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Abstract 

In this thesis I used a regional geological and geophysical dataset to reconstruct the Late Cretaceous 

to Recent evolution of the Lower Magdalena Valley basin and San Jacinto fold belt of NW 

Colombia. My detailed interpretations of reflection seismic data and new geochronology analyses 

reveal that the Lower Magdalena basement is the northward continuation of the basement terranes 

of the northern Central Cordillera, consisting of Permo-Triassic metasediments, which were 

intruded by Late Cretaceous granitoids. Structural analyses suggest that the NE-SW trend of 

basement faults in the northeastern Lower Magdalena is inherited from a Jurassic rifting event, 

while the ESE-WNW trend in the western part is inherited from a Late Cretaceous to Eocene strike-

slip and extension episode. The Upper Cretaceous to lower Eocene sediments preserved in the 

present day San Jacinto fold belt were deposited in a forearc marine basin formed by the oblique 

convergence between the Caribbean and the South American plates. A lower to middle Eocene 

angular unconformity at the top of the San Cayetano sequence, the termination of the activity of the 

Romeral Fault system and the cessation of arc magmatism are interpreted to indicate the onset of 

low-angle subduction of the Caribbean plateau beneath South America, which occurred between 

56 and 43 Ma. Flat subduction of the plateau has continued to the present and would be the main 

cause of amagmatic post-Eocene deposition and formation of the Lower Magdalena Valley basin. 

After the collapse of a pre-Oligocene magmatic arc, late Oligocene to early Miocene fault-

controlled subsidence allowed initial infill of the Lower Magdalena with relatively low 

sedimentation rates. Extensional reactivation of inherited, pre-Oligocene basement faults was 

crucial for the tectonic segmentation of the basin with the formation of its two depocenters (Plato 

and San Jorge). Oligocene to early Miocene uplift of Andean terranes made possible the connection 

of the Lower and Middle Magdalena valleys, and the formation of the most important Colombian 

drainage system (Magdalena River system). This drainage system started delivering high volumes 

of sediment in middle Miocene times, as fault-controlled subsidence was gradually replaced by 

sagging due to increased sedimentary load. Such an increase in sedimentation delivering great 

sediment volumes to the trench, caused the formation of forearc highs in San Jacinto and of an 

accretionary prism farther to the west. These results highlight the fundamental role of changes in 

plate kinematics, of the inherited basement structure and of sediment flux on the evolution of forearc 

basins such as Lower Magdalena and San Jacinto. 

Based on my interpretations and results about the evolution of the Lower Magdalena and San 

Jacinto, a three-dimensional model of the Lower Magdalena Valley basin was built from seismic 

and well data, and used to reconstruct the thermal and maturation history of the basin. I 

reconstructed the stratal architecture of the basin, implemented within the model episodes of uplift 

and erosion, and built a geothermal gradient map, which was used to construct heat flow maps for 

3-D modeling. Model results indicate that the onset of hydrocarbon generation occurred at ~15 Ma 

(middle Miocene) for upper Oligocene to lower Miocene hydrocarbon source rocks in the northern 

part of the basin (Plato depocenter), while younger, lower Miocene sources started generating  at ~ 

9 Ma (middle-late Miocene). Maturation was influenced by sedimentation at very high rates of 

thick, deep marine to deltaic, Oligocene to upper Miocene sequences. Late Miocene generation was 

interrupted by shortening and uplift events at Pliocene (4-3 Ma) and Pleistocene times, though it 

appears to be ongoing in main depocenters. Low to fair source rock quality appears to be 

compensated by high thicknesses of the Oligocene to lower Miocene sources, which would still be 

generating below 3,350 m (11,000 ft) in the main pod of active source rock in the northern Lower 

Magdalena (Plato depocenter). By contrast, the effects of shortening pulses and low heat flow would 

have inhibited maturation of Oligocene to lower Miocene source rocks in the San Jorge graben of 

the southern Lower Magdalena, suggesting the need of additional hydrocarbon sources to explain 

the dry gas occurrences in that part of the basin. Proposed additional sources are pre-Oligocene 

units preserved in the western San Jorge depocenter, and biogenic generation. The results of this 
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thesis provide new insights into the controls of plate tectonics and basin evolution on petroleum 

systems. 

 

(German version of the abstract can be found in Zusammenfassung) 
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1 Introduction and Motivation  
 

Colombia is a country located in northwestern South America, with coasts in the Caribbean Sea 

and the Pacific Ocean and with two major morphological domains, the Andean domain to the W 

and NW, and the Llanos and Amazonian domain to the E and SE (Figure 1.1). It has an enormous 

natural diversity due to its tropical location and to its varied topography and altitudinal range, going 

from the sea level to almost 6,000 m.a.s.l. Such a diversity is closely related to its geological 

evolution and configuration which has been the result of the complex interaction of the South 

American continental plate with the Farallones-Nazca and Caribbean oceanic plates and with the 

Chocó-Panamá block. While the easternmost part of the country where the South American pre-

Cambrian shield is exposed, has remained relatively undisturbed by such interaction, clear 

evidences of it are observed in the central and western parts where the Andes has been divided into 

three mountain ranges (Eastern, Central and Western Cordilleras) which have active volcanism 

(Central Cordillera)  and seismicity.  

 

 

Figure 1.1. Tectonic map of northwestern South America with topography and bathymetry, showing the location 
of my study area (red square), which includes the Lower Magdalena Valley basin (LMV) and the Sinú-San Jacinto 
fold belt (SSJFB). Present-day tectonic plate motions are shown in yellow (after Trenkamp et al., 2002) and active 
volcanoes are plotted as red triangles. WC: Western Cordillera; CC: Central Cordillera; EC: Eastern Cordillera; RFS: 
Romeral Fault System; PFS: Palestina Fault System; BF: Bucaramanga Fault; SMF: Santa Marta Fault; OF: Oca Fault; 
BoF: Boconó Fault. 
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In the areas between the Colombian mountain ranges there are around fifteen onshore sedimentary 

basins preserved, some of which have important hydrocarbon and coal resources and production. 

As it occurs globally, hydrocarbon exploration has been one of the most important drivers of 

geological and geophysical data acquisition and basin studies. For this reason, the Colombian basins 

with more hydrocarbon reserves and production, such as the Llanos and Middle Magdalena Valley, 

are the best studied and understood in terms of their formation and evolution. However, today the 

most prolific onshore Colombian basins are relatively well-explored and it appears that the “easy 

oil” has already been found, making new hydrocarbon discoveries in the onshore basins a much 

more challenging task. Explorers are then directing their attention to less explored basins which 

have been less studied and remain poorly understood. Nevertheless, potential hydrocarbon 

resources in such basins remains uncertain and hydrocarbon exploration implies high risk of failure. 

Therefore, in order to reduce such risk, there is an urgent need to acquire new data and to carry out 

updated regional studies focused on understanding the formation and evolution of those basins, and 

hence their hydrocarbon systems and potential.  

 

 

Figure 1.2. Basins and main tectonic elements of northwestern Colombia and the Caribbean. Of relevance for this 
thesis are numbers 1 to 4, corresponding to the Lower Magdalena Valley basin and the San Jacinto fold belt. Surface 
faults and lineaments are in red while subsurface faults are in black.  

The basins of northwestern Colombia such as Lower Magdalena Valley, Guajira and Sinú-

San Jacinto have recently become the focus of renewed hydrocarbon exploration, in spite of the fact 

that some of the first and oldest wells in Colombia were drilled there in the beginning of the 

twentieth century. In the last couple of years I have been working on hydrocarbon exploration in 

two of these basins, the Lower Magdalena Valley basin (LMV) and the San Jacinto fold belt (SJFB, 

Figure 1.2), and I have noticed that they are quite complex in terms of stratigraphy and structure, 
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and that such a complexity could be the cause of inconsistencies in the previously proposed tectonic 

and basin models. For example, quite contrasting basin classifications have been proposed for the 

LMV and SJFB, such as foreland, back-arc, passive margin and more recently as forearc. These 

contrasting interpretations are clearly showing us that there’s a lack of more robust studies which 

provide a satisfactory explanation of the formation and evolution of those basins. This issue has 

direct repercussions on our understanding of hydrocarbon systems and therefore on the success of 

hydrocarbon exploration in these Colombian basins. Therefore, the motivation for carrying out this 

study comes from hydrocarbon prospectivity standpoint and trying to establish a clearer link 

between plate tectonics, basins evolution and hydrocarbon prospectivity in NW Colombia. For any 

company doing hydrocarbon exploration, in order to have a good prospect inventory which will 

guarantee exploratory success, it is essential to have solid foundations, such as a proper 

understanding of the plate tectonic history and of the basin formation and evolution. Hence, my 

thesis will focus on attempting to provide more solid foundations on top of which hydrocarbon 

exploration activities will hopefully be carried out in a more efficient and successful way. 

In order to obtain a better understanding of the formation and evolution of the LMV and SJFB, as 

well as of the hydrocarbon systems that exist, several questions must be answered such as: 

1. What is the structure and age of the basement underneath such basins? How, when, and in 

which tectonic setting was it formed? 

2. How was the paleo-tectonic evolution of NW Colombia and how did it influence the 

formation and evolution of the SJFB and LMV? 

3. What is the current configuration of the convergent margin between the Caribbean and 

South American plates in NW Colombia? 

4. What kind of basins are the SJFB and LMV and which were the mechanisms that controlled 

their formation and evolution?  

5. What are the implications of the plate tectonic and basin evolution of the LMV and SJFB 

on hydrocarbon systems?   

With the objective of answering to these questions, I have reconstructed the evolution of the Lower 

Magdalena Valley basin and San Jacinto fold belt of northwestern onshore Colombia, using a 

regional geological and geophysical database kindly provided by Hocol S.A. Such reconstruction 

provided the input for producing multi-dimensional basin and petroleum system models which will 

hopefully help in the hydrocarbon prospectivity assessment of the basins. To achieve such a goal I 

have organized the thesis in such a way that I establish a link between plate tectonics, basin 

formation and petroleum systems (Figure 1.3), trying to set more robust foundations for the 

hydrocarbon exploration activities focused on play and prospect assessment (upper part of the 

pyramid in Figure 1.3).  

1.1 Thesis organization 
According to the aforementioned and after providing a summary of the regional geological context 

(Chapter 2), I continue with a study of the basement underneath the Lower Magdalena Valley basin 

(Chapter 3, Mora et al., 2017a) , based on the analysis of potential methods, reflection seismic 

interpretation, well data and sampling, basement U-Pb zircon geochronology and Hf-isotope 

geochemistry, in order to characterize the basement in terms of structure, age and possible formation 

mechanisms This study is tackling the first question about the basement underneath the LMV and 

SJFB, though it has been focused mainly on the LMV, due to the scarcity of basement data in the 

SJFB. In Chapter 4, I present the results of a tectono-stratigraphic study of the pre-Oligocene 

(Upper Cretaceous to Eocene) sedimentary sequences in the San Jacinto fold belt, in which I also 

established a link between the deposition of such sequences and the Cretaceous to Eocene plate 

kinematics and convergence history between the Caribbean oceanic plate and the South American 



1 Introduction and motivation   

4 

 

continental plate (Mora et al., 2017b). This chapter is therefore providing answers to questions 2 

and 4, about the Late Cretaceous to Eocene paleo-tectonic evolution of NW Colombia. In this 

chapter I also propose a three-dimensional geometric model of the convergent margin of NW South 

America and the Caribbean, therefore it is also addressing question 3 about the current configuration 

of NW Colombia.  In Chapter 5, I reconstruct the subsidence, sedimentation and paleo-geographic 

history of the Lower Magdalena Valley forearc basin, calculate how much it was extended, and 

propose possible mechanisms controlling basin evolution, in the absence of major changes in plate 

kinematics and within an interpreted flat-slab subduction setting. This chapter is providing answers 

to questions 2 and 4 by presenting the Oligocene to Recent paleo-geography and facies distribution, 

paleo-tectonic reconstructions and the analyses of basin subsidence, sedimentation and extension. 

Based on the previously proposed basin formation and evolution, I constructed a three-dimensional 

model of the Lower Magdalena Valley basin of NW Colombia from seismic and well data, and the 

results of such modeling are included as Chapter 6 of this thesis. This chapter is thus providing 

answers to question 5 about the implications for petroleum systems in the LMV. The thesis is 

completed by Chapter 7 which synthesizes the findings of my PhD and presents the most relevant 

issues that I consider should be the objective of future research. 

1.2 Database and methodology 
My thesis is focused in the plate tectonic and basin scale aspects which make up the foundation of 

the hydrocarbon exploration pyramid depicted in Figure 1.3. It is based to a great extent on my 

detailed interpretation and mapping in two-way-time (TWT) of reflection seismic data provided by 

my employer, Hocol S.A. Approximately 30,000 km of 2-D seismic and more than 3,000 km2 of 3-

D seismic were interpreted and tied to around 250 exploratory and stratigraphic wells in both the 

LMV and SJFB (Figure 1.4). However, I also had access to several seismic lines and a few 

exploratory wells located in offshore areas, which were very important for the interpretation in the 

boundary between the oceanic Caribbean plate and the continental South American plate. The 2D-

seismic database includes numerous surveys acquired by oil and gas companies during different 

exploratory phases since the 60s, hence there’s a wide variety of seismic data quality. Seismic data 

quality and density is much higher in the LMV than in the SJFB and most of this seismic has been 

pre-stack time-migrated by specialized processing companies. Seismic interpretation was carried 

out in a regional project in the software Petrel v. 2013 (Schlumberger), in which the seismic surveys 

were positioned and tied using a datum (mean sea level) and a replacement velocity (2,000 m/sec). 

Well data including electrical logs, lithological and biostratigraphic tops, was loaded into the project 

and tied to the seismic data by constructing synthetic seismograms. The Petrel project which I used 

for this thesis was created at Hocol’s offices in Bogota, and data loading and quality checking was 

carried out by Hocol exploration staff. However, I personally quality-checked and adjusted data 

when necessary and I also loaded new data into the project as it became available.  

I downloaded seismicity data from the study area from the Colombian Earthquake Network (Red 

Sismológica Nacional, http://seisan.sgc.gov.co/RSNC/) and plotted it both in map and section view, 

together with the seismic interpretation and maps. A total of 14,081 events were obtained, 

corresponding to earthquakes with Mw 1 to 9, recorded from June 1, 1993 to November 26, 2015. 

Additionally, I compiled the available focal mechanism solutions from published sources 

(Pennington, 1981; Malave and Suarez, 1995; Corredor, 2003; Ekstrom et al., 2005; Cortes and 

Angelier, 2005) and plotted them together with the structural models. 

I also compiled all the available surface geology maps (e.g. Gomez et al., 2007; Gomez et al.,2015; 

Ecopetrol/ICP, 2014) and also had access to potential methods data (air gravity and magnetics 

acquired by Lithosphera (2010). In the San Jacinto fold belt, where older pre-Oligocene units are 

cropping out and deformation is intense, it was crucial to tie the seismic and well data to the 

geological maps. I also participated in a couple of field trips in several areas of San Jacinto in order 
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to directly see and study the units which I was interpreting in the subsurface and to collect samples 

for different kinds of analyses.  

 

 

 

 

Figure 1.3. Methodology of my PhD thesis, which is finally intended to provide solid foundations for the 
hydrocarbon exploration activities in NW Colombia. In order to have a good prospect inventory which will 
guarantee exploratory success, it is essential to have solid foundations, such as a proper understanding of the plate 
tectonic history and of the basin formation and evolution. The exploration pyramid was inspired in Shell’s Play-
based exploration guide available in the internet.  
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Figure 1.4. Reflection seismic and well database used for this study, provided by Hocol S.A. Colors represent 
different seismic surveys, wells are shown in black circles with crosses and 3D surveys are shown as rectangular 
grids. Magenta polygon is the limit of the LMV and red lines are major faults. SNSM: Sierra Nevada de Santa Marta. 
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2 Geological setting and previous studies 

2.1 General aspects of the study area 
The complex interaction of the Nazca, Caribbean and South American plates since Cretaceous times 

has created the extremely varied tectonic, geological and geomorphological configuration of 

Colombia that we see today (Figure 1.1 and Figure 1.2). To the center and south of the country, 

where the main influence has been the interaction of the Farallones/Nazca and South American 

plates, and more recently the Chocó-Panamá block, the Andes mountains are divided into three 

ranges or cordilleras (Western, Central and Eastern) which are separated by two inter-mountain 

fluvial valleys (Cauca and Magdalena).  The Central and Eastern Cordilleras are considered to be 

autochthonous terranes rooted in continental crust, while the Western Cordillera is considered an 

allochthonous terrane rooted in oceanic crust (Duque-Caro, 1979), which is thought to have 

accreted during the Mesozoic along the Romeral Fault System (Cediel et al., 2003). In the northern 

part of the country, where the influence of the Caribbean plate has been much more important, the 

Central and Western cordilleras terminate as they plunge to the north and get progressively buried 

under Tertiary sediments of the Sinú-San Jacinto fold belts and Lower Magdalena Valley basin.  

There are two prominent mountain ranges in northern Colombia that are separate from the Andes 

and which divide different Tertiary basins. The highest one is the triangular-shaped Sierra Nevada 

de Santa Marta (SNSM) or Santa Marta massif, with elevations of 5,700 m.a.s.l., which separates 

the Sinú-San Jacinto fold belts and the Lower Magdalena Valley basin in the southwest from the 

Guajira basins in the northeast (Figure 1.2). The second prominent mountain range of northern 

Colombia is the Sierra de Perijá or Perijá ridge, which is located to the east of the Santa Marta 

massif and marks the eastern boundary of the Cesar-Ranchería basin. The Perijá ridge can reach 

elevations of more than 3,200 m.a.s.l. and is forming part of the political limit with Venezuela to 

the east. Southwest of the Sierra de Santa Marta and north of the Central Cordillera, there’s a wide 

topographic depression that temporarily accumulates the sediment and water discharge from two of 

Colombia’s main rivers, Magdalena and Cauca, forming the present-day Lower Magdalena Valley. 

The Sinú-San Jacinto fold belts are located west of the Lower Magdalena and they exhibit some 

uplifted areas with elevations above 500 m.a.s.l. This geomorphology is reflecting the undeformed 

structure of the Lower Magdalena basin versus the deformed structure of the Sinú-San Jacinto fold 

belts, which in fact comprises two separate fold and thrust belts with different structural styles (Sinú 

and San Jacinto, Duque-Caro, 1979; Figure 1.2). The northernmost portion of Colombia is the 

Guajira Peninsula, located to the northeast of the Sierra de Santa Marta and which comprises two 

separate basins, the northern one called Alta Guajira, with some low altitude topographic elevations 

(>500 m.a.s.l.), and the southern one called Baja Guajira which is mostly flat. In the Colombian 

offshore areas, there are two main geomorphological elements, the South Caribbean Deformed Belt 

that is adjacent to the coast and the deep Colombian basin farther to the northwest. 

2.2 Geological setting 

2.2.1 Studies in offshore areas 

The Caribbean and northwestern Colombia offshore areas have been the studied by numerous 

researchers using a wide range of tools. Some of the first studies used seismic refraction and 

reflection profiles in the Western Caribbean and the Colombian basin, to conclude that crustal rocks 

are twice as thick as the average oceanic crust (Ewing et al., 1960). Seismic basement-related 

horizons (called “A” and “B”) were interpreted and then correlated with wells of the Deep Sea 

Drilling Project (DSDP), concluding that the oceanic basement consists of basaltic sills overlain by 

Late Cretaceous sediments (Edgar et al., 1971). Houtz and Ludwig (1977) computed seismic 

velocities and layer depths from air gun/sonobuoy profiles made along the Colombian Basin and 
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concluded that the crustal structure of the basin is a complex arrangement of basement ridges and 

interposed basins that is masked by an overburden of thick, flat-lying sediments. In the eighties, 

Bowland and Rosencrantz (1988) studied the upper crustal structure of the western Colombian basin 

using multichannel seismic reflection profiles and concluded that this basin is underlain by a large 

oceanic plateau. These studies provided approximate crustal thicknesses in the Colombian basin 

which went from 10.1 km close to the Colombian coast, to 17.9 km to the north towards the Hess 

Escarpment.  

2.2.2 About the origin of the Caribbean Plate 

Concerning the origin and evolution of the Caribbean, there are two main interpretations, one 

proposes a “Pacific” origin for the Caribbean plate, implying that it has drifted long distances to its 

present position between the Americas (e.g. Burke, 1988; Pindell and Kennan, 2009), while the 

other one proposes an “in situ” origin for the plate, implying that it formed to the west of its present 

position but still between the two Americas (e.g. Meschede and Frisch, 1998; James, 2006). Though 

the debate continues, the “Pacific” interpretation is more robust and appears to be more widely 

accepted, considering that it is implemented in the most recent global paleo-tectonic reconstruction 

models (e.g. Boschman et al., 2014; Matthews et al., 2016).  

2.2.3 About the existence of a subduction zone in NW Colombia 

Another topic of debate has been the existence of a subduction zone in NW Colombia, considering 

that it is an area with low seismicity and without an active volcanic arc. In spite of few studies 

proposing that there is no subduction in this area (e.g. Rossello and Cossey, 2012), there are 

abundant studies which have used different methodologies to identify subducting slabs beneath NW 

Colombia, supporting a Caribbean subduction beneath NW South America. For instance, after the 

study carried out by Pennington (1981), in which he identified two subducting slabs beneath 

Colombia (Bucaramanga in the north and Cauca in the south, upper panel in Figure 2.1), later 

studies have identified subducting slabs with different geometries and interpreted origins (e.g. Van 

der Hilst and Mann, 1994; Malave and Suarez, 1995; Taboada et al., 2000; Corredor, 2003; Cortes 

and Angelier, 2005; Zarifi et al., 2007; Vargas and Mann, 2013; Yarce et al., 2014; Chiarabba et 

al., 2015; Syracuse et al., 2016). Bernal et al., (2015 a, b and c) carried out one of the most recent 

studies in the Lower Magdalena and San Jacinto areas of NW Colombia, in which they provide 

earthquake, tomographic, seismic reflection and gravity evidence for a shallowly-dipping 

subduction zone beneath northwest Colombia. Displacement vectors of the tectonic plates (e.g. 

Trenkamp et al., 2002; Symithe et al., 2015) also support a nearly-orthogonal convergence between 

the Caribbean and South American plates (Figure 1.1), in agreement with subduction. 

2.2.4 Basement types and boundaries beneath the Lower Magdalena 
and San Jacinto 

The nature and thickness of the crust and basement beneath the Lower Magdalena and San Jacinto 

is another matter of debate. Duque-Caro (1979) proposed that the basement in the San Jacinto fold 

belt, west of the Romeral Fault System, is of oceanic affinity while the basement beneath the Lower 

Magdalena, east of Romeral, is of continental affinity. Cerón et al. (2007) concluded that 

geophysical data do not support a northern extension of the oceanic-type basement beneath the 

Sinú-San Jacinto foldbelts, since gravity modelling demonstrated the localized effect of the 

scattered outcrops of oceanic rocks. Therefore, the basement beneath the Sinú-San Jacinto foldbelts 

would not be of the same composition of the basement in the Western Cordillera, and they propose 

a transitional continental basement (attenuated continental crust) for these foldbelts. Cerón et al. 

(2007) also calculated the depth of the Moho discontinuity in northwestern Colombia and obtained 

depth estimates of the oceanic Moho of 20-25 km and of the continental Moho from 27 to 45 km, 

with the deepest values under the Eastern Cordillera of Colombia.  
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Figure 2.1. Selection of relevant figures from previous research on the tectonic configuration of NW Colombia. 
Upper panel shows a map with the two subducting slabs proposed and a section along the Bucaramanga slab 
(Pennington, 1981); below I show a tomographic section from Taboada et al. (2000), the three-dimensional 
configuration of NW Colombia interpreted by Syracuse et al. (2016) and a gravity model constructed by Bernal et 
al., 2015a; in the lower part, the major tectonic features of NW Colombia, interpreted by Mantilla et al., 2009 from 
seismic and gravity data are shown.    

According to Mantilla (2007) and Mantilla et al. (2009), the Colombian Caribbean margin displays 

morphological and tectonic characteristics of a typical accretion-dominated subduction complex 

(Figure 2.1). The 3D gravity modelling suggests that the Caribbean plate is approximately 11 km 



2 Geological setting and previous studies   

10 

 

thick and that it is subducting beneath northwestern Colombia at a low angle of about 5° in an east 

to southeast direction. The 3D gravity and magnetic modelling also supports the presence of an 

oceanic “basement complex” (mixture of basalts and sediments) underlain by a continental tectonic 

wedge which belongs to the overriding South American plate. Hence, they also conclude as Cerón 

et al. (2007), that the emplacement of oceanic affinity rocks over continental basement resulted 

from the offscraping and backthrusting of Caribbean material onto the continental margin during 

the initiation of the oblique subduction of Caribbean crust beneath northwest South America. The 

existence of the continental tectonic wedge beneath the oceanic “basement” complex in the San 

Jacinto Foldbelt would be indicating that the Romeral Fault System does not represent a paleo-

suture or tectonic boundary between oceanic crust to the west and continental crust to the east. The 

results of 3D gravity and magnetic modelling by Mantilla (2007) and Mantilla et al. (2009) suggest 

that the Romeral Fault System originated within the block of continental crust on which the San 

Jacinto Fold Belt was formed. 

In my thesis I follow the “Pacific” origin interpretation and I will provide new insights into the 

existence of a subduction zone and into basement age and configuration in the Lower Magdalena 

Valley basin and San Jacinto fold belt of NW Colombia (Chapters 3 and 4). 

2.2.5 Tectonic Provinces in Northern Colombia 

Previous studies have subdivided Colombia into different tectonic provinces or terranes, based 

mainly on the age, origin and evolution of the basement and sedimentary infill and on the tectonic 

boundaries, which generally consist of a major fault system (Etayo et al, 1983; Toussaint and 

Restrepo, 1994; Cediel et al., 2003). The differences within these tectonic subdivisions reflect the 

complexity of the geology and the constant need for more geological information.  

Etayo et al. (1983) subdivided the whole country into 24 terranes, eight of which are in northern 

Colombia, while Toussaint and Restrepo (1994) made a different and simpler subdivision in what 

they called “Suspect Terranes of Colombia”, and decided to use names of native Colombian tribes 

for each terrane (Figure 2.2). According to their work, northern Colombia would comprise mainly 

three terranes, the Chibcha terrane to the east, with continental para-autochthonous basement which 

was accreted to the paleo-continent during the Late Paleozoic (Ordoñez and Pimentel, 2002), the 

Tahamí terrane in the center, representing the westernmost province with continental nature and the 

Calima terrane to the west, which corresponds to an oceanic basement province. Ordoñez and 

Pimentel (2002) later modified Toussaint and Restrepo’s original division by proposing a new 

terrane called Panzenú, due to the basement differences compared to the Tahamí terrane farther 

south.  

Cediel et al. (2003) then proposed a series of tectonic realms for what they called the Northern 

Andean Block, which comprises Toussaint and Restrepo’s allochthonous and para-autochthonous 

terranes (Figure 2.2).  They divided this block into several realms, four of which are forming 

northern Colombia. These are the Central Continental Sub-Plate realm which includes the Eastern 

Cordillera and most of the Central Cordillera, the Maracaibo Sub-Plate realm which includes Perijá, 

Cesar, Lower Magdalena and Sierra Nevada de Santa Marta, the Western Tectonic Realm which 

consists of all the allochthonous terranes made of oceanic crust (including the Caribbean Terrane 

which contains Sinú and San Jacinto), and the Guajira-Falcón Composite terrane which includes 

the Guajira basins. The Central Continental Sub-Plate realm is considered to have an old Grenvillian 

terrane called Chicamocha, which is included in the Chibcha terrane of Toussaint and Restrepo 

(1994), as well as the Triassic-Jurassic San Lucas and Ibagué blocks with their dioritic to 

granodioritic batoliths and associated volcanics. However, Cediel et al. (2003) include in this realm 

a terrane they call Cajamarca-Valdivia, which is basically equivalent to the Tahamí terrane of 

Toussaint and Restrepo (1994). As seen in Figure 2.2, the proposal by Cediel et al. (2003) is much 

more detailed but also much more complex.   
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Though the previously described are the main subdivisions in tectonic terranes in northern 

Colombia, it is expected that the numerous petrologic and geochonologic studies which have been 

carried in recent years will allow the proposal of updated models of tectonic terranes in northern 

South America. In this thesis I use new basement data to propose correlations of the basement 

underneath the LMV with surrounding outcropping basement terranes (Chapter 3). 

 

 

Figure 2.2. a) Proposal of tectonic terranes by Toussaint and Restrepo (1994), modified by Ordoñez and Pimentel 
(2002); b) lithotectonic and morphostructural map of NW South America from Cediel et al. (2003). The red square 
shows the study area of this thesis. 

 

2.2.6 Previous studies of the Lower Magdalena and Sinú-San Jacinto 
provinces 

The present-day Lower Magdalena and Sinú-San Jacinto provinces have been classified in different 

and quite contrasting ways, an indication of both the complexity of the area and of the poor 

understanding of its geology.  

Macellari (1995) proposed their formation in a foreland setting which resulted from the 

overthrusting of Caribbean-arc rocks, while Flinch (2003) proposed a back-arc classification of the 

Lower Magdalena. The accretionary model proposed by Duque-Caro (1979) was accepted and 

adopted by the ICP (2000) and by Flinch (2003), whereas Caro and Spratt (2003) proposed that 

the San Jacinto fold belt was a rift with active extensional faults from the Upper Cretaceous to the 

Eocene and that it was inverted during Pliocene to Pleistocene times. According to Ladd et al. 

(1984), the Lower Magdalena and Sinú-San Jacinto are all forearc basins, and Mantilla (2007), 

Mantilla et al. (2009) and Bernal et al. (2015 a, b and c) propose that the forearc basin is the Lower 

Magdalena, with the San Jacinto fold belt as the present-day forearc high, and the Sinú fold belt as 

the accretionary wedge.  

Strike-slip and tectonic block rotation have also been proposed as formation mechanisms for basins 

such as the LMV. One way of assessing possible tectonic block rotation is by doing paleomagnetic 

analyses but unfortunately, in northwestern Colombia there are very few of such studies. According 

to previous studies, petrochemical and paleomagnetic data of oceanic volcanic rocks in the 
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Caribbean terranes (Kerr et al., 1996a; MacDonald and Opdyke, 1972, in Cediel et al., 2003) 

indicate that they are allochtonous. Paleomagnetic data for the Coniacian Finca Vieja Formation in 

the San Jacinto terrane indicate a provenance to the southwest (J. Brock and H. Duque, personal 

comm., 1986, in Cediel et al., 2003). This would be supported by the petrochemical analyses of 

Kerr et al. (1996b, in Cediel et al., 2003)), which suggest that the volcanic sequences of the Pacific 

Dagua-Piñón terrane and the “southern Caribbean” basalts in general, belong to the same volcanic 

province. 

The model of transrotational basins of Nilsen and Sylvester (1995), in which tectonic blocks 

undergo rotation under the influence of limiting stike-slip faults, has been applied to some basins 

in South America such as the Ecuador forearc model proposed by Daly (1989). In Colombia, such 

block rotation models were first proposed by ICP (2000), which interpreted that the depocenters in 

the Lower Magdalena area were initially formed as transrotational basins. Montes et al. (2010) later 

used a generalized basement map by Cerón et al. (2007) to calculate extension in the Lower 

Magdalena and relate it to major rotation of the Santa Marta massif. However, the conclusions of 

the work by Bernal et al. (2015c) did not agree with the proposal of such major block rotations. 

One of the objectives of this thesis is to use my regional database to propose and discuss 

mechanisms of basin formation, as well as more robust basin classifications (Chapters 4 and 5).  

