitions
which highlight individual important aspects.

In the previous section we have seen that any state which can be brought into the
form

ρ =

M∏
j=1

(
1

2
1 +

i

2
ξjm2j−1m2j

)
, (A.12)

using mode transformations only fulfills Wick’s theorem. On the other hand let ρ be a
state fulfilling Wick’s theorem then ρ is obviously fully characterized by its covariance
matrix. A state of the form (A.12) however can represent any covariance matrix possible.
In addition it fulfills, as we have seen, Wick’s theorem such that we can find for any
state ρ fulfilling Wick’s theorem a state ρ′ of the form in Eq. (A.12) with the same
expectation values. As the the collection of all expectation values uniquely defines a
state, this proves the equivalence of defining a state to be Gaussian if it is of the form
(A.12) or fulfills Wick’s theorem.

As we do not use the Grassmann calculus in this thesis we only mention that Gaussian
states as defined in Eq. (A.12) have a Gaussian Grassmann representation and vice versa
(see for instance [25] for details).

Furthermore, Gaussian states maximize the von Neumann entropy if the second mo-
ments are kept fixed. Given a ρ and its Gaussified version ρG, meaning that ρG is
Gaussian and γ(ρ) = γ(ρG). Written in the correct basis, ρG is of the form (A.12).

Denoting by f †j and fj the fermionic creation and annihilation operators associated to
the natural modes mk of ρG we find that Eq. (A.12) takes the form

ρG =

M∏
j=1

(
1− ξj

2
(1− nj) +

1 + ξj
2

nj

)
, (A.13)
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with nj = f †jfj . Hence, ρG is diagonal in this basis and the product of commuting
operators. Based in this observation we conclude

tr
[
ρ ln(ρG)

]
=

M∑
j=1

tr

[
ρ ln

(
1− ξj

2
(1− nj) +

1 + ξj
2

nj

)]
(A.14)

=
M∑
j=1

[
ln

(
1− ξj

2

)
tr[ρ(1− nj)] + ln

(
1 + ξj

2

)
tr[ρ(nj)]

]
(A.15)

=
M∑
j=1

[
1− ξj

2
ln

(
1− ξj

2

)
+

1 + ξj
2

ln

(
1 + ξj

2

)]
= tr

[
ρG ln(ρG)

]
, (A.16)

where from the first to the second line we exploited the fact that 1 − nj and nj are
projectors on disjoint subspaces as well as that the expression stays valid in the limit
ξj = ±1 as ρ has the same second moments as ρG and we use the convention 0 ln 0 = 0.
The positivity of the relative entropy implies now

0 ≤ − tr
[
ρ ln(ρG)

]
+ tr

[
ρ ln(ρ)

]
= − tr

[
ρG ln(ρG)

]
+ tr

[
ρ ln(ρ)

]
= SvN(ρG)− SvN(ρ).

(A.17)
As this inequality applies to any state ρ with the given covariance matrix, ρG does indeed
maximize SvN. As the relative entropy of ρ and ρG is zero if and only if ρ = ρG [16,
Thm. 11.7] we also find that this maximum is unique.
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B. Details on the Implementation and
Costs of the Two-Site DMRG with and
without Mode Transformations

In this appendix we present details on the implementation of a standard two-site DMRG.
In particular we explain how the matrices H(m,2) of a micro step are decomposed which
is an essential step for the application of DMRG to realistic systems. Furthermore, we
elaborate on the computational cost of DMRG and show that the mode transformations
can be indeed incorporated for free in an existing two-site DMRG algorithm.

B.1. Presummed Operators and Costs of the Two Site DMRG

Assume we have a fermionic system of V sites with M modes. Let us focus on how
to decompose H(m,2) as explained in Fig. 3.8 obtained from the generic Hamiltonian of
interacting fermions with M modes

H =
M∑
i,j=1

ti,jf
†
ifj +

M∑
i,j,k,l=1

vi,j,k,lf
†
if
†
jfkfl (B.1)

for a two-site DMRG. Fix a site m ∈ [V − 1] and define the sets SL = [m − 1],
SC = {m,m+1} and SR = [m+1]c and assume we have an initial MPS with components
(A[j])j∈[V ]. Let us denote by TL and TR the modes associated to the sites SL and SR

respectively. The Jordan-Wigner transformed expression of each term f †if
†
jfkfl can be

written as an MPO with bond dimension 1. We further define for an MPO of bond
dimension 1 with components (O[j])j∈[V ] and I = L,R,C the truncation maps

Γ(I)((O[j])j∈[V ]) =
⊗
j∈SI

∑
ij ,kj

O
[j]
ij ,kj
|ij〉〈kj | (B.2)

which truncate the MPO down to the region SL, SC or SR by discarding the remaining
part where |ij〉 for j ∈ [dj ] denotes an orthonormal basis of H[j]. We further define for
I = L,R the partial contraction of truncated operators with the current MPS

O(I)( · ) =
(
〈(A[j])j∈SI |α1 Γ(I)( · ) |(A[j])j∈SI 〉α2

)
α1,α2

(B.3)

which is either an rm−1 × rm−1 or an rm+1 × rm+1 matrix, for I = L,R respectively.
Note that O(I)( · )† = O(I)( ·† ). Last, we define for I = L,R and k, l ∈ TI c the partially
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contracted operators which are presummed according to the weights of the Hamiltonian

P (I,0) =
∑
j,k∈TI

1

2
tj,k O

(I)(f †jfk) +
∑

i,j,k,l∈TI

1

2
vi,j,k,lO

(I)(f †if
†
jfkfl), (B.4)

P
(I,1)
l =

∑
j∈TI

tj,lO
(I)(f †jfl), (B.5)

P
(I,1′)
l =

∑
i,j,k∈TI

(vi,j,k,l − vi,j,l,k)O(I)(f †if
†
jfkfl), (B.6)

P
(I,2)
k,l =

∑
i,j∈TI

vi,j,k,lO
(I)(f †if

†
jfkfl), (B.7)

P
(I,2′)
k,l =

∑
i,j∈TI

(vi,k,j,l − vk,i,j,l − vi,k,l,j + vk,i,l,j)O
(I)(f †if

†
kfjfl). (B.8)

Roughly speaking, P (I,0) contains all terms of H that are supported on the side I = L,R
only. P (I,1) and P (I,1′) as well as P (I,2) and P (I,2′) combine all terms that act the same

on the side opposed to I, i.e. P
(L,1)
j contains all terms that act in the center and on the

right side of the system with fj only etc. For simplicity of the notation let us assume
that the modes are ordered such that {1, 2} ⊂ TR

c and {M − 1,M} ⊂ TL
c. We obtain

then the decomposition

H(k,2) → (P (L,0),1,1) + (1,1, P (R,0)) +
∑
k∈TLc

(P
(L,1)
k ,Γ(C)(f †1fk), O

(R)(f †1fk))

+
∑
k∈TLc

(P
(L,1′)
k ,Γ(C)(f †1f

†
2fkf1), O(R)(f †1f

†
2fkf1))

+
∑
k∈TRc

(O(L)(f †Mf
†
M−1fkfM ),Γ(C)(f †Mf

†
M−1fkfM ), P

(R,1′)
k )

+
∑

k,l∈TLc
(P

(L,2)
k,l ,Γ(C)(f †1f

†
2fkfl), O

(R)(f †1f
†
2fkfl))

+
∑
k∈TLc

(P
(L,2′)
k,l ,Γ(C)(f †1f

†
kf1fl), O

(R)(f †1f
†
kf1fl)) + h.c. (B.9)

where we denoted terms in the decomposition by triples (H
(k,2)
L , H

(k,2)
C , H

(k,2)
R ) as ex-

plained in Fig. 3.8 and the +h.c. denotes here that we add the triples of the conjugated

terms, i.e., (H
(k,2)
L

†, H
(k,2)
C

†, H
(k,2)
R

†). Note that in the above expression, the operators
f1, f2, fM and fM−1 are needed in order to guarantee the truncated operators to involve
the correct signs and Z operators from the Jordan-Wigner transformation – we could
have used any other fermionic annihilation operators supported on the corresponding
part of the system instead.

For a fixed site m we then need the operators P (I,0), P
(I,1)
l , P

(I,1′)
l , P

(I,2)
k,l , P

(I,2′)
k,l for

I ∈ {L,R} and k, l ∈ TI c as well as O(R)(f †1fk)), O
(R)(f †jfk)), O

(R)(fjfk)) for j, k ∈ TR
and O(L)(f †Mfk)), O

(L)(f †jfk)), O
(L)(fjfk)) for j, k ∈ TL. Note that from O(R)(f †jfk))
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we can reconstruct terms like O(R)(f †1f
†
jf1fk)). During a DMRG we store all described

operators for all sites m fixed in the beginning on the disk which requires as disk storage
of O(M3r2). After updating the MPS based on Xopt, we load half of the operators
needed into the RAM and compute the remaining ones from the current presummed
operators in a time scaling as O(M2(dr3 +d2r2)+M3r2) with r = max({rj |j ∈ [V −1]})
and d = max({d|j ∈ [V ]}).1 Note that if additional symmetries are present in the
couplings t and v, the number of presummed operators needed can be reduced – for
instance in many application t will not mix different types of particles etc.

B.2. Mode Transformation of Presummed Operators and Costs

In Alg. 3 we augment the micro iteration steps of a two-site DMRG with local mode

transformation. For an update of the sites m and m+1 we find a transformation U
(m,2)
opt ∈

U(2p) which gives rise to a global transformation V (m) = 1pm ⊕ U (m,2)
opt ⊕ 1M−(m+2)p.

In addition to the rotation of the state by V (m) we also transform all operators needed
such that expectation values are conserved

〈Xopt|
(A[j])j
m,2 H|Xopt〉

(A[j])j
m,2 = 〈Xopt(U)|(A

[j])j
m,2 G(V (m))HG(V (m)†)|Xopt(U)〉(A

[j])j
m,2 , (B.10)

as |Xopt(U)〉(A
[j])j

m,2 = G(V (m))|Xopt〉
(A[j])j
m,2 , which allows for a consistent minimization

of the energy over several steps. The transformation of H is achieved by rotating the
coefficient tensors as in Eq. (2.37) which can be done in a time scaling as O(M3) due to
the locality of the transformation. However, the presummed operators from the precious
section, are now constructed with respect to the wrong couplings t and v and need to
be transformed as well. This can be done as during the construction of the presummed

operators we never summed over a site that is affected by U
(m,2)
opt . We can therefore in

principle update all presummed operators using

P
(I,1)
l (U

(m,2)
opt ) =

∑
j=TC

P
(I,1)
j U

(m,2)
opt j,l (B.11)

P
(I,1′)
l (U

(m,2)
opt ) =

∑
j=TC

P
(I,1′)
j U

(m,2)
opt j,l (B.12)

P
(I,2)
k,l (U

(m,2)
opt ) =

∑
i,j=TC

P
(I,2)
i,j U

(m,2)
opt i,kU

(m,2)
opt j,l (B.13)

P
(I,2′)
k,l (U

(m,2)
opt ) =

∑
i,j=TC

(U
(m,2)
opt

†)k,iP
(I,2′)
i,j U

(m,2)
opt j,l. (B.14)

However, in order to avoid to load all operators from the disk in each step, we only
update the I = L/R ones for a right/left sweep and update all loaded operators with

1Say we sweep to the right and updated the sites k and k + 1. We can compute for instance
O(L)(f†Mf

†
kfjfM ) from the previous O(L)(f†Mfj) in a time scaling as O(dr3 + d2r2). We further

obtain P (L,1′) from the previous P (L,2) and P (L,2′) etc. The M3 scaling is due to the update of

P
(I,2)
k,l and P

(I,2′)
k,l as for instance O(M) many O(I)(fifj) are added to O(M2) many P

(I,2)
k,l
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an accumulated mode transformation on TI ∪ TC . This accumulated transformation is
composed of all local transformations performed since the last time the corresponding
loaded operator was needed. The update is then obtained by repeatedly applying the
relations above for maximally O(M) many local rotations such that the transformation
of the presummed operators can be calculated in a time scaling as O(M3r2), i.e. without
increasing the computational costs of the DMRG.
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C. Comment on the Developed Code
Structure for Tensor Network States

Let us in this appendix shortly comment on the code structure developed for simulating
non-local quantum systems using the DMRG algorithm in the course of the research
documented in this thesis. Due to its immense length (over 8000 lines of code in its
current implementation) we will not append the code here and it is instead available on
request. We here only highlight the different functionalities and outline the structure
implemented. The code was designed and developed by the author of this thesis and
implemented in python 2.7 and relies on numpy and scipy [172] routines for linear algebra.

First let us note that the developed code is for all applications less efficient than other
state of the art implementations. The aim of the developed code is not superiority over
existing implementations which are under development for more than a decade but to
allow for maximal flexibility and adaptability to new ideas while being able to simulation
relevant realistic systems.

The code allows to approximated ground and excited states by MPS using a k-site
DMRG for arbitrary k by implementing the scheme discussed in Sec. 3.2 (the design of
the algorithm k > 2 is obvious from the two-site case). The tractable Hamiltonians are
of the form

H =
∑
q

V∑
i,j,k,l=1

v
(q)
i,j,k,lO

(1,q)
i O

(2,q)
j O

(3,q)
k O

(4,q)
l (C.1)

with either O
(p,q)
j = 1⊗(j−1) ⊗ O(p,q) ⊗ 1V−j or O

(p,q)
j = Z⊗(j−1) ⊗ O(p,q) ⊗ 1V−j for

some local operator O(p,q) and to all operators at fixed q common operator Z. This
includes most prominently spin systems with general local dimension d, by the Jordan-
Wigner transformation discussed in Sec. 2.2.1 spinless and spinfull interacting fermions
as well as interacting bosonic systems with truncated local occupation numbers. The
computational cost reduce if any O(p,q) = 1. The Fermi-Hubbard model in Eq. (2.61)
can therefore in real space be described by second order polynomials only by choosing

O
(1,1)
j = f †j , O

(2,1)
k = fk and O

(1,2)
j = nj , O

(2,2)
k = nk. The coefficients tensors v(q) are

not restricted and we are therefore not constrained to any locality or spatial dimension.
However, we of course have to keep in mind that we impose an MPS approximation
which has the in Sec. 3.1.2 discussed limits to its representable correlation patterns. A
potential one-dimensional spatial locality in the coefficients and relation of the operators
such as O(1,q) = O(2,q) or O(1,q) = O(2,q)† is exploited if present in order to reduce the
computational resources needed. In addition we allow for all tractable Hamiltonians to
simulate the generated time evolution of the time dependent Schrödinger equation by
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implementing the two-site DMRG based scheme described in [68].
We allow for the incorporation of abelian symmetry by implementing symmetric MPS

along the lines of Sec. 3.1.4 and are therefore able to perform calculation with a fixed
particle number in fermionic systems or fixed magnetization in spin systems. We can
then target the few lowest eigenstates of a Hamiltonian respecting this symmetry in any
given symmetry sector.

Furthermore, the code contains the various algorithms and schemes presented in
Sec. 3.3 for adapting the single-particle basis of fermionic systems while performing
a DMRG calculation or time evolution. The resulting advantages are discussed and
shown in Fig. 3.15, 3.16, 3.17 and 3.18.

Not all routines needed are provided by standard python implementations. We there-
fore extend the structure available from python 2.7 by implementing our own sparse ten-
sor format for representing symmetric MPS components including the necessary linear
algebra routines. In addition, we use our own implementation for an efficient Davidson
eigensolver (adapting the version of [173, 174]) for computing the lowest lying eigenvalues
and eigenvectors of a sparse matrix and include the optimization algorithms over Grass-
mannian manifolds discussed in App. D. Furthermore, we allow for a basic parallelization
during the most time consuming parts of the micro step of the DMRG.
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D. Optimizing with Unitary Constraints

In this appendix we review a few basics about the optimization under unitary constraints
with special focus on Grassmannians. We first introduce the typical manifolds encoun-
tered and then review and reference possible optimization techniques with a strong focus
on the ones we need for the combination of mode transformation and tensor network
states.