 

2.3 Brief background on hydrocarbon exploration and 
previous regional studies in the Lower Magdalena and San 
Jacinto 

2.3.1 Historical background and older studies 

In the final chapter of my thesis (Chapter 6), I carry out three-dimensional basin modelling, in order 

to better understand the petroleum systems in the area and to help to reduce the risk in hydrocarbon 

exploration. For this reason, I think it is worth highlighting that historically it was in northwestern 

Colombia where the first hydrocarbons were exploited in the country, though the first reports of 

petroleum in Colombia come from the Spanish “conquistadores” in the Middle Magdalena valley. 

The historical archives with the initial hydrocarbon drilling and exploration history in Colombia are 

found in a few publications such as Anderson (1926). According to internet archives and old 

publications, in 1869, during the construction of railways in the area of Puerto Colombia, located 

west of the important coastal city of Barranquilla, the workers reported a constant strong petroleum 

odor and sudden gas-related explosions. Experts were sent to check the area and in 1884, with the 

aid of foreign geologists, several artesian wells were drilled to depths of around 100 feet, producing 

gas and light oil (42°API) at rates of 50 barrels per day. It thus appears that the first official oil wells 

that were drilled in Colombia were called “Las Perdices-1” and Las “Perdices-1A”, apparently 

operated by a company called Atlantic Oil. Co and which were drilled to depths between 754 and 

1,705 feet (230 to 520 m), producing 60 barrels of light oil per day. In the following years, several 

Perdices wells were drilled (Perdices-2 to 14) and though small quantities of oil and gas were found, 

the final results were considered uncommercial (Anderson, 1926; Figure 2.3).  
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Figure 2.3. Flowing oil well near Puerto Colombia, northern San Jacinto fold belt, May 1922. Photo taken from 
Anderson (1926). Location of the well in the northern San Jacinto fold belt, is depicted in the inset. 

 

After the initial exploration campaigns, other companies started drilling in different areas of the 

Colombian coastal plains but it was only until 1943 when the first commercial discovery in the 

LMV was made with the “El Difícil-1” well (Shell) that found gas and condensate in Lower 

Miocene carbonates. Subsequent discoveries occurred in 1956 when the Colombian Petroleum 

Company (Colpet) discovered the Cicuco field and in the sixties and seventies when other fields 

such as Jobo-Tablón, Sucre, Coral and Boquete were discovered. The latest discoveries in the study 

area were La Creciente gas field in 2006, Bonga and Mamey gas fields in 2011-2012 (Hocol) and 

the Nelson and other gas discoveries near the old Jobo-Tablón fields. However, it must be noted 

that all the commercial discoveries have been made in the Lower Magdalena Valley while in the 

San Jacinto and Sinú fold belts only sub-commercial hydrocarbon production has been obtained.  

Until the sixties, most of the geological information of the Sinú-San Jacinto and Lower Magdalena 

areas came from oil industry exploration reports. Hence, Hermann Duque-Caro (Duque-Caro, 

1979; 1984; 1991) was one of the first independent researchers to propose a definition of tectonic 

provinces and stratigraphic sequences in the Colombian Caribbean. While working with the 

Colombian Geological Survey (Ingeominas), Duque-Caro combined field work in the Lower 

Magdalena, Sinú and San Jacinto with some available subsurface data, mainly from seismic and 

wells, to propose a tectonostratigraphic configuration and evolution of the Colombia Caribbean, so 

his work has been an enormous contribution to the geological knowledge of northwestern 

Colombia. Duque-Caro (1979) divided the Lower Magdalena and Sinú-San Jacinto area into an 

unfolded, stable region or platform to the east (Lower Magdalena), underlain by continental crust 

and a folded, unstable region or geosyncline to the west (Sinú-San Jacinto), underlain by oceanic 

crust. As the limit between these two distinct geological provinces, he proposed the extension to 

the north of the Romeral Fault, which was defined farther south by Barrero et al. (1969), as the 

contact between the accreted oceanic terranes in the west and the continental terranes in the east.  

Duque-Caro (1979) also defined the Sinú Lineament as the boundary between the San Jacinto belt 

to the east and the Sinú belt to the west (Figure 1.2). He also suggested that the margin of 
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northwestern Colombia has grown by successive westward accretion of the San Jacinto and Sinú 

belts from the Late Cretaceous to the Pliocene.  

2.3.2 More recent exploration activities and regional studies 

Several oil and gas companies have carried out integrated regional hydrocarbon evaluation studies 

in the Lower Magdalena and Sinú-San Jacinto areas. The Gulf E&P Company (Aleman, 1983) 

carried out a geological and hydrocarbon evaluation of the northwest of Colombia, including 

stratigraphy, tectonics and hydrocarbon potential. Three years later, Beroiz et al. (1986) of the 

Chevron Petroleum Company did a regional hydrocarbon evaluation of northwest Colombia which 

included structure and tectonics, stratigraphy, petroleum geology and prospectivity. Later on, as 

part of the Lower Magdalena Valley Technical Evaluation Agreement, Hocol (1993) carried out 

another regional study which included stratigraphy and basin development, structural geology and 

hydrocarbon habitat. In 1995, a joint regional study of the Sinú-San Jacinto basin was done between 

Ecopetrol and the Earth Sciences and Resource Institute (ESRI) of the Universities of South 

Carolina and Utah in the USA while in 1996, the petroleum systems of the Lower Magdalena Basin 

were initially characterized by another joint study between Ecopetrol and Petrobras 

(Petrobras/Ecopetrol, 1996).   

In the year 2000, the Colombian Petroleum Institute (ICP) finished a regional evaluation of the 

Lower Magdalena Valley Basin (ICP, 2000) integrating a big seismic and well database with 

outcrop data and the results of lab analyses. The study proposed the tectono-stratigraphic evolution 

of the basin, defined several tectonostratigraphic regions and also evaluated hydrocarbon systems 

and prospectivity. This study based its paleogeographic reconstructions mainly on the work by 

Duque-Caro (1979) and according to them the formation of the LMV occurred as transrotational 

basins or depocenters, limited by normal faults, which were formed due to the tectonic stresses in 

north-western Colombia. Total (Flinch, 2003) also did a regional prospectivity evaluation of the 

area and proposed a structural evolution of the Sinú-Lower Magdalena area of northern Colombia. 

He also subdivided the area into the same provinces proposed by Duque-Caro (1979), separated by 

the Romeral Fault System. However, he classified the Plato-San Jorge Basin (Lower Magdalena) 

as a back-arc basin filled by Oligocene to Pliocene sediments, without providing evidence of the 

existence or location of an Oligocene to Pliocene magmatic arc.  

With creation of the National Hydrocarbons Agency of Colombia (ANH) in 2003, new geological 

activities were carried out mainly in the Sinú-San Jacinto areas, such as the acquisition of regional 

2D-seismic lines, drilling of stratigraphic wells which recovered cores that were later described and 

analyzed (ANH/U. Caldas, 2009), geological mapping (ATG/ANH, 2009) and other studies. Such 

activities were aiming to provide more information in terms of geology and petroleum systems to 

estimulate hydrocarbon exploration in the area. Following several years of field work with the 

Colombian Geological Survey, Guzman et al. (2004) and Guzman (2007) studied in detail the 

stratigraphy of the San Jacinto fold belt, and their results included a big database of 

micropaleontological data.  

An important part of what I have done in this thesis relates to tying the surface geology and outcrop 

studies with the subsurface data and with my reflection seismic intepretations; I consider that in the 

absence of outcrops of the units buried in the LMV, such an integration between the surface and 

the subsurface geology is necessary and provides new insights into the tectono-stratigraphy of the 

Lower Magdalena and San Jacinto areas (Chapters 4 and 5). Furthermore, one of the most valuable 

uses of the paleo-tectonic reconstructions, basin models, and the tectono-stratigraphic framework 

which I built, was their implementation in the three-dimensional basin and petroleum system model 

I constructed. The different scenarios I have tested in each of the model simulations will certainly 

have important implications for petroleum systems and will hopefully be a valuable tool for 

hydrocarbon exploration in these basins of NW Colombia. 
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3 Structure And Age Of The Lower Magdalena 
Valley Basin Basement, Northern Colombia: New 
Reflection-Seismic And U-Pb-Hf Insights Into The 
Termination Of The Central Andes Against The 
Caribbean Basin  

 

This chapter is a reformatted version of a Journal of South American Earth Sciences paper (Mora 

et al., 2017a). Supplementary figures have been placed in Appendix A. 
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Structure and Age of the Lower Magdalena Valley Basement, Northern Colombia: New reflection-seismic 

and U-Pb-Hf Insights into the termination of the Central Andes against the Caribbean Basin. Journal of 

South American Earth Sciences 74, 1-26. http://dx.doi.org/10.1016/j.jsames.2017.01.001 

 

 

Abstract  
 

Detailed interpretations of reflection seismic data and new U-Pb and Hf isotope geochemistry in 

zircon reveal that the basement of the Lower Magdalena Valley basin is the northward continuation 

of the basement terranes of the northern Central Cordillera, and thus that the Lower Magdalena 

experienced a similar pre-Cenozoic tectonic history as the latter. New U-Pb and Hf analyses of 

zircon from borehole basement samples retrieved in the basin show that the southeastern region 

consists of Permo-Triassic (232-300 Ma) metasediments, which were intruded by Late Cretaceous 

(75-89 Ma) granitoids. In the northern Central Cordillera, west of the Palestina Fault System, 

similar Permo-Triassic terranes are also intruded by Late Cretaceous felsic plutons and display 

ESE-WNW-trending structures. Therefore, our new data and analyses prove not only the extension 

of the Permo-Triassic Tahamí-Panzenú terrane into the western Lower Magdalena, but also the 

along-strike continuity of the Upper Cretaceous magmatic arc of the northern Central Cordillera, 

which includes the Antioquia Batholith and related plutons. Hf isotopic analyses from the Upper 

Cretaceous Bonga pluton suggest that it intruded new crust with oceanic affinity, which we interpret 

as the northern continuation of a Lower Cretaceous oceanic terrane (Quebradagrande?) into the 

westernmost Lower Magdalena. Volcanic andesitic basement predominates in the northwestern 

Lower Magdalena while Cretaceous low-grade metamorphic rocks that correlate with similar 

terranes in the Sierra Nevada de Santa Marta and Guajira are dominant in the northeast, suggesting 

that the Tahamí-Panzenú terrane does not extend into the northern Lower Magdalena. Although the 

northeastern region of the Lower Magdalena has a similar NE-SW fabric as the San Lucas Ridge 

of the northeastern Central Cordillera and the Sierra Nevada de Santa Marta, lithologic and 

geochronologic data suggest that the San Lucas terrane terminates to the north against the 

northeastern Lower Magdalena, as the Palestina Fault System bends to the NE. The NE-SW trend 

of basement faults in the northeastern Lower Magdalena is probably inherited from the Jurassic 

rifting event which is responsible for the conspicuous fabric of surrounding terranes outcropping to 

the east of the Palestina Fault System, while the ESE-WNW trend in the western Lower Magdalena 

is inherited from a Late Cretaceous to Eocene strike-slip and extension episode that is widely 

recognized in the western Andean forearc from Ecuador to Colombia.  

 

Keywords: Lower Magdalena Valley, San Jacinto fold belt, Caribbean, reflection seismic, 

basement, U-Pb and Hf isotope Geochronology. 
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3.1 Introduction 

 
The Lower Magdalena Valley basin is an Oligocene to recent basin of northwestern Colombia, 

located between two basement massifs, the Central Cordillera and the Sierra Nevada de Santa Marta 

(Figure 3.1). It is considered to be a forearc basin associated with the northern Colombia subduction 

complex, where the oceanic crust of the Caribbean Plate subducts towards the ESE beneath the 

continental crust of the South American plate (Mantilla, 2007; Mantilla et al., 2009; Bernal et al., 

2015a; Syracuse et al., 2016). The basin lies between the inactive magmatic arc of the northern 

Central Cordillera in the SE and the forearc high and the Southern Caribbean accretionary prism to 

the west. The nature of the substratum of modern forearc basins such as the Lower Magdalena 

remains a matter of controversy, primarily because the basin floor is buried under a thick cover of 

post-Oligocene forearc sediments (Dickinson and Seely, 1979; Dickinson, 1995). Despite several 

researchers having considered the basement beneath the Lower Magdalena to be related to the 

continental basement exposed in the Central Cordillera and Sierra Nevada de Santa Marta (Duque-

Caro, 1979; Reyes et al., 2000; Montes et al., 2010), the paucity of basement data from the Lower 

Magdalena has precluded the development of robust arguments in support of such correlations. 

However, because the Lower Magdalena Valley basin holds important hydrocarbon reserves at 

different stratigraphic levels (ICP, 2000), the last two decades have seen a considerable increase in 

exploratory drilling and geophysical tools applied to this basin such as gravimetry, magnetics and 

reflection seismic. These new data have provided valuable information about the basement structure 

of the Lower Magdalena and have allowed improved regional correlations, structural evaluation 

and mapping to be conducted (Reyes et al., 2000; Cerón et al., 2007; this study). In spite of the 

numerous oil exploration wells that have reached the Lower Magdalena basement during the past 

few decades, very few and localized analyses have been carried out to provide robust 

geochronologic and geochemical constraints on the type and age of the basement that underlies it 

(Montes et al., 2010; Silva et al., 2016). Considering the unique location of the Lower Magdalena 

in northwestern South America, where several tectonic plates have been complexly interacting 

through time, new information about its basement structure, type and age is relevant to 

understanding the formation and evolution of this important hydrocarbon-producing basin in 

Colombia.    

The aim of this paper is to present new information on the structure and age of the basement 

of the Lower Magdalena Valley basin, including detailed structural-depth maps obtained from 

seismic reflection data, as well as new geochronological constraints from zircon U-Pb analyses and 

source characterization through zircon Hf isotope geochemistry. The new subsurface maps and U-

Pb-Hf information presented here, coupled with the extensive published literature on the age and 

structure of the Central Cordillera and Sierra Nevada de Santa Marta, allowed us to develop 

improved geological correlations between the Lower Magdalena basement and its surrounding 

massifs. These results are evaluated within a regional plate-tectonic framework, and their 

implications for Late Cretaceous paleo-tectonic reconstructions of northern South America and the 

circum-Caribbean region are discussed. This basement study will have important implications for 

future research focusing on Cenozoic tectonics and the formation and evolution of the Lower 

Magdalena Valley basin and of the San Jacinto fold belt. 
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Figure 3.1. Geological map of northern Colombia (Gomez et al., 2007), highlighting basement terranes and pre-
Tertiary sedimentary units and integrating subsurface basement maps in depth (meters) of the LMV and Guajira. 
Colored circles are wells that drilled into the basement and have basic rock descriptions; previous and new 
geochronological data from the basement is depicted. CAF: Cauca-Almaguer fault; ESF: Espiritu Santo fault; SJF: 
San Jerónimo Fault; PFS: Palestina Fault System; UF: Uramita Fault; SF: Sinu fault; SMF: Santa Marta fault; SL: 
Sevilla Lineament; OF: Oca Fault; CuF: Cuisa Fault; CRB: Cesar-Rancheria basin; PR: Perijá Ridge; EC: Eastern 
Cordillera; SNSM: Sierra Nevada de Santa Marta; MMV: Middle Magdalena Valley basin. Inset: Tectonic map of 
northwestern South America with topography and bathymetry, showing the location of the Lower Magdalena 
Valley basin (LMV) and the Sinú-San Jacinto fold belt (SSJFB). Present-day tectonic plate motions are shown in 
yellow (after Trenkamp et al., 2002). WC: Western Cordillera; CC: Central Cordillera; EC: Eastern Cordillera; RFS: 
Romeral Fault System; PFS: Palestina Fault System; BF: Bucaramanga Fault; SMF: Santa Marta Fault; OF: Oca Fault. 

  

3.2 Geological framework and previous studies. 
 

The present-day configuration of northern South America is the end result of a complex interaction 

between several tectonic plates and blocks, which include the Nazca, Caribbean and South 

American plates and the Chocó-Panamá block (inset in Figure 3.1). Around the latitudes of south 

and central Colombia (0˚-5˚N), where the main tectonic driver has been the interaction of the Nazca 

and South American plates, the Andes Mountains are divided into three ranges or cordilleras 

(Western, Central and Eastern) which are separated by two inter-mountain fluvial valleys (Cauca 

and Magdalena). The basement of the Central and Eastern Cordilleras is considered to be comprised 
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mostly of autochthonous terranes rooted in continental crust, while the Western Cordillera (WC) is 

considered allochthonous and constituted of oceanic crust. A major suture zone, called the Romeral 

Fault System (RFS), is separating the Central and Western Cordilleras and within the fault system 

there are several allochthonous terranes (e.g. Quebradagrande and Arquía), which would represent 

an oceanic arc, a mid-oceanic ridge or an ensialic marginal basin (Toussaint and Restrepo, 1994; 

González, 1980; Nivia et al., 2006). Bayona et al. (2011) and Cardona et al., (2012) have also 

proposed that there was a younger Upper Cretaceous intra-oceanic arc, formed between 88 and 73 

Ma, which collided against the NW South American margin in latest Cretaceous to early Paleocene 

times and that it is represented by localized and poorly preserved serpentinized peridotites 

outcropping in northern Central Cordillera and southern LMV. The oceanic domains of the WC are 

thought to have accreted during the Mesozoic, along the RFS (Barrero et al., 1969; Barrero, 1979; 

Etayo et al., 1983; Restrepo and Toussaint, 1988; Cediel et al., 2003). In the northern part of the 

country, where the influence of the Caribbean plate and collision of the Chocó-Panamá block has 

continued into the Cenozoic, the Central and Western cordilleras terminate as they plunge to the 

north and are progressively buried under Tertiary sediments of the Lower Magdalena Valley basin 

(LMV) and the Sinú and San Jacinto fold belts. The LMV is limited to the east and northeast by the 

left-lateral, strike-slip Santa Marta-Bucaramanga fault system, composed of the Santa Marta fault 

system (SMF) in the north and of the Bucaramanga Fault system (BF) in the south (Figure 3.1). 

While a basement high (Cáchira) in the northernmost Central Cordillera (CC) is separating the 

LMV from the Middle Magdalena Valley basin (MMV), the Santa Marta-Bucaramanga fault 

system is separating it from the Cesar-Ranchería (CR) Basin and from the Sierra Nevada de Santa 

Marta (SNSM, Figure 3.1). To the southeast and south, the LMV is limited by the northernmost 

termination of the CC, the Palestina Fault System (PFS) and the San Lucas Ridge. Its western 

boundary has been considered to be the inferred extension to the north of the trace of the RFS 

(Romeral Lineament, Duque-Caro, 1979), which would be separating this basin from the deformed 

Sinú-San Jacinto fold belt in the west. As described in previous studies (Duque-Caro, 1979; 1984; 

ICP, 2000; Cerón et al., 2007), the main morphological features of the basement underneath the 

LMV are the Plato and San Jorge depocenters, which are separated by a NW-SE-trending high 

called the Magangué-Cicuco High (MCH, Figure 3.1). The formation of the basement architecture 

under the LMV has been related to strike-slip tectonics (transrotational basins, ICP, 2000), large-

scale clockwise rotation (Montes et al., 2010) and forearc extension (Mantilla et al., 2009; Bernal 

et al., 2015c). 

 

3.2.1 Basement data from outcrop studies 

 

Surrounding the LMV, there are three main litho-tectonic provinces in which basement rocks are 

exposed (Figure 3.1): the northern WC, the northern CC including the San Lucas ridge, and the 

SNSM. In the northernmost WC, there are scattered outcrops of oceanic basement rocks. In the 

Serranía de Abibe, basic agglomerates, gabbros and basalts are reported (ICP, 2000) while in the 

Planeta Rica area, ultrabasic rocks and basalts are exposed (Figure 3.1). The Planeta Rica outcrops 

were studied by Dueñas and Duque-Caro (1981) and they comprise the Planeta Rica peridotites 

and the Nuevo Paraíso basalts. Basaltic lavas and agglomerates of the Ojo Seco Formation yielded 

a minimum age of 83 Ma (Campanian, Cáceres, 1978, in ICP, 2000) but the dating method is not 

specified in ICP (2000). Farther south, in the Cerro Matoso area, there are nickel mineral 

exploitations derived from the near-surface alteration of the peridotites, producing laterites enriched 

in nickel and iron (Gleeson et al., 2004). These rocks are considered to represent the northernmost 

extension of the allochthonous oceanic crust terranes, which were accreted to the paleo-continental 

margin during the Late Jurassic and Early Cretaceous. These terranes have been grouped by 

Toussaint and Restrepo (1994) in the Calima Terrane, located to the west of the RFS, and in the 

Quebradagrande and Arquía Complexes which are located within the RFS (Nivia et al., 2006, 

Villagómez et al., 2011a). Based on provenance studies, Cardona et al. (2012) have discussed the 

affinity of the basement in some areas close to the limit between the San Jacinto fold belt and the 

LMV.  
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There are four main groups of crystalline igneous-metamorphic rocks in the northern CC 

(Clavijo, 1996, Ordoñez et al., 1999; Ordóñez and Pimentel, 2002; Vinasco et al., 2006; Clavijo et 

al., 2008, Restrepo et al., 2011; Villagómez et al., 2011a). The oldest group comprises Meso- to 

Neoproterozoic high-grade metamorphic rocks which outcrop in the San Lucas Ridge of the 

northeastern CC and are part of the Chibcha terrane (Toussaint and Restrepo, 1994; Cuadros et al., 

2014), while the second group comprises Paleozoic to Triassic, medium to high-grade metamorphic 

and igneous rocks (Puquí and La Miel units of the Tahamí-Panzenú Terrane, Ordoñez and Pimentel, 

2002, Villagomez et al., 2011a), unconformably overlain by metasedimentary and meta-igneous 

rocks of the Middle to Late Triassic Cajamarca Group (Villagómez et al., 2011a).  The third major 

group of basement rocks in the northern CC consists of Jurassic granitoids and related volcanics, 

exposed mainly along the San Lucas Ridge (Clavijo, 1996; Clavijo et al., 2008). The fourth group 

comprises mid to Late Cretaceous granitoids such as the Antioquia Batholith and the Córdoba 

Pluton; the Antioquia Batholith is the largest calc-alkaline intrusion in the northern CC and it 

comprises mainly granodiorite and tonalite (Ordóñez & Pimentel, 2002). U-Pb in zircon ages of the 

batholith were obtained by Ibáñez-Mejía et al. (2007; 88-83Ma) and by Villagómez et al., (2011a; 

93-87 Ma), confirming that the construction of this major composite pluton took place between the 

Cenomanian and the Santonian. The emplacement of these calc-alkaline plutons is thought to be 

related to Late Cretaceous subduction of Proto-Caribbean oceanic crust below the South American 

Plate (Villagómez et al., 2011a). In the study area, Toussaint and Restrepo (1994) defined two main 

basement terranes, separated by the PFS: an older one (Chibcha) to the east, including the San Lucas 

Ridge, and a younger one (Tahamí) to the west. Cediel et al. (2003) proposed a different name for 

the Tahamí terrane (Cajamarca-Valdivia), also limited to the east by the PFS. Considering the later 

re-definition by Ordóñez and Pimentel (2002), we will use in this paper the name “Tahamí-

Panzenú” for the terrane that lies between the Chibcha and the Calima terranes. The correlations 

and proposed along-strike continuation of these terranes towards the north beneath the LMV basin 

will be further discussed below. 

The SNSM has been divided into three southwest-northeast-trending geological provinces, 

separated by major fault zones (Tschanz et al., 1974). The southeastern Sierra Nevada province is 

the largest, highest and oldest in the SNSM and has a core of Proterozoic granulites, anorthosites 

and gneisses (Cordani et al., 2005, Cardona et al., 2006). These Grenvillian-age rocks were later 

intruded by Jurassic felsic plutons and covered by volcano-sedimentary sequences including spilitic 

rocks to the south. This province correlates with the Chibcha terrane of Toussaint and Restrepo 

(1994) and is limited to the NW by the Sevilla Lineament (SL). The Sierra Nevada province 

overthrusts the Sevilla province to the northwest, which consists of Paleozoic mafic gneisses and 

schists, intruded by Permian-Late Triassic syntectonic granitoids and Paleogene granites (Tschanz 

et al., 1974, Cardona et al., 2006; 2010a). The northwestern province, which is also the youngest 

one, is the Santa Marta province which comprises two Upper Cretaceous to Paleogene metamorphic 

belts:  the coastal belt consisting of green schists and phyllites and the inner belt which comprises 

mica-schists and amphibolites. These two belts are separated by undeformed Paleogene granitoids 

of the Santa Marta Batholith (58-44 Ma K-Ar age, Tschanz et al., 1974). The Santa Marta province 

has been also considered an oceanic terrane, proposed to have accreted to the Sevilla province in 

Late Cretaceous or early Paleogene times (Cardona et al., 2010b).  

 

3.2.2 Basement data from the subsurface 

 

Previously available data (ICP, 2000; Cerón et al., 2007) has shown the basement underneath the 

LMV to consist mainly of igneous and metamorphic rocks of broad continental affinity, quite 

similar to those described in the northern CC and in the SNSM. The majority of wells drilled a 

basement consisting of felsic igneous rocks (granitoids) and low-grade 

metamorphic/metasedimentary rocks, mainly phyllites and schists (Figure 3.1). A recent study by 

Silva et al. (2016) provided more information about the nature of the basement in the LMV which 

was incorporated in Figure 3.1. Silva et al. (2016) report felsic plutonic rocks in the Alejandría-1 

well (granodiorite) and in the Chilloa-1 and Coral-9 wells (monzogranites), while mafic plutonic 
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rocks were reported in the northern LMV (quartzdiorites to diorites in Medialuna-1 and Salamanca-

1) and in the eastern Magangué high (gabbros-pyroxenites in SitioNuevo-1).  

Concerning the age of the LMV basement, there are very few geochronological analyses 

available to date. The first geochronological study was conducted by Pinson et al. (1962), which 

sampled the Cicuco-3 well and obtained a K-Ar age of 110 Ma from a biotite. Montes et al. (2010) 

reported zircon U-Pb crystallization ages between 239 to 241 Ma for similar granitoids from the 

Cicuco-3 borehole and two other exploratory wells in the Magangué-Cicuco basement high (i.e., 

Cicuco-2A and Lobita-1 wells); based on these results, Montes et al. (2010) suggested that the 

cooling age reported by Pinson et al. (1962) does not approximate the crystallization age for these 

granitoids, but instead has been partially reset during a later Cretaceous re-heating event. Silva et 

al. (2016) provided the most recent geochronological and geochemical data from the basement in 

the LMV. A U-Pb (zircon) age of 300 Ma (Carboniferous-Permian boundary) was obtained from 

the cored gabbros recovered in the SitioNuevo-1 well, while a syenogranite core recovered in the 

Cicuco-22 well, yielded an age of 84.6 Ma (Santonian). Ditch cuttings of monzogranites recovered 

from the Coral-9 well yielded two U-Pb ages, an old one of 232 Ma (Middle Triassic) and a young 

one of 74.5 Ma (Campanian). Both Montes et al. (2010) and Silva et al. (2016) related the basement 

in the central part of the LMV to that of the CC and SNSM. 

 Farther west from the Cicuco area, chloritic schists considered to be the basement in the El 

Cábano-1 well were analyzed by Thery et al. (1977), who obtained an isochron age of 62 ± 2 Ma 

using the Rb-Sr method. However, these ages probably correspond to pre-Oligocene highly foliated 

sediments, since seismic data shows that some reflectors below their “basement” reflector most 

likely correspond to pre-Oligocene sedimentary sequences. Tschanz et al. (1974) reported a cooling 

age of 86.3 ± 4 Ma (K-Ar whole rock) in phyllitic schists found in ditch cuttings from the Algarrobo-

1 well in the eastern LMV, and proposed a correlation with schists outcropping in the northwestern 

part of the SNSM (Santa Marta terrane); however, it is still uncertain whether this K-Ar date 

approximates the age of metamorphism for the basement schists, or if in turn it was also affected 

by a younger re-heating event similarly to the Cicuco-3 granitoids discussed above. 

 

3.3 Methods 

 

3.3.1 Subsurface basement mapping and integration with well and 
seismicity data 

 

For this study, we used Hocol’s 2D and 3D-seismic database in the LMV (Figure 3.2) which 

consists of more than 30,000 linear km of 2D-seismic, approximately 1,000 km2 of 3D-seismic, 

data from nearly 90 exploratory and stratigraphic wells including e-logs, sample analyses and 

reports, air gravity and magnetic data acquired by Hocol and the Colombian National Hydrocarbons 

Agency (ANH), remote sensing data and available surface geology maps and reports. The 2D-

seismic database includes numerous surveys acquired by oil and gas companies during different 

exploratory phases since the 60s, so there is a wide variety of seismic data quality. Most of this 

seismic has been pre-stack time-migrated by specialized processing companies. The air gravity and 

magnetics data, acquired and processed by a specialized company (Lithosphera Ltda, 2010), 

provided initial information about the basement configuration. Seismic interpretation and mapping 

was carried out using Schlumberger’s Petrel software provided by Hocol S.A. The top of the 

acoustic basement was tied to the seismic using available sonic logs and check-shots, and its 

interpretation was generally not difficult as the impedance contrast between the crystalline 

basement and the overlying sediments produces a continuous, high-amplitude reflector. Once we 

interpreted and mapped the basement in the LMV and built 3D-models in two-way-time (TWT), 

we used the well data to construct regional pseudovelocity maps, which are average velocity maps 

to the top of the basement. These pseudovelocity maps were used to depth-convert the 3D-model 

of the LMV. The geometry of the basement under the LMV was also analyzed by identifying 
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different fault families according to their trends and relating them to similar outcrop patterns in 

surrounding terranes. Fault and lineament trends were measured from available geological maps, 

mainly the Geological Map of Colombia (Gómez et al., 2007). After dividing the individual faults 

into fault families with similar trends and styles, each family was plotted in a rose diagram using 

the Stereonet free software (Allmendinger, 2013; Cardozo and Allmendinger, 2013) and with bins 

set to 20 degrees. Representative seismic cross-sections were interpreted in order to unravel the 

tectonostratigraphic evolution of the LMV and San Jacinto fold-belt.  

 

 

 
 
Figure 3.2. Reflection seismic and well database used for this study, provided by Hocol S.A. Colors represent 
different seismic surveys, wells are shown in black circles with crosses and 3D surveys are shown in thick black 
rectangles. Abbreviations as in Figure 3.1. 

 

All the exploratory and stratigraphic wells that reached the basement were selected and 

subdivided according to the type of basement they found, highlighting those with geochronological 

analyses from previous studies and also from this study (Figure 3.1; see below). The described 

samples, which are mostly ditch cuttings, were subdivided into four basement types, namely 

metamorphic, igneous intrusive, igneous volcanic and unspecified/uncertain. The well data, colored 

by basement type and including the available geochronological data, were plotted against the 

seismic and gravimetric basement maps, the magnetic intensity maps and the surface geology in 

order to correlate the basement of the LMV to surrounding terranes. The patterns and relationships 

that were found from these plots are discussed in forthcoming sections. In addition, we also 

compiled the available earthquake and seismicity data from the study area, in order to characterize 

the main faults and structural features in terms of seismic activity and kinematics. Seismicity data 

from the study area was downloaded from the Colombian Earthquake Network (Red Sismológica 

Nacional, http://seisan.sgc.gov.co/RSNC/) and plotted both in map and section view, together with 

the seismic interpretation and maps. A total of 14,081 events were obtained, corresponding to 
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earthquakes with Mw 1 to 9, recorded from June 1, 1993 to November 26, 2015. Additionally, we 

compiled the available focal mechanism solutions from published sources (Pennington, 1981; 

Malavé and Suárez, 1995; Corredor, 2003; Ekstrom et al., 2005; Cortés and Angelier, 2005) and 

plotted them together with our structural models.  