D.1. Sets with Unitary Constraints

Unitary constraints in optimization problems can occur to different degrees. One promi-
nent case is of course the optimization over the full unitary manifold

U(n) = {U ∈ Cn×n|U †U = 1n}. (D.1)

U(n) is the collection of all orthonormal bases of Cn and has a real dimension of n2

due to the constraints induced by the unitarity. Note that, in view of the local mode
transformations used in Sec. 3.3, ever unitary U ∈ U(n) can be decomposed into O(n2)
many unitaries of the form 1k⊕Ulocal⊕1n−k−2 with Ulocal ∈ U(2), where k starts at 0 and
is increased or decreased by 1 just like during a DMRG sweep with mode transformation.
The existence of such a decomposition follows from [175, p. 9ff] with additional swap
gates in order to obtain the desired structure.

A second set we frequently encounter is the collection of isometries on CN , which form
the Stiefel manifold

St(p, n) = {V ∈ Cn×p|V †V = 1p}. (D.2)

The Stiefel manifold St(p, n) contains all possible bases of all p-dimensional subspaces
of Cn and has a real dimension of 2np − p2. We can represent St(p, n) as the quotient
St(p, n) = U(n)/U(n − p) which becomes clear by realizing that here U(n − p) sim-
ply represents the freedom to choose any basis in the (n − p)-dimensional orthogonal
complement to the linear space spanned by the columns of V ∈ St(p, n). Finding a few
eigenstates of a Hermitian matrix can for instance be viewed as an optimization problem
over a Stiefel manifold.

The third construction we want to discuss here are Grassmannians

Gr(p, n) = U(n)/U(p)× U(n− p). (D.3)

The Grassmannian Gr(p, n) collects all p-dimensional subspaces of Cn, i.e., it consists
of equivalence classes [V ] for V ∈ St(p, n) with V1 ∼ V2 if the columns of V1 ∈ St(p, n)
span the same subspace of Cn as the columns of V2 ∈ St(p, n) and Gr(p, n) has a real
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dimension of 2(n − p)p. Apart from our encounter of the Grassmannian in Sec. 3.3,
they appear for instance in Hartree-Fock calculations as there internal basis changes
in the occupied and in the unoccupied orbitals lead to no change in the energy. Put
differently, the set of all Slater determinants with a particle number N in M modes,
i.e. the corresponding set of pure Gaussian states, is isomorphic to the Grassmannian
Gr(N,M).

D.2. Optimization over Grassmannians

We will not describe all algorithms in full detail but rather point to the corresponding
references from which they can be easily obtained and only describe the main concepts
used.

The numerical solution of optimization problems gets easier the more information
about the problem we can provide to the solver, e.g. an optimization set containing
no or few redundant parameters, information about the cost function such as gradients
or higher derivatives etc. For the problem in Eq. (3.32) for instance we can easily
calculate the gradient analytically such that a gradient based optimzation scheme over
the unitaries is most favorable, whereas the problem Eq. (3.33) typically does not allow
for an analytic computation of the gradient, hence gradient-free methods are needed.
The problem in Eq. (3.32) can therefore be solved using a conjugate gradient algorithm
over U(n) described in [111].

For optimizing over Grassmannians we choose different strategies although formula-
tions of for instance the steepest descent method are available [176, 177]. For the special
case Gr(1, 2) we are able to find a global parametrization in terms two real parameters.
Such a parameterization can be derived from the Euler angle decomposition of a general
2× 2 unitary which states that ∀U ∈ U(2) we find θ1, θ2, θ3, θ4 ∈ [0, 2π] with

U = exp(iθ1Z) exp(iθ2Y ) exp(iθ3Z) exp(iθ412). (D.4)

It is then clear that two unitaries with the same θ1 and θ2 are equivalent in the sense
of the equivalence relation of U(2)/U(1)× U(1). Instead of optimizing over Gr(1, 2) we
therefore choose to optimize over {exp(iθ1Z) exp(iθ2Y )|θ1, θ2 ∈ [0, 2π]} which can be
done easily using for instance the Nelder-Mead method for which numpy [172] provides
a ready to use implementation.

In higher dimensional settings, Euler angle decompositions yield only an over-para-
metrization of the Grassmannian and the direct optimization becomes quickly inefficient
and unstable such that we prefer to use a more elaborate scheme. As the gradient of our
cost function can not be calculated analytically we found in our applications the scheme
presented in [178] to be more flexible and efficient than a steepest descent method. Here
one uses the fact [179] that any element of Gr(p, n) can be represented by an element of

M = {
(
X 1p

)
Oπ|π ∈ Sn, X ∈ Cp×(n−p), |Xj,k| ≤ 1∀j, k}, (D.5)

where Oπ ∈ O(n) denotes the orthogonal matrix implementing the permutation on Cn.
One can therefore optimize X for a fixed permutation π ∈ Sn using a gradient-free
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optimization method. If the optimum is found near the boundary of the allowed set, a
permutation is chosen which allows to optimize in a next step over the corresponding
“next” sector of Gr(p, n) [180]. We find this scheme to be able to reliably identify local
minima in the considered settings.
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E. Proof of the Extension of Huddson’s
Central Limit Theorem

In this appendix we want to prove the extension to Hudson’s central limit theorem used
in Sec. 4.3.2. Let us repeat the theorem out of convenience:

Lemma. Assume a fermionic system with V sites, p modes per site and a state ρ ∈
D(Fp) on a single site. The product state ρ⊗V ∈ D(FV p) is then approximately described
by a product

⊗
q ρq, with ρq being Gaussian states to be specified, in the following sense.

Denote by f †j,σ and fj,σ with j ∈ [V ] and σ ∈ [p] the creation and annihilation operators

of the systems and introduce the shorthand notation f cj,σ with c = ±1 and f−1
j,σ = f †j,σ

and f1
j,σ = fj,σ. We then introduce the Fourier modes of the lattice

acq,σ =
1√
V

V∑
j=1

e
2πi
V
jqcf cj,σ (E.1)

for q = −b(V − 1)/2c, . . . , bV/2c. Furthermore, we denote by f cσ for α ∈ [p] and c = ±1
the creation and annihilation operators of a fermionic system with p modes.

We then find for r ∈ [V p], and triples (q1, c1, σ1) < · · · < (q2r, c2r, σ2r) with σl ∈ [p],
cl = ±1 and ql as above that the cumulants of the Fourier modes with respect to the state
ρ⊗V are suppressed as

Kρ⊗V

2r (ac1q1,σ1
, . . . , ac2rq2r,σ2r

) = V 1−rKρ
2r(f

c1
σ1
, . . . , f c2rσ2r

)δ∑2r
l=1 clql modV,0 (E.2)

Put differently, in the Fourier modes ρ⊗V has up to an error decreasing in V the same

moments as ρ0 ⊗ ρV/2 ⊗
⊗b(V−1)/2c

q=1 ρq,−q with ρ0 = ρV/2 and ρq,−q = ρq′,−q′ being
Gaussian states and defined by the second moments of ρ where ρV/2 is only present if V
is even.