 

3.3.2 Zircon U-Pb Geochronology and Hf Isotope chemistry 

 

In order to expand the existing geochronological dataset for the basement of the LMV and further 

support interpretations made from the structure, we selected eight samples from deep exploratory 

and stratigraphic wells that drilled through the basement to be processed for zircon geochronology 

and Hf isotope geochemistry. Two stratigraphic wells from the southern LMV and one exploratory 

well from the western part of a basement high (Magangué-Cicuco High; MCH) were selected 

(Figure 3.1 and Table 3.1). Three core samples were analyzed from the metamorphic basement 

drilled in the VIM15 Est-2 stratigraphic well in the southeastern part of the basin. Five ditch cutting 

samples were analyzed from the basement in the HojarascaEst-1 stratigraphic well in the eastern 

part of the San Jorge depocenter and from the Bonga-1 exploratory well, located in the western 

MCH.  

 

 
 
Table 3.1. Summary of geochronological data of the basement of the LMV, including our new U-Pb (zircon) data. 

 

Zircons were separated from cores and cuttings using standard gravimetric and magnetic 

techniques. Prior to crushing, all samples were soaked in a strong organic solvent and thoroughly 

rinsed with water in order to remove any external contamination to the cores and cuttings caused 

by residual drilling mud. In the case of cuttings, samples were sieved with a 1 mm mesh and only 

the larger and similarly-looking rock fragments retained by the mesh were processed for zircon 

separations in order to minimize potential contamination by cavings. Zircon crystals were randomly 

mounted in epoxy resin and polished to expose an internal surface prior to laser ablation – 

inductively coupled plasma – mass spectrometry (LA-ICP-MS) measurements. Alongside each 

sample, fragments of the Sri Lanka (SL2) natural zircon crystal (564 Ma; Gehrels et al., 2008) were 

mounted for use as the U-Pb primary reference material, and fragments of Mud Tank (176Hf/177Hf= 

0.282507; Woodhead and Hergt, 2005), FC-1 (176Hf/177Hf= 0.282183; Fisher et al., 2014) and R-

33 (176Hf/177Hf= 0.282764; Fisher et al., 2014) were used as reference material for Hf isotopic 

compositions.  

Analytical procedures for the U-Pb and Yb-Lu-Hf isotopic measurements followed the 

methods described in Cecil et al. (2011); all analyses were conducted in a Nu Plasma multicollector-

ICP-MS instrument coupled to a Photon Machines Analyte-G2 laser ablation system using static 

collection mode at the Arizona LaserChron Center, University of Arizona. In brief, for U-Pb 

geochronology, isotopes 238U, 232Th, 208Pb, 207Pb and 206Pb were measured simultaneously in 

Faraday collectors whereas 204(Pb+Hg) and 202Hg were measured in discrete-dynode ion-

multipliers. Instrumental inter-element and isotopic fractionations affecting the measured 206Pb/238U 

and 207Pb/206Pb compositions were corrected by a standard-sample bracketing approach using the 

Sri Lanka reference crystal, which was measured once or twice every five unknowns, and 

normalizing all data with respect to its known ID-TIMS values (Gehrels et al., 2008). For Yb-Lu-

Well Latitude Longitude Basement depth Type of sample Reported lithology Age Method Source

 N d°m's"  W d°m's" (MD in ft) Ma

Algarrobo-1 N 10°07'59.7" W 74°09'1.69" 8327 cuttings Phyllitic schists 86.3 ±4 K-Ar whole rock Tschanz et al., 1974

Cicuco-2A N 9°16'24.78" W 74°38'53.07" 7872 cuttings Granitoid 241.6±3.9 U-Pb zircon Montes et al., 2010

Cicuco-3 N 9°17'38.58" W 74°38'51.94" 8200 cuttings Granitoid 241.6 ±  3.1 U-Pb zircon Montes et al., 2010

Lobita-1 N 9°17'20.84" W 74°40'18.49" 8200 cuttings Biotite granite 239.6 ±  2.9 U-Pb zircon Montes et al., 2010

Bonga-1 N 9°30'16.9" W 75°04'11.20" 10816 cuttings Granitoid 75.4 - 89.2 U-Pb zircon This study

HojarascaEst-1 N 8°42'38.13" W 74°35'19.95" 5228 cuttings Qtz-mica-schists,quartzites and gneisses 234 ± 5 U-Pb zircon This study

Vim15Est-2 N 8°21'46.01" W 74°46'45.18" 3087 core phyllite, sericitic slate and tremolitic schist 233 ± 4 U-Pb zircon This study

Cicuco-22 N 9°15'9.35" W 74°36'5.03" 8227 core Granodiorite 84.5 U-Pb zircon Silva et al., 2016

Sitionuevo-1 N 9°03'34.63" W 74°35'35.41" 5307 core Gabbro/pyroxenite 300 ± 1.3 U-Pb zircon Silva et al., 2016

Coral-9 N 8°28´45.31" W 75°25´9.39" 10267 cuttings Monzogranite 74 and 232 U-Pb zircon Silva et al., 2016
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Hf measurements, all masses from 171 to 180 were measured simultaneously on ten Faraday cups 

equipped with 3 x 1011 Ω resistors. Hafnium mass fractionation was corrected using an exponential 

law with respect to a 179Hf/177Hf value of 0.7325 (Patchett and Tatsumoto, 1981). Ytterbium mass 

fractionation was corrected using a 173Yb/171Yb value of 1.129197 (Vervoort et al., 2004) and a 

session-specific 176Yb/173Yb bias correction factor derived from the measurement of high-Yb 

natural and synthetic zircon crystals (see Ibanez-Mejia et al., 2015 for details). All 176Hf/177Hf 

compositions reported here are relative to a Mud Tank value of 0.282507 (see Fisher et al., 2014b); 

this reference crystal was analyzed once or twice every ~15 unknowns during our session. 

Additionally, the reference crystals FC-1 and R-33 were also analyzed in repeated occasions 

throughout the session in order to monitor the accuracy of the Hf mass-bias and Yb interference 

corrections. These crystals are particularly well suited for the latter, owing to their relatively high 

HREE concentrations with respect to other widely available reference zircons and the average 

composition of natural crystals. We obtained mean values of 0.282167 ± 58 (2 S.D., n= 56, MSWD= 

1.5) and 0.282725 ± 62 (2 S.D., n= 78, MSWD= 0.7) for FC-1 and R-33, respectively, which are 

accurate with respect to their reference solution-MC-ICP-MS values within quoted uncertainties. 

 

3.4 Results 
 

In this section we present the configuration and age of the basement of the LMV from four main 

sources of information, potential methods (air gravity and magnetics), two and three-dimensional 

reflection seismic, seismicity and isotope geochronology. We start by describing the broad regional 

basement morphology, as interpreted from potential methods (air gravity and magnetics, Figure 
3.3) and continue with the more detailed structure, interpreted from reflection-seismic data and tied 

to the exploratory and stratigraphic wells (Figure 3.4). We then present the isotope geochronology 

data which was used to date the basement and to understand its origin and finally, we integrate 

seismicity data from public sources to constrain the tectonic and geodynamic setting of the basin.  

 

3.4.1 Potential Methods 

 

The broad basement morphology of the LMV, as interpreted from air gravity and magnetic intensity 

maps is show in Figure 3.3. In the Total Bouguer gravity anomaly map (Figure 3.3a), the most 

notorious basement lows are marked by negative anomalies with gravity values of less than -75 

mGal, while the most prominent positive gravity anomaly occurs in the SNSM, where values of 

more than +175 mGal were obtained. The SNSM is a very high (>5,000 m) basement massif that is 

not in isostatic equilibrium (Case and MacDonald, 1973). While the gravity data provided a much 

broader image of the basement morphology, the data from the total magnetic intensity reduced to 

the pole (TMIRP, Figure 3.3b) shows more localized concentrations of highly-magnetic rocks 

which correspond to basement highs or to elongated features related to major fault zones, as will be 

discussed farther on. It appears that the high magnetic anomalies are related to basement rocks 

which have been described as felsic or mafic, occurring at shallow levels, as also interpreted by 

Silva et al (2016). According to the seismic and well data, these highs are all found at depths 

between 1500 and 3500 meters, which is much shallower than the estimated Curie Point Depth for 

northern Colombia (30-55 km, Vargas et al., 2015), therefore the basement still preserves its 

magnetic properties. The magnetic data shows an alignment of basement highs in the northwestern 

LMV, close to the RFS, defining a NE-SW-trending fringe. This fringe that could be limited to the 

east by the northward extension of the San Jerónimo fault (SJF, Figure 3.3), appears to be formed 

by volcanic rocks, which may relate to a different basement terrane.  
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Figure 3.3. Air gravity and magnetics data from northern Colombia, acquired by Lithosphera (2010) for Hocol and 
the ANH. a. Total Bouguer anomaly, scale from -80 to 80 mGal; b. Total magnetic intensity reduced to the pole 
(TMIRP) with scale from 33700 to 34200. LMV: Lower Magdalena Valley basin; MCH: Magangue-Cicuco High; SF: 
Sinu fault; RFS: Romeral Fault system; SJF: San Jerónimo fault; WC: Western Cordillera; CC: Central Cordillera; UF: 
Uramita Fault; MMV: Middle Magdalena Valley basin; CR: Cesar-Rancheria basin; SMF: Santa Marta fault; SNSM: 
Sierra Nevada de Santa Marta. 

 

3.4.2 Reflection seismic and well data  

 

The structure of the basement underneath the LMV, as interpreted from reflection seismic data, is 

presented both in map and cross-section view and both in TWT and depth (Figure 3.4 to Figure 
3.7). The depth-structural map of the continental crystalline basement of the LMV obtained from 

detailed seismic mapping is shown in Figure 3.4. When comparing the Bouguer anomaly map with 

the depth-converted top basement map of the LMV, a very good match can be seen in terms of 

basement configuration.  The southeastern boundaries of the LMV are the PFS and the basement 

outcrops of the northernmost CC, while the boundaries in the northeast are the Santa Marta Fault 

(SMF) and the SNSM. The SMF is forming the eastern limit of a NW-trending pull-apart basin 

limited in the west by the Algarrobo Fault. The western limit of the LMV has been considered the 

northward extension of the RFS (Duque-Caro, 1979, 1984), which would be separating the basin 

from the San Jacinto deformed belt to the west. However, based on reflection seismic data (Figure 
3.6 and section 3 in Figure 3.7), we have interpreted an east-verging fault splay in the southwestern 

LMV, which correlates at the surface with the San Jerónimo fault (SJF, Figure 3.3 and Figure 3.4) 

and appears to correspond to the southwestern limit of the continental affinity basement of the 

LMV, as will be discussed in forthcoming sections. 
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Figure 3.4. Structural depth-model (elevation in meters) of the top of the basement of the LMV and San Jacinto 
fold belt, showing the main morphological and structural elements. RFS: Romeral Fault system; PFS: Palestina 
Fault system; SJF: San Jerónimo Fault; MCH: Magangué-Cicuco High; PjF: Pijiño Fault; AH: Apure High; EDH: El 
Dificil High; PvF: Pivijay Fault; RCH: Remolino-Ciénaga High; BF: Bucaramanga Fault; SMF: Santa Marta Fault; SL: 
Sevilla Lineament; UF: Uramita Fault; SF: Sinu Fault; CR: Cesar-Ranchería basin; MMV: Middle Magdalena Valley 
basin; SNSM: Sierra Nevada de Santa Marta. 

 

It must be noted that the basement interpretation and mapping has good control with wells 

and seismic within the LMV, while in the San Jacinto fold belt, we do not have any basement 

control. To interpret Cretaceous to Eocene sequences in the fold belt, we used several exploratory 

wells from the northern part of the fold belt and four stratigraphic wells recently drilled by the 

National Hydrocarbons Agency in the southern part of the belt (e.g. T-2XP, Figure 3.1 and Figure 
3.4). Concerning the possible base of the Cretaceous sequence, we had to tie the seismic to the 

outcrops, especially to those where the Cretaceous succession appears to be nearly complete, such 
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as the Arroyo Cacao section (ICP, 2000). Based on seismic-outcrop ties, we interpreted a possible 

base of the Cretaceous sequence in San Jacinto (Figure A 1), in order to produce the map shown in 

Figure 3.4. The similarities between the basement interpretation and the gravity expression of the 

basement in the San Jacinto belt suggest that our interpretation is reasonable. From several regional 

composite cross-sections that were built to analyze the three-dimensional basement structure, we 

present two representative geo-seismic sections in TWT that show the LMV-basement structure 

along the strike and dip (Figure 3.5). The area from which we recovered basement samples for U-

Pb and Hf analyses (Bonga-1 well) is shown in the same figure, in which a prominent topographic 

feature in the basement (Magangué cone) that may correspond to a volcanic edifice can be seen. 

The area in which the Bonga basement samples were taken shows diffuse seismic reflectors below 

the interpreted “basement” reflector, which suggest the occurrence of pre-“basement” (pre-

Oligocene) sequences below. A regional profile crossing the San Jorge depocenter is presented in 

Figure 3.6, showing our interpretation of the top of the subducting oceanic slab and its correlation 

with the subduction megathrust beneath the Sinú and San Jacinto fold belts and western Lower 

Magdalena. This TWT interpretation was used to obtain the depth map of the top of the oceanic 

slab in the study area. In the same figure we also highlight the interpreted structure of the deep San 

Jacinto fold belt and the RFS, including the eastern splay which we correlate with the San Jerónimo 

fault (SJF). This east-verging splay has been up-warped due to compression and inversion (see 

Figure A 2), and it is here considered to represent the eastern boundary of an oceanic affinity terrane, 

as will be discussed farther on. The integration in cross-section view of the depth-converted 

basement model and the gravity and magnetics data is shown in Figure 3.7, in which four dip-

sections and one strike-section are displayed to highlight the gravimetric and magnetic expression 

of basement morphology. Gravity and magnetics data seem to highlight not only the basement highs 

but also the interpreted extension to the north of the SJF, suggesting a change in basement type. 

Regarding the main morphological features of the basement underneath the LMV, the Plato 

depocenter in the north consists of a wide, nearly E-W-trending low in its southern part and a small 

depocenter in the north, in the downthrown block of an important NE-SW-trending fault (Pivijay 

fault, PvF, Figure 3.4). In these low areas the basement is probably found at depths of more than 7 

km (23 thousand feet) and sections 1 and 5 of Figure 3.7 show the respective gravimetric response. 

A stratigraphic well (called ANH-Plato Profundo) was recently drilled by the National 

Hydrocarbons Agency in this depocenter down to a depth of more than twenty-thousand feet (>6 

km), without reaching the basement. Two structural highs are surrounding the Plato depocenter, the 

El Dificil High to the NE and the Apure High to the NW. The El Dificil High is limited to the E by 

the Algarrobo-Santa Marta strike-slip fault system, which has created a very deep pull-apart basin 

that has been filled with thick Miocene to Quaternary deposits. In the northernmost portion of the 

basin, though the seismic coverage is not good, gravity and magnetic data confirm the occurrence 

of a NE-SW-trending structural high called here the Remolino-Ciénaga High. Oil exploration wells 

have reported a volcanic basement in the southwestern part of this high, while plutonic rocks were 

recovered in the northeast. The Apure high, where two exploratory wells (Apure-1 and Apure-2) 

have reached and sampled the basement (Figure 3.1), also has volcanic andesitic rocks and seems 

to be defining a volcanic basement province in the northernmost LMV. By contrast, the block of 

the El Dificil high consists of a low-grade metamorphic basement (schists and phyllites) which have 

been related to similar rocks outcropping in the northwestern SNSM (Campbell, 1968; Tschanz et 

al., 1974). However, granodiorites were recently reported in the Alejandría-1 well, located in the 

El Dificil high (Silva et al., 2016). Most of these basement highs have a clear expression in magnetic 

data (TMIRP), which shows positive anomalies on top of them (Figure 3.3 and Figure 3.7). 
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Figure 3.5. Regional composite two-way-time reflection seismic lines and respective interpretations showing the time-structure of the LMV in both dip (section A-A’) and strike-
direction (section B-B’), and the location of the wells analyzed in this work. Vertical exaggeration is x9. 
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Figure 3.6. Regional cross-section from the accretionary prism in the WNW to the San Jorge depocenter in the ESE, showing the interpreted top of the subducting oceanic slab and the 
seismic expression of the RFS, including the southeast-verging SJF andthe southern LMV. 
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Figure 3.7. Structural cross-sections in depth of the LMV, showing the basement structure of the LMV and its 
gravimetric and magnetic response. TBA: Total Bouguer Anomaly with scale between - -80 and 80 Mgal; TMIRP: 
Total magnetic intensity reduced to the pole, with scale between 33700 and 34200. Vertical exaggeration is x5.      

 

 

The SE-NW-trending Magangue-Cicuco High (MCH) also has a very clear expression in 

both gravity and magnetic data. In fact, well-developed gravimetric and magnetic anomalies occur 

on top of this high (Figure 3.7) and relate to what appears to be a volcanic cone. Concerning the 

rock types, the most complete basement database comes from this high because the area has been 
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drilled by numerous wells and several oil and gas fields have been found (e.g. El Dificil, Cicuco, 

Boquete, etc., see https://epis.anh.gov.co). The predominant basement rock types are felsic plutonic 

(e.g., granites, granodiorites, diorites, quartzdiorites) and metamorphic (e.g., metasediments, 

schists, phyllites, quartzites and gneisses, Figure 3.1), though gabbros and pyroxenites were 

recently reported in the SitioNuevo-1 well, in the eastern part of the high (Silva et al., 2016). 

The San Jorge depocenter, located south of the MCH, is an ESE-WNW-trending graben 

bordered by two main fault systems, the Mojana Fault System in the north and the Sucre Fault 

System in the south (Figure 3.4, Figure 3.5 and Figure 3.7). In the bottom of this graben, the 

basement can be found at depths of more than 5 km (17 thousand feet). South of this depocenter 

there are some minor and shallower structures, such as an E-W-trending graben located near the 

VIM15 Est-2 well and other nearly N-S-trending faults, which are related to the northern CC fabric. 

Rock types from drill holes show a predominance of a low- to medium-grade metamorphic 

basement in the southeastern LMV, probably related to metamorphic units outcropping in the 

northernmost CC (Gómez et al., 2007). However, a few wells drilled igneous plutonic and volcanic 

rocks which generally correlate with basement highs that also have a clear expression in both 

seismic and TMIRP data (Figure 3.3).  

 

3.4.3 Fault families  

 

Detailed seismic mapping of the basement underneath the LMV shows that the fault pattern is much 

more complex than previously considered. We divided the basement faults into four fault families 

according mainly to their trend and also to their age, and found that these families define two 

structural regions in the LMV:  a western region with a dominant ESE-WNW-trending fault family 

and a northeastern region with a dominant NE-SW-trending family (Figure 3.8). The oldest fault 

family (family 1, green traces in Figure 3.8) comprises normal faults trending NE-SW (40-60°) and 

includes the southern El Difícil fault, the Pivijay Fault and the fault that limits the Remolino-

Ciénaga High to the south. This fault family appears to be slightly older than family 1 because it 

became active in Late Eocene (?) to Oligocene times, as suggested by seismic data. These faults 

have very similar trends compared to the notorious lineaments in the northern CC (San Lucas 

Range) and also in the Sierra Nevada de Santa Marta (SNSM, Figure 3.8).  

The second fault family (family 2, red traces in Figure 3.8) comprises extensional faults 

which exhibit subtle strike-slip and inversion deformation affecting the sedimentary infill and 

which have an ESE-WNW-trend (265-320°). This family includes the Mojana and Sucre fault 

systems which are limiting the San Jorge depocenter, as well as the southern Apure fault and other 

faults that mark the northern limit of the Magangué-Cicuco High (Figure 3.4 and Figure 3.8). 

Seismic and well data show that these faults are affecting a felsic igneous plutonic, andesitic 

volcanic and metamorphic basement and that they became active as extensional faults in Late 

Oligocene to early Miocene times (Figure 3.5). The trends of this family are similar to those 

observed in the CC farther south, where they are affecting Permo-Triassic granitoids and the Late 

Cretaceous Antioquia Batholith (Figure 3.8).  

The third fault family (orange traces in Figure 3.8) trends SSE-NNW (330-360°) and 

corresponds to the Algarrobo fault, a trans-tensional strike-slip fault, and to the northern Apure 

fault. This trend implies ENE-WSW-oriented extension, which allowed the formation of the 

Algarrobo pull-apart depocenter and part of the Plato depocenter. The activity of this fault family 

probably began in early Oligocene times but the age of the oldest sediments in the Algarrobo pull-

apart basin is unknown. The fourth and least important fault family in the LMV (blue traces in 

Figure 3.8) comprises normal faults with subtle inversion and a NNE-SSW-orientation (0-30°), 

hence implying an ESE-WNW-oriented extensional component.  
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Figure 3.8. Structural fabric of the basement terranes in northwestern Colombia (northern CC, western SNSM and 
LMV). Surface faults and lineaments were drawn from the Geological Map of Colombia (Gomez et al., 2007) and 
subsurface fault families were interpreted and drawn from our basement depth-models. In all rose diagrams, the 
bin size was set to 20 degrees. Light gray features drawn in the Sinú and San Jacinto fold belts are Neogene to 
recent structures. 
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Neogene to Recent, E-W and SE-NW contraction has obscured the original Cretaceous to 

Paleogene structural fabric in most of the San Jacinto fold belt, except for the northernmost area, 

where NW-SE-trending Eocene extensional features that influenced sedimentation have been 

recently interpreted (Mora et al., 2013 and Figure 3.8). For this reason, most of the structures 

exposed in the San Jacinto and Sinú fold-belts are Pliocene to recent folds and faults mapped in 

geological maps (light gray features in Figure 3.8, Gómez et al., 2007). Figure 3.4 and Figure 3.8 

also show how deformation of the San Jacinto fold belt extended farther to the east in the southern 

LMV, as shown by the east-verging splay that inverted an area just west of the San Jorge 

depocenter.  Geological maps of the northern CC (Gómez et al., 2007) show that this splay appears 

to represent the northern extension of the San Jerónimo fault (SJF, mapped by Gómez et al., 2007 

as Santa Rita Fault), which marks the boundary between the Tahamí-Panzenú terrane to the east 

and an oceanic terrane called Quebradagrande Complex (Nivia et al., 2006) to the west. 

 

3.4.4 Zircon U-Pb geochronology and Hf isotope geochemistry  

 

In the eastern MCH, Montes et al. (2010) reported Middle Triassic (Ladinian) granitoids in the 

Cicuco and Lobita wells, while Silva et al. (2016) reported uppermost Carboniferous to lowermost 

Permian gabbros and pyroxenites in the SitioNuevo-1 well, and Middle Triassic monzogranites in 

the Coral-9 well. The samples that we recovered in this study come from the eastern San Jorge 

depocenter (Hojarasca Est-1) and from the southeastern LMV (VIM15 Est-2). These were classified 

petrographically as quartz-mica schists and quartzites in Hojarasca and as tremolitic schists and 

sericitic slates in VIM15. Detrital zircon U-Pb dates from these low-grade metasediments indicate 

a Middle to Upper Triassic maximum depositional age for their sedimentary protoliths (Figure 3.9), 

estimated to 234 ± 5 Ma (n= 4, MSWD= 0.7) for Hojarasca and 233 ± 4 Ma for VIM15 (n= 4, 

MSWD= 0.7) based on the youngest group of zircons that define an equivalent population at 2σ 

(e.g., Dickinson and Gehrels, 2009). The age spectra retrieved for both localities is dominated by 

zircons with early Permian to Middle Triassic crystallization ages, with subdued older populations 

in the early Paleozoic (Cambrian-Ordovician) and the Meso- and Neoproterozoic. A comparison 

with the known age distributions of pre-Jurassic basement domains in NW South America reveals 

that these detrital zircon age populations are most similar to the igneous and detrital zircon U-Pb 

ages found in the basement of the CC and the SNSM (Figure 3.9, see references in figure caption), 

thus strongly suggesting a close paleogeographic connection. This provenance interpretation is also 

supported by the Hf isotopic compositions of the Permo-Triassic grains found in Hojarasca and 

VIM15 (Figure 3.11), which closely match the existing data from the “Cajamarca” group granitoids 

and gneisses exposed that are exposed along the CC (Cochrane at al., 2014). 
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Figure 3.9. a) Concordia diagrams for the zircon U-Pb age data obtained from basement samples of the VIM15Est-
2 and HojarascaEst-1 wells. b) Probability Density Function (PDF) and Gaussian Kernel Density Estimate (KDE) 
curves for detrital zircon age spectra of the Hojarasca and VIM15 basement metasediments. Reference basement 
ages for possible source terranes were compiled using the data of Cordani et al. (2005), Vinasco et al. (2006) , 
Cardona et al. (2010a) , Cardona et al. (2010b) , Horton et al. (2010) , Restrepo-Pace and Cediel (2010) , Weber et al. 
(2010) , Ibanez-Mejia et al. (2011) , Leal-Mejia (2011) , Villagomez et al. (2011a) , Cochrane et al. (2014), Ibanez-
Mejia et al. (2015) , Van der Lelij et al. (2016). 

 

However, the basement in the LMV not only comprises Permo-Triassic igneous and 

metamorphic rocks but also Upper Cretaceous felsic intrusives , as evidenced by the age obtained 

in the basement sample of the Bonga-1 well. In this well, located in the western part of the MCH 

(Figure 3.1 and Figure 3.5), we recovered samples of a granitic basement that yielded zircon U-Pb 

ages in the range of 76 to 89 Ma (Coniacian-Campanian). Interestingly, three cutting samples taken 

from a depth interval between ~3299 and 3303 m in the Bonga-1 well and processed for zircon 

geochronology all yielded bi-modal age distributions (Figure 3.10), defining two clear populations 

ca. 76 Ma and 88-89 Ma. Considering that the samples were taken from drill cuttings, the 

occurrence of two populations suggests that they may represent two different magmatic events, an 

old one with a Coniacian age (88-89 Ma) and a younger one with a Campanian age (75-76 Ma). 

However, based on the absence of textural observations, the relationship between these two 

apparent magmatic pulses is difficult to ascertain. Despite this complexity, the new results from the 

Bonga-1 well clearly indicate that magmatism in this portion of the LMV basement was ongoing 

for this time interval in the Upper Cretaceous as has been observed in other parts of the basin; for 

instance, a granite sample from the Cicuco field in the MCH was dated as Santonian (Aleman, 1983, 

in ICP, 2000), while a recent study by Silva et al., 2016,  provided a similar age (84.5 Ma, U-Pb in 

zircon) for the granodioritic basement in the Cicuco-22 well in the eastern MCH. Another Late 

Cretaceous age was reported in the Coral-9 well (74.5 Ma, Silva et al., 2016). 
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Figure 3.10. Summary of U-Pb (zircon) age data from the three basement samples of the Bonga-1 well. 

 

In addition to the new U-Pb results for the Bonga-1 well, the Hf isotopic compositions of 

the dated zircons also indicate a rather juvenile affinity for this portion of the LMV basement 

(Figure 3.11). Several analyses conducted in two of the Bonga samples yield εHf(t) values in excess 

of +10 and up to +15, which exceed the values typical for arc-related crust (Dhuime et al., 2011) 

and overlap with a depleted mantle-like composition (Vervoort and Blichert-Toft, 1999). Although 

the intra-sample variability for each one of the two analyzed age populations exhibits a dispersion 

in initial 176Hf/177Hf(t) values that exceeds the external reproducibility of our reference zircon 

crystals (i.e., MT and R33; Figure 3.11), possibly indicating some interaction with and 

incorporation of older crustal components, these Hf results evidence that the Bonga magmatism has 

a very clear juvenile mantle source. In contrast, samples from the VIM15 and Hojarasca wells 

discussed above yield much lower εHf(t) values, mostly ranging between +4 and -8, thus indicating 

a much older crustal source for the preceding magmas from which these detrital zircons crystallized. 

 

 
 
Figure 3.11. Hf isotope compositions of zircon from all drill hole samples analyzed in this study, shown in a) 
176Hf/177Hf(i) vs. apparent 206Pb/238U age space, and b) as histograms of apparent initial εHf at age of zircon 
crystallization. Field for ‘Cajamarca Complex’ zircon compositions (gray shaded area) after Cochrane et al. (2014). 
Chondritic uniform reservoir (CHUR) values from Bouvier et al. (2008). New Crust (NC) model for the Hf isotopic 
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composition of arc-crust from Dhuime et al. (2011). Model composition for the depleted mantle (DM) was 
calculated from the juvenile crust data of Vervoort and Blichert-Toft (1999). 

3.4.5 Seismicity data  

 

The Colombian Caribbean margin, southwest of the SNSM, is a remarkably aseismic area (Figure 
3.12). The LMV and Sinú-San Jacinto fold belts exhibit very few scattered shallow (<70 km) and 

low magnitude (<4 Mw) events and seismicity increases notoriously and deepens towards the 

Bucaramanga intermediate seismicity nest (BN) in the southeast.  Within the study area, the very 

few available focal mechanism solutions correspond to shallow events (< 60 km, beachballs in 

black) while only one solution corresponds to an intermediate depth event (118 km, beachball in 

red). Solutions close to the SNSM (Malavé and Suárez, 1995; Cortés and Angelier, 2005) coincide 

with strike-slip displacement related to the SMF- Algarrobo pull-apart basin and with thrusting of 

the massif towards the NW. However, other important fault zones, such as the Romeral Fault 

System, San Jeronimo Fault, Palestina Fault System and the Sevilla Lineament do not show seismic 

activity, suggesting that they are currently inactive structures. One focal mechanism solution by 

Corredor (2003) is probably related to the Sucre fault system, which limits the San Jorge depocenter 

in the south. This solution is in agreement with the ESE-WNW fault trend and indicates a left-

lateral strike-slip displacement. Solutions by Ekstrom et al. (2005) in the limit with the Chocó-

Panamá block in the southwest clearly show a sinistral strike-slip displacement related to the 

Uramita Fault. 

 

 
 
Figure 3.12. Earthquake and seismicity data obtained from the Colombian Seismological Network, plotted with 
the basement depth-structure of the LMV and with available focal mechanism solutions. Dots are earthquakes that 
have been colored according to depth. Black beach balls are shallow (<60 km) solutions and the red beachball is 
the only solution deeper than 60 km. BN: Bucaramanga seismicity nest. SCDB: Southern Caribbean deformed belt. 
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We interpreted and mapped the near top of the subducting oceanic plate under the Sinú-San 

Jacinto fold belt, which connects with a megathrust that can be imaged in some of the regional 

seismic lines (Figure 3.6 and Figure A 1). Using stacking processing velocities from reflection 

seismic data, we depth-converted the interpreted subduction megathrust and plotted it with the 

earthquake and seismicity data in cross sections (Figure 3.12 and Figure 3.13).  

 
 
 
 
 

 
 
 

Figure 3.13. Regional profile A-A’ (location in Figure 3.12), integrating seismicity, earthquake focal mechanism 
solutions, topography and basement depth-structure of the southern LMV. The flat slab under the LMV, obtained 
from reflection-seismic interpretations, shows a good match with the interpreted top of the steeper Bucaramanga 
slab (pink dotted line). The bend or inflection between the flat slab under the LMV and the steeper slab to the east, 
coincides with the surface trace of the Palestina Fault System (PFS). The base of the accretionary prism 
(df=deformation front) and the coastline are also indicated. 

 

 

3.5 Discussion 

3.5.1 LMV basement structure and fault families 

 

In most of the recent studies, it has been proposed that the basement of the LMV displays a simple 

radial pattern which can be easily used to explain the extension observed in the LMV as a result of 

clockwise block rotation (Montes et al., 2010; Bayona et al., 2011; Ayala et al., 2012; Cardona et 

al., 2014). However, our detailed interpretation of seismic data shows that the basement in the LMV 

is affected by extensional faults which display a different and more complex pattern, compared to 

the previously interpreted, simple radial pattern. A detailed comparison of the previous and our new 

basement interpretation shows that the faults of Family 1 (in green in Figure 3.8) which are 

bounding important basement highs, are not reported, while some of the reported NW-SE-trending 

faults are not visible in seismic data (see Figure 12 in Montes et al., 2010). The observed differences 

are expected considering the very different databases that were used in both studies. The subdivision 

of basement faults in families with different orientations and possibly different origin (Figure 3.8), 
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and the integration of the basement structure in depth with the geology of surrounding areas (Figure 
3.1) allows us to further delineate more robust correlations in terms of terranes defined by structural 

trends, rock ages and types. Concerning structural trends, the Palestina Fault System appears to be 

separating two basement areas with different rock types and ages (Figure 3.1 and Figure 3.8), and 

affected by faults and lineaments that exhibit markedly different structural trends. While the Upper 

Cretaceous Antioquia Batholith, located W of the Palestina Fault System, is affected by SE-NW-

trending structures, the San Lucas Ridge, located to the E of the fault system, exhibits very clear 

NE-SW-trending lineaments (Figure 3.8).  

The NE-SW trend of fault family 1, which occurs to the east of the Palestina Fault System, 

is very conspicuous in areas where the Chibcha terrane is outcropping, such as the San Lucas Ridge 

and the SNSM (Ordóñez and Pimentel, 2002; Gómez et al., 2007; Clavijo et al., 2008), where 

Triassic-Jurassic volcano-sedimentary sequences covered older rocks.  Jurassic volcano-

sedimentary rocks and red beds of northwestern South America were deposited in a series of NE-

SW-trending grabens such as the El Indio, Morrocoyal, Bocas, Girón and La Quinta, which made 

part of the Bolivar Aulacogen of Cediel et al. (2003) that was formed during a Jurassic rifting phase 

(Maze, 1983; Cediel et al., 2003; Pindell and Kennan, 2009). In fact, the Jurassic structural fabric 

strongly influenced Cretaceous and later sedimentation and deformation (Cooper et al., 1995), 

hence the conspicuous NE-SW structural trend that is seen today in several terranes of northern 

Colombia had its origin in a widespread rifting episode. Considering its location just between these 

terranes (Figure 3.8), it is probable that the northeastern LMV basement was also affected by such 

Jurassic extension episode and subsequently, we argue that the NE-SW trend of fault family 1 is 

probably inherited from the older Jurassic fabric.  

The fault family in the western LMV (family 2) has an ESE-WNW trend which is also 

observed in the south, where Permo-Triassic and Cretaceous terranes exposed in the northern CC 

(Figure 3.8). Subduction of the Caribbean plate underneath northern South America started in late 

Paleocene times (Bayona et al., 2008; Cardona et al., 2011), allowing the formation of several 

forearc basins along western Ecuador and Colombia. We have reflection-seismic evidence from 

several parts of the San Jacinto fold belt (Figure 3.2 and Figure A 3), to propose that the origin of 

this fault family relates to a Paleocene to Eocene extensional and strike-slip episode which occurred 

in the western Andean forearc from Ecuador to Colombia. Recently acquired three-dimensional 

seismic data in the northern San Jacinto fold belt (Figure A 3) shows very clear, Middle to Late 

Eocene extensional faulting which also appears to control sedimentation (Mora et al., 2013). This 

ESE-WNW trend is also seen in some regional two-dimensional seismic lines in the westernmost 

LMV which were interpreted and mapped in this study (Figure 3.8) and in the pre-Oligocene units 

of the Jobo-Tablón area. Furthermore, a similar structural trend affecting Eocene deposits has been 

reported farther south, in the Ecuadorian forearc. Daly (1989) studied the Tertiary evolution of the 

forearc basins of Ecuador and concluded that during the Middle to Late Eocene, the Piñón and Cayo 

forearc basement was extensively faulted and the major structural pattern of today established. Such 

pattern comprises ESE-WNW trending extensional faults, which controlled the deposition of the 

Eocene flysch and which were formed due to clockwise block rotation between two major dextral 

strike-slip faults. This model is similar to the transrotational basin model proposed by the ICP 

(2000) for the LMV.  

The faults in family 3, which are far from the Santa Marta Fault, could also be inherited 

basement features corresponding to a conjugate set of Jurassic extensional faults, as seen in other 

Colombian basins (De Freitas et al., 2003). However, the Santa Marta-Bucaramanga Fault System 

is also considered to be an old Proterozoic to Paleozoic feature (Cediel et al., 2003), hence the faults 

in family 3 which are parallel to it may also have a Paleozoic overprint. Finally, fault family 4 which 

is nearly parallel to the trend of the Palestina Fault System, may also relate to older pre-Mesozoic 

features which were later compressed and inverted in Neogene to Recent times. 
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3.5.2 Permo-Triassic units 

 

According to the revision of basement outcrop studies in surrounding areas, we argue that the 

Permo-Triassic basement ages and rock types best correlate with the Late Paleozoic-Triassic 

Tahamí-Panzenú terranes in the northern CC (Ordóñez and Pimentel, 2002; Villagómez et al., 

2011a) and with the Permo-Triassic Sevilla province of the SNSM (Tschanz et al., 1974; Cardona 

et al., 2006; 2010b). However, recent studies have highlighted the necessity of studying and 

mapping in more detail the different units that occur within the Tahamí-Panzenú terranes 

(Villagómez et al., 2011a). Regarding the paleo-tectonic setting for the northern CC and LMV, 

while the Permian to earliest Triassic magmatism within NW South America is thought to have 

formed in a compressional setting during the final amalgamation of western Pangaea (Spikings et 

al., 2015), sedimentary rocks of the Cajamarca complex were deposited later in the Triassic, 

possibly during subsidence associated with Pangea’s disassembly (Villagómez et al., 2011a; 

Cochrane et al., 2014). The new detrital zircon U-Pb ages from the metasedimentary basement of 

the LMV presented here span the proposed transition from the compressional magmatic arc phase 

to the extensional collapse of the CC terranes; however, no clear evidences for a systematic shift in 

the 176Hf/177Hf(t) compositions of zircon associated to this major tectonic transition can be discerned 

from our data. Based on the good match between our results and those obtained by Cochrane et al. 

(2014) (Figure 3.11), it is likely that the zircons found in the schists, slates and quartzites of the 

LMV basement originated from the Permian-Triassic basement exposed in the CC, originally 

formed in a magmatic arc product of the east-dipping subduction of the Pacific slab under the proto-

Andean South American margin. 

3.5.3 Hypothesis about Late Cretaceous magmatism in the LMV 

 

The presence of Cretaceous igneous bodies in the basement of the LMV, which is widely 

documented in the northern CC, had only been loosely mentioned in old industry reports (Aleman, 

1983, in ICP, 2000). The data obtained from the Cicuco-22 well (Silva et al., 2016) and our new 

Coniacian-Campanian crystallization ages from the Bonga-1 granitoid  confirm the continuity to 

the north of the Upper Cretaceous magmatic arc in the northern CC, which includes important 

plutons like the Antioquia Batholith (88-83 Ma, Ibáñez-Mejía et al., 2007 and 93-87 Ma, 

Villagómez et al., 2011a), the Sabanalarga Batholith (89.9±0.8 to 98.2±3.5 Ma, Rodriguez et al., 

2012) and the Córdoba pluton (79.7 Ma, Villagómez et al., 2011a). Leal (2011) also reports K-Ar 

ages for vein-related dikes at the Segovia-Remedios mining district in the northern CC, between 

84±3 and 88±3 Ma, which are very close to the ages obtained by Silva et al.(2016) for the Cicuco 

intrusive.  

Geochemical analyses of the Upper Cretaceous Cicuco intrusive suggested that this 

granitoid is related to a subduction environment and corresponds to calc-alkaline magmas, 

interpreted to be emplaced in a continental Andean-type crust (Silva et al., 2016). In fact, Silva et 

al. (2016) proposed the existence of an Upper Cretaceous (Campanian) intra-continental magmatic 

arc, which they called the “Magangué Magmatic Arc”. However, our new Bonga Hf isotopic data 

indicate a clear juvenile component, with limited evidence for significant contamination with older 

continental crust (Figure 3.11). Furthermore, the highly positive Bonga εHf values obtained here 

are in contrast with the less radiogenic values obtained for the Late Cretaceous granitoids of the 

northern CC such as the Antioquia Batholith (Restrepo et al., 2007). Considering these 

observations, and taking into account the proximity of the Bonga granitoid to the Romeral Fault 

System, we consider that there are two hypothesis about the origin of the pluton. The first one is 

that the Bonga pluton intruded a previously accreted oceanic terrane possibly located within the 

Romeral System, which may correspond to the northern continuation of the Quebradagrande 

Complex (Nivia et al., 2006). The second one is that the pluton formed within an allochthonous 

intra-oceanic arc which collided against the Permo-Triassic continental margin in latest Cretaceous 

to early Paleocene times (Bayona et al., 2011; Cardona et al., 2012).  
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3.5.3.1 Intrusion into a previously Accreted Oceanic Terrane (Quebradagrande) 
 

Concerning the hypothesis of the origin of the Bonga pluton as an intrusion into a previously 

accreted oceanic terrane such as the Quebradagrande Complex (Nivia et al., 2006), a similar 

situation is reported much farther south with the Córdoba pluton, which consists of granodiorites 

with dates ca. 80 Ma (U-Pb zircon) that are intruding the Quebradagrande Complex (Villagómez et 

al., 2011a). In the western flank of the Central Cordillera, the Berriasian-Albian Quebradagrande 

Complex consists of unmetamorphosed to greenschist gabbros, diorites, basalts, andesites and tuffs, 

covered by marine and terrestrial sediments and the igneous rocks are considered to have been 

formed in an island arc that fringed the continental margin (Nivia et al., 2006;  Pindell and Kennan, 

2009; Villagómez and Spikings, 2013). In that area, the complex is limited from the Tahamí terrane 

to the west by the San Jerónimo fault (SJF, Nivia et al., 2006), which is an eastern splay of the RFS. 

The northernmost outcrop of the Quebradagrande Complex is located just east of the Cerromatoso 

area where serpentinized peridotites are exploited for iron-nickel minerals (Gómez et al., 2007; 

Gleeson et al., 2004). Altamira and Burke (2015) have related the Quebradagrande Complex to the 

Great Arc of the Caribbean defined by Burke (1988). 

We consider the east-verging splay of the Romeral Fault System that we mapped in the 

southwestern LMV to represent the northern extension of the San Jerónimo fault, which was locally 

reactivated in the Miocene (Figure 3.1, Figure 3.4, Figure 3.6 and Figure 3.7). This splay extends 

farther north into the western San Jorge depocenter, where it is clearly imaged in reflection seismic 

data (Figure 3.6 and Figure A 2). Though west of the San Jerónimo Fault the basement has not been 

drilled, well and reflection seismic data show that Upper Cretaceous to lower Eocene units are 

preserved only to the west of this fault, suggesting that it has been a major tectono-stratigraphic 

limit. In the northwestern CC, a similar Upper Cretaceous succession is preserved (Nutibara and 

Urrao units, Rodriguez et al., 2010) in tectonic blocks with a core of oceanic affinity units, such as 

the Quebradagrande and Barroso (Rodriguez et al., 2010). The San Jerónimo Fault can be continued 

to the north until it reaches the Mojana Fault System and the southern Magangue-Cicuco High 

(Figure 3.4 and Figure 3.8). In the Magangue-Cicuco High, there is no clear evidence of a major 

basement fault that was reactivated in Tertiary times. However, reflection seismic data in La 

Creciente gas field of the western part of the high, shows seismic packages below the base of the 

Oligocene sequence, which were interpreted by Arminio and Yoris (2006) as pre-Paleogene, 

Jurassic syn-rift sequences. This area is only twelve kilometers south of the Bonga well, so it is 

possible to consider that instead of Jurassic sequences, those pre-Oligocene packages that are seen 

in several seismic lines in the western Magangue-Cicuco High may represent the Quebradagrande 

Complex or related Lower Cretaceous oceanic units. It is then possible that the fault system that is 

bounding the complex to the east also continues into the Magangue-Cicuco High, though its trace 

is difficult to see with the available reflection seismic data.   

Magnetics and gravity data also appear to support the occurrence of a different basement 

province in the westernmost LMV, apparently limited by the San Jerónimo Fault (Figure 3.3). In 

cross-section, there is an increase in the total Bouguer anomaly and in the TMIRP in the western 

LMV, coinciding with the interpreted trace of this fault (Figure 3.7). This interpretation allows 

extending the Quebradagrande Complex tectonic fringe much farther to the north, into the western 

Magangue-Cicuco High, where the Bonga pluton is located. Furthermore, north of the Bonga 

pluton, the few data that are available from drill holes indicates that the northwestern LMV is a 

volcanic basement province, with andesites reported in the Apure High (AH), in the footwall of the 

Pivijay Fault, and with the andesites-diorites reported in the Remolino-Ciénaga High (PvF and 

RCH, Figure 3.1 and Figure 3.4). Consequently, it is also possible that the Quebradagrande 

Complex and related terranes extend even farther to the north and make up most of the basement 

of the westernmost LMV.  
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3.5.3.2 Intra-oceanic arc magmatism 
 

Though our new Hf isotopic data evidences some interaction with old crust, it is also compatible 

with an origin of the Bonga pluton within a younger, Upper Cretaceous intra-oceanic arc which 

collided with the older continental crust of NW South America in latest Cretaceous to early 

Paleocene times (Bayona et al., 2011; Cardona et al., 2012). According to Cardona et al. (2012), 

the record of events extracted from coarse clastic rocks in the San Jacinto fold belt includes the 

formation and approach of an allochthonous Upper Cretaceous intra-oceanic arc active from 88 Ma 

until 73 Ma (Coniacian to Campanian). Such arc would have collided against the continental margin 

after 73 Ma, but before late Paleocene times. Cardona et al. (2012) consider that remnants of the 

accreted arc and the substrate of the San Jacinto fold belt include scarcely studied, weathered 

volcanic rocks associated to the Cretaceous sediments of the Cansona Formation, and some limited 

serpentinized remnants exposed in the southeastern segment of the belt. In other words, they 

interpret the serpentinized peridotites which crop out in the Cerromatoso area (Gleeson et al., 2004; 

Gomez et al., 2007) and which have a characteristic magnetic signature (Figure 3.4), as the remnants 

of the accreted intra-oceanic arc. Considering the only reported but not very reliable age for the 

serpentinized peridotites in the southern San Jacinto belt (83 Ma; Cáceres, 1978, in ICP, 2000), this 

hypothesis also seems feasible, though new geochronological analyses of these rocks are required.        

Based on gravity modelling, Mantilla et al. (2009) and Bernal et al., (2015a) suggest that the 

accretion or off-scraping of ultramafic material in the westernmost LMV did not happen evenly 

along the margin and that ultramafic bodies were accreted in some areas, while in others thick 

sedimentary basins are resting directly on top of continental crust. Our new Hf isotopic data from 

the Bonga pluton reveal an isotopically juvenile affinity for this domain, possibly indicating a lack 

of old continental crust at this concrete location of the westernmost LMV. However, as seen in 

geological maps in the western CC, the Romeral Fault System comprises an extremely irregular 

and highly deformed area in which the involved allochthonous terranes can be very narrow or 

considerably wide, thus it is possible that a similar configuration also exists in the basement of the 

westernmost LMV (Figure 3.14). We are also aware of the fact that the basement of the LMV may 

have experienced varied degrees of erosion in different localities, hence the predominance of 

volcanic versus plutonic rocks in a certain areas could just be related to differential exhumation and 

not necessarily imply the existence of different basement terranes. Nevertheless, much more 

geological, geophysical and geochronologic data are needed in order to define the configuration of 

the Romeral Fault System and its relationship with the LMV in more detail to what is attempted 

here.  

 

3.5.4 Correlations between the LMV basement and San Lucas, the SNSM 
and Guajira 

 

The San Lucas Ridge of the northeastern CC (Chibcha terrane), comprises three major litho-tectonic 

units (Clavijo et al., 2008) which do not seem to match the lithologies and ages reported from the 

basement of the northeastern LMV. Therefore, the new data presented here do not support the 

extension of the Chibcha terrane into the northeastern LMV. We thus consider that the basement 

exposed in the San Lucas ridge terminates to the north against the northeastern LMV, while the 

Palestina Fault System bends to the NE (Figure 3.14a).  

There is a good correlation between the basement terranes exposed in the San Lucas Ridge 

(Chibcha terrane) and the Sierra Nevada province of the SNSM (Tschanz et al., 1974 and Figure 
3.14a). However, while the faults and lineaments in the San Lucas Ridge display trends of 40-60°, 

lineaments affecting the Sierra Nevada terrane are trending 60-80°. If the two terranes share a 

similar origin, this difference in structural trend would be partly explained by a clockwise rotation 

of 20° of the SNSM block, not very different from the one proposed by Montes et al. (2010). Permo-

Triassic terranes in the basement of the LMV correlate with the Sevilla province of the SNSM, but 

there is no evidence of Late Cretaceous magmatism in this massif. Tschanz et al. (1974) correlated 

the Upper Cretaceous green schists that outcrop in the northwestern SNSM massif with the green 
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schists that were recovered in the Algarrobo-1 well, located in the northeastern LMV (El Dificil 

High), which yielded a K-Ar age of 86 Ma (Santonian). However, this terrane does not seem to 

correlate with the Tahamí-Panzenú or with the Chibcha terranes to the south, suggesting that the 

northeastern LMV may be part of a different and younger terrane (Figure 3.14a). Several Late 

Cretaceous metamorphic complexes including the Santa Marta schists (Cardona et al., 2010b) have 

shown both a continental margin origin in their protoliths and high-pressure metamorphism which 

spans between ca. 90 and 70 Ma (Weber et al., 2010). Cardona et al. (2010b) propose that the 

protoliths of the Santa Marta schists were formed in an allocthonous terrane within a back-arc 

setting or at the transition between the intra-oceanic arc and the Caribbean oceanic crust. 

Few studies have been carried out to understand the origin and evolution of the basement in the 

Guajira area. The fact that the basement in the Guajira peninsula does not show a preferential 

arrangement or pattern in terms of basement structure, lithology and age (Londoño et al., 2015 and 

this work), makes it very difficult to propose more robust correlations between the basement 

terranes in the Guajira area and the basement in the SNSM and northern LMV.  

 

 
 
Figure 3.14. a). Interpreted basement terranes in the LMV and surrounding massifs. b). Tectonic reconstruction 
of the basement terranes in the study area by restoring the left-lateral displacement along the SMBF. Chibcha 
terrane is in pink, Tahamí-Panzenú in lavender, Quebradagrande Complex (QC) in blue, and Calima is white. Upper 
Cretaceous, low-grade metamorphic terranes in LMV (El Difícil and Algarrobo) and in the northwestern SNSM are 
colored in green. SL: Sevilla lineament; SJF: San Jerónimo fault. 
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3.5.5 Formation of the basement architecture and fabrics in the LMV 

 

The basement architecture of northwestern Colombia was built from Cretaceous to middle Eocene 

times and resulted in the formation of two major suture zones, the Romeral and the Palestina Fault 

Systems (Restrepo and Toussaint, 1988; Cediel et al., 2003). According to Toussaint and Restrepo 
(1994) these sutures separate three main tectonic terranes which they called Calima, Tahamí-

Panzenú and Chibcha, which we have extended to the north, into the LMV and San Jacinto fold 

belt, as shown in Figure 3.14a. From reflection seismic shown here (Figure 3.5 to Figure 3.7, 

Figure 3.12 and Figure A 2), earthquake and outcrop data, we propose that the activity of the 

Romeral Fault System extended until middle Eocene times and since then, it has become mostly 

inactive (Figure 3.12). The San Jerónimo Fault, which makes part of the Romeral System, shows 

a minor reactivation in late Oligocene to Miocene times in the southwestern LMV (Figure A 2). 

Though the Palestina Fault System lacks seismic coverage, outcrop studies report that this fault 

system was active until the Upper Cretaceous (Feininger, 1970). The open-source archive of active 

faults for northwest South America (Veloza et al., 2012) shows that while the PFS in the San Lucas 

Ridge evidences some compressive and left-lateral displacement, the only active faults in the study 

area appear to be localized NNE-trending thrusts in the northern San Jacinto fold belt.  This means 

that the basement of the LMV became stable since early Miocene times, except for local and subtle 

fault reactivations. By contrast, the Santa Marta-Bucaramanga Fault System (SMBF in Figure 3.14) 

which was also active in the Cretaceous, has been reactivated several times during the Cenozoic 

and continues to be active today, as shown by neo-tectonic and seismicity studies (Cediel et al., 
2003; Veloza et al., 2012; Jimenez et al., 2014 and Figure 3.13). 

Considering the scarcity of kinematic indicators in basement and Cretaceous rocks of the 

LMV and San Jacinto, it is difficult to reconstruct the pre-Eocene kinematic regimes. However, 

based on previous studies and our new data and interpretations, we propose that the basement fabric 

in the LMV and San Jacinto fold belt was formed by two main, regional tectonic processes (Figure 
3.15): 1) Jurassic rifting and 2) Late Cretaceous to Middle Eocene oblique convergence of the 

Caribbean and South American plates, producing large-scale, dextral strike-slip displacement, arc-

parallel extension due to displacement partitioning, and clockwise block rotation. We have already 

proposed that a Jurassic rifting and extension phase could have formed the oldest, NE-SW-trending 

fault family of the northeastern LMV. Concerning the ESE-WNW-trending fault of the central and 

western LMV, which has also been identified in the San Jacinto fold belt, we propose that it is also 

an inherited fabric which was formed due to a Late Paleocene to Middle Eocene regional 

extensional and strike-slip tectonic episode. According to paleo-tectonic reconstructions (Müller et 

al., 1999; Kennan and Pindell, 2009; Villagómez et al., 2011a; Boschman et al., 2014), it appears 

that from Late Cretaceous to Middle Eocene times, convergence between the Caribbean-South 

American was mostly oblique, giving rise to intense, right-lateral, strike-slip deformation along the 

western Ecuador and Colombia forearc. Studies dealing with displacement partitioning in obliquely 

convergent plate-boundary zones, such as the Aleutians and Sumatra, have related high obliquities 

with the existence of lateral displacements along one or more strike-slip faults, parallel to the plate 

boundary (Jarrard, 1986; Ave-Lallemant and Oldow, 1988; McCaffrey, 1992; Ave-Lallemant, 

1996). Furthermore, Ave Lallemant and Oldow (2000) proposed that deformation associated with 

displacement partitioning is characterized by spatially segregated domains of contraction and 

transcurrent motion together with a significant component of arc-parallel extension. Taking into 

account the paleo-tectonic reconstructions, it is then likely that in the northwestern South American 

obliquely convergent margin, displacement was partitioned into a major trench-parallel, strike-slip 

component and into an arc-parallel extensional component, as well as a minor compressional 

component. Major right-lateral, strike-slip displacement has been documented for the Romeral and 

Palestina fault systems in pre-Oligocene times (Cediel et al., 2003), and we consider that an 

additional, outer, strike-slip feature (paleotrench?), which could correspond to the present-day Sinú 

fault, would have also accommodated important dextral displacement in those times (Figure 3.15). 

The ESE-WNW-trending extensional faults of family 2 could have been formed by extension 

parallel to the NNE-SSW-trending magmatic arc that existed between the northern CC and the 
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SNSM. This oblique convergence and right-lateral strike-slip setting would have also caused 

clockwise rotation of fault-bounded blocks, as proposed by Daly (1989) in the Ecuadorian forearc 

and by Kodama et al. (1993) in northern Japan. The inherited pre-Oligocene basement fabric was 

later reactivated during the late Oligocene and early Miocene, allowing the formation and infill of 

the LMV.  

ICP (2000) previously related the formation of the LMV to clockwise block rotation in a 

trans-rotational basin setting, which would have been active since the Oligocene. Our data and 

interpretations do not support such proposal because the main suture zones (Romeral and Palestina) 

became inactive after the Middle Eocene. Concerning the model of vertical-axis, clockwise rotation 

of the Santa Marta Massif proposed by Montes et al. (2010) to explain the formation of the LMV, 

we do not discard that clockwise rotation of large tectonic blocks such as the Santa Marta massif 

could have influenced Neogene extension, but our basement maps do not agree with the simple, 

fan-shaped basement-fault geometry on which they base their model. While seismic data show that 

localized fault-controlled extension and subsidence occurred in late Oligocene to early Miocene 

times (Bernal et al., 2015c), most of the Miocene to Pliocene subsidence that allowed very thick 

sedimentary sequences to fill the basin, appears to be related to sagging (e.g. section B-B’, Figure 
3.5).  

 

 

Figure 3.15. Sketch illustrating the proposed mechanisms of formation of the basement architecture in the LMV 
and San Jacinto areas of northernwestern Colombia, which acted during Late Cretaceous to Middle Eocene times. 
RFS: Romeral Fault System; PFS: Palestina Fault System; Vn: displacement vector component normal to the plate 
margin; Vt: displacement vector component parallel to the margin. 
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3.5.6 Basement terrane reconstruction. 

 

In this work we confirm the extension of the Tahamí-Panzenú terrane to the north into the LMV 

and we propose that an oceanic terrane which could correspond to the Quebradagrande Complex or 

to a younger Upper Cretaceous, allochthonous intra-oceanic arc, also extends in the western LMV, 

while the San Lucas (Chibcha) terrane terminates against the northeastern LMV (Figure 3.14a). 

This mapping of terranes allows us to reconstruct, in much more detail than in previous studies, the 

possible tectonic configuration of the northern CC and SNSM prior to the left-lateral strike-slip 

movement that the Santa Marta Fault System experienced since Paleogene times (Figure 3.14b). 

This reconstruction illustrates the possible pre-Eocene basement architecture of the northwestern 

Colombian margin, showing in more detail the configuration of the three tectonic terranes defined 

by Toussaint and Restrepo (1994) and the possible configuration of an oceanic terrane (QC?), which 

is considered to lie within the Romeral Fault System (Villagómez et al., 2011a). Juxtaposition of 

the Santa Marta schists of the northwestern SNSM with the El Difícil High of the northeastern LMV 

suggests that the SNSM has been displaced to the NNW approximately 113 km, which is in 

agreement with previous estimates ranging from 100 to 115 km in magnitude (Tschanz et al., 1974; 

Kellogg, 1984; Boinet et al., 1989). The eastward displacement of the Caribbean plate relative to 

northern South America, together with the left-lateral strike-slip along the Santa Marta fault system, 

were responsible for the tectonic erosion and removal of a great part of the Tahamí-Panzenú terrane 

and of the entire Quebradagrande Complex and Calima terranes from the northern part of the 

present-day SNSM tectonic block (Figure 3.14).   

Though we consider that the LMV shares the same basement terranes with the northern CC 

and possibly with the SNSM, clearly these tectonic provinces have had very different Cenozoic 

histories: the northern CC and the SNSM were strongly uplifted, while the area of the LMV 

subsided in two main depocenter areas. Recently measured crustal thicknesses (Poveda et al., 2015; 

Bernal et al., 2015a) show that the crust is thin under the LMV and coastal Caribbean terranes (24-

35 km), including the SNSM (30 km), while it is much thicker in the northern CC (52-58 km). 

Based on paleo-tectonic reconstructions (Kennan and Pindell, 2009; Boschman et al., 2014), we 

consider that oblique convergence between the Caribbean and the South American plate, the curved 

shape of the margin and the basement fabric of the LMV and Sinú-San Jacinto fold belt all favored 

continued extension, crustal thinning and subsidence in the area since Paleogene times, contrasting 

with the intense compression, exhumation and uplift in the northern CC and SNSM. There also 

appears to be much more Cretaceous to Eocene magmatism in the CC and SNSM, which would 

have also contributed to form a thicker crust. However, the mechanisms which caused the 

extensional reactivation of older inherited basement features and clockwise block rotation since 

Oligocene times remain poorly understood and are beyond the scope of this contribution. 

 

3.5.7 Late Cretaceous Paleogeography 

 

As previously discussed, we consider that there are two main hypothetical, geodynamic scenarios 

for the LMV and San Jacinto fold belt in late Cretaceous (Coniacian-Campanian) times. The first 

hypothesis is illustrated in Figure 3.16, and considers that the Bonga pluton intruded a previously 

accreted oceanic terrane such as the Quebradagrande Complex, in Coniacian to Campanian times. 

According to this hypothesis, the proto-Caribbean plate was being subducted under the South 

American plate (Pindell and Kennan, 2009, Villagómez et al., 2011a, Spikings et al., 2015) and the 

latter was made up by the Proterozoic to Permo-Triassic Tahami-Panzenú and Chibcha terranes. 

The Upper Cretaceous subduction complex had a magmatic arc represented by the Bonga and 

Cicuco plutons but while the Cicuco pluton intruded old continental crust of the Tahamí-Panzenú 

terrane (Silva et al., 2016), the Bonga pluton, located farther to the west, intruded a dominantly 

oceanic terrane (Quebradagrande?) where continental crust was absent or extremely attenuated. The 

forearc basement was probably formed by accreted or off-scraped peridotite blocks and other 

oceanic basement units of the Calima terrane, and was covered by marine organic-rich shales, 
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limestones and cherts of the Cansona Formation of Coniacian to Maastrichtian age (Duque-Caro, 

1979; 1984; 1991; Guzman, 2007). According to this model, sediment source areas for the Cansona 

Formation were located towards the arc to the E and SE, with proximal, shallow marine 

sedimentation taking place closer to the source areas, while in the trench axis, deeper marine 

sedimentation occurred. The Bonga pluton was probably located approximately 250 km to the east 

of the trench, the average distance of volcanic arcs from trenches in present-day subduction zones 

(Tatsumi and Eggins, 1995). However, the present-day location of the Bonga pluton only 170 km 

away from the trench suggests that significant erosion of the older forearc has occurred in the last 

~80 Ma. Though subduction erosion (Clift and Vannucchi, 2004) may have been partially 

responsible for such important erosion, Latest Cretaceous and Paleogene collision of allochthonous 

terranes along the main dextral strike-slip sutures would be also to blame for shaping the present-

day configuration the western margin of the LMV. Farther to the east of the Palestina Fault System, 

in the back-arc areas, Santonian-Campanian sedimentation took place in a marine platform, low-

energy setting, represented by the bituminous black shales of the La Luna Formation and equivalent 

units (Erlich et al., 2003).   

The second hypothesis ascribes the formation of the Bonga pluton between 89 and 75 Ma 

to an allochthonous intra-oceanic arc, which collided with the Permo-Triassic margin of South 

America in latest Cretaceous to early Paleocene times (Bayona et al., 2011; Cardona et al., 2012). 

This hypothesis implies that in Late Cretaceous times there was a west-dipping subduction of the 

proto-Caribbean plate beneath the Caribbean plate, which allowed the formation of an intra-oceanic 

arc in the leading edge of the Caribbean plate (Burke, 1988; Pindell and Kennan, 2009; Kennan 

and Pindell, 2009). However, the recent report of an Upper Cretaceous magmatic arc (Magangue 

arc represented by the Cicuco pluton of 84.5 Ma; Silva et al., 2016), located just 60 km SE of the 

Bonga pluton, is an evidence in favor of a coetaneous, intra-continental east-dipping subduction 

setting. Hence, this hypothesis would imply that during the Upper Cretaceous, there were two 

simultaneous but opposite-dipping subduction zones: to the west, there was a west-dipping 

subduction zone with an intra-oceanic arc in which the Bonga pluton was emplaced, while to the 

east there was an east-dipping intra-continental subduction zone, which led to the emplacement of 

the Cicuco and related plutons in the northern CC, as shown in Figure 10E of Villagómez et al., 

(2011a). The block diagram in Figure 13 of Cardona et al. (2012), depicts the Late Cretaceous 

formation of the Bonga pluton within an intra-oceanic arc above a west-dipping subduction, but it 

does not take into account the formation of the coeval Cicuco and other related intra-continental 

plutons (e.g. Antioquia). Carrying out further geochronologic and paleomagnetic analyses to 

oceanic-affinity rocks outcropping in the boundary between the southern LMV and San Jacinto fold 

belt will help to clarify the doubts about the Upper Cretaceous geodynamic setting of this area of 

NW Colombia.   
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Figure 3.16. Plate-tectonic reconstruction of northern South America and the Caribbean, for Coniacian -Campanian times (based on Kennan and Pindell, 2009), and hypothetical cross–
section with the interpreted geodynamic setting at the Bonga pluton location. 