Proof. In order to prove the extension of Hudson’s central limit theorem we closely follow
the original proof [139] and use an inductive argument in r. For r = 1 we explicitly
calculate

Kρ⊗V

2 (ac1q1,σ1
, ac2q2,σ2

) =
1

V

V∑
j1,j2=1

e
2πi
V

(c1q1j1+c2q2j2) tr(f c1j1,σ1
f c2j2,σ2

ρ⊗V ) (E.3)

Using that ρ⊗V is even on every site yields that terms with j1 6= j2 vanish. In addition the
resulting expectation values are independent of j1, i.e. tr(f c1j,σ1

f c2j,σ2
ρ⊗V ) = tr(f c1σ1

f c2σ2
ρ).
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Evaluating then the remaining sum over sites yields as claimed

Kρ⊗V

2 (ac1q1,σ1
, ac2q2,σ2

) = δ(c1q1+c2q2) modV,0 tr(f c1σ1
f c2σ2

ρ). (E.4)

For 1 < r ≤ V p we use the definition of the cumulants

∑
P∈Pe([2r])

sign(P)
∏
p∈P

Kρ⊗V

|p| ((aclql,σl)l∈p) =
1

V r
tr

 2r∏
l=1

 V∑
j=1

e
2πi
V
clqljf clj,σl

 ρ⊗V

 . (E.5)

We expand the product over the independent sums on the right-hand side of the equation
by using the partitions of the set [2r] in order to account for all different distributions
of the indices on different sites. Each partition selects then which indices are collect
together on individual site. Furthermore we sum over all site configurations by summing
over all increasing sequences of sites and permutations which shuffle the occupied sites.
This yields∑

P∈Pe([2r])

sign(P)
∏
p∈P

Kρ⊗V

|p| ((aclql,σl)l∈p)

=
1

V r

∑
P∈Pe([2r])

sign(P)
∑

j1<···<j|P |

∑
π∈S|P |

|P |∏
w=1

tr

ρ⊗V ∏
l∈pw

e
2πi
V
clqljπ(w)f cljπ(w),σl

 (E.6)

Inserting now the definition of the cumulants on the right-hand side leads to∑
P∈Pe([2r])

sign(P)
∏
p∈P

Kρ⊗V

|p| ((aclql,σl)l∈p)

=
1

V r

∑
P∈Pe([2r])

sign(P)
∑

j1<···<j|P |

∑
π∈S|P |

|P |∏
w=1

∑
Q∈Pe(pw)

sign(Q)
∏
q∈Q

Kρ
|q|(f

cl
σl

)l∈q)e

2πi
V

(
∑
l∈q

clql)jπ(w)

(E.7)

It is now key to realize that we can write the last expression above as∑
P∈Pe([2r])

sign(P)
∏
p∈P

Kρ⊗V

|p| ((aclql,σl)l∈p) =
1

V r

∑
P∈P([2r])

sign(P)
∏
p∈P

Kρ
|p|((f

cl
σl

)l∈p)

V∑
j=1

e

2πi
V
j
∑
l∈p

clql

(E.8)
which can be shown by noting that the combination of the sum over partitions P , sites
j1, . . . , j|P | in combination with the permutations and partitions Q in Eq. (E.7) generates
uniquely every configuration given by a partition P in Eq. (E.8) with the parts being
distributed independently over the sites. In addition, the product of sign(P)

∏
sign(Q)

in Eq. (E.7) gives rise to the sign sign(P) in Eq. (E.8). We can then evaluate the sum
over the sites, insert the induction assumption for all P with |P | > 1 and cancel the
common terms on the left and right-hand side of the equation in order to obtain

Kρ⊗V

2r ((aclql,σl)l∈[2r]) =
1

V r−1
Kρ

2r((f
cl
σl

)l∈[2r])δ∑2r
l=1 clql modV,0. (E.9)
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F. Proof of Gaussification

In this appendix we present the complete and rigorous proof for the relaxation of free
systems in the form of Gaussification as stated in Thm. 10. We repeat the theorem out
of convenience here.

Theorem 13. Consider a fermionic system defined on an n-dimensional regular lattice
of V sites where each site is equipped with p fermionic modes. Assume that the dynamics
of the system is given by a non-interacting local Hamiltonian giving rise to delocalizing
transport with decay constant dtrans > n/4. Given a region S ⊂ [V ] of the lattice we then
find that for any fermionic state ρ with exponentially decaying correlations and for all
0 < ε < 4dtrans − n we can define a constant C independent of the system size V such
that

‖trSc ρ(t)− trSc ρG(t)‖1 ≤ Ct
−(4dtrans−n−ε) (F.1)

for all t ∈]0, trec] where ρG(t) denotes the time dependent Gaussian state with the same
second moments as ρ(t) and trec →∞ for V →∞.

Proof. The proof of the theorem is performed essentially in four steps. First we reformu-
late the problem using the known results on the dynamics under quadratic Hamiltonians.
Then we use Lieb-Robinson bounds in order to truncate the evolution of the system to
a small region of interest. Using the exponential decay in the correlations of ρ we
then find that the evolution is dominated by a mixture of independent contributions.
Subsequently, the delocalizing transport allows us to obtain the final bound within a
combinatorial argument.

F.1. Reformulation of the Problem

Let ma,σ = mj denote the Majorana operators of the system with j = (a, σ), a ∈ [V ]
and σ ∈ [2p] labeling the sites and modes per sites respectively. We define as before
for j = (a, σ) and k = (b, σ′) that d(j, k) = d(a, b). For the region S we can write the
one-norm difference of ρ(t) and ρG(t) using expectation values of operators supported
on S. Switching into the Heisenberg picture yields then

‖trSc ρ(t)− trSc ρG(t)‖1 = sup
A:‖A‖=1,A†=A

suppA⊂S

| tr(A(t)[ρ− ρG])|, (F.2)

where ρ = ρ(0). Every observable A with suppA ⊂ S can be expanded in the Majorana
operator basis such that we obtain for the time evolved operator

A(t) =
∑

J⊂S×[2p]

aJ
∏
j∈J

mj(t). (F.3)
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The coefficients are bounded by |aJ | ≤ 1 as ‖A‖ = 1.1 As the Hamiltonian is quadratic,
its time evolution is given, as explained in Sec. 2.4, by a mode transformations such that

mj(t) =
∑

k∈[V ]×[2p]

Oj,k(t)mk, (F.4)

with O(t) = e−ht and h being the couplings of the Hamiltonian. We can then trivially
bound

‖ trSc ρ(t)− trSc ρG(t)‖1 ≤ 22p|S|max
J⊂S×[2p]

∣∣∣∣∣∣
∑

k1,...,k|J|∈[V ]×[2p]

tr

 |J |∏
l=1

Ojl,kl(t)mkl [ρ− ρG]

∣∣∣∣∣∣ ,
(F.5)

where {j1, . . . , j|J |} = J is assumed to be ordered. Set trec to be the minimum of the
recurrence times provided by the delocalizing transport in Def. 4, the Lieb-Robinson
bound in Thm. 9 and the exponential suppression of correlations in Def. 3. Fix from
now on a time t ≤ trec and a set J ⊂ S × [2p], where we assume w.l.o.g. |J | to be even
and we write J = {j1, . . . , j|J |} with (jl)l ordered.

F.2. Restriction to the Lieb-Robinson Cone

For the given lattice we define for any mode j ∈ [V ] × [2p] the ball of radius ∆ around
j as

B∆(j) = {k ∈ [V ]× [2p] | d(l, k) ≤ ∆}. (F.6)

Furthermore, we define by
|B∆| = max

j∈[V ]×[2p]
|B∆(j)| (F.7)

the size of a ball of radius ∆, which scales for an n-dimensional lattice as ∆n. For the
set J ⊂ [V ]× [2p] we define the Lieb-Robinson cone at time t to be

Ct =
⋃
j∈J

B2vlrt(j). (F.8)

Due to the Lieb-Robinson bound in Thm. 9 we can then restrict the sum over modes in
Eq. (F.5) to the cone by the following argument. The sum over the first in index splits
into components from the cone and the ones outside the cone such that∣∣∣∣∣∣

∑
k1,...,k|J|∈[V ]×[2p]

tr

 |J |∏
l=1

Ojl,kl(t)mkl [ρ− ρG]

∣∣∣∣∣∣ ≤
∑

k1∈Ctc
|Oj1,k1(t)|

∣∣∣tr(mk1mj2(t) . . .mj|J|(t)

× [ρ− ρG]
)∣∣∣+

∣∣∣∣∣∣
∑
k1∈Ct

∑
k2,...,k|J|∈[V ]×[2p]

tr

 |J |∏
l=1

Ojl,kl(t)mkl [ρ− ρG]