  3 Structure and age of the LMV basement 

47 

 

 

3.5.8 Final Considerations about the present-day tectonic configuration 

 

Our results obtained from seismic interpretation show that the oceanic plate is being subducted 

under the Sinú-San Jacinto fold belt and LMV at a very low angle, dipping 5 to 9° to the SE. This 

flat-slab geometry extends for a distance of 250 to 300 km, measured from the base of the 

deformation front until the top of the slab reaches an approximate depth of 40 km. There is a fair 

correlation of our shallow top of the subducted slab with the intermediate-depth seismicity data 

farther to the east, suggesting the existence of a bend in the slab, approximately coinciding with the 

Palestina Fault System (Figure 3.13 and dashed line in Figure 3.16). East of this bend, intermediate-

depth seismicity is imaging the Bucaramanga slab (Pennington,1981), which shows a nearly S-N-

trend (N5-10°E), dips between 23 and 30° to the ESE and reaches depths of 160 km near the 

Bucaramanga seismicity nest. Our interpretation of the configuration of the oceanic subducted slab 

in the study area is in agreement with Bernal et al. (2015a), who also identified a very-low-angle 

slab below the LMV and San Jacinto.  

According to the previous interpretation and assuming the hypothesis illustrated in Figure 
3.16, the present-day geodynamic configuration of NW Colombia is thus very different from the 

Coniacian-Campanian configuration, implying an overall migration of the subduction complex to 

the SE. An intriguing aspect of the present-day configuration of the subduction complex is that, 

based on the well-supported interpretation that there is ongoing subduction of the Caribbean plate 

beneath northern South America (Mantilla et al., 2009, Bernal et al., 2015a), a magmatic arc above 

the slab would normally be expected at the point where it reaches depths close to 100 km. This 

occurs in the limits between the Middle Magdalena Valley basin and the Eastern Cordillera where 

there is currently no magmatic arc. Hence, further research has to be carried out to explain the 

absence of a magmatic arc in this region of northwestern Colombia.   

 

3.6 Conclusions 
 

Detailed interpretations of reflection seismic data and new U-Pb and Hf isotope geochemistry in 

zircon confirm that the basement of the Lower Magdalena Valley basin is the northward 

continuation of the basement terranes of the northern Central Cordillera, thus the Lower Magdalena 

experienced a similar pre-Tertiary tectonic history as the latter. Using a regional-scale geological 

and geophysical database, we characterized the basement underneath the Lower Magdalena in terms 

of structure and age, and correlated it with surrounding outcropping terranes. Gravity, magnetics 

and reflection seismic data show that the basement underneath the Lower Magdalena Valley basin 

exhibits a notorious structural compartmentalization and an irregular morphology, which resulted 

from tensional stresses that acted in different orientations. While gravity data shows a broad picture 

of the morphology, magnetics data allows the identification of more localized (magnetic) basement 

highs and fault zones. Detailed seismic mapping reveals that the basement structure of the Lower 

Magdalena is much more complex than previously considered and that it comprises two regions of 

different fault trends, a western region with a dominant ESE-WNW-trending fault family and a 

northeastern region with a NE-SW-trending family. The most important structural features in the 

Lower Magdalena are the Plato and San Jorge depocenters, which are separated by the Magangué-

Cicuco basement high. Estimated basement depths in these depocenters range from more than 24 

thousand feet (>7 km) in Plato and more than 17 thousand feet (>5 km) in San Jorge.   

New geochronological data prove the extension into the Lower Magdalena Valley basin not 

only of the Permo-Triassic terrane (232-300 Ma, Tahamí-Panzenú), but also of the Upper 

Cretaceous (75-89 Ma) magmatic arc of the northern Central Cordillera, confirming the along-strike 

continuity to the north of the arc which includes the Antioquia and Sabanalarga plutons. These 

Permo-Triassic and Upper Cretaceous basement terranes exhibit mainly NW-SE-trending faults and 

lineaments in outcrop and in the subsurface. Hf isotopic analyses from the Bonga Upper Cretaceous 
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pluton suggest that the preceding melts were mantle-derived and possibly intruded young crust with 

oceanic affinity, which we interpret as the northern continuation of the Lower Cretaceous 

Quebradagrande Complex underneath the westernmost segment of the LMV. In the northern LMV, 

volcanic basement of andesitic composition predominates towards the west while Cretaceous low-

grade metamorphic rocks that correlate with similar terranes in the Sierra Nevada de Santa Marta 

and Guajira are dominant in the east, suggesting that the Tahamí-Panzenú terrane does not extend 

into the northern Lower Magdalena. There is a notorious similarity in structural trend between the 

terranes exposed in the San Lucas Ridge (Chibcha terrane) to the east of the Palestina Fault System 

and the interpreted subsurface structures in the northeastern Lower Magdalena.  However, rock 

litho-types and geochronologic data do not entirely support the extension of the San Lucas 

(Chibcha) terrane into the northeastern Lower Magdalena. We thus consider that the Chibcha 

terrane terminates to the north against the northeastern Lower Magdalena, as the Palestina Fault 

System appears to bend to the NE. The NE-SW trend of basement faults in the northeastern Lower 

Magdalena is probably inherited from the Jurassic rifting event which is responsible for the 

conspicuous fabric of surrounding terranes outcropping to the east of the Palestina Fault system, 

while the ESE-WNW trend in the western Lower Magdalena is inherited from a Late Cretaceous to 

Eocene, extension and dextral strike-slip episode, which has been recognized in the western Andean 

forearc from Ecuador to Colombia. Our interpretations confirm previous tectonic correlations 

between the northern Lower Magdalena Valley basin and the Sierra Nevada de Santa Marta and 

agree with a left-lateral strike-slip displacement of ~113 km along the Santa Marta-Bucaramanga 

fault system since the Paleocene. 
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Abstract 
 

Collision with and subduction of an oceanic plateau is a rare and transient process that usually 

leaves an indirect imprint only. Through a tectono-stratigraphic analysis of pre-Oligocene 

sequences in the San Jacinto fold belt of Northern Colombia, we show the Late Cretaceous to 

Eocene tectonic evolution of northwestern South America upon collision and ongoing subduction 

with the Caribbean plate. We linked the deposition of four forearc basin sequences to specific 

collision/subduction stages and related their bounding unconformities to major tectonic episodes. 

The Upper Cretaceous Cansona sequence was deposited in a marine forearc setting in which the 

Caribbean plate was being subducted beneath northwestern South America, producing 

contemporaneous magmatism in the present-day Lower Magdalena Valley basin. Coeval strike slip 

faulting by the Romeral wrench fault system accommodated right-lateral displacement due to 

oblique convergence.  In Latest Cretaceous times, the Caribbean plateau collided with South 

America marking a change to more terrestrially-influenced marine environments characteristic of 

the upper Paleocene to lower Eocene San Cayetano sequence, also deposited in a forearc setting 

with an active volcanic arc. A lower to middle Eocene angular unconformity at the top of the San 

Cayetano sequence, the termination of the activity of the Romeral Fault system and the cessation 

of arc magmatism are interpreted to indicate the onset of low-angle subduction of the thick and 

buoyant Caribbean plateau beneath South America, which occurred between 56 and 43 Ma. Flat 

subduction of the plateau has continued to the present and would be the main cause of amagmatic 

post-Eocene deposition. 

 

Keywords: San Jacinto fold belt, Lower Magdalena Valley, tectono-stratigraphy, Caribbean, 

reflection seismic, flat-slab subduction, U-Pb and Hf isotope Geochronology. 

 

4.1 Introduction 
 

The northwestern margin of South America has experienced a complex Cretaceous to Recent 

tectonic history which involves subduction of the Caribbean plate and later collision of the 

Caribbean oceanic plateau, causing accretion of oceanic terranes in some areas or the subduction 

of the plateau in others (Cediel et al., 2003; Restrepo et al., 2009; Villagómez et al., 2011a; Bayona 

et al., 2012; Spikings et al., 2015; Mora et al., 2017a). While oceanic terrane accretion and later 

subduction of the Farallón and Nazca plates has been better studied in central-western Colombia 

(Pennington, 1981; Van der Hilst and Mann, 1994; Taboada et al., 2000; Corredor, 2003; Zarifi et 



4 Linking San Jacinto tectonostratigraphy with Caribbean subduction  

50 

 

al., 2007; Vargas and Mann, 2013; Chiarabba et al., 2015; Syracuse et al., 2016), collision, 

accretion and subduction of the Caribbean plateau remain poorly understood in northwestern 

Colombia. This is caused by the lack of good-quality geological and geophysical information and 

by the low seismicity of the area, which has made very difficult to image the lithospheric 

configuration of the NW Colombia convergent margin.  

In this study we present a tectono-stratigraphic analysis of the San Jacinto fold belt of 

northwestern Colombia and propose correlations of the interpreted tectono-stratigraphic sequences 

and their bounding unconformities with specific tectonic and geodynamic settings, as deduced from 

the interpretation of reflection-seismic, earthquake and seismicity data. The San Jacinto fold belt 

(Figure 4.1 and Figure 4.2) is a west-verging fold and thrust belt in which an Upper Cretaceous to 

lower Eocene marine basin has been preserved (Duque-Caro, 1979; 1984; 1991; Flinch, 2003; 

Guzman, 2007) and it has remained poorly studied due to the structural complexity, poor outcrops, 

few drill holes and widely-spaced and low-quality reflection seismic data. However, it is an area of 

NW Colombia in which Cretaceous to Eocene sedimentary sequences are well-preserved, hence its 

importance for pre-Oligocene tectono-stratigraphic and plate-tectonic studies. Furthermore, in the 

past decade the National Hydrocarbons Agency of Colombia (ANH- Agencia Nacional de 

Hidrocarburos) made important efforts to acquire new information in the San Jacinto fold belt by 

drilling stratigraphic boreholes and acquiring new geophysical data, including air gravity (Bouguer 

anomaly), magnetics and reflection-seismic data. This has been complemented by new well and 

seismic data acquired by oil and gas companies doing hydrocarbon exploration in the area.  

Taking advantage of the recently acquired data in the area, we have revised and updated 

Upper Cretaceous to Eocene tectono-stratigraphic framework of the San Jacinto fold belt, which 

has been integrated to surrounding basins in order to identify the main regional sequences and 

unconformities in northwest Colombia. The tectono-stratigraphic analysis included new seismic 

interpretations and maps, outcrop and well log correlations, biostratigraphy, organic geochemistry 

and sedimentary provenance analyses through detrital zircon U-Pb geochronology and Hf isotope 

geochemistry. In order to look for correlations between our defined sequences, unconformities and 

major regional tectonic events such as collision/subduction of the Caribbean oceanic plateau, we 

used reflection-seismic, earthquake and seismicity data, including our own interpretations and 

maps, as well as previous published work on lithospheric imaging of northwestern South America. 

Based on previous studies and on the results of our new data and analyses, we also propose a 

present-day geometric model of the lithospheric configuration of NW Colombia.  

 

4.2 Geological Setting 
 

The San Jacinto fold belt (SJFB) is located in northwestern South America, close to the northern 

end of the western South American convergent margin (Figure 4.1). However, convergence in the 

study area does not involve the Nazca plate, but instead it involves the Caribbean plate, which is 

separated from the Cocos and Nazca plates by the Panama-Chocó block (inset in Figure 4.1). It has 

been proposed that this area is characterized by the slow and flat-slab subduction of the Caribbean 

oceanic plate beneath South America, forming the Bucaramanga and Caribbean flat slabs imaged 

and described by several researchers (Pennington, 1981; Van der Hilst and Mann, 1994; Taboada 

et al., 2000; Zarifi et al., 2007; Chiarabba et al., 2015; Bernal et al., 2015a; Syracuse et al., 2016). 

Slow and flat-slab subduction would be the cause of the low seismicity and of the lack of a 

magmatic arc in northwestern Colombia (inset in Figure 4.1).  

 

The SJFB is a SW-NE trending terrane which makes up part of the subduction complex of 

northwestern Colombia (Mantilla, 2007; Mantilla et al., 2009) and is located between an Oligocene 

to Recent forearc basin to the east (Lower Magdalena Valley basin-LMV, Figure 4.1) and the 

Miocene to Recent accretionary prism to the west (Sinú-Southern Caribbean deformed belt; Duque-

Caro, 1979; Mantilla et al., 2009; Bernal et al., 2015b). According to Mantilla et al. (2009), the 

SJFB represents the fossilized part of the accretionary prism of the northwest Colombia subduction 

complex, which today acts as dynamic backstop. It is formed by three discontinuous ranges or 
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anticlinoria, called by Duque-Caro (1979) from south to north, San Jerónimo, San Jacinto and 

Luruaco (Figure 4.1). Pre-Oligocene sedimentary units exposed in this fold belt have been 

considered the northward extension of the Western Cordillera of Colombia (Barrero et al., 1969; 

Duque-Caro, 1979; Cediel et al., 2003) and have been related to an oceanic-type basement. The 

Romeral Fault System (RFS), which is also considered to continue from the south to form the 

eastern boundary of the SJFB, appears to be separating the oceanic to transitional basement under 

the belt from the felsic continental basement of the South American crust which floors the LMV in 

the east (Duque-Caro, 1979; Flinch, 2003; Mora et al., 2017a). The RFS makes part of a ~2000 km 

long tectonic suture that extends from Ecuador (Peltetec Fault). There is general consensus about 

the large-scale right-lateral strike-slip movement that occurred along this fault zone during the 

Cretaceous, causing the juxtaposition of allochthonous oceanic terranes against Central Cordillera 

basement blocks (Cediel et al., 2003; Villagómez et al., 2011a; Spikings et al., 2015). The northern 

extension of the RFS has also been an important tectono-stratigraphic feature as shown by the 

different stratigraphic successions preserved on both sides of the fault system (Figure 4.2). In the 

SJFB, west of the RFS, there are Upper Cretaceous to Eocene sedimentary units which are not 

preserved in the LMV to the east (Duque-Caro, 1979; 1984) and which will be the focus of the 

tectono-stratigraphic analysis performed in this study.  
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Figure 4.1. Geological map of the San Jacinto fold belt, highlighting outcrops of Cretaceous to Eocene units and 
showing major structural and morphologic features. RFS: Romeral Fault System; SJF: San Jerónimo Fault; SiL: Sinu 
Lineament; EDF: El Dique Fault. Based on Gomez et al. (2007). Inset: Tectonic map of northwestern South America 
with topography and bathymetry, showing the location of the Lower Magdalena Valley basin (LMV), the Sinú-San 
Jacinto fold belt (SSJFB), and the active volcanoes. Present-day tectonic plate motions are shown in yellow (after 
Trenkamp et al., 2002). WC: Western Cordillera; CC: Central Cordillera; EC: Eastern Cordillera; RFS: Romeral Fault 
System; PFS: Palestina Fault System; BF: Bucaramanga Fault; SMF: Santa Marta Fault; OF: Oca Fault; BoF: Bocono 
Fault. 
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Figure 4.2. WNW-ESE-trending chronostratigraphic chart of the Sinú, San Jacinto and Lower Magdalena areas, based on different sources (Hocol, 1993; ICP, 2000; Guzman, 2007) and 
adjusted with our recent analyses of well and outcrop samples. Biostratigraphy is based on numerous papers and industry reports by Duque-Caro (1979, 1984, 1991, 2000, 2001, 2011a 
to 2014), tectonic events are after Villagómez et al. (2011a and b), Parra et al. (2012), Saylor et al. (2012), Mora et al. (2013a), Caballero et al. (2013a, b), Mora et al. (2015), De La Parra 
et al. (2015),  while the eustatic curves are from Haq et al. (1987) and the climatic events from Zachos et al. (2001). 
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4.2.1 The Basement of the San Jacinto fold belt (SJFB) 

 

Basement information in the SJFB comes from localized outcrops located in the southernmost 

SJFB, close to the northern Western Cordillera (WC), and from a couple of reports from old drill 

holes which have a high degree of uncertainty, suggesting the predominance of mafic and ultramafic 

rocks (Figure 4.2). These Upper Cretaceous mafic and ultramafic rocks have been related to 

allochtonous, accreted oceanic terranes (Cediel et al., 2003; Villagómez et al., 2011a). From gravity 

modelling, the basement under the SJFB is considered to be thinned-continental to transitional, with 

localized mafic allochthonous blocks (Cerón et al., 2007; Mantilla et al., 2009; Bernal et al., 

2015a). However, recent Hf isotope geochemistry of a pluton in the western Lower Magdalena 

valley (Bonga pluton, Mora et al., 2017a) suggests that it intruded a young crust of possible oceanic 

affinity, such as the Quebradagrande and related terranes which have been studied farther south, 

within the RFS between the Central and Western Cordilleras.   

 

4.2.2 Upper Cretaceous to lower Oligocene stratigraphic units 

 

Several researchers used the name “Cansona” to refer to the Upper Cretaceous strata that outcrop 

in the “Cerro Cansona” area of the San Jacinto Anticlinoria (Figure 4.2; Duque-Caro, 1972; Duque-

Caro et al., 1996; Guzman et al., 2004). The Cretaceous strata in the SJFB consists of a volcano-

sedimentary succession with a predominantly volcanic lower part and an upper part consisting of 

organic-rich and calcareous mudstones, limestones and cherts with few quartzarenites (Aleman, 

1983; Clavijo and Barrera, 1999; Guzman, 2007), deposited in marine environments.  

Upper Paleocene to lower Eocene rocks have been described in outcrops and drill holes all 

along the SJFB (Guzman, 2007; Figure 4.2). They comprise a fining-upward succession of 

polymictic conglomerates and litharenites towards the base and gray siltstones and mudstones with 

minor chert and limestone interbeds (Guzman et al., 2004; Guzman, 2007). Though several names 

have been proposed for this succession, the most common name is “San Cayetano” (Figure 4.2, 

Chenevart, 1963; Guzman et al., 2004; Guzman, 2007). Interpretations of its depositional 

environment range from deep marine turbiditic fans (Duque-Caro, 1972; Aleman, 1983; Guzman, 

2007), turbiditic to distal deltaic (Geosearch Ltda., 2006) and fan deltas (ATG-ANH, 2009). The 

lower contact with the Upper Cretaceous Cansona sequence has been described as unconformable 

(Duque-Caro, 1979; Guzman et al., 2004; Guzman, 2007).  

An angular middle Eocene unconformity separates the upper Paleocene to lower Eocene 

San Cayetano deposits from polymictic conglomerates, lithic sandstones, red algae limestones and 

mudstones of middle to upper Eocene age, which have received different names depending on the 

lithology and locality (Guzman et al. 2004: Guzman, 2007). For simplicity, the sedimentary 

succession of middle to upper Eocene age will be called here Chengue (Figure 4.2, Guzman et al., 

2004; Guzman, 2007). The conglomeratic facies were deposited in fan deltas and related submarine 

slope deposits (Guzman, 2007), while the limestone facies were deposited in shallow marine 

carbonate platforms (Guzman et al., 2004).  

Sandstones, conglomerates and mudstones of upper Eocene to lower Oligocene age are 

locally preserved in the SJFB and unconformably overlying the middle to upper Eocene rocks of 

the Chengue unit (Guzman et al., 2004; Guzman, 2007). These clastic deposits have been called 

San Jacinto Formation (Figure 4.2) and were deposited in proximal deltaic fans (Guzman et al., 

2004; Guzman, 2007), while upper Eocene carbonate deposits which occur in the central and 

southern SJFB have been called the Toluviejo Formation (Guzman et al., 2004). The lower and 

upper contacts of this unit are unconformities (Alemán, 1983; Guzman et al., 2004; Guzman, 2007).  

Upper Oligocene to Recent deep marine to deltaic and continental units have been partially eroded 

in the SJFB but have been well preserved farther to the east, where they have filled the younger 

Lower Magdalena Valley basin (Figure 4.2 and Figure 4.4).  
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4.3 Methodology  
 

4.3.1 Construction of the tectono-stratigraphic framework 

 

We interpreted in two-way-time (TWT) more than 3,000 km of 2D-reflection-seismic, which were 

tied to more than 40 wells that have been drilled in the San Jacinto fold belt (Figure 4.3) and to the 

outcropping units. We identified and defined four Upper Cretaceous to lower Oligocene tectono-

stratigraphic sequences separated by major unconformities (Figure 4.2 and Figure 4.4, Text B1), 

which according to Catuneanu et al. (2009) correspond to “depositional sequences”. Sequence 1 

comprises Upper Cretaceous deposits of the Cansona unit, Sequence 2 consists of upper Paleocene 

to lower Eocene strata of the San Cayetano unit, Sequence 3 comprises middle to upper Eocene 

rocks of the Chengue Group and Sequence 4 consists of upper Eocene to lower Oligocene deposits 

of the San Jacinto unit. The lack of more detailed data for this study makes very difficult the 

identification of sequence stratigraphic surfaces other than subaerial unconformities, and hampers 

the proposal of systems tracts (Catuneanu et al., 2009).  

 

 
 
Figure 4.3. Reflection seismic and well database used for this study, provided by Hocol S.A. Colors represent 
different seismic surveys, the wells used in this study are shown in yellow and outcrops in pink. Location of Figure 
4.4 and of seismic sections in Figure 4.8 to Figure 4.11 are shown in white. Exact location of lines in Figure 4.10 
is not shown due to confidentiality. 
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Figure 4.4. SSW-NNE-trending chronostratigraphic chart along the strike of the San Jacinto fold belt, built with available well and outcrop data, showing the studied tectono-
stratigraphic sequences. Wells with new geochronology analyses are highlighted and the lithology legend is the same as in Figure 4.2.    
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4.3.2 Detrital zircon U-Pb Geochronology and Hf Isotope Geochemistry 

 

In order to expand the geochronological dataset for the pre-Oligocene strata in the SJFB and for 

correlations with basement units in northern Colombia, samples (cuttings) for petrography and 

detrital zircon U-Pb and Hf isotope analyses were recovered from two wells located in the northern 

half of the SJFB. Six samples from upper Paleocene to upper Eocene units (San Cayetano and 

Chengue) were collected in the C-1 well, located in the northern San Jacinto fold belt, while two 

more samples from an upper Eocene to lower Oligocene unit (San Jacinto) were collected in the 

SamanEST-1 well, located farther south, close to the boundary between the SJFB and the LMV 

(Figure 4.3 and Figure 4.4). The SamanEST-1 well is located 50 km to the north of the Bonga-1 

well, which found granitic basement of Coniacian to Campanian age (Mora et al., 2017a). The U-

Pb geochronology and Hf isotope geochemistry detrital zircon analyses were done at the Arizona 

LASERCHRON Laboratory and the detailed methodology is presented in Text B2. The stratigraphic 

succession in both wells was dated by Duque-Caro (2013 a, b). 

 

4.3.3 Seismicity data 

 

We also compiled the available earthquake and seismicity data from the study area, not only to 

characterize the main faults and structural features in terms of seismic activity and kinematics, but 

also to try to image the lithospheric structure of the subduction zone in the study area. Seismicity 

data from the study area was downloaded from the Colombian Earthquake Network (Red 

Sismológica Nacional, http://seisan.sgc.gov.co/RSNC/) and plotted both in map and section view, 

together with the seismic interpretation and maps. A total of 14,081 events were obtained, 

corresponding to earthquakes with Mw 1 to 9, recorded from June 1, 1993 to November 26, 2015. 

We interpreted and mapped the near top of the subducting oceanic plate under the SJFB, which 

connects with a megathrust that can be imaged in some of the regional seismic lines, as shown in 

Mora et al., 2017a (Figure A 1). Using stacking processing velocities from reflection seismic data, 

we depth-converted the interpreted subduction megathrust and plotted it with the earthquake and 

seismicity data in cross sections (Figure B 1). Further procedures followed to construct our maps 

and plots are described in Text B3. 

 

4.4 Results 
 

4.4.1 Stratigraphic framework  

 

The general characteristics of the identified and studied tectono-stratigraphic sequences are 

presented in Table 4.1 and the detailed descriptions are found in Text B1. Though our tectono-

stratigraphic framework is mostly based on previous research, it was built after incorporating a 

great deal of recent regional drill hole, seismic and outcrop data and interpretations. 

 

4.4.1.1 Sequence 1 (Cansona-Upper Cretaceous)  
The oldest, 2nd-order sequence is of Coniacian to Maastrichtian age (see Text B1) and comprises 

the bituminous shales, cherts and limestones of the Cansona unit. Biostratigraphic data compiled 

by Duque-Caro (2000, 2001) and Guzman (2007) show an absence of lower Paleocene planktonic 

foraminiferal zones (P.0 to P.2) in the SJFB, indicating the existence of a regional unconformity 

which marks the upper limit of this sequence (Figure 4.4). The Cansona sequence appears to show 

a general coarsening- and shallowing-upward pattern (Guzman, 2007), similar to the pattern 
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displayed in other Upper Cretaceous successions of northern Colombia (Villamil, 1999), all of 

which are in agreement with the global eustatic curve of Haq et al. (1987, Figure 4.2). 

 

 
 
Table 4.1. Main characteristics of the studied Upper Cretaceous to Eocene tectono-stratigraphic sequences in the 
San Jacinto fold belt. More information, detailed descriptions and sources of biostratigraphic, petrographic and 
organic geochemistry reports are found in Text B1. 

 

 

4.4.1.2 Sequence 2 (San Cayetano-upper Paleocene to lower Eocene) 
This is also a 2nd-order sequence which has been dated as upper Paleocene to lower Eocene 

(planktonic foraminiferal zones P.3 to P.9, see Text B1). The late Paleocene was characterized by a 

high global sea level (eustatic curves in Figure 4.2, Haq et al., 1987), which could have influenced 

the onset and extension of San Cayetano sedimentation. Biostratigraphic data shows that there is a 

big hiatus in the center of the SJFB, where the lower Eocene is missing, while to the north the 

section is more complete and the contact with the overlying sequence appears to be a disconformity 

(Figure 4.4 and Table 4.1).  

 

4.4.1.3 Sequence 3 (Chengue-middle to upper Eocene) 
 

A middle to upper Eocene, 2nd-order sequence corresponds to the Chengue Group, defined by the 

P.10 to P.14 planktonic foraminiferal zones of middle to late Eocene age (Text B1). Biostratigraphy 

indicates that the unconformity between Sequences 2 (San Cayetano) and 3 (Chengue) corresponds 

to the P.9 to P.10 foraminiferal zones, implying a time interval of 46 to 51 Ma which includes the 

limit between the lower and middle Eocene. This syn-tectonic sequence has been eroded in the 

southern part of the SJFB and is more preserved in the northern part (Figure 4.4). 
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4.4.1.4 Sequence 4 (San Jacinto-upper Eocene to lower Oligocene) 
 

This locally preserved 2nd-order sequence comprises the siliciclastic San Jacinto unit and the 

calcareous Toluviejo unit (Figure 4.2 and Figure 4.4), which according to biostratigraphic studies 

(Duque-Caro, 1979; Guzman et al., 2004; Guzman, 2007) are defined by the P.15 to P.20 planktonic 

foraminiferal zones of upper Eocene to lower Oligocene age.  

 

4.4.2 Detrital zircon U-Pb geochronology and Hf isotope geochemistry 

 

The detrital zircon U-Pb geochronology of samples of upper Paleocene to Eocene samples 

(Sequences 2 to 4, Figure 4.5) shows three clear provenance peaks: a main Upper Cretaceous (70-

88 Ma, Coniacian-Maastrichtian) peak, a secondary peak of Permo-Triassic age (230-250 Ma) 

which is less evident in the SamanEST-1 well, and a minor Albian-Cenomanian peak (~100 Ma). 

However, the Paleocene to Middle Eocene samples also evidence both lower Paleozoic and 

Proterozoic provenance. Therefore, detrital zircon U-Pb geochronology indicates that the upper 

Paleocene to lower Oligocene sediments of Sequences 2 to 4 were mostly sourced from Upper 

Cretaceous and Permo-Triassic basement blocks.  

 

 
 
Figure 4.5. Results of detrital zircon U-Pb geochronology in samples of wells C1 and SamanEST-1. Reference 
basement ages for possible source terranes were compiled using the data of Cordani et al. (2005), Vinasco et al. 
(2006) , Ibañez-Mejia et al. (2007); Cardona et al. (2010a) , Cardona et al. (2010b) , Horton et al. (2010) , Montes et 
al. (2010); Restrepo-Pace and Cediel (2010) , Weber et al. (2010) , Ibanez-Mejia et al. (2011) , Leal-Mejia (2011) , 
Villagomez et al. (2011a) , Cardona et al. (2012); Cardona et al. (2014); Cochrane et al. (2014), Ibanez-Mejia et al. 
(2015) , Montes et al. (2015); Spikings et al. (2015); Weber et al. (2015);  Van der Lelij et al. (2016); Mora et al. 
(2017a). 

 

Hf isotopic data shows that the three dated detrital zircon populations (Coniacian-Maastrichtian, 

Albian-Cenomanian and Permo-Triassic) are related to different magmatic sources (Figure 4.6). 

While the Coniacian-Maastrichtian zircons would be related to a juvenile mantle source, the older 

Albian-Cenomanian and Permo-Triassic zircons have much lower εHf(t) values, indicating a much 

older crustal source. Furthermore, in the SamánEST-1 well there are two sub-populations within 
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the Upper Cretaceous Coniacian-Maastrichtian population (Figure 4.6c), and both overlap quite 

well with the compositions of the Bonga pluton (Mora et al., 2017a), located 50 km to the south 

(Figure 4.3). The Permo-Triassic Hf isotopic compositions from the C-1 well also show a good 

match with the Hf compositions of the Permo-Triassic basement in the HojarascaEST-1 and 

VIM15Est-2 wells (Mora et al., 2017a) and with data from previous studies (Cochrane et al., 2014; 

Cardona et al., 2012).  

 

 
 
Figure 4.6. Results of detrital zircon Hf isotope geochemistry in samples of wells C1 and SamanEST-1. Good 
matches with basement data from Mora et al. 2017a, Cochrane et al. 2014 and Cardona et al. 2012 suggest a link 
between the analyzed pre-Oligocene sedimentary units and the Permo-Triassic and Upper Cretaceous basement 
terranes in the LMV and northern CC.   
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4.4.3 Seismic stratigraphy and facies 

 

Seismic characterization of each sequence is not an easy task considering the structural 

deformation, a not very dense reflection-seismic coverage with poor to locally fair quality, partial 

erosion and notorious along-strike facies and thickness changes of the sequences. Though the 

present-day SJFB is the result of at least two contraction and inversion tectonic pulses, which have 

obscured the original Cretaceous to Eocene structural fabric (Figure 4.7), in this study we document 

two areas in which pre-Oligocene sequences have remained deeply buried and in which their 

original structural fabric has been better preserved. The first area, in the southeastern SJFB, is 

located between the San Jerónimo anticlinorium to the west and the SJF to the east (section 3, Figure 
4.7), while the second area is the northernmost portion of the SJFB, located to the northeast of the 

Luruaco anticlinorium (section 1, Figure 4.7). In cross section it can be seen that Sequences 1 and 

2 are mostly restricted to the western side of the RFS, and would be limited to the east by the San 

Jerónimo Fault (SJF). Sequences 3 and 4 extend farther to the east and probably into the LMV, 

where equivalent deposits would be preserved in the hanging wall of major extensional faults and 

in the deepest part of the Plato depocenter.  

Reflection seismic imaging of the Upper Cretaceous Sequence 1 is very poor, hence it is 

very difficult to characterize it in terms of seismic facies and seismic stratigraphic relationships. 

The base of the sequence does not have a clear expression in the seismic data (Figure 4.8 and Figure 
4.9), suggesting the absence of an acoustic impedance contrast. This is in agreement with the few 

descriptions of the basal portion of the sequence that report a transitional lower contact, which 

includes interbedded marine sediments and volcanic deposits. Imaging is extremely poor at shallow 

levels in which seismic facies are mainly transparent, with only local and discontinuous, east-

dipping, high-amplitude parallel reflectors that appear to form the steep flanks of west-verging 

thrust blocks (Figure 4.8). The upper contact with Sequence 2, which has been described in outcrops 

as an unconformity, is very difficult to identify in the seismic data. However, in the syncline located 

west of the San Jorge depocenter (Figure 4.8a), we interpret an angular unconformity which may 

correspond to the contact between Sequences 1 and 2. Seismic data also suggests that Sequence 1 

gets thinner to the east, either by erosion related to the lower to middle Eocene unconformity or by 

stratigraphic thinning of the sequence probably towards more proximal areas.  

A poor seismic imaging of Sequence 2 has been obtained in the southern SJFB (Figure 
4.8b), where Sequences 1 and 2 appear as folded strata, which are separated from younger post-

lower Eocene sequences by an angular unconformity. Farther north, in the syncline preserved to the 

west of the San Jorge depocenter (Figure 4.8a), Sequence 2 shows a divergent pattern with fanning 

towards the west and onlap towards the east, against the underlying Sequence 1. Such geometry 

would be related to sedimentation in very inclined surfaces, typical of slope deposits such as those 

interpreted in nearby outcrops. In the northern SJFB, Sequence 2 appears as a series of ESE-dipping 

high amplitude and low frequency reflectors that have been interpreted as extensional rotated fault 

blocks (Figure 4.10b). Detailed mapping of such structures showed that they are forming two sets 

of extensional faults, one with a SSW-NNE orientation and the second one with a WNW-ESE 

orientation (Mora et al., 2013). The upper contact of Sequence 2 is an angular unconformity, which 

has been imaged in several seismic sections (Figure 4.7 to Figure 4.10). Considering the age of 

Sequences 2 and 3, the approximate age of the unconformity is marked by the planktonic zones P.9 

to P.10, corresponding to the limit between the lower and middle Eocene (Figure 4.2 and Figure 
4.4). As seen in the seismic cross-sections (Figure 4.7 to Figure 4.11), the activity of the RFS, 

including the SJF, has been sealed by the lower to middle Eocene unconformity, and the eastward 

tilting of the whole fold belt has been caused by a deeper and younger major fault that probably 

extends to the deformation front of the accretionary prism, in offshore areas much farther to the 

west.  
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Figure 4.7. NW-SE-trending geo-seismic cross-sections in two-way-time (TWT), showing the along-strike 
variation in structure of the SJFB, LMV and RFS, and highlighting tectono-stratigraphic relationships among the 
studied sequences. The SJFB exhibits more contraction and shortening in the central and southern areas, whereas 
in the north (section 1), where pre-Oligocene units are buried, it displays much less contraction. The activity of 
the RFS also decreases from S to N. SF: Sinu Fault; SJF: San Jerónimo Fault; PFS: Palestina Fault System; AF: 
Algarrobo Fault.     
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Figure 4.8. TWT-seismic lines showing the interpreted structure of the RFS and SJFB in the southern part of the 
study area and the seismic and outcrop expression of the impressive, lower to middle Eocene unconformity above 
sequences 1 and 2. The San Jerónimo Fault (SJF) in the southern SJFB appears to be responsible for the presence 
of pre-Oligocene units towards the east, into the southern LMV. Location of the sections is shown in Figure 4.3 
and uninterpreted versions of the seismic lines are included as supplementary material (Figure B 2). 
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Figure 4.9. TWT-seismic line showing the interpreted structure of the northern San Jacinto anticlinorium and of 
the northwestern LMV, highlighting the pre-Oligocene tectono-stratigraphic sequences. Thick deposits of 
Sequence 4, drilled by the SamanEST-1 well, have sealed the RFS, which would only be responsible for slight 
folding. Main deformation of the SJFB is related to the activity of the Sinu Fault (SF) and other deeply-rooted 
structures which appear farther to the W, in the Sinú fold belt. The location of the section is shown in Figure 4.3 
and an uninterpreted version of the seismic line is included as supplementary material (Figure B 3).  

 

 

 
 
Figure 4.10. TWT-seismic lines showing the interpreted structure of the northernmost SJFB. Extensional 
structures are well preserved in this area, in contrast to the central and southern areas of the fold belt where 
compression and strike-slip deformation is predominant. The seismic lines show how Sequence 3 delimits a lower 
structural domain (Sequences 1 to 3) from an upper structural domain. An example of a classic sandy turbidite, 
occurring in Sequence 2 and described in a stratigraphic section in the northern SJFB, is also shown. Sequence 4 is 
not preserved in this area. Line in Figure 4.10a is a strike line, trending approximately from NE to SW, while the 
line in Figure 4.10b is a dip line, trending approximately from SE to NW. The lines are located close to the C-1 drill 
hole in the northern SJFB, but due to confidentiality, the exact location of the lines cannot be provided.  
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Figure 4.11. TWT-seismic lines in the central to northern SJFB (eastern San Jacinto anticlinorium) showing the 
onlap of Sequences 3 and 4 against the basement to the ESE, sealing the RFS (Figure 11a). Figures 4.11b and c 
show the interpreted syn-extensional deposits of Sequence 4 preserved in extensional faults trending ESE-WNW. 
Location of the sections is shown in Figure 4.3 and uninterpreted versions of the seismic lines are included as 
supplementary material (Figure B 5). 

 

Sequence 3 is best preserved in the northern SJFB where it has also been well imaged by 

2D and 3D-seismic data (Figure 4.10) and has been drilled by wells such as the C-1. This sequence 

has notorious lateral thickness and facies changes. In the northern SJFB, Sequence 3 is also affected 

by extensional faults (Figure 4.10), which, when mapped in detail with 3D-seismic, were found to 

have two main, probably inherited structural trends, a SSW-NNE trend and a WNW-ESE trend 

(Mora et al., 2013). The carbonates tend to be preserved in areas interpreted as paleo-highs, while 

conglomerates appear to occur in low areas (Figure 4.10). In the eastern San Jacinto anticlinoria, 

seismic packages with medium to high amplitude and frequency reflectors have fossilized the RFS 

and are onlapping the basement towards the east (Figure 4.11a).  Sequences 3 and 4 thus represent 

the onset of landward-stepping sedimentation in the area after the lower to middle Eocene tectonic, 

uplift and erosional event. The lower contact of Sequence 3 is a clearly imaged angular 

unconformity, while the upper contact is also unconformable with upper Oligocene strata in the 

northern SJFB (Figure 4.10) and with upper Eocene to lower Oligocene strata of Sequence 4 (Figure 
4.11a). 

Sequence 4 exhibits high thicknesses in the axis of a syncline in which the T-2XP was 

drilled (section 7, Figure 4.7). This sequence is also imaged in seismic data in the central-eastern 

part of the San Jacinto anticlinoria, where the Samán stratigraphic well was drilled (Figure 4.1, 

Figure 4.7/section 2 and Figure 4.11a). However, in this area, Sequences 3 and 4 were deposited on 

top of the basement and show moderate to high amplitude, medium to high frequency reflectors, 

which are divergent towards the west and onlap older units at low angles towards the ESE (Figure 
4.9 and Figure 4.11a). Seismic lines oriented parallel to the belt’s strike (Figure 4.11b and c) show 

that the clastic deposits of Sequence 4 are also affected by the WNW-ESE extensional fault family 

that is affecting Sequence 3 in the north.  

 

4.4.4 Seismicity data and paleo-tectonic reconstructions 

 

4.4.4.1 Present-day lithospheric configuration of the convergent margin in NW 
South America 

 

We used the publicly available seismicity data and data from previous research (e.g. Bezada et al., 

2010) to study the present-day geometry and configuration of the subduction zone of NW 

Colombia. We constructed a depth map of the top of the subducted oceanic slab beneath South 
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America and a cross-section depicting its geometry and the configuration of the subduction zone of 

NW Colombia (Figure 4.12 and Figure 4.13). The detailed description of the construction of the 

map and cross-section is included in Text B3 and Figure B 1. 

The study area is characterized by a low seismicity, with very few scattered, shallow (< 70 

km) and low magnitude (< 4 Mw) events (Mora et al., 2017a), and there are no focal mechanism 

solutions in the San Jacinto fold belt. Although it seems to be a seismically inactive area, some neo-

tectonic fault activity has been identified by Veloza et al. (2012) in the northern part of the belt.  

 

 
 
Figure 4.12. Regional WNW-ESE-trending cross-section showing the configuration of the subducted Caribbean 
oceanic plate, as interpreted from reflection-seismic mapping for the shallowest part, intermediate-depth 
seismicity for the central part and from published tomography data (Bezada et al., 2010) for the deepest part of 
the cross-section. The top of the basement under the LMV from reflection-seismic mapping and the topography 
are also displayed. Gray squares represent the uncertainty (± 15 km) in the horizontal and vertical measurements. 
This cross-section is located farther to the north of the cross-section presented by Mora et al. (2017a, their Figure 
13).  We highlight the end of the subducted slab at a depth of ~600 km, which would have entered the trench in 
early to Middle Eocene times, assuming convergence velocities shown in Table 4.2. Further explanations in the 
text. 

The Caribbean plate subducted beneath NW South America appears to be formed by three 

different slab segments, separated by kinks or bends (Figure 4.12): a northwestern shallow and very 

flat slab segment, a central intermediate-depth and flat-slab segment (the “Caribbean” flat-slab of 

Syracuse et al., 2016), and a southeastern deep and very steep slab segment imaged by Bezada et 

al. (2010). The three slab segments could have different geometries, thicknesses and physical 

properties, as deduced from deep drilling (DSDP), reflection-seismic imaging, tomography data 
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and water depths in the Colombia and Venezuela basins (Leroy et al., 1996; Mauffret and Leroy, 

1997, Driscoll and Diebold, 1999; Magnani et al., 2009; Kroehler et al., 2011). In general, the 

Colombian Basin to the west is composed of an oceanic plateau with thicknesses between 10 and 

18 km (Bowland and Rosencrantz, 1988), while north of Colombia, in the area of the Beata Ridge 

(Figure 4.13), the plateau appears to be thicker (Kroehler et al., 2011).  Slab segments with specific 

physical and chemical properties would then have specific buoyancy properties, which could 

explain such changes in dip.  

 
 

 
 
Figure 4.13. Integrated depth map in meters of the top of the oceanic Caribbean plate (in colors) which has been 
subducted under NW South America since early to middle Eocene times. Note the change in dip of the slab in the 
location of the Palestina Fault System (PFS) and how it changes its strike as it approaches the Oca Fault. The white 
contours are the depth structure of the basement below the LMV, SJFB and Guajira basins. SCDB: South Caribbean 
deformed belt (red dashed lines); RFS: Romeral Fault System; SMF: Santa Marta fault; BMF: Bucaramanga fault; 
SNSM: Sierra Nevada de Santa Marta.; CuF: Cuisa fault. Further details about the construction of this map and the 
related cross-section (Figure 4.12) are found in the supplementary text B3 and in Figure B 1. 

 

The previously described segmented slab geometry of the subducted Caribbean plate does not seem 

to continue to the north of the Oca-El Pilar-San Sebastian Fault System. In the Guajira Peninsula 

of northernmost Colombia, seismic interpretations and gravity modelling (Londoño et al. 2015 and 

this study) show that the Caribbean plate is being subducted at low angle beneath the Southern 

Caribbean deformed belt. Farther to the east, in northern Venezuela, wide-angle reflection seismic 

and tomography data (Magnani et al., 2009; Bezada et al., 2010) show that the boundary between 

northern South America and the southern Caribbean plate is dominated by strike-slip tectonics 

related to the Oca-El-Pilar-San Sebastián fault system (OEPFS) and the Caribbean plate is clearly 
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imaged at shallow levels in the block to the north of the fault system. Seismicity also changes 

abruptly from the southern block of the OEPFS, where the Wadati-Benioff zone is clearly imaged 

by intermediate depth seismicity, to the northern block of the fault system, where only isolated and 

shallow seismic events occur (Syracuse et al., 2016 and section 2 in Figure B 1).  

Based on the steep descent of the Caribbean plate under Maracaibo and the Mérida Andes, 

previous researchers have proposed that there should be a tear in the Caribbean plate (Masy et al., 

2011; Bezada et al., 2010; Levander et al., 2015), which would be separating the steeper dipping 

Caribbean slabs, located to the south of the OEPFS, from the shallow Caribbean plate that has been 

imaged north of the same fault system. Using data from previous research and our new depth map 

of the shallow subducted Caribbean oceanic segment under the San Jacinto fold belt, Lower 

Magdalena Valley basin and the Perijá Ridge (Figure 4.13), we propose a new interpretation of the 

three-dimensional plate tectonic configuration of northern Colombia and western Venezuela 

(Figure 4.14). This interpretation implies that the boundary between northern South America and 

the Caribbean plate consists of two tears or subduction-transform edge propagator (STEP, Govers 

and Wortel, 2005) faults instead of only one. The difference is that the STEP fault previously 

proposed by Govers and Wortel (2005) is tearing the Atlantic/South American plate in the area of 

the Paria seismicity cluster, at the eastern end of the OEPFS in northeastern Venezuela (Russo et 

al., 1993), while the newly proposed STEP fault would be tearing the Caribbean plate in an 

undefined area of the western OEPFS, probably close to the Sierra Nevada de Santa Marta (SNSM, 

Figure 4.14). This means that the Oca-San Sebastián-El Pilar dextral fault system is the tear fault 

that limits the Caribbean and South American/Atlantic plates at crustal and mantle levels. Our 

observations are in agreement with Levander et al. (2015) who propose that the southern Caribbean 

plate boundary is a complex strike-slip fault system bounded by oppositely vergent subduction 

zones. 

 

4.4.4.2 Upper Cretaceous to Eocene paleotectonic reconstructions 
 

It is expected that the onset of subduction of the irregular Caribbean plateau had an important effect 

on the upper plate and that this effect should be recorded in the sedimentary basins in the area. We 

used the free software package GPlates (version 2.0.0, www.gplates.org; Boyden et al., 2011) and 

two paleo-tectonic models available for this area (Boschman et al., 2014 and Matthews et al., 2016 

from the GPlates database) to perform Late Cretaceous to Eocene paleo-tectonic reconstructions 

(Figure 4.15). Our reconstructions show the motion of the Caribbean plate relative to a fixed South 

American plate but it is important to highlight that plate tectonic processes between the Caribbean 

and the Americas were driven by relatively fast, westward motion of North and South America, 

while the Caribbean plate has remained nearly stationary since the Eocene (Müller et al., 1999).  

Using average plate convergence velocities of the Caribbean plate relative to South America over 

the last 45 Ma, we calculated for both models the geological time when each of the three subducted 

slab segments of the Caribbean plate imaged along cross-section A-A’ (Figure 4.12) entered the 

trench (Table 4.2). The age of entrance in the trench of the whole Caribbean slab (total length of 

1065 ± 15 km) ranges from lower Eocene (c. 56 ± 2 Ma) to middle Eocene (c. 43 ± 2 Ma) depending 

on the model used (Boschman et al. 2014 or Matthews et al. 2016, respectively). Equivalence of 

the obtained age of entrance in the trench of the Caribbean slab with the identified unconformities 

in the stratigraphic succession in the SJFB (also shown in Figure 4.12) will be discussed in 

forthcoming sections.  
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Figure 4.14. Proposed three-dimensional lithospheric configuration of NW South America, as interpreted from shallow reflection-seismic mapping, intermediate-depth seismicity and 
deep tomographic imaging from previous studies (e.g. Bezada et al., 2010); according to our interpretation, there would be a slab tear or STEP fault (subduction transform edge-
propagator, Govers and Wortel, 2005) in the Caribbean plate, probably represented in the upper crust by the western tip of the Oca-El Pilar-San Sebastián dextral fault system (OEPFS).     
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Slab 

segment 

length (km) 

(± 15 km 

error) 

Calculated age of slab entrance in the 

trench using mean plate velocities over the 

last 45 Ma 

 

Boschman et al. 2014 
Matthews et al. 

2016 

 

19 mm/yr 25 mm/yr 

Western flat slab segment under SJFB and 

LMV 
278-308 14.6-16.2 Ma 11.1-12.3 Ma 

Central intermediate-depth flat slab segment 341-371 18-19.5 Ma 13.6-14.8 Ma 

Eastern deepest and steepest slab segment 401-431 21.1-22.7 Ma 16-17.2 Ma 

Western plus Central flat slab segments 619-679 32.6-35.7 Ma 24.8-27.2 Ma 

All three slab segments 1020-1110 
53.7-58.4 Ma  

(56 ± 2 Ma) 

40.8-44.4 Ma 

(43 ± 2 Ma) 

Slab length by Van Benthem et al. (2013)* 900 47,4 Ma 36 Ma 

* they interpret three slab segments, each one 300 km-long 

 

 
Table 4.2. Compilation of the slab segment lengths, convergence velocities and ages of entrance in the trench of 
each slab segment shown in Figure 4.12. We calculated average velocities over the last 45 Ma according to each 
of the two available models (Boschman et al., 2014 and Matthews et al., 2016). Using such velocities and the 
measured lengths of each slab segment, we could calculate the time at which each segment entered the trench. 
From these calculations, we found that the ~1000 km-long Caribbean slab entered the trench in early to middle 
Eocene times (shaded in gray), coinciding with regional unconformities identified in the San Jacinto fold belt.    

 

4.5 Discussion 
 

4.5.1 Late Cretaceous to Eocene paleo-tectonic reconstructions and 
kinematics 

 

In the debate about the origin and evolution of the Caribbean oceanic plate, two main models have 

been proposed, an in situ model which implies a short migration of the Caribbean to its present 

position (James, 2006) and a Pacific model which proposes an eastern Pacific origin of the plate 

and a long-distance migration (Pindell, 1993; Kennan and Pindell, 2009; Boschman et al., 2014). 

The Pacific model appears to be the most robust and more widely accepted, though the migration 

distances of the terranes in northwestern Colombia, which show an oceanic affinity remain poorly 

constrained. Using the Gplates free software and the models of Boschman et al. (2014) and 

Matthews et al. (2016), we present modified paleo-tectonic reconstructions for the most relevant 

time slices for this study (Figure 4.15). Based on the model by Boschman et al. (2014), we 

calculated that the maximum northwestward displacement of the allochthonous oceanic 

(Caribbean) terranes west of the RFS was ~1077 km between 90 and 65 Ma, which can be 

subdivided into 691 km from 90 to 75 Ma and 386 km from 75 and 65 Ma. This means that most 

of the northwestward displacement of the allochthonous Caribbean terranes occurred in Late 

Cretaceous times, along the RFS and PFS. We also calculated the tectonic convergence velocity 

and obliquity curves for the Caribbean-South American margin and plotted them with the identified 

tectono-stratigraphic unconformities in the SJFB and with the main tectonic events studied in the 
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literature (Figure 4.16). The obliquity was calculated as the angle between the plate displacement 

vector and the orthogonal to the strike of the SW-NE South American plate boundary, as defined 

by Philippon and Corti (2016).   

Convergence obliquities where much higher in Late Cretaceous to early Eocene times and 

they notoriously decreased in middle Eocene times (50 to 40 Ma) in both models (Figure 4.16), 

while velocities decrease earlier in the model by Matthews et al. (2016) and later (45 Ma) in the 

model by Boschman et al. (2014). The lower Paleocene unconformity, which would be the 

expression of the collision of the Caribbean oceanic plateau, appears to be related to a velocity 

reduction according to the model by Matthews et al. (2016). The lower to middle Eocene 

unconformity fits with a significant decrease in convergence obliquity and velocity (Boschman et 

al. 2014) and several major tectonic events, such as the end of the strike-slip activity of the RFS 

and PFS, the cessation of arc magmatism in NW Colombia and the onset of strike-slip displacement 

of the OEPFS (Gomez, 2001; Vence, 2008). 

 

 

 
 
Figure 4.15. Paleo-tectonic reconstructions at 75, 55, 45 and 35 Ma, illustrating the displacement of the Caribbean 
plate relative to fixed South America and the major change in convergence obliquity, which occurred between 55 
and 45 Ma. The displacement vectors of the Caribbean plate relative to South America are shown in red arrows 
according to the model of Matthews et al. (2016, GPlates database) and in black dashed arrows according to 
Boschman et al. (2014). The plate boundaries (spreading ridges in blue, subduction and transform zones in red) 
and continent polygons are from Matthews et al. (2016). The main fault zones of NW South America are labelled 
and drawn in thick black lines when active. Yellow stars indicate active magmatic arcs in our studied area: 1. Bonga 
and Cicuco plutons, 2. Antioquia Batholith, 3. Santa Marta Batholith and related plutons, 4. Parashi pluton, 5. 
Sonsón Batholith, 6. El Bosque Batholith (from  ANH, 2011a; Cardona et al. 2011; Bayona et al., 2012; Cardona et 
al., 2014; Bustamante et al., 2017). The northwestward motion of allochthonous oceanic terranes (up to ~1077 km 
between 90 and 65 Ma, in Boschman et al. 2014), accreted to western Colombia along major suture zones such as 
the right-lateral RFS in Late Cretaceous to Paleogene times, is not shown here. Since 50 Ma, c. 1000 km of 
Caribbean oceanic crust were subducted below South America. See the text for further discussion.  
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Figure 4.16. Evolution of Late Cretaceous to present-day tectonic plate convergence velocity and obliquity 
compared with major tectonic events and tectono-stratigraphic unconformities. The upper panel shows the 
displacement vectors of the Caribbean plate relative to a fixed South American plate, since 90 Ma, according to two 
different paleo-tectonic models (Boschman et al. 2014 in black, B14; Matthews et al. 2016 in red, M16). The central 
panel shows the changes in plate convergence velocity and obliquity with time for both models, compared with 
the pre-Oligocene tectono-stratigraphic sequences and unconformities (vertical bars of brown shades) and major 
tectonic events (black horizontal bars in the lower panel). We calculated velocities and obliquities in time-steps of 
5 Ma, hence the points in the graph represent the middle of each time interval.  The identified Paleogene 
unconformities correlate with major tectonic events such as the Late Cretaceous to early Paleocene collision of the 
Caribbean plateau and the Eocene onset of Caribbean flat-slab subduction. See text for further discussion.  
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4.5.2 Late Cretaceous forearc basin (89 to 75 Ma, Coniacian to 
Campanian) 

 

From the available information, it appears that during Late Cretaceous times, a forearc basin existed 

SW of the study area, with an intra-continental, magmatic arc to the east (called the Magangué Arc 

by Silva et al., 2016, Figure 4.15), formed by the east-dipping subduction of a “normal” thickness, 

Caribbean oceanic plate under South America (Villagómez et al., 2011a). Magmatism affected both 

continental and accreted oceanic crust (the Quebradagrande terrane or a younger, allochthonous 

intra-oceanic arc) and supplied abundant mafic and felsic, volcaniclastic material to the proximal 

parts of the basin. Recent petrography analyses (see Text B1) support a Late Cretaceous magmatic 

arc setting in which there was also some sediment supply from more distal and older terranes, such 

as the Tahami-Panzenú and Chibcha terranes of the eastern LMV and northern CC (Mora et al., 

2017a). Gómez et al. (2005), Restrepo et al. (2009) and Caballero et al. (2013b) used apatite fission 

track thermochronology to propose that uplift of the CC and the San Lucas ridge began since Late 

Cretaceous times (Campanian-Maastrichtian), consequently these were potential source areas, 

which provided sediments to surrounding basins such as the SJFB. However, according to 

Boschman et al (2014) paleo-tectonic reconstructions, at 90 Ma the SJFB would have been as far 

as ~1077 km to the SW of its present location, hence it would have been sourced by Permo-Triassic 

and Cretaceous terranes located much farther south within the proto-Central Cordillera. 

Nevertheless, several researchers (e.g. Kennan and Pindell, 2009) have suggested that the Tahami-

Panzenu terrane, located between the RFS and the PFS, is para-autochthonous and that it also 

moved from the southwest along its limiting dextral fault systems. This would mean that the 

sedimentary sources and the San Jacinto basin always moved parallel to each other, thus explaining 

the good match we obtained in terms of provenance. Outcrop and the very few well data show that 

sedimentation in the area of the present day SJFB occurred in a marine shelf in which proximal 

marine environments occurred in the central area (San Jacinto) while deeper marine environments 

occurred in the south.  

 

4.5.3 Latest Cretaceous-early Paleocene collision of the Caribbean 
oceanic plateau 

 

It has been proposed that in the Latest Cretaceous to early Paleocene times, the Caribbean oceanic 

plateau collided with northwestern South America (Cediel et al., 2003, Pindell et al., 2005, Bayona 

et al., 2012). Paleo-tectonic reconstructions (Pindell and Kennan, 2009; Spikings et al., 2015) 

suggest that at this time, the Caribbean plate moved towards the NE relative to the North and South 

American plates and started to occupy space between them. Villagómez et al. (2011b) and 

Caballero et al. (2013b) used apatite fission track thermochronology to identify an exhumation 

pulse in the San Lucas ridge and southernmost SNSM during early Paleocene times (Figure 4.15) 

which they relate to the collision of the Caribbean Plateau with northwestern South America. We 

consider that the absence of lower Paleocene deposits in northwestern Colombia (planktonic zones 

P.0 to P.2., 65 to 61Ma) and the unconformity that has been reported in outcrops between Sequence 

1 (Cansona) and Sequence 2 (San Cayetano, Figure 4.16) are the expression of a regional shortening 

event which took place in latest Cretaceous to early Paleocene times, and which would be related 

to the collision of the Caribbean plateau. The notorious decrease in convergence velocity between 

75 and 70 Ma, according to Matthews et al. (2016) could also be related to this collision event.  

 

4.5.4 Late Paleocene to early Eocene forearc basin 

 

After the early Paleocene shortening episode, forearc extension and subsidence resumed, but it is 

not clear if at that time the Caribbean plateau was already being subducted under South America 
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(Bayona et al., 2012; Bustamante et al., 2017), or if early Paleogene magmatism is more related to 

the final subduction stage of the “normal” thickness Caribbean plate. For the deposition of Sequence 

2, our integration of outcrop and well data throughout the San Jacinto fold belt shows that mud-rich 

and mixed sand-mud, proximal turbidite systems (sensu Richards, 2001) were predominant in the 

north and south, while sand and gravel-rich turbidite systems prevailed in the central part.  

Reflection-seismic data from the central and northern SJFB shows that during sedimentation of 

Sequence 2 (late Paleocene to early Eocene), the area experienced WNW-ESE-oriented extension 

(Mora et al., 2013; Mora et al., 2017a). However, in the northern SJFB, reported lithologies are 

mainly fine-grained and no facies changes related to the activity of extensional faults have been 

documented. In the central part of the fold belt, Sequence 2 shows onlap patterns towards the east 

and fanning towards the west, suggesting sedimentation in steep slopes. We consider that the origin 

of the WNW-ESE-trending faults that affect Sequence 2 relates to forearc extension due to oblique 

convergence between the Caribbean and South American plates, as proposed by Daly (1989) in the 

Ecuador forearc. However, Mora et al. (2017a) suggested that subduction erosion (Clift and 

Vanucchi, 2004) occurred in the margin in Late Cretaceous times, hence Late Cretaceous to 

Paleogene subsidence and extension in the forearc could have also been related to subduction 

erosion.     

New petrography data (Text B1) shows that detrita of Sequence 2 come from similar 

tectonic regions that sourced Sequence 1, including a magmatic arc and older continental basement 

blocks. Recent analyses of drill hole samples in the San Jacinto fold belt (Sarmiento et al., 2016) 

provide more evidence of volcanic activity during late Paleocene to early Eocene times. According 

to Cardona et al. (2011), the San Cayetano sandstones fall within the transitional to dissected arc 

fields of Dickinson (1985), in agreement with Ecopetrol/ICP (2014).  

Our new U-Pb geochronology and Hf isotope geochemistry results clearly show a main 

provenance from Upper Cretaceous magmatic arcs and a secondary provenance from Permo-

Triassic igneous terranes such as those documented in the Tahamí-Panzenú terrane of the eastern 

LMV and northern CC (Mora et al., 2017a). Furthermore, a very good match is seen between the 

Hf isotope geochemical compositions of the detrital zircons in the C-1 well and the compositions 

of both the Coniacian-Campanian Bonga pluton zircons and the Permo-Triassic metamorphic 

basement zircons from the Hojarasca and VIM15 wells reported by Mora et al. (2017a). This 

suggests that the upper Paleocene-lower Eocene sediments of Sequence 2 were mainly sourced 

from Upper Cretaceous plutons of both oceanic (e.g. Bonga) and continental affinity (Magangué 

Arc, Silva et al., 2016; Antioquia Batholith), and from the Permo-Triassic igneous-metamorphic 

terranes in the LMV and northern CC. Our paleo-tectonic reconstructions show that after a 

considerable (~1077 km) northwestward displacement of the Caribbean oceanic terranes in Late 

Cretaceous times, such terranes including San Jacinto, had almost reached their current position, 

thus supporting our provenance considerations.    

These data also support a forearc basin setting in which both the oceanic and continental 

affinity, Upper Cretaceous magmatic arcs were being eroded and providing sediment for the marine 

basin to the northwest. Though evidence of Paleocene to early Eocene magmatism has not been yet 

found in the LMV and SJFB, it is likely that plutons of such ages exist, considering that Paleocene 

to early Eocene magmatism has been documented in surrounding areas such as the northern CC 

(Paleocene Sonsón Batholith, Bayona et al., 2012; Bustamante et al., 2017), the SNSM and the 

Guajira peninsula to the north (Cardona et al., 2014). If the SNSM and the northern CC were 

connected, as interpreted by Montes et al. (2010) and Mora et al. (2017a), and if both the northern 

CC and the southern SNSM were being uplifted in the late Paleocene (Restrepo et al., 2009; 

Villagómez et al., 2011b), then the most likely sources for the sediments of Sequence 2 were the 

ancient northern CC and southern SNSM, located to the E and SE of the SJFB in early Eocene 

times. Furthermore, the presence of Permo-Triassic, lower Paleozoic and Meso to Neo-Proterozoic 

detrital zircon ages (Figure 4.5b), in addition to a group of Cretaceous zircons with initial ɛHF 

values <0, provide strong lines of evidence in favor of a sediment that was sourced from older 

continental basement blocks. Although these older sources may well derive from the core of the CC 

and SNSM also, it is also possible that these could be derived from farther-removed sources of the 

Eastern and Central Cordilleras and the Putumayo basement. A far-traveled component may have 

also contributed re-worked Cretaceous and/or Paleogene zircons (e.g. Horton et al., 2010; Nie et 
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al., 2012) to the SJFB, but the Hf systematics of most zircons dated here and their resemblance to 

proximal basement sources, indicate that re-working of far-traveled Cretaceous and Paleocene 

sources are unlikely to represent a major component (Figure 4.5 and Figure 4.6).    

Moreover, paleo-geographic reconstructions of northern South America (e.g. Hoorn et al., 2010) 

do not support a connection between SJFB and LMV with old continental basement blocks such as 

the Eastern Cordillera or the Putumayo basement. This fact restricts the sediment source areas to 

the Central Cordillera, which was probably connected to the SNSM as suggested by Mora et al. 

(2017a), and to the Western Cordillera.   

 

4.5.5 Eocene onset of flat subduction  

 

The notorious lower to middle Eocene angular unconformity that marks the top of Sequence 2 (San 

Cayetano) is the most important evidence of the final episode of activity of the Romeral Fault 

System  and of a major shortening event in northern Colombia (Figure 4.7 to Figure 4.11). This 

event also marks the end and fossilization of the San Jacinto forearc basin and the birth of a new 

basin of middle Eocene to Recent age (Lower Magdalena).  