∣∣∣∣∣∣ . (F.9)

1That ‖A‖ = 1 indeed implies |aJ | ≤ 1 can be seen from the fact that |aJ | tr1 = | tr(
∏
j,σ∈J mj,σA)| ≤

‖
∏

(j,σ)∈J mj,σ‖1‖A‖ = tr1.
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The expectation value in the first term can be upper bounded by 2. Using the suppression
from the Lieb-Robinson bound we obtain then∑

k1∈Ctc
|Oj1,k1(t)| ≤

∞∑
l=0

|B2vlrt+l+1(j1)\B2vlrt+l(j1)|e−
|vlrt−2vlrt−l|

ξlr . (F.10)

Inserting that |B2vlrt+l+1(j1)\B2vlrt+l(j1)|, the volume of the rings of width 1, can always
be upper bounded as voln × (2vlrt+ l + 1)n−1, where

voln = max
j∈[V ]×[2p]

max
l∈N
|Bl+1(j)\Bl(j)|/ln−1 (F.11)

depends only on the lattice structure, yields then that we can define the constant

constlr = sup
t∈R+

∞∑
l=0

voln (2vlrt+ l + 1)n−1e−l/ξlre−vlrt/2ξlr . (F.12)

Note that it is clear that this constant is independent of the system size and time as well
as finite due to the exponential suppression and depends only on voln, vlr and ξlr. We
can iterate this argument for all other k in Eq. (F.9) such that we obtain∣∣∣∣∣∣

∑
k1,...,k|J|∈[V ]×[2p]

tr

 |J |∏
l=1

Ojl,kl(t)mkl [ρ− ρG]

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

∑
k1,...,k|J|∈Ct

tr

 |J |∏
l=1

Ojl,kl(t)mkl [ρ− ρG]

∣∣∣∣∣∣
+ 2|J |constlre

−vlrt/2ξlr (F.13)

proving that we can restrict our attention to the cone Ct up to an error that is expo-
nentially suppressed in t.

F.3. Factorization by the Exponentially Suppressed Correlations

In the next step we split the expectation value in Eq. (F.13) into a product of inde-
pendent parts, again up to an error that is exponentially suppressed in time using the
exponentially decaying correlations of the state ρ. First we show that if ρ has exponen-
tially decaying correlations in the sense of Def. 3 then the correlations of the Gaussified
state ρG will decay as well.

Lemma 14. Let ρ be a fermionic state exhibiting exponentially decaying correlations with
constants cclust and ξclust then we obtain for the Gaussified state ρG for all observables
A and B with ‖A‖ = ‖B‖ = 1

| tr(ABρG)− tr(AρG) tr(BρG)| ≤ c(G)
cluste

− d(A,B)
ξclust , (F.14)

with c
(G)
clust = cclust[4p(| supp (A)|+ | supp (B)|)]2p| supp (A)|+| supp (B)|
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Proof. The result is rather intuitive as the correlations of the Gaussified state ρG are
related to the ones of ρ by Wick’s theorem. Using for K ⊂ [V ]× [2p] the notation mK =∏
k∈K mk we can expand the normalized observables into A =

∑
K⊂supp (A)×[2p] aKmK

and B =
∑

K⊂supp (B)×[2p] bKmK with |bK | ≤ 1 and |aK | ≤ 1 again. Using Wick’s
theorem we obtain

| tr(ρGAB)− tr(ρGA) tr(ρGB)| ≤
∑
K,L

|Pf(γ(m)[K,L])− Pf(γ(m)[K]⊕ γ(m)[L])| (F.15)

where γ(m)[J,K] are the correlation matrices of the second moments. Note that every
term of the second Pfaffian also appears in the first one and that all terms that solely
appear in the first Pfaffian contain at least one expectation value of the form tr(ρmkml)
for some k ∈ K and l ∈ L. Those terms are exponentially suppressed in the distance of
the support of A and B such that we obtain

| tr(ρGAB)−tr(ρGA) tr(ρGB)| ≤
∑
K,L

(2p[| supp (A)|+| supp (B)|])!!ccluste
− d(A,B)

ξclust . (F.16)

Inserting upper bounds for the factorial and number of different K and L yields the
above result.

In order to exploit the correlation structure of the states ρ and ρG we need to bookkeep
the position and distances of the indices k inside the cone in more detail. We therefore
define the notation of indices being arranged in clusters where different clusters have a
minimal distance towards each other and indices inside a cluster should have a maximal
distance. Formally we define the following. We introduce for a set p ⊂ N the function
ip : p → [|p|] where for l ∈ p ip(l) = |{k ∈ p : k ≤ l}| tells us that l is the ip(l)-th
element of p for p ordered increasingly. For r ∈ N let K ⊂ [V ] × [2p] with |K| = r,
(kl)l∈[r] ∈ ([V ] × [2p])×r and ∆ ∈ R+. We then define the ∆-partition of (kl)l∈[r] to be

the partition PK∆ ((kl)l∈[r]) ∈ P(K) which fulfills

1) The elements of each part p of the partitions label indices kip(l) which are connected
by a chain of indices corresponding to the same parts that have a maximal distance
∆ from one element to the next, i.e.

∀p ∈ P∆((kl)l∈[r]) : ∀a, b ∈ p ∃c1 = a, c2 . . . , cz−1, cz = b ∈ p : d(kiK(cl)
, kiK(cl+1)) ≤ ∆.

(F.17)

2) The indices that are labeled by elements of different parts of the partition are at
least a distance ∆ apart, i.e.

∀p, q ∈ P∆((kl)l∈[r]), p 6= q : ∀a ∈ p, b ∈ q : d(kiK(a), kiK(b)) > ∆. (F.18)

For P ∈ P(K) and I ⊂ [V ]× [2p] let us denote by KIP the set of indices that lie in I and
are ∆ partitioned according to the partition P , i.e.

KIP = {(kl)l∈[r] ∈ I×r|PK∆ ((kl)l∈[r]) = P}. (F.19)
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We suppress any reference to the set K in the notation of KIP as K can be inferred
from the partition P . Fix a ∆ ∈ R+ for the moment. For any part p ⊂ [|J |] of a
partition P ∈ P([|J |]) and a sequence (kl)l∈[|J |] ∈ [V ] × [2p]×|J | we then introduce the
patch operators

p̂
(kl)l∈[|p|]
p =

∏
l∈p

Ojl,ki[|J|](l)
(t)mk

i[|J|](l)
. (F.20)

We can then rewrite the sum over indices k ∈ Ct for ω = ρ, ρG and obtain

∑
k1,...,k|J|∈Ct

tr

ω |J |∏
l=1

Ojl,kl(t)mkl

 =
∑

P∈P([|J |])

∑
(kl)l∈[|J|]∈K

Ct
P

tr

ω∏
p∈P

p̂
(kl)l∈p
p

 . (F.21)

Using that both, ρ and ρG have exponentially decaying correlations we can factor the
expectation values up to an error that is suppressed in ∆ – scaling ∆ in time will then
yield a suppression exponentially in time in the end. For a given partition P ∈ P([|J |])
with |P | > 1, we label the parts as {p1, . . . , p|P |} = P in order to obtain∣∣∣∣∣∣∣

∑
(kl)l∈[|J|]∈K

Ct
P

tr

ρ∏
p∈P

p̂
(kl)l∈p
p


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑

(kl)l∈[|J|]∈K
Ct
P

tr
(
ρ p̂

(kl)l∈p1
p1

)
tr

ρ ∏
p∈P\p1

p̂
(kl)l∈p
p


∣∣∣∣∣∣∣

+ |p1|(|J | − |p1|)ccluste
− ∆
ξclust . (F.22)

Estimating |p1|(|J | − |p1|) < |J |2 and iterating this process |P | < |J | times we obtain∣∣∣∣∣∣∣
∑

(kl)l∈[|J|]∈K
Ct
P

tr

ρ∏
p∈P

p̂
(kl)l∈p
p


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑

(kl)l∈[|J|]∈K
Ct
P

∏
p∈P

tr
(
ρp̂

(kl)l∈p
p

)∣∣∣∣∣∣∣+ |J |3ccluste
− ∆
ξclust .