Several researchers have related this regional angular unconformity to the accretion of the 

San Jacinto terrane from the south, along the RFS (Duque-Caro, 1979; Cediel et al., 2003). An 

equally dramatic angular unconformity produced by a middle Eocene tectonic episode has been 

recognized in Colombia for many years (e.g. Hubach, 1957; Forero, 1974; Duque-Caro, 1980; 

Villamil, 1999; Bayona et al., 2013) and it has also been identified in reflection seismic data in 

surrounding basins such as the Cesar-Ranchería (Mora and García, 2006) and the Middle 

Magdalena Valley basin (MMV, Gomez et al., 2005). The Santa Marta-Bucaramanga Fault System, 

which is considered the northeastern boundary of the LMV against the Cesar-Ranchería basin, also 

experienced a middle Eocene tectonic episode as revealed by reflection seismic data (Mora and 

García, 2006).  

Using apatite (U-Th)/He thermochronology, Restrepo et al. (2009) and Villagómez et al. 

(2011b) identified middle Eocene exhumation pulses in the northern CC (Antioqueño Plateau) and 

in the southern SNSM. However, while Restrepo et al. (2009) related the middle Eocene 

exhumation of the northern CC to a change in the rate of convergence between Nazca (Farallon) 

and South America, Villagómez et al. (2011b) relate it to underthrusting of the Caribbean plate 

beneath northern South America. Paleo-tectonic reconstructions (Ross and Scotese, 1988; Müller 

et al., 1999; Pindell and Kennan, 2009; Kroehler et al., 2011; Boschman et al. 2014; Matthews et 

al. 2016) show that between 56 and 45 Ma there was a major readjustment in the configuration of 

the South American, Caribbean and North American plates (Figure 4.15). The model by Boschman 

et al. (2014), in which there is a notorious decrease in both velocity and obliquity at ~ 48 Ma, 

correlates better with the identified lower to middle Eocene regional unconformity and with a 

regional shortening event, in agreement with the proposed major change in convergence velocity 

and obliquity between the Caribbean and South American plates (Figure 4.16). Though the model 

by Matthews et al. (2016) also shows a minor decrease in convergence velocity after 48 Ma, 

obliquity decreased earlier, at ~ 58 Ma. Hence, correlations with the middle Eocene unconformity 

and the proposed major tectonic readjustment are not as clear as with the model by Boschman et 

al., (2014).  

Furthermore, the cessation of magmatism in northern Colombia would also be related to 

this plate tectonic readjustment, which probably took place between 56 and 45 Ma. Previous studies 

in the Guajira peninsula (Parashi intrusive, Cardona et al., 2014), in the SNSM (Santa Marta 

batholith, Mejía et al., 2008) and in the northern Central Cordillera (ANH, 2011) concluded that 

subduction-related magmatism in northwestern Colombia occurred only until early middle Eocene 

times (50-45 Ma, Bayona et al., 2012). Post-Eocene magmatism has been documented only in the 

central and southern Colombian Andes, where it is related to the subduction of the Nazca (Farallón) 

plate under western South America. It is then possible that arc magmatism ended due to an early to 

middle Eocene plate-tectonic readjustment, consisting of a reduction in both convergence velocity 
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and obliquity, and its expression in the stratigraphic record would be the lower to middle Eocene 

unconformity.    

The lack of arc volcanism has been related to flat subduction of thickened and buoyant 

slabs (Gutscher et al., 2000; Ramos and Folguera, 2009; Syracuse et al., 2016; Manea et al., 2017). 

Flat-slab subduction of thick oceanic crust results in surface uplift and exhumation of forearc basin 

strata, and also inhibits subduction-related magmatism adjacent to the forearc basin (Ridgway et 

al., 2012). This seems to be the case of northwestern Colombia where the thick oceanic Caribbean 

plateau is currently being subducted under the South American plate, in an area where there has 

been no magmatism since early to middle Eocene times. Taking into account the present-day 

lithospheric and mantle geometry, as interpreted in Figure 4.12, we calculated that the onset of 

subduction of the Caribbean plate occurred in early to middle Eocene times, 56 to 43 Ma ago (Table 
4.2). Interestingly, this calculated time of onset of subduction of the Caribbean plateau coincides 

with the time of plate tectonic readjustment between the Caribbean and the Americas (Figure 4.16), 

and with the estimated age of the lower to middle Eocene unconformity in the San Jacinto fold belt 

(planktonic foram zones P.9 to P.10, 50.4 to 45.8 Ma) and the time of cessation of magmatism in 

northern Colombia (50-45 Ma; Bayona et al., 2012). Though these calculations are very sensitive 

to slab angles, lengths and convergence rates, the slab length measurements by Van Benthem et al. 

(2013) are quite similar (900 km) and hence are the obtained ages of plateau subduction (Table 4.2). 

Boschman et al. (2014) also estimated 850 km of subduction beneath Colombia since 50 Ma from 

their tectonic reconstructions. According to this, the onset of the low-angle subduction of the 

Caribbean plateau would have occurred in early to middle Eocene times, and it was also then when 

the rough geodynamic configuration that we have today in the northwestern corner of South 

America was formed. It is thus probable that the middle Eocene uplift pulses of the CC and SNSM 

(Restrepo et al., 2009; Villagómez et al., 2011b) which produced unroofing on the order of 2 km in 

the northern CC and the widespread deposition of coarse-grained molasses in northern Colombia, 

are also related to the inception of flat subduction.  

To summarize (Figure 4.16), a major lower to middle Eocene plate-tectonic readjustment, 

consisting of a notorious decrease in both convergence velocity and obliquity in lower to middle 

Eocene times, seems to be the most likely cause of: 1) the onset of flat-slab subduction in 

northwestern Colombia, 2) the cessation of magmatism in northern Colombia in the middle Eocene, 

3) a major shortening event with the exhumation and partial erosion of the Upper Cretaceous to 

lower Eocene San Jacinto forearc basin,  4) the end of the tectonic activity of major Cretaceous 

fault systems such as Romeral and Palestina, and 5) the later onset of right-lateral strike-slip 

displacement along the newly formed Oca-El Pilar fault system (Müller et al., 1999; Pindell and 

Kennan, 2009; Boschman et al., 2014). The imprint of such tectonic readjustment in the 

stratigraphic record of the San Jacinto fold belt is the lower to middle Eocene unconformity, though 

the upper Eocene unconformity could also be related.   

The previous interpretation implies that the onset of flat subduction, which we correlate 

with the cessation of arc magmatism, occurred at lower to middle Eocene times, when convergence 

slowed down and became more orthogonal. Though more perpendicular convergence could tend to 

favor subduction with arc magmatism, several studies suggest that convergence obliquity is not 

among the controlling parameters of flat subduction. According to Espurt et al. (2008), two main 

causes have been proposed to explain the formation of flat subduction zones in South America: 1) 

the fast movement of South America towards the trench in the hot spot reference frame, and 2) the 

subduction of buoyant anomalies such as oceanic plateaus. Both conditions are occurring in NW 

Colombia, thus supporting the proposed flat-slab subduction.  

 

4.5.6 Middle to late Eocene renewed forearc sedimentation 

 

After the lower to middle Eocene plate tectonic readjustment and the onset of flat subduction, the 

San Jacinto area experienced renewed forearc extension, subsidence and sedimentation which 

comprised coarse-grained clastics and shallow marine carbonates of Sequences 3 and 4 (Chengue 

and San Jacinto). In middle Eocene times, the RFS and the northern Palestina Fault System both 
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became inactive as seen in the cross-sections in Figure 4.7. Reflection seismic data (Figure 4.10 

and Figure 4.11) shows that the deposits of Sequence 3 and 4 are affected by SE-NW-trending faults 

which have similar orientation as those related to Sequence 2 (San Cayetano), and therefore they 

would be older inherited features which were reactivated. Terrigenous rocks were classified as lithic 

arkoses to litharenites and were related to the dissected arc, transitional arc and lithic recycled 

orogen provenance terranes of Dickinson (1985).  

Our U-Pb geochronology and Hf isotope geochemistry results show the same Late 

Cretaceous and Permo-Triassic peaks as seen in samples from the sequence below (San Cayetano, 

Figure 4.5). Additionally, there seems to be a reduction in Proterozoic and Paleozoic provenance 

for these samples, suggesting less erosion of distant old massifs related and more erosion of younger 

basement massifs, though recycling of zircons is also a possibility. Considering that the SJFB had 

already been accreted by late Eocene times, the predominance of Upper Cretaceous and Permo-

Triassic terranes suggests that sediment supply was mostly coming from the northern CC and 

SNSM in the SE and NE.  

 

4.5.7 The middle to late Eocene unconformity  

 

The contact between Sequences 3 and 4 (Chengue and San Jacinto) is also an unconformity of 

middle to late Eocene age (35-40 Ma) which has been recognized in the SJFB (Duque-Caro, 1984; 

1991; Guzman, 2007) as the expression of a third shortening phase, related to the plate tectonic 

readjustment and to the onset of flat slab subduction. Van der Lelij et al (2016) suggested that the 

Santa Marta-Bucaramanga fault was active at ~40 Ma, that rapid exhumation at that time is well 

documented along the western margin of South America and that such widespread contractional 

phase could be related to an episode of accelerated convergence of ~15 cm/yr, between the South 

American margin and the Farallón plate. However, much more data and studies are required to 

understand the significance of this unconformity and its possible relationship with major plate 

tectonic processes. 

 

4.5.8 Late Eocene to Oligocene 

  

Sequence 4 (San Jacinto) was possibly also deposited in a shallow subduction forearc setting, in 

late Eocene to early Oligocene times. It comprises shallow marine carbonate facies in the central 

and southern SJFB and siliciclastic deposits (fan deltas) in the central-eastern part. As shown by 

seismic data, these deposits are affected by the same family of SE-NW-trending extensional faults 

that affects Sequences 2 and 3.  

Cardona et al. (2012) stated that the conglomerates deposited after the middle Eocene 

tectonism contain less igneous and metamorphic rock fragments and more sedimentary rock 

fragments, quartz and stable heavy minerals compared to the pre-middle Eocene conglomerates of 

Sequence 2, suggesting a depletion of the more proximal volcanic sources. Petrographic analyses 

(Ecopetrol/ICP, 2014) revealed that the origin of siliciclastic samples of this sequence is related to 

transitional to quartzose recycled orogens, with few samples related to a magmatic arc.  Though 

such data suggest less supply from magmatic arc sources, our new U-Pb geochronology and Hf 

isotope geochemistry results reveal that the upper Eocene to lower Oligocene sediments in the 

SamanEst-1 well were mainly sourced from Upper Cretaceous (Coniacian-Maastrichtian) plutons 

with a Hf isotopic composition very close to that of the Bonga pluton (Mora et al., 2017a). The 

apparent contradiction between petrography analyses suggesting recycled orogen provenance 

versus geochronology suggesting magmatic arc provenance, could also be related to zircon 

recycling from older sedimentary units. However, the secondary magmatic arc signature from both 

petrography and geochronology still suggests mixed source areas for the northern SJFB such as the 

present-day Magangué-Cicuco high and the northern CC, located towards the SSE (Figure 4.3).  

Figure 4.16 very clearly shows that the Caribbean-NW South America convergent margin 

became relatively stable since Oligocene times, exhibiting low convergence velocities and 
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obliquities. We relate this to the evolution of the margin from a highly oblique convergent margin, 

possibly exhibiting subduction erosion (Clift and Vannucchi, 2004) in Late Cretaceous to Eocene 

times, to a more orthogonal convergent margin, exhibiting subduction accretion since early 

Miocene times, when the accretionary prism probably started forming.  

 

4.6 Conclusions 
 

In this study we have linked the Late Cretaceous to Eocene tectono-stratigraphy of the San Jacinto 

fold belt of NW Colombia with the plate tectonic evolution of northwestern South America, which 

experienced Caribbean plateau collision and flat subduction. Using a regional geology and 

geophysics database, we were able to relate the deposition of four unconformity-bounded forearc 

basin sequences to specific collision/subduction stages and to relate their bounding unconformities 

to major tectonic episodes. The Upper Cretaceous Cansona sequence (Sequence 1) was deposited 

in a marine forearc environment in which a “normal” thickness Caribbean plate was being 

subducted beneath northwestern South America, producing contemporaneous magmatism in the 

present-day northern Central Cordillera and Lower Magdalena Valley basin. Coeval strike-slip 

faulting by the Romeral wrench fault system accommodated right-lateral displacement due to 

strongly oblique convergence.  In latest Cretaceous to early Paleocene times, the Caribbean oceanic 

plateau collided with South America causing a major shortening event and marking a change to a 

turbiditic marine sedimentation with abundant terrestrial input, that characterizes the upper 

Paleocene to lower Eocene San Cayetano sequence (Sequence 2). This sequence was also deposited 

in a forearc setting with an active volcanic arc that probably represents the final melting stage of 

the previously subducted “normal” thickness Caribbean slab. A lower to middle Eocene angular 

unconformity at the top of the San Cayetano sequence, a second major shortening event, the 

termination of the activity of the Romeral Fault system and the cessation of arc magmatism are 

interpreted to indicate the onset of low-angle subduction of the thick and buoyant Caribbean oceanic 

plateau beneath South America, which occurred between 56 and 43 Ma. Onset of low-angle 

subduction was probably caused by a major change in plate convergence angle and velocity, as 

suggested by paleo-tectonic reconstructions. As low-angle subduction was gradually established, 

coarse-grained clastics and carbonates of the Chengue sequence (Sequence 3) were deposited in the 

forearc of a newly formed subduction complex. A middle to late Eocene unconformity also related 

to a contractional event, separates the Chengue from the San Jacinto sequence (Sequence 4), which 

comprises similar types of terrigenous and calcareous deposits. Detrital zircon U-Pb geochronology 

and Hf-isotope geochemistry suggest that the upper Paleocene to upper Eocene San Cayetano and 

Chengue/San Jacinto Sequences were mostly sourced from Upper Cretaceous oceanic and 

continental-affinity magmatic arcs and from Permo-Triassic igneous-metamorphic basement 

blocks. Low-angle subduction of the Caribbean plateau has continued to the present and appears to 

be the main cause of the amagmatic post-Eocene deposition. Our interpreted plate-tectonic 

configuration of northern Colombia implies the existence of a tear or STEP fault in the Caribbean 

plate, located towards the western end of the Oca-San Sebastián-El Pilar fault system. 

 

 



 5 Controls on forearc basin evolution: Insights from LMV tectonostratigraphy 

79 

 

5 Controls on forearc basin formation and 
evolution: Insights from Oligocene to Recent 
tectono-stratigraphy of the Lower Magdalena 
Valley basin of northwest Colombia 

 

 

This chapter is a reformatted version of a paper in internal revision. The supplementary material 

has been placed in Appendix C. 

 
Citation: Mora, J.A., Oncken, O., Le Breton, E., Mora, A.R., Veloza, G., Velez, V. and De Freitas, M., (in 

preparation). Controls on forearc basin formation and evolution: Insights from Oligocene to Recent tectono-

stratigraphy of the Lower Magdalena Valley basin of northwest Colombia. It was submitted to Marine and 

Petroleum Geology. 

 

 

Abstract 
 
Mechanisms of forearc basin formation and evolution remain poorly understood at a global scale, 

though recent studies emphasize the dominant role of sediment flux at the trench on basin evolution. 

The convergent margin of northwest Colombia, where South America and the Caribbean have been 

interacting since Late Cretaceous times and where the San Jacinto and Lower Magdalena Valley 

forearc basins are located, offers a unique opportunity to study such mechanisms. A recent study in 

San Jacinto linked Upper Cretaceous to Eocene forearc sequences with changes in subduction 

parameters. By contrast, formation of the Lower Magdalena amagmatic forearc basin occurred in a 

stable setting from the Oligocene to the present, characterized by the slow and nearly orthogonal, 

low-angle subduction of the Caribbean plateau. We use a regional database to reconstruct the 

subsidence, extension, sedimentation and paleo-geographic history of the Lower Magdalena forearc 

basin, and to propose possible mechanisms controlling its evolution, in the absence of major 

changes in plate kinematics and in a flat-slab subduction setting. We show that after the collapse of 

a pre-Oligocene magmatic arc, late Oligocene to early Miocene fault-controlled subsidence allowed 

initial basin fill at relatively low sedimentation rates. Extensional reactivation of inherited, pre-

Oligocene basement faults was crucial for the tectonic segmentation of the basin with the formation 

of its two depocenters (Plato and San Jorge). Oligocene to early Miocene uplift of Andean terranes 

made possible the connection of the Lower and Middle Magdalena valleys, and the formation of 

the important Colombian drainage system (Magdalena River system). The proto-Magdalena river 

in the north and the proto-Cauca river in the south both started delivering high volumes of sediments 

in middle Miocene times, as fault-controlled subsidence was gradually replaced by sagging due to 

increased sedimentary load. Such increase in sedimentation delivered great volumes of sediments 

to the trench, causing the formation of an accretionary prism farther west of San Jacinto. This 

probably weakened the plate interface and caused underplating, with the development of forearc 

highs in the San Jacinto area. A stronger backstop under the Lower Magdalena explains shortening 

in the forearc high and accretionary wedge areas to the W, while the Lower Magdalena remained 

essentially unaffected. Tectonic segmentation of the basin with the formation its two depocenters 

(Plato and San Jorge), was due to the influence of inherited basement structures and to flat-slab 

subduction processes. Our results highlight the fundamental role of sediment flux, of the inherited 

basement structure and of flat-slab subduction on the evolution of forearc basins such as the Lower 

Magdalena.      

   

Keywords: Forearc basin, flat-slab subduction, tectono-stratigraphy, Lower Magdalena, Caribbean, 

subsidence. 
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5.1 Introduction 

 
The privileged location of forearc basins makes them suitable for providing unique insights into 

subduction zone dynamics. These basins typically develop along continental margins and island 

arcs where oceanic plates are subducting beneath the overriding crust (Noda, 2016). While initial 

concepts of forearc basins were first developed in the 70s (Dickinson, 1973, 1974; Karig, 1974; 

Seely et al., 1974; Karig and Sharman, 1975), Ridgway et al. (2012) discussed the modification of 

forearc basins by flat-slab subduction and concluded that flat-slab subduction processes 

substantially modified the tectonic configuration of the upper plate, producing sedimentary basins 

that do not easily fit into the standard magmatic arc-forearc basin-accretionary prism template. 

Noda (2016) considered that initial concepts of forearc basins were basically related to growth of 

accretionary prisms, though these basins also form along tectonically erosive margins. Accordingly, 

Noda (2016) proposed a new classification scheme for forearc basins from the viewpoints of 

material transfer between the two plates (accretionary or non-accretionary) and the long-term strain 

field in the basin (compressional or extensional).   

Previous research shows that mechanisms of forearc basin formation remain poorly 

understood, including subsidence mechanisms (Fuller et al., 2006; Noda, 2016). Ingersoll (1988, 

2012) stated that the factors controlling forearc geometry include 1) the initial setting, 2) sediment 

thickness on subducting plate, 3) rate of sediment supply to trench, 4) rate of sediment supply to 

forearc area, 5) rate and orientation of subduction, and 6) time since initiation of subduction. 

According to Dickinson and Seely (1979), a prime factor governing forearc evolution is the quantity 

of sediment delivered to the forearc region, and large-scale lateral accretion can occur only if there 

are large quantities of trench-fill, abyssal-plain and/or slope sediments. Noda (2016) states that an 

increase or decrease of the sediment flux may change the type, geometry and deformation style of 

the forearc basin. Furthermore, the same author also concludes that changes of the sediment flux 

and configuration of the subducting plate (i.e. direction, dip, velocity and roughness) can affect the 

condition of accretion or erosion in the outer wedge, as well as the style of deposition in the forearc 

basin. Therefore, it is clear from previous studies that sediment flux plays a fundamental role on 

forearc basin evolution. 

The Oligocene to Recent, Lower Magdalena Valley basin (LMV) of northwestern 

Colombia is located in an area where the Caribbean and South American plates, as well as the 

Chocó-Panamá block, have been interacting since the Cretaceous (Figure 5.1). The LMV was 

previously classified as a forearc basin (Mantilla et al., 2009; Bernal et al., 2015a) in spite of 

lacking an active magmatic arc. The San Jacinto fold belt, located to the W of the LMV and adjacent 

to it, has also been considered an older (Cretaceous to Eocene) forearc basin (Duque-Caro, 1979; 

1991) which was later inverted and deformed. Mora et al. (2017b) reconstructed the formation and 

evolution of San Jacinto and linked Upper Cretaceous to Eocene forearc sequences with major 

changes in subduction parameters, such as plate convergence velocity and obliquity. The origin and 

evolution of the LMV have been recently related to flat-slab subduction of the Caribbean oceanic 

plateau beneath South America, since Oligocene times (Mora et al., 2017b).  

In this study, we used a regional reflection-seismic and well database to reconstruct the 

sedimentary infill and tectono-stratigraphic evolution of the LMV, including estimates of 

subsidence (total vs tectonic) and extension, and timing of kinematic regimes and 

shortening/extension events. Through paleo-tectonic reconstructions, we studied the subduction 

parameters (convergence velocity and obliquity) since Oligocene times and compared the plate 

tectonic evolution with the tectono-stratigraphic basin history. Our results show that the formation 

and evolution of the LMV were controlled by other mechanisms, apart from changes in tectonic 

plate convergence. The objective of this contribution is therefore to propose mechanisms that 

possibly controlled the evolution of the Lower Magdalena forearc basin. Our results suggest a 

linkage between a dramatic increase in sediment supply to the LMV at ~17 Ma, the connection 

between the Middle and Lower Magdalena valleys and the formation of the proto-Magdalena River 

drainage system. Such a connection was possible due to the Oligocene to early Miocene uplift of 
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Andean terranes, as suggested by previous studies (Hoorn et al., 2010; Caballero et al., 2013a; 

Reyes-Harker et al., 2015; Anderson et al., 2016). The topographic growth of the Colombian 

Eastern Cordillera, the Santander massif and the Perijá Ridge forced the isolation of the Magdalena, 

Orinoco and Amazon drainage systems and provided huge amounts of sediments into these river 

systems (Caballero et al., 2013a; Anderson et al., 2016). We will also discuss the fundamental role 

of increased sediment supply to forearc and trench areas on the evolution of the LMV, and the 

influence of inherited basement structures on tectonic segmentation and the formation of its two 

depocenters.  

 

 

 
 
Figure 5.1. Geological map of the Lower Magdalena and San Jacinto fold belt, highlighting major structural and 
morphologic features. RFS: Romeral Fault System; PFS: Palestina Fault System; SF: Sinu Fault; BF: Bucaramanga 
Fault; SMF: Santa Marta Fault; OF: Oca Fault; UF: Uramita Fault; BoF: Bocono Fault. Geology after Gomez et al. 
(2015). Inset, tectonic map of northwestern South America with topography and bathymetry, showing the location 
of the Lower Magdalena Valley basin (LMV), the Sinú-San Jacinto fold belt (SSJFB), and the active volcanoes. 
Present-day tectonic plate motions are shown in yellow (after Trenkamp et al., 2002). WC: Western Cordillera; CC: 
Central Cordillera; EC: Eastern Cordillera; RFS: Romeral Fault System; PFS: Palestina Fault System; BF: 
Bucaramanga Fault; SMF: Santa Marta Fault; OF: Oca Fault; BoF: Bocono Fault. 
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5.2 Geological Framework 
 

The LMV of northwestern Colombia is located in an area in which the Caribbean oceanic plate, 

including the Chocó-Panamá block, and the South American continental plate have been interacting 

throughout the Cenozoic (Figure 5.1). It has long been long recognized from GPS data (e.g. Müller 

et al., 1999; Trenkamp et al., 2002) that NW South America and the Caribbean have been 

converging in a nearly orthogonal fashion since Oligocene times, and that they continue to do so 

today (Symithe et al., 2015). Furthermore, recent geophysical studies (Mantilla et al., 2009; Bernal 

et al., 2015a, b) have provided new and more robust evidence mainly from gravity modeling and 

seismic tomography, supporting a flat-subduction. According to this and in spite of lacking a 

magmatic arc, the basin has been interpreted as making part of a subduction complex (Mantilla et 

al., 2009) which includes an accretionary prism (Sinú) and a forearc high (San Jacinto) to the W.  

The LMV is a lozenge-shaped basin, covering an area of 42,000 km2 and located between 

two major basement terranes, the northern Central Cordillera (CC) in the S and SE and the Sierra 

Nevada de Santa Marta (SNSM) in the NE (Figure 5.1). The Santa Marta left-lateral, strike-slip 

fault system is separating the northeastern part of the basin from the SNSM, while the northern 

extension of the Romeral Fault System (RFS) is separating the Lower Magdalena from the San 

Jacinto fold belt (SJFB) to the west. Pre-Oligocene sedimentary units are exposed in the SJFB, 

which has been considered the northward extension of the Western Cordillera of Colombia (Barrero 

et al., 1969; Duque-Caro, 1979; Cediel et al., 2003) and has been related to an oceanic-type 

basement. The RFS, which is also considered to continue to the north to form the western boundary 

of the LMV, appears to be separating the oceanic to transitional basement under the belt from the 

felsic continental basement of the South American crust which floors the LMV in the east (Duque-

Caro, 1979, Flinch, 2003; Mora et al., 2017a). In the SJFB, located west of the RFS, there are 

Upper Cretaceous to Eocene sedimentary units that are not preserved in the LMV to the east 

(Duque-Caro, 1979; 1984; Mora et al., 2017b). By contrast, Oligocene to Recent units that have 

been mostly eroded in the SJFB, are well preserved in the LMV and will be the focus of the tectono-

stratigraphic analysis performed in this study (Figure 5.2). 

 

5.2.1 The Basement of the LMV 

 

The basement under the LMV is considered to be the extension of the basement terranes that crop 

out in the northern CC and therefore consists of a core of Permo-Triassic metamorphic and igneous 

rocks, which were intruded by Upper Cretaceous granitoids (Montes et al., 2010; Mora et al., 

2017a). However, the existence of an oceanic affinity terrane in the basement of the western LMV 

was recently proposed, based on Hf isotope geochemistry of an Upper Cretaceous pluton (Bonga 

pluton, Mora et al., 2017a). In terms of structural fabrics, the basement of the LMV comprises 

extensional faults with two predominant orientations, a main SE-NW trend in the southwestern half 

of the basin and a secondary SW-NE trend in the northeastern part (Mora et al., 2017a). Those 

structures were formed by several mechanisms including the Romeral and Palestina strike-slip 

movement, Jurassic rifting and Late Cretaceous to Eocene forearc extension due to oblique 

convergence (Mora et al., 2017a). The extensional reactivation of the pre-existing basement fabric 

was crucial for the subsidence and sedimentation history of the LMV basin.  
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Figure 5.2. WNW-ESE-trending chronostratigraphic chart of the Sinú, San Jacinto and Lower Magdalena areas, based on different sources (Hocol, 1993; ICP, 2000; Guzman, 2007) and 
adjusted with our recent analyses of well and outcrop samples. Biostratigraphy is based on numerous papers and industry reports by Duque-Caro (1979, 1984, 1991, 2000, 2001, 2011a 
to 2014), tectonic events are after Villagómez et al. (2011a,b), Parra et al. (2012), Saylor et al. (2012), Mora et al. (2013a), Caballero et al. (2013a, b), Mora et al. (2015), De La Parra et al. 
(2015),  while the eustatic curves are from Haq et al. (1987) and the climatic events from Zachos et al. (2001).  
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5.2.2 Upper Cretaceous to Lower Oligocene units in the SJFB 

 

The SJFB records the existence of a Late Cretaceous to Early Eocene forearc basin, which was 

inverted in early to middle Eocene times and was then covered and sealed by middle Eocene to 

lower Oligocene clastics (Figure 5.2 and Mora et al., 2017b). These authors divided the sedimentary 

succession in the SJFB into four tectono-stratigraphic sequences, bounded by regional 

unconformities, which are related to major tectonic events. The two oldest Upper Cretaceous to 

lower Eocene sequences (Sequence 1, Cansona and Sequence 2, San Cayetano) are preserved 

mainly to the west of the RFS, while the younger middle Eocene to lower Oligocene sequences (3 

and 4, Chengue and San Jacinto) sealed the RFS as they extended farther to the east, into the western 

LMV.   

5.2.3 Upper Oligocene to Recent units in the LMV  

 

The Oligocene to Recent stratigraphic succession in the basin has been mostly studied in drill holes 

and outcrops located in the western part, towards the SJFB (Figure 5.1). It comprises a mainly fine-

grained, marine succession in which several unconformities have been identified, allowing its 

separation into different stratigraphic sequences (Figure 5.2). According to Montes et al. (2010), 

the succession is made up, from bottom to top of longitudinal bars, laterally adjacent to delta plain 

deposits, sheltered bays or lagoons, near a muddy delta mouth, and tidal flats and tidal channel 

deposits. The stratigraphy of the area has been studied previously by several researchers (Duque-

Caro, 1972; 1979; 1984; 1991; Duque et al., 1996; ICP, 2000; Guzman et al., 2004; Guzman, 2007: 

Bermudez et al., 2016), but the abundance of lithostratigraphic names has hampered a better 

understanding of the stratigraphic evolution of the area. For that reason, in this study we based our 

tectono-stratigraphic framework on the available biostratigraphic data, tied to the reflection-seismic 

and drillhole data. We follow the sequence numbering proposed by Mora et al. (2017b) and also 

propose correlations of our sequences with the most widely used lithostratigraphic and operational 

names (Figure 5.2). 

 

5.3 Methodology 

5.3.1 Construction of the tectono-stratigraphic framework and 
paleogeographic maps 

 

We used a regional database provided by Hocol S.A. for the construction of the tectono-

stratigraphic framework of the LMV (Figure 5.3), and followed the typical oil and gas industry 

workflow for seismic interpretation and mapping. The main interpreted horizons are the top of the 

acoustic basement, the top of the upper Oligocene, the lower Miocene unconformity, the near top 

of the N.7 planktonic foraminifera zone (lower part of Sequence 6), the upper Miocene 

unconformity, the middle Pliocene unconformity, corresponding to the base of Sequence 10 (Figure 
5.4) and an intra-Sequence 10 reflector which doesn’t appear in the area of the B-1 well. The 

integration of seismic and well data with the published outcrop studies from the eastern SJFB 

allowed the construction of paleogeographic maps for selected time windows. We integrated the U-

Pb geochronology data from Montes et al. (2015) to further constrain the Oligocene to Middle 

Miocene paleogeography of the area. Structural mapping was complemented by the detailed 

analysis of growth strata in order to define the timing of the activity of the major faults and thus, to 

define the Oligocene to Recent kinematic history for the basin.  
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Figure 5.3. Reflection seismic and well database used for this study, provided by Hocol S.A. Colors of seismic lines 
represent different seismic surveys. Topography and main drainages are also shown, as well as the structural map 
in depth of the basement under the LMV (after Mora et al. 2017a).   

 

5.3.2 Subsidence history, extension and shortening in the LMV 

 

We carried out geohistory and subsidence analyses (Watts and Ryan, 1976; Steckler and Watts, 

1978; Sclater and Christie, 1980; Allen and Allen, 2005) using available well data, and constructed 

a regional structural cross section along the LMV, perpendicular to the main structural fabric, in 

order to obtain extension estimates. We also calculated the crustal thickness without sedimentary 

fill, as an alternative approach to calculate the amount of extension of the crust beneath the LMV. 

Tectonic plate convergence velocities and obliquities since the Oligocene (Figure 5.5) were 

measured for correlation with subsidence patterns, sedimentation rates and the main regional 

Andean tectonic events. We also used burial history charts from well data to study and illustrate the 

different subsidence and uplift (shortening) episodes in the LMV (Figure C 1).  
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Figure 5.4. Example of a well-seismic tie (left) and a regional, NNE-SSW-trending well correlation (right) in the LMV. The left panel shows the tie of the B-1 well with the closest seismic 
line, displaying the interpreted horizons and the main stratigraphic sequences; the regional well correlation in the right panel shows the electrical facies of the studied sequences and 
the thickness variations. Main faults are shown as red lines. 
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Figure 5.5. Paleo-tectonic reconstructions at 30, 20, 10 and 0 Ma, illustrating the displacement of the Caribbean 
plate relative to fixed South America. The displacement vectors of the Caribbean plate relative to South America 
are shown in red arrows according to the model of Matthews et al. (2016, GPlates database) and in black dashed 
arrows according to Boschman et al. (2014). The plate boundaries (spreading ridges in blue, subduction and 
transform zones in red) and continent polygons are from Matthews et al. (2016). The main fault zones of NW South 
America are labelled and drawn in thick black lines when active. This reconstruction incorporates the “escape” of 
the northern Andes block along the Bocono Fault (BF) in both models. The overall displacement of the Caribbean 
plate relative to a stationary South American plate since Oligocene times is relatively stable and does not show 
major changes in convergence velocity nor in obliquity. See the text for further discussion. OEPFS:Oca-El Pilar-
SanSebastian Fault system. 
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Table 5.1. Main characteristics of the studied Oligocene to Quaternary tectono-stratigraphic sequences in the LMV. More information, detailed descriptions and sources of 
biostratigraphic, petrographic and sedimentologic reports are found in Text C1. 

Sequence

Lithostratigraphic 

and operational 

names

Planktonic 

foram zones 
(Berggren et al., 

1995; Blow, 1969)

Age
Structural and thickness 

maps
Description Kinematics

Subsidence and 

sedimentation

10
Corpa (Sincelejo,Betulia, 

Popa)
Pl.3 to Pl.6?

upper Pliocene to 

lower Pleistocene

Two main packages preserved in the 

southern LMV, the lower one is a SSW-

NNE-trending ell iptic depocenter and 

the upper one is a round depocenter 

on top of the San Jorge graben; total 

thickness close to 3 km.

In the southern LMV, corresponds to 

fluvio-deltaic, low-angle clinoforms 

prograding from S to N (paleo-Cauca 

deposits); in the NW SJFB, carbonates are 

preserved (Popa Fm.).   

After Corpa deposition, NNW-SSE and SW-NE-

trending extensional faults in Plato are inverted 

and older units are intensely eroded; onlap of the 

upper Corpa to the W indicates onset of recent 

uplift of the San Jacinto fold belt (~1.7 Ma?)

Subsidence due to sagging, much 

higher subsidence in San Jorge; high 

sedimentation rates (~500 m/Ma)

unconformity middle Pliocene

9 Tubara (Cerrito, Zambrano) N.17 (M.14) to Pl.2
upper Miocene to 

lower Pliocene

Overfil led the Plato depocenter and 

was highly eroded, first in the south 

and later in the north, where 

preserved thicknesses are >2 km 

(Plato);

Sigmoidal, shelf margin clinoforms 

represent increased progradation to the 

NNW, of continental to shallow marine 

deposits of the proto-Magdalena river in 

the north (Plato)

After Tubara deposition, NW-SE and SW-NE-

trending extensional faults in San Jorge are 

inverted and older units are partially eroded

Subsidence due to sagging, higher 

subsidence in Plato until  depocenter 

is overfi l led; low sedimentation 

rates (<150 m/Ma, due to partial 

erosion)

unconformity

absence of N.15 

to N.16 (M.8 to 

M.9)

middle to upper 

Miocene

7 and 8
Middle-Upper Porquero 

(Mandatu, Hibacharo, 

Perdices, Jesus del Monte) 

N.12 to N.16 (M.9-

M.13)

middle to upper 

Miocene

Highly variable thickness due to 

variable preservation/erosion

Mostly fine-grained, thick deposits 

preserved mainly in depocenters

Less fault control, Algarrobo strike-slip fault and El 

Dificil  fault active; local paleo-highs in San Jacinto 

(NW-SE contraction) 

Subsidence due to sagging but minor 

fault control, higher subsidence in 

Plato; low sedimentation rates (<150 

m/Ma, due to local, partial erosion)  

unconformity

absence of N.11 

to N.12 (M.8 to 

M.9)

Middle Miocene

6
Upper Cienaga de Oro and 

Lower Porquero (Alférez)

N.7 to N.11 (M.4-

M.8)

lower to middle 

Miocene

More widespread deposition focused 

also in topographic lows; average 

thickness is 400-600 m (1200-2000 ft)  

Lower thin part is transgressive and 

onlaps the basement to the SE, while 

thicker upper part is progradational; Low 

areas were fi l led with clastic marine 

deposits while paleohighs were covered 

by carbonates

Active WNW-ESE-trending (Mojana, Sucre, Apure 

South) and SW-NE-trending (Pivijay, Pijiño, El 

Dificil  South) extensional faults

Fault-controlled subsidence which 

tends to decrease with time; much 

higher sedimentation rates (60 to > 

300 m/Ma)

unconformity
absence of N.4 to 

N.6 (M.1 to M.3)
lower Miocene

5
Lower Cienaga de Oro 

(Carmen)
P.22 to N.6 (M.3)

lower Oligocene to 

lower Miocene

Gradually fi l led paleo-topographic 

basement lows from WNW to ESE; 

found at >3.5 km in San Jorge graben 

and at >5 km in Plato; thickest in the 

W towards the SJFB where >1.5 km are 

preserved in local depocenters

Lower part shows an onlap pattern to the 

SE; interpreted as a retrogradational, 

transgressive package with a fining and 

deepening upwards pattern; transition 

from basal sandy, shallow marine facies 

to muddy, deeper marine facies. Upper 

muddy part has been mostly eroded 

Active WNW-ESE-trending (Mojana, Sucre, Apure 

South) and SW-NE-trending (Pivijay, Pijiño, El 

Dificil  South) extensional faults

Fault-controlled subsidence, low 

sedimentation rates (<60 m/Ma) but 

would be higher due to erosion of 

upper part of the sequence
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5.4 Results 
 

 

5.4.1 Stratigraphic and Structural Framework of the Lower Magdalena 
Valley basin 

 

The pre-existing basement architecture played a crucial role in the Oligocene to Recent sedimentary 

evolution of the LMV, therefore we build on the previous analyses and maps of Mora et al. (2017a, 

b, presented here in Chapters 4 and 5) to study the structural and stratigraphic evolution of the basin. 

Based on regional reflection-seismic and well data, six major Oligocene to Recent tectono-

stratigraphic sequences, separated by major regional unconformities (depositional sequences sensu 

Catuneanu et al., 2009), were identified and defined in the LMV (Figure 5.2). Numbering of the 

sequences starts from 5, considering that pre-Oligocene Sequences 1 to 4 were previously studied 

by Mora et al. (2017b) in the SJFB. The main characteristics of the studied sequences are 

summarized in Table 5.1 and a detailed description of each sequence is found in Text C1. 

5.4.1.1 Sequence 5 (Oligocene to lower Miocene) 
 

We interpret the Oligocene to lower Miocene deposits as a transgressive, 2nd-order sequence, 

which filled from NW to SE the lowest paleo-topographic areas formed by the basement of the 

LMV (Figure 5.6 and Figure 5.7, Table 5.1). Based on studies of planktonic foraminifera in wells 

and outcrops, this sequence which is called “Lower Ciénaga de Oro”, has been associated to the 

planktonic zones P.20 to N.6 (M.3), equivalent to an early Oligocene to early Miocene age. Seismic 

data shows that the Oligocene to lower Miocene deposits gradually filled the proto-San Jorge and 

Plato depocenters from the W and NW and that the main structural basement features, such as the 

Sucre, Mojana and Pivijay extensional faults, were active (Figure 5.6 to Figure 5.8). The best 

preserved, lower part of the sequence is interpreted as a retrogradational, transgressive package 

which records the advance of marine sedimentation from NW to SE and was deposited initially in 

shallow marine environments, which gradually changed to deeper marine and more anoxic 

environments.  

 

5.4.1.2 Sequence 6 (Lower to middle Miocene) 
 

This sequence was deposited after a regional early Miocene unconformity and records a major 

change in sedimentation in the basin, related to an increase in sediment supply. Biostratigraphic 

analyses indicate that it is a 3rd-order sequence of lower to middle Miocene age (Burdigalian to 

Serravalian, zones N.7/M.4 to N.11/M.8) (Figure 5.6 to Figure 5.8, Table 5.1). Deposition of this 

sequence extends farther to the E and SE and begins with retrogradational, shallow marine clastics 

and carbonates which then change to progradational deltaic deposits (Figure 5.9). The two main 

families of extensional fault were active since late Oligocene times gradually decreased their 

activity through time. North of the Magangué-Cicuco high, this sequence is thicker and comprises 

deep-water, clastic deposits (mud to gravel-rich deposits, Richards, 2001) with the presence of an 

impressive submarine canyon which has been related to the proto-Magdalena drainage (ICP, 2000; 

Bernal et al., 2015c).  

 

5.4.1.3 Sequences 7 and 8 (Middle to Upper Miocene) 
 

Two tectonic events, one in the late Miocene and the other one in the middle Pliocene are 

responsible for the partial erosion of the middle to upper Miocene sequences in the southern and 

southwestern LMV. These sequences are also the result of abundant sediment supply from the E 

and SE, they continue to evidence high sedimentation rates and to display a progradational pattern 
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to the NW. These sequences represent 3rd-order cycles of middle to upper Miocene age 

(Serravallian-Tortonian) and are also limited by regional unconformities (Duque-Caro, 1979; 

Hocol, 1993; Duque-Caro et al., 1996; ICP, 2000; Guzman, 2007). The sequences, called “Middle 

and Upper Porquero”, exhibit mainly fine-grained facies with progradational stacking patterns, 

which are best preserved in the depocenters where erosion was less intense. 

 

 

 

 

 
 
Figure 5.6. Selected seismic sections from the southern LMV, showing the well ties and the seismic stratigraphic 
characteristics, depositional patterns and thicknesses of the Oligocene to Quaternary sequences. The onlapping 
pattern to the SE of the Oligocene to Middle Miocene sequences (sections 1, 3 and 5) and the fault-controlled 
deposition of the same sequences in the San Jorge graben (section 4) are illustrated. Evidence of a lower Miocene 
paleohigh is depicted in Section 1, with the interpreted onlap to the NW of sequences 6 to 8, while Section 2 
displays the progradation of sequences 7 and 8 in the San Jorge graben. Section 3 also shows the onlap to the NW 
of the upper part of Sequence 10, indicative of the uplift of the SJFB. A photo of an outcrop of deltaic, coal-bearing 
strata of Sequence 5, affected by recent extensional faulting and located in the southernmost LMV, is also shown.  
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Figure 5.7. Selected seismic sections from the Magangué-Cicuco high (section 3) and northern LMV (Plato 
depocenter), showing the well ties and the seismic stratigraphic characteristics, depositional patterns and 
thicknesses of the Oligocene to Quaternary sequences. The onlapping pattern to the SE and against basement highs 
(e.g. Apure, El Dificil and Magangue) is illustrated. 

 

 

Figure 5.8. Regional seismic section from the northern LMV (Plato depocenter), showing the well ties and the 
seismic stratigraphic characteristics, depositional patterns and thicknesses of the Oligocene to Quaternary 
sequences. Evidences of a Miocene paleohigh are the onlapping and downlapping patterns of low-angle clinoforms 
to the NW, in the area of the Cibarco high (buried San Jacinto fold belt). In the SE, the oldest sequences have not 
been drilled, so interpretation is based on seismic data, which has a poor image at deep levels. RFS: possible 
Romeral Fault System; SiF: Sinú Fault; AF: Algarrobo fault. 
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5.4.1.4 Sequence 9 (Upper Miocene to lower Pliocene-Tubará) 
 

This 3rd-order sequence of upper Miocene to lower Pliocene age (zones N.17/M.14 to Pl.2 zones, 

Tortonian to Zanclean) represents the accelerated migration towards the NNW of shelf-edge 

clinoforms of the paleo-Magdalena river, which almost completely filled the Plato depocenter and 

reached the approximate position of the present-day coastline in early Pliocene times (Figure 5.8 

and Figure 5.10, Table 5.1). Reflection-seismic data shows that this sequence, which is better 

preserved in the Plato depocenter, is composed of low-angle (0.3-0.6°) and wide (100-200 km) 

sigmoidal clinoforms which advanced from SSE to NNW, representing the gradual advance of the 

proto-Magdalena river.  

 

5.4.1.5 Sequence 10 (Upper Pliocene to Pleistocene) 
 

This sequence, which has been very poorly studied and comprises several higher order sequences, 

represents renewed subsidence in the southern LMV, focused in the San Jorge graben where the 

thickest deposits occur (Figure 5.6). It is well preserved in the southern LMV, south of the 

Magangué-Cicuco high, where it is called “Corpa”, while in the north deposition appears to have 

been much thinner and the sedimentary record was eroded due to Pleistocene to recent deformation 

(Figure 5.10 and Figure 5.11, Table 5.1). Taking into account the unconformities above the Tubará 

upper Miocene to lower Pliocene sequence, and below the upper Pleistocene to recent deposits, we 

infer here a late Pliocene to early Pleistocene age for this sequence, spanning from 3 to 1.3 Ma (3rd- 

order cycle). We divided this sequence into two seismic packages (see Text C1). The area where 

the thickest deposits are preserved coincides with the structurally deepest area, which continues to 

subside today (Figure C 2a). The expression of the Corpa Sequence in reflection-seismic data 

consists of low-angle clinoforms broadly prograding from South to North, which appear to 

represent the deposits of the paleo-Cauca drainage system, including fluvial channels, lakes and 

swamps (Figure 5.11 to Figure 5.12). The internal seismic-stratigraphic architecture of the Corpa 

Sequence reveals the time when the SJFB started to be uplifted, which appears to be close to the 

boundary between the Pliocene and Pleistocene (section 3, Figure 5.6).     

 

5.4.2 Oligocene to Recent paleo-geography and kinematics of the LMV 

 

In this section, we present the results of the integration and analysis of all our seismic, well and 

outcrop data, which are the basis for proposing an Oligocene to Recent kinematic and paleo-

geographic evolution of the LMV. We have represented such evolution both in map view (Figure 
5.9 to Figure 5.11) and in cross-section view (Figure 5.16 and Figure 5.17). In Figure 5.9 to Figure 
5.11, detrital zircon U-Pb geochronology from Montes et al. (2015) is also plotted (purple circles 

with their respective histograms), in order to show the influence of Permo-Triassic and older 

basement sources (black bars in histograms), Cretaceous sources in the Western and Central 

Cordilleras (green bars in histograms) and Eocene to Miocene sources (yellow and orange bars). 

Seismic and well data shows that the LMV basin was initially filled by Oligocene, shallow-

marine deposits of Sequence 5, which filled the paleo-topographic lows, as the sea transgressed 

from NW to SE (Figure 5.9a). Fault-controlled subsidence observed in the seismic indicates that 

there was an extensional reactivation of pre-existing basement faults with different trends, with the 

NE-SW being the most important. Detrital zircon geochronology shows that a fluvial system was 

draining Cretaceous and older terranes in the SW (Central and Western Cordilleras).  In the north, 

supply from Cretaceous terranes is not observed, though a connection with the Cesar-Ranchería 

basin (CR) has been suggested (Mora and García, 2003). 

After an early Miocene unconformity, basal deposits of Sequence 6 covered wider areas to 

the E, and correspond to shallow-marine clastic deposits in low areas and calcareous deposits in 

high areas (Figure 5.9b). Fault controlled subsidence continued, indicating similar extensional 

regime and trends as in the Oligocene, greatly influenced by the basement fabric. At least two 
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important forearc highs (Betulia and Cibarco, Figure 5.9b) are documented towards the western 

LMV, based on seismic onlap patterns (section 1 in Figure 5.6 and Figure 5.8). The upper part of 

the sequence starts displaying progradational patterns, which together with the occurrence of 

Cretaceous detrital zircons in the eastern San Jorge depocenter, suggest the onset of drainages from 

the S or SE. This suggests a possible connection with the Middle Magdalena valley basin (MMV), 

though according to Caballero et al., (2013b) and Horton et al. (2015), the MMV was an 

intramontane closed basin. 

In middle Miocene times (Figure 5.10a), seismic and well data shows that deposition became 

strongly progradational to the NW and N, and that there was a dramatic increase in sediment supply. 

Connection between the LMV and MMV is more probable, and correlates well with thick 

progradational packages filling the San Jorge depocenter in the south, and turbiditic and gravity-

driven deposits filling the deep part of the Plato depocenter in the north. Forearc highs in the W are 

better developed, while fault-controlled subsidence and sedimentation is more localized and less 

important.  

In late Miocene to early Pliocene times (Sequence 9), the proto-Magdalena shelf clinoforms rapidly 

prograde to the NW and fill the Plato depocenter until they reach the current coastline, while the 

proto-Cauca and proto-San Jorge deposits also fill the southern LMV (Figure 5.10b). Fault-

controlled subsidence ceased in the Plato depocenter, while the San Jorge graben and the forearc 

highs experienced Pliocene, NE-SW and ESE-WNW-trending contraction and the main extensional 

faults are inverted (Figure 5.10b). Upper Pliocene deposits of Sequence 10 are poorly preserved in 

Plato, while they are well preserved in the San Jorge area, which is actively subsiding due to sagging 

(Figure 5.11a). In the Pleistocene, the Plato area and the forearc highs are uplifted, while the San 

Jorge area continues to subside and accumulates thick fluvio-deltaic deposits in a round basin 

(Figure 5.11b). The San Jacinto fold belt is tilted to the SE, due to thrusting in the accretionary 

prism farther west. A digital elevation model from the study area (Figure C 2a) shows that today, 

the northern LMV (Plato) and the San Jacinto fold belt are positive relief areas, while the southern 

LMV (San Jorge) continues subsiding due to sagging. These patterns suggest that ESE-WNW-

trending contraction and NNE-SSW-trending extension have been active since late Pliocene times, 

in agreement with the displacement vector of the Caribbean plate relative to fixed South America 

(Figure 5.1, Figure 5.11b, Figure C 3).   

Thickness analyses of each sequence allowed us to study the development and migration of 

depocenters since late Oligocene times (Figure C 2b). The detailed depocenter evolution and the 

possible reasons for depocenter migration are discussed in forthcoming sections.  
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Figure 5.9. Interpreted late Oligocene (a) and early Miocene (b) paleogeography, based on seismic interpretation and well data, showing interpreted source areas (based on Mora et 
al. 2017a and others), active sedimentation areas and proposed paleo-drainages in blue; thin red contours are thicknesses in meters of each sequence and the thick red contour 
represents the interpreted limit of deposition of each sequence. Main stresses according to interpreted active faults are also depicted. The development of local paleohighs (e.g. Betulia 
and Cibarco) in the present-day SJFB, as interpreted from seismic data, is also shown. CR: Cesar Ranchería; SNSM: Sierra Nevada de Santa Marta; CC: Central Cordillera.
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Figure 5.10. Interpreted middle Miocene (a) and late Miocene to early Pliocene (b) paleogeography, based on seismic interpretation and well data, showing interpreted source areas 
(based on Mora et al. 2017a and others), active sedimentation areas and interpreted paleo-drainages in blue. Thin red contours are thicknesses in meters of each sequence and the thick 
red contour represents the interpreted limit of deposition of each sequence.  Middle Pliocene stresses according to interpreted active faults are depicted. The development of paleohighs, 
as interpreted from seismic data, is also shown. CR: Cesar Ranchería; MMV: Middle Magdalena Valley basin.   
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Figure 5.11. Interpreted late Pliocene (a) and Pleistocene (b) paleogeography, based on seismic interpretation and well data, showing interpreted source areas (based on Mora et al. 
2017a and others), active sedimentation areas and interpreted paleo-drainages in blue; thin red contours are thicknesses in meters of each sequence.  In late Pliocene times, when the 
Magdalena river system reached the present-day coastline, the Plato depocenter was already overfilled, while sedimentation continued in the western San Jorge depocenter, which 
continued subsiding. In the Pleistocene, while the Magdalena river delta shifted its position, uplift of the San Jacinto fold belt and of the Plato depocenter created a round depocenter, 
which continues to subside today (Figure 5.11a). Letters A to D represent positions of the Magdalena deltas (from Romero-Otero, 2015), with A representing the current position. CR: 
Cesar Ranchería. Main Pleistocene to Recent stresses are also depicted.
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5.4.3 SSW-NNE cross-section structure of the LMV  

 

The LMV basement structure has been described in detail by Mora et al. (2017a), who subdivided 

the structural fabric into four main, extensional fault families and proposed tectonic mechanisms to 

explain their origin. The two main families, trending ESE-WNW and ENE-WSW are responsible 

for most of the extension in the LMV, and they consist of nearly vertical extensional faults, which 

exhibit small heaves. Seismic-stratigraphic analyses show that deposition of the late Oligocene to 

early Miocene sequences (Ciénaga de Oro and Lower Porquero) had fault control, and that after the 

middle Miocene, deposition was mainly due to sagging, giving rise to the classic Steer’s Head 

model of basin geometry (Miall, 2000). This is evident from the seismic data and from the regional 

cross-section (Figure 5.12), where the majority of the extensional faults are displacing the upper 

Oligocene to middle Miocene sequences, with related thickness changes across the major faults. 

This style is very clear in the San Jorge graben of the southern LMV, which shows an asymmetric 

shape with thicker syntectonic deposits in the northern half of the graben, indicating that the 

northern Mojana fault had more extensional displacement than the Sucre fault in the south (Figure 
5.6, section 4). By contrast, the late Miocene to Pleistocene sequences filled broader depocenters 

in a uniform way, with only minor and localized fault displacements. The latest subsidence episode, 

which appears to continue active, is related to sagging of the San Jorge graben that allowed the 

deposition of the very thick Pliocene to Pleistocene sequences (Sequence 10, Corpa). The faults 

that exhibit the biggest heaves are related to the Santa Marta-Algarrobo fault system, which displays 

a listric style with mostly Neogene syntectonic strata and important fault-block rotation (Figure 
5.12).   

 

 

 
 
Figure 5.12. Regional structural cross-section in depth (kilometers), in two different scales to show the 
stratigraphic relationships, thicknesses and preservation of the studied Oligocene to Quaternary sequences. The 
lower section (scale 1:1), also shows the base of the continental crust, based on data by Poveda et al. (2015) and 
Bernal et al. 2015a. EDH: El Dificil High; MoF: Mojana Fault; SuF: Sucre Fault. Dashed line in Sequence 10 represents 
clinoform progradation to the north. 

 

5.4.4 Sedimentation Rates and Subsidence in the LMV and San Jacinto 
fold belt 

 

Thicknesses and ages from 32 wells drilled in the LMV and SJFB were compiled to calculate 

sedimentation rates and to carry out subsidence analyses of those provinces. Due to poor 

preservation of Oligocene to Recent deposits in the SJFB, analyses of sedimentation and subsidence 

rates there are less reliable. In the LMV, where the succession is much more preserved, our analyses 
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indicate that after the Early Miocene unconformity there was a dramatic increase in sedimentation 

and subsidence rates (upper panels in Figure 5.13 and Figure C 1). Sedimentation rates of the upper 

Oligocene to lower Miocene sequence (5) were lower than 60 m/Ma, though this number could be 

higher considering erosion of the upper part of the sequence (planktonic zones N.4/M.1 to N.6/M.3). 

By contrast, Sequence 6, deposited after the early Miocene unconformity, exhibits much higher 

sedimentation rates, generally above 60 m/Ma and locally exceeding 300 m/Ma, in some areas such 

as the Plato Depocenter. Sequences 7 to 9 appear to display lower sedimentation rates, generally 

less than 150 m/Ma, but considering the erosion experienced by these sequences, they probably 

also exhibited sedimentation rates higher than 200 m/Ma. Sequence 10 (Corpa), which is well 

preserved in the southern LMV, displays very high sedimentation rates with an average of 530 

m/Ma, exhibiting highest values in the Magangué-Cicuco high and in the western San Jorge 

depocenter. Our calculated sedimentation rates are in agreement with previous calculations by 

Molina (1978; in ICP, 2000).  

Our estimates of corrected total and tectonic subsidence show important variations 

depending on the geographic location (Figure 5.13). The highest subsidence estimates were 

obtained in the southern Plato depocenter with 4.8 km of total subsidence and 2.1 km of tectonic 

subsidence. In the San Jorge graben, 3.7 km of total subsidence and 1.8 km of tectonic subsidence 

were calculated. In spite of erosion of the Latest Miocene to Recent strata in the SJFB, the estimated 

total subsidence is close to 3 km and the tectonic subsidence around 1.5 km.  
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Figure 5.13. Integration of the subsidence (total vs tectonic), sedimentation rate and Oligocene to present day, 
tectonic plate convergence velocity and obliquity, compared with major tectonic events and tectono-stratigraphic 
unconformities. Tectonic (continuous lines) and total (dashed lines) subsidence plots of representative wells in 
the LMV and San Jacinto are displayed in the upper panel, and sedimentation rates in the central panel. The third 
panel from top to bottom exhibits the changes in plate convergence velocity and obliquity with time, for two 
different paleo-tectonic models (Boschman et al. 2014 in black, B14; Matthews et al. 2016 in red, M16), compared 
with the Oligocene to Quaternary tectono-stratigraphic sequences and unconformities (vertical bars of orange to 
yellow shades) and major tectonic events (black to grey horizontal bars in the lower panel). We calculated 
velocities and obliquities in time-steps of 5 Ma, hence the points in the convergence velocity and obliquity graph 
represent the middle of each time interval.  
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5.4.5 Extension in the LMV  

 

In this study, we followed three different approaches in order to obtain well-supported extension 

estimates for the lithosphere and crust beneath the LMV. The first approach was to do a simple line-

length calculation using a NNE-SSW-trending, depth-converted structural cross-section (Figure 
5.12), which we built in the Move software of Midland Valley. The second approach was a 

backstripping technique assuming an Airy isostasy model and using sediment thickness data from 

the drill holes, in order to construct the total vs tectonic subsidence curves and to obtain the 

stretching factor (β factor, McKenzie, 1978; Figure 5.14). The third approach was to compile crustal 

thickness and Moho depth data from NW Colombia (e.g. Poveda et al., 2015; Bernal et al. 2015a) 

and use our basin floor (basement) depth map to obtain the crustal thickness beneath the LMV, after 

removing the sedimentary infill (Figure 5.15).  

At this point, we must highlight the advantages and limitations of each of the methods we 

used to calculate extension in the LMV. The line-length measurement using the depth-converted 

structural cross-section, constructed from reflection-seismic data, is the method that involves more 

uncertainty for several reasons. First of all, due to the resolution of the seismic data, extension 

caused by sub-seismic features is not taken into account. In second place, analysis along a 2-D 

section assumes plane strain, therefore neither oblique nor ductile deformation are taken into 

account. Furthermore, this approach assumes correct geometric representations of structural 

geometries, and final calculations are affected by depth conversion. For these reasons, the line-

length balancing method considerably underestimates the obtained amounts of extension.  

The prototype uniform stretching model of McKenzie (1978) involves assumptions such as 

uniform stretching with depth, instantaneous extension, stretching by pure shear and the operation 

of Airy isostasy throughout, among others. However, observations in regions of continental 

extension suggested re-examination of the assumptions in the uniform stretching model, and 

modifications to the prototype model were proposed (Allen and Allen, 2005). Therefore, it is clear 

that by using the simple uniform stretching model of McKenzie (1978) we are making assumptions 

that have been re-examined and that do not involve a wide number of additional variables. 

Furthermore, the uniform stretching model does not provide clues to understanding the dynamics 

of continental stretching.  

Although dynamic modeling is beyond the reach of this study, our estimates obtained by 

using the crustal thickness measurements and the basement depth maps are our best approximations 

for extension calculations, because they allow areal and volumetric balancing and they are 

independent of the limitations of the other two methods (line length and uniform stretching). In 

spite of having a very detailed basement map, an important limitation of this method is that the 

crustal thickness map is very generalized because it was obtained from data of only five stations for 

receiver function approach (Poveda et al., 2015) and three cross-sections for the gravity modeling 

(Bernal et al., 2015a). There are also inherited uncertainties from each of these methods, which 

according to Poveda et al. (2015), would be in the order of 9 km in the Moho depth estimation, and 

3 to 8% in thickness estimations. For the modeling of the gravity transects by Bernal et al. (2015a), 

the best-possible match between the calculated and observed gravity anomalies was obtained after 

varying the densities and geometries of pre-defined layers, but still some errors (2.27 to 4.38 km) 

are reported for such modeling.   

According to the tectonic subsidence curves from wells located in the SJFB and in most of 

the LMV (except for the deep Plato depocenter), there is 10-50% of extension related to β values 

between 1.1 and 2, while in the deep parts of the Plato depocenter, β values range from 2 to 4 (> 

50% of extension, Figure 5.14). The simple line-length calculation in the Move software showed 

that the basement of the LMV has been extended 41 km, which is equivalent to 12.1% of extension 

(Figure 5.12). Nevertheless, the Algarrobo listric fault system accounts for 7.1% of the total 

extension, while the rest of the LMV including the Plato and San Jorge depocenters, experienced 

only 14 km of extension, equivalent to only 5%. Concerning the crustal thickness and Moho depth 

data, Poveda et al. (2015) used a receiver functions technique to obtain crustal thicknesses ranging 

from 26 km in the Montería area, to 50 km in the southeastern boundary of the basin against the 

northern Central Cordillera. Bernal et al. (2015a) reported Moho depths from gravity modelling 
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which range from 24 km in the north of the LMV to 36 km in the south (Figure 5.15a). As shown 

by Mora et al. (2017a), the basement beneath the LMV reaches depths of 8 km in the Plato 

depocenter and 6 to 7 km in the San Jorge graben (Figure 5.15b). Removal of the sedimentary fill 

suggests that the crust is thinnest in the northwestern part of the basin where the sedimentary infill 

is very thick and where Bernal et al. (2015a) report crustal thicknesses close to 24 km (Figure 
5.15c). A thin crust was also measured in the western San Jorge depocenter (~20 km), based on the 

data by Poveda et al. (2015), who also measured the highest thicknesses in the northern SJFB (37 

km).  

Crustal thickness calculations in northern Colombia (Poveda et al., 2012) suggest that the 

continental crustal thickness in relatively undeformed areas such as the Middle Magdalena Valley 

basin ranges from 40 to 45 km. Therefore, if we assume an initial crustal thickness in the LMV area 

of 40 km, the maximum extension would be more than 50% (β=2) in the northwestern Plato 

depocenter and around 50% in the Montería-San Jorge graben area, while in the rest of the basin, 

extension would range between 12 and 32% (β from 1.13 and 1.45). This means that the LMV 

experienced high extension in the two depocenters (Plato and San Jorge) and low extension in the 

rest of the basin. However, if a higher initial crustal thickness is assumed (45 km or more), extension 

would have been much bigger. Table 5.2 summarizes our extension estimates using the three 

different approaches previously described and the previous extension calculations by Montes et al. 

(2010). 

 

 
 
Figure 5.14. Tectonic subsidence data plotted against the square root of the geological time, in order to have an 
idea of the β-factor (McKenzie, 1978) and the extension in the LMV. In most of the study area, β values range from 
1.2 to 1.5, except for the Plato depocenter where they can be > 2 (> than 50% extension). Inset shows a comparison 
of our tectonic subsidence curves for the LMV and SJFB with data from other forearc basins compiled by Angevine 
et al. (1990), showing a good correlation with some basins. 1. Northern LMV (Plato); 2. Southern LMV (San Jorge); 
3. Southern San Jacinto; 4. Northern San Jacinto. MCH: Magangue-Cicuco high.  
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Figure 5.15. Maps used to calculate extension in the LMV and SJFB. a) Depth map of the Moho discontinuity, representing the crustal thickness, based on Poveda et al. (2015) and Bernal 
et al. (2015a), showing that the crust thickness ranges from 22 km in the northern LMV to >30 km in the central and SW San Jacinto. Stations with measured