(F.23)
The same argumentation holds of course for ρG up to changing the prefactor |p1|(|J | −
|p1|) originating from the supports of p̂

(kl)l∈p1
p1 and the rest to (4p|J |)2p|J | in every step.

Using that |P([|J |])| ≤ |J ||J | we conclude that

∑
P∈P([|J |])

∣∣∣∣∣∣∣
∑

(kl)l∈[|J|]∈K
Ct
P

tr

(ρ− ρG)
∏
p∈P

p̂
(kl)l∈p
p


∣∣∣∣∣∣∣ ≤ |J ||J |+1(|J |2 + (4p|J |)2p|J |)ccluste

− ∆
ξclust

+
∑

P∈Pe([|J |])

∣∣∣∣∣∣∣
∑

(kl)l∈[|J|]∈K
Ct
P

∏
p∈P

tr
(
ρ p̂

(kl)l∈p
p

)
−
∏
p∈P

tr
(
ρGp̂

(kl)l∈p
p

)∣∣∣∣∣∣∣ , (F.24)

where we also used that on the right-hand side we can restrict ourselves to partitions
with even parts only due to the eveness of ρ and ρG.
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F.4. Suppression by Delocalizing Transport

The last part of the proof involves the delocalizing transport of the system. In essence
we are going to see below that although the number of configurations of patches on the
lattice grows with the size of the Lieb-Robinson cone in time, if the delocalizing transport
is strong enough the weight contained in the ∆-regions is suppressed sufficiently such
that we obtain an overall algebraic suppression. To be more precise, any patch to which
at least 4 indices are associated, is spread over the lattice giving rise to ≈ tn many terms
which are each suppressed as |Oj,k(t)| ≈ t−4dtrans hence, for strong enough transport, the
combined contribution is suppressed algebraically. Note that according to the remark
after Def. 4 dtrans is upper bounded by n/2 meaning that patches to which two indices
are associated are suppressed by the same argument only if that bound is maximally
saturated. We do not want to make this very strong assumption on the system and will
bound the contributions originating from pairs of indices individually.

For any partitions P ∈ Pe([|J |]) we introduce the notation

P2 = {p ∈ P : |p| = 2} and P>2 = {p ∈ P : |p| > 2}, (F.25)

collecting all parts of P of size 2 and all larger parts. We can then sort the sum over
Pe([|J |]) by the number of pairs and write for ω = ρ, ρG

∑
P∈Pe([|J |])

∣∣∣∣∣∣∣
∑

(kl)l∈[|J|]∈K
Ct
P

∏
p∈P

tr
(
ω p̂

(kl)l∈p
p

)∣∣∣∣∣∣∣ =

|J |/2−2∑
m=0

∑
P∈Pe([|J |]):
|P2|=m

∣∣∣∣∣∣∣
∑

(kl)l∈[|J|]∈K
Ct
P

∏
p∈P

tr
(
ω p̂

(kl)l∈p
p

)∣∣∣∣∣∣∣ . (F.26)

Note that ρ and ρG yield the same result if there are |J |/2 pairs.
We then split the sum over indices k into two parts, one part associated to patches of

size larger than 2 and one part associated to the pairs. When splitting these contributions
into two sums, it is important to note that the allowed configurations of the pairs will
dependent on the configurations of the other patches as around each patch a forbidden
region of size ∆ is formed. In addition, the indices appearing in the pairs are the indices
missing in the other patches. In order to completely decouple the two sums we can take
the maximum over all regions of the cone as forbidden regions as well as the maximum
over all sets of indices constituting the pairs and obtain

|J |/2−2∑
m=0

∑
P∈Pe([|J |]):
|P2|=m

∣∣∣∣∣∣∣
∑

(kl)l∈[|J|]∈K
Ct
P

∏
p∈P

tr
(
ω p̂

(kl)l∈p
p

)∣∣∣∣∣∣∣ ≤
|J |/2−2∑
m=0

∑
P∈Pe([|J |]):
|P2|=m

∑
(kl)l∈[|J|−2m]∈K

Ct
P>2

×(ctranst
−dtrans)|J |−2m

(
max
I⊂Ct

max
K⊂[|J |]:
|K|=2m

max
Q∈P2(K)

∣∣∣∣∣ ∑
(kl)l∈[2m]∈K

Ct\I
Q

∏
q∈Q

tr(ωp̂
(kiq(l))l∈q
q )

∣∣∣∣∣
)

(F.27)

158



where we inserted the bound |Oj,k(t)| ≤ ctranst
−dtrans for all patches in P>2. Defining the

abbreviation

f(m, t) = max
I⊂Ct

max
K⊂[|J |]:
|K|=2m

max
Q∈P2(K)

∣∣∣∣∣∣∣
∑

(kl)l∈[2m]∈K
Ct\I
Q

∏
q∈Q

tr(ωp̂
(kiq(l))l∈q
q )

∣∣∣∣∣∣∣ (F.28)

and using the fact that |{P ∈ Pe([|J |]) : |P2| = m}| ≤ |J ||J | we then obtain the bound

|J |/2−2∑
m=0

∑
P∈Pe([|J |]):
|P2|=m

∣∣∣∣∣∣∣
∑

(kl)l∈[|J|]∈K
Ct
P

∏
p∈P

tr
(
ω p̂

(kl)l∈p
p

)∣∣∣∣∣∣∣ ≤
|J |/2−2∑
m=0

(ctranst
−dtrans |Ct|

1
4 |B|J |∆|)|J |−2m

× |J ||J |f(m, t) (F.29)

and we are left to bound the pair contribution f(m, t) for which we employ a recursive
argument. Note that trivially we set f(0, t) = 1. For m = 1 we need that for any

linear transformation A ∈ CM×M we can bound the norm of m
(A)
j =

∑M
l=1Aj,lml by

‖m(A)
j ‖ ≤ ‖A‖2.2 Rewriting the sum over indices withing a distance ∆ in a sum over

all indices and subtracting the contributions which are at least ∆ apart we can use the
exponential decay of correlation in order to obtain

f(1, t) ≤ max
I⊂Ct

max
K⊂J
|K|=2


∣∣∣∣∣∣
∑

k1,k2∈Ct\I

tr(ρ p̂
(kl)l∈[2]

K )

∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
∑

k1,k2∈Ct\I:
d(k1,k2)>∆

tr(ρ p̂
(kl)l∈[2]

K )

∣∣∣∣∣∣∣∣
 (F.31)

≤ 1 + cclustc
2
trans|Ct|2t−2dtranse

− ∆
ξclust . (F.32)

In order to access terms with higher m note that if the indices k would be distributed
independently (without the constraints imposed by the ∆ partitioning) we can use the
bound for f(1, t) and obtain

max
I⊂Ct

max
K∈[|J |]:
|K|=2m

max
Q∈P2(K)

∏
q∈Q

∣∣∣∣∣∣∣
∑

k1,k2∈K
Ct\I
{q}

tr(ρ p̂
(kl)l∈[2]
q )

∣∣∣∣∣∣∣ ≤ f(1, t)m. (F.33)

We therefore need to bound the difference of the restricted sum and the unrestricted
sum. Terms that are contained in the latter but not in the first however will have to

2One can verify this bound using that∥∥∥∥∥
M∑
l=1

Aj,lml

∥∥∥∥∥ = sup
|ψ〉:

|ψ〉〈ψ|=1

∣∣∣∣∣∣
M∑

k,l=1

Aj,lAj,k 〈ψ|mlmk|ψ〉

∣∣∣∣∣∣ = 〈j|A (tr(|ψ〉〈ψ|mamb))a,b∈[M ]A
†|j〉, (F.30)

where |j〉 denotes the j-th unite vector of CM . Using that the covariance matrix of second moments
has a maximal eigenvalue of 1 we obtain the bound.
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have at least a pair of pairs close to each other. This yields the basic insight needed in
order to set up the recursion as now a pair is effectively merged into a larger patch and
we have less pairs remaining. Along these lines we obtain

f(m, t) ≤ f(1, t)m + max
I⊂Ct

max
K⊂[|J |]
|K|=2m

max
P∈P2(K)

∣∣∣∣∣∣∣
∑

(kl)k∈[2m]∈K
Ct\I
Q

∏
q∈Q

tr(ρ p̂
(kl)l∈q
q )

−
∏
q∈Q

∑
(kl)k∈[2]∈K

Ct\I
{q}

tr(ρ p̂
(kl)l∈[2]
q )

∣∣∣∣∣∣∣ (F.34)

≤ f(1, t)m + max
I⊂Ct

max
K⊂[|J |]
|K|=2m

∑
Q∈Pe(K)\P2(K)

∣∣∣∣∣∣∣
∑

(kl)l∈[2m]∈K
Ct\I
Q

∏
q∈Q

tr(ρ p̂
(kl)l∈q
q )

∣∣∣∣∣∣∣ . (F.35)

But this is exactly the same expression which we started out from such that we obtain
directly

f(m, t) ≤ f(1, t)m +

m−2∑
h=0

|J ||J |(ctrans|Ct|
1
4 t−dtrans |B|J |∆|)2m−2hf(h, t). (F.36)

Defining the constants

z = 1 + cclustc
2
trans|Ct|2t−2dtranse

− ∆
ξclust (F.37)

y = |J ||J |(ctrans|Ct|
1
4 t−dtrans |B|J |∆|)4 1− (ctrans|Ct|

1
4 t−dtrans |B|J |∆|)|J |

1− (ctrans|Ct|
1
4 t−dtrans |B|J |∆|)

(F.38)

we can define a recursion for an upper bound b(m, t) of f(m, t) by

b(0, t) = 1, (F.39)

b(m, t) = zm + y
m−1∑
h=0

b(h, t), (F.40)

where we also added the m− 1 term to the sum over h which only increases the bound
as all terms are positive and we have b(m, t) ≥ f(m, t) for all m. We resolve this
recursion by using that b(m, t) > b(m−1, t) which can be seen as follows. We claim that
b(m, t) ≥ zb(m − 1, t) ≥ b(m − 1, t) (where the second inequality is obvious as z ≥ 1)
which is shown by induction

b(1, t) = z + yb(0, t) ≥ z ≥ 1 = b(0, t) (F.41)

and using the assumption we get

zb(m−1, t) = zm+y

m−2∑
h=0

zb(h, t) ≥ zm+

m−1∑
h=1

b(h, t) ≥ zm+

m−1∑
h=0

b(h, t) = b(m, t). (F.42)
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With this we can upper bound the sum and obtain

b(m, t) = zm + y
m−1∑
h=0

b(h, t) ≤ zm + ymb(m− 1, t) (F.43)

Inserting the bound repeatedly we obtain

b(m, t) ≤
m∑
h=0

zhym−k
m!

h!
≤

m∑
h=0

zhym−k
m!

h!

|J |m−h

(m− h)!
= (z + |J |y)m. (F.44)

F.5. Putting Everything Together

With this we have all components for the proof. Collecting all different errors in
Eq. (F.13), (F.24) and in the previous section yields for the bound

‖trSc ρ(t)− trSc ρG(t)‖1 ≤ 22p|S|+1(2p|S|)constlre
−vlrt/2ξlr + 22p|S|(2p|S|)2p|S|+1cclust

× (4p2|S|2 + (8p2|S|)4p2|S|)e
− ∆
ξclust + 22p|S|(2p|S|)2p|S|(ctranst

−dtrans |Ct|
1
4 |B2p|S|∆|

)4
×

1− (ctranst
−dtrans |Ct|

1
4 |B2p|S|∆|)2p|S|

1− (ctranst−dtrans |Ct|
1
4 |B2p|S|∆|)

[
1 + cclustc

2
transt

−2dtrans |Ct|2e
− ∆
ξclust

+ (2p|S|)2p|S|+1(ctranst
−dtrans |Ct|

1
4 |B2p|S|∆|)4 1− (ctranst

−dtrans |Ct|
1
4 |B2p|S|∆|)2p|S|

1− (ctranst−dtrans |Ct|
1
4 |B2p|S|∆|)

]
(F.45)

where we inserted the upper bound |J | ≤ 2p|S|. Note that as |Ct| ∝ tn and dtrans > n/4

there exists by assumption an ε such that for ∆ ∝ t
ε

4n the term |B2p|S|∆||Ct|
1
4 t−dtrans ∝

t−(dtrans−n+ε
4

) is still suppressed in time. Hence, we can scale ∆ in time such that the
first two terms of the bound are suppressed exponentially in t. The last contribution is
then at least suppressed as t−(4dtrans−n−ε) where the term in square brackets tends to 1
for large t. It is then clear that we can define a constants C such that

‖trSc ρ(t)− trSc ρG(t)‖1 ≤ Ct
−(4dtrans−n−ε) (F.46)

for any 0 < ε < 4dtrans − n as long as t ≤ trec where C will depend on the parameters
ctrans, dtrans, cclust, ξclust, constlr, n, p and the subsystem size |S| but will be independent
of the total system size V .
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G. Delocalizing Transport in Free Models

In the following appendix we want to show that the prototypical free model exhibiting
transport, the free nearest neighbor hopping model, does indeed possess delocalizing
transport as defined in Def. 4. To be more precise we show that the free nearest neighbor
hopping model on an n-dimensional cubic lattice exhibits delocalizing transport with
ctrans = 25n, trec = V

6
7n and dtrans = n/3.

Let us first consider the one-dimensional case. The nearest neighbor hopping Hamilto-
nian with hopping amplitude 1, a single mode per site and periodic boundary conditions
takes then the form

H =
∑
j,k

tnn
j,kf

†
jfk =

∑
j

(
f †jfj+1 + f †j+1fj

)
. (G.1)

The discrete Fourier transform UFT ∈ U(V ) defined by

UFT
q,j =

1√
V
e

2πi
V
jq (G.2)

with q = 0, 1, . . . , V − 1 diagonalizes tnn with spec(tnn) = (2 cos(2πq/V ))q=0,...,V−1 and
we set Λ = diag(spec(tnn)). Expressed in terms of Majorana modes, the Hamiltonian is
given by

H =
∑
j,k

i

4
h(2)mjmk, (G.3)

with h(2) = tnn ⊗ iY . The coupling matrix h(2) is diagonalized by

U =
1√
2
UFT ⊗

(
1 −i
1 i

)
(G.4)

with the spectrum i[Λ ⊕ (−Λ)]. Let us decompose Majorana mode indices j ∈ [2V ]
into a tuple (a, σ) with a ∈ [V ] labeling the lattice site and σ ∈ {0, 1} the mode, i.e.,
j = 2a− σ. Then we obtain for the propagator∣∣∣e−h(2)t

(a,σ),(b,σ′)

∣∣∣ ≤ ∑
κ=−1,1

1

2V

∣∣∣∣∣∣
V−1∑
q=0

e
2πi
V
q(a−b)eiκ2t cos( 2π

V
q)

∣∣∣∣∣∣ . (G.5)

The proof of the suppression follows from the argumentation in [158, App. A.1] which
we repeat here for completeness. Define the function fκ(φ) = e2iκt cos(φ). We obtain then
that its Fourier modes

fκ(n) =
1

2π

2π∫
0

e−inφfκ(φ)dφ (G.6)
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are given by fκ(n) = Jn(2t)(−i)n(−1)
κ+1

2
n with Jn(2t) denoting the Bessel functions

of first kind. Using partial integration, we can relate the Fourier modes fκ(n) to the
integral

|fκ(n)| = 1

2πn2

2π∫
0

e−inφ
d2

dφ2
fκ(φ)dφ. (G.7)

Evaluating the derivatives and estimating the resulting integrals yields

|fκ(n)| ≤ 2
t2 + t

n2
. (G.8)

Inserting the Fourier expansion of fκ leads to

V−1∑
q=0

e
2πi
V
q(a−b)eiκ2t cos( 2π

V
q) =

V−1∑
q=0

e
2πi
V
q(a−b)

∞∑
n=−∞

ein
2π
V
qfκ(n) = V

∞∑
p=−∞

fκ(pV + b− a).

(G.9)

Splitting off the p = 0 term, exploiting the relation of fκ(n) and the Bessel function and
inserting the bound derived above we can bound∣∣∣∣∣ 1

V

V−1∑
q=0

e
2πi
V
q(a−b)eiκ2t cos( 2π

V
q) − (−i)b−a(−1)

κ+1
2

(b−a)Jb−a(2t)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
z=1

[
fκ(zV + b− a)

(G.10)

+ fκ(−zV + b− a)
]∣∣∣∣∣ ≤ 2

t2 + t

V 2

∞∑
z=1

[
1

( b−aV + z)2
+

1

( b−aV − z)2

]
. (G.11)

Due to the translation invariance and reflection symmetry of the model we are only
interested in the case |b− a| ≤ V/2 such that we can bound∣∣∣∣∣ 1

V

V−1∑
q=0

e
2πi
V
q(a−b)eiκ2t cos( 2π

V
q) − (−i)b−a(−1)

κ+1
2

(b−a)Jb−a(2t)

∣∣∣∣∣ ≤ 2(π2 − 4)
t2 + t

V 2
.

(G.12)

Inserting furthermore the bound Jn(x) ≤ x−1/3 for the Bessel function of first kind yields∣∣∣∣∣ 1

V

V−1∑
q=0

e
2πi
V
q(a−b)eiκ2t cos( 2π

V
q)

∣∣∣∣∣ ≤ 2(π2 − 4)
t2 + t

V 2
+

1

(2t)
1
3

. (G.13)

For t ≤ trec = V
6
7 we conclude that∣∣∣e−h(2)t

(a,σ),(b,σ′)

∣∣∣ ≤ 25t−
1
3 . (G.14)
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In higher dimensions we want to restrict ourselves to the case of a cubic lattice of
V = Ln sites with L denoting the linear expansion in all directions. Then, we find that
the coupling tnn,n of the hopping Hamiltonian decomposes as

tnn,n =
n−1∑
l=0

1⊗lL ⊗ t
nn,1 ⊗ 1⊗n−l−1

L , (G.15)

with tnn,1 denoting the coupling of the one-dimensional chain. The mode transformation
governing the time evolution of the system takes then the form

eth
(2),n

=
(
eth

(2),1
)⊗n

, (G.16)

such that
|eth(2),n

j,k | ≤ 25nt−
n
3 (G.17)

follows immediately from the above for all t ≤ trec = L
6
7 = V

6
7n .
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H.4. Abstract

Understanding fermionic systems and creating more powerful tools for their simulation
has been a focus of modern theoretical physics since the first days of the formulation of
quantum mechanics. Due to their intrinsic hardness we are not able to design universal
schemes which compute and extract the dynamic or static properties of generic interact-
ing fermionic systems efficiently and the distinct structures of more specific settings have
to be exploited in order to obtain efficient methods. In this thesis we set out to identify
and understand some of these structures in finite fermionic systems in more detail from
both, a practical and conceptual point of view.

From a practical application point of view, we extend tensor network methods such
that they are able to resolve Gaussian fermionic correlations. By combining tensor
network states (TNS) and mode transformations we overcome the defect of TNS of
not being able to approximate independent fermions efficiently and incorporate thus
structured high entanglement effects into TNS. The obtained schemes adapt established
TNS methods to fermionic systems and allow in specific cases to significantly reduce
the amount of resources needed for a ground state search and a real time evolution of
a non-local fermionic system. By this we construct TNS methods in the spirit of other
multi-configuration schemes and allow TNS, which are able to resolve complex mode
correlations, to detect close-to-product structures in a particle picture.

Conceptually we investigate the emergence of efficient structures in different classes of
models. We formulate a fermionic mode de Finetti theorem which deduces a separability
of a fermionic state, i.e., the suppression of all quantum correlation between different
fermionic modes, from an underlying permutation invariance of the state and by this re-
stricts the correlation structure of a state based on its symmetries. This insight directly
relates to the certification of mean field approaches such as the Hartree-Fock method
as we discuss and provides a new perspective towards the understanding of why these
rough approximations provide surprisingly accurate results in certain systems. Further-
more, we prove that under the evolution of a free Hamiltonian supporting a sufficient
form of transport generic non-critical initial states become Gaussian after a short time.
This result links to general relaxation processes of closed quantum systems such as equi-
libration and thermalization and is in general reminiscent to the convergence towards
a generalized Gibbs ensemble (and provides a rigorous proof of such a convergence in
special systems). In both cases, Gaussification and the fermionic de Finetti theorem, we
carefully discuss the initial assumptions and special role of the fermionic antisymmetry
constraint.
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H.5. Zusammenfassung

Das Verständnis von fermionischen Systemen sowie die Entwicklung von Methoden für
deren Beschreibung ist einer der Schwerpunkte moderner theoretischer Physik seit der
Entwicklung der Quantenmechanik. Die allgemeinen Systemen inhärente Komplexität
verwehrt es universelle Methoden zu entwickeln, die im allgemeinen Fall statische und
dynamische Eigenschaften wechselwirkender Fermionen bestimmen. Um dennoch Ein-
blicke in ein spezifisches System zu erhalten, müssen in der Regel tiefere Strukturen des
vorliegenden Systems ausgenutzt werden. Das praktische Auffinden sowie das theoreti-
sche Verständnis solcher Strukturen sind der Fokus dieser Arbeit.

Um Strukturen, die eine effizientere Simulation fermionischer Systeme ermöglichen,
zu finden, etablieren wir eine Kombination von Tensornetzwerkzuständen (TNS) und
fermionischen Modentransformationen. Diese Kombination erlaubt es etablierte TNS Al-
gorithmen und Methoden auf fermionische Systeme anzupassen und durch die adäquate
Wahl der Einteilchenbasis strukturierte starke Verschränkungseffekte in diesen zu er-
fassen. Die resultierenden Multikonfigurations TNS Methoden erlauben es in prakti-
schen Anwendungen die benötigten Ressourcen zum Teil immens zu verringern, da sie
die gewählte Einteilchenbasis an die entsprechende Korrelationsstruktur des Systems
anpassen können.

Auf einer theoretischen Ebene betrachten wir den Ursprung und das Entstehen ver-
schiedener Strukturen in fermionischen Systemen. Wir formulieren ein Moden de Finetti
Theorem, welches die Separabilität eines fermionischen Zustandes aus einer Permutations-
symmetrie des Systems folgert. Solch eine Unterdrückung von Quantenkorrelationen
zwischen einzelnen Einteilchenmoden steht im direkten Zusammenhang mit der An-
wendbarkeit von Molekularfeldnäherungen, wie etwa der Hartree-Fock Näherung, an
das gegebene System und ermöglicht es die Genauigkeit dieser Näherungen zu zerti-
fizieren. Darüber hinaus zeigen wir, dass in einem freien fermionischen System, welches
einen genügenden Transport erlaubt, ein allgemeiner, nicht kritischer Zustand nach einer
kurzen Zeit zu einem Gaußschen Zustand relaxiert. Strukturell ähnelt und trägt das Re-
sultat zum Verständnis von anderen allgemeinen Relaxationsprozessen in geschlossenen
Quantensystemen, wie der Equilibrierung und der Thermalisierung, bei und beweist
schlüssig, dass freie fermionische Systeme zu generalisierten Gibbs-Ensembles equili-
brieren und nicht thermalisieren. Sowohl für das de Finetti Theorem als auch für die
Gaußifizierung freier fermionischer Systeme diskutieren wir insbesondere die Rolle der
nötigen hinreichenden Annahmen an das System und die der kanonischen, fermionischen
Antisymmetriebedingungen.
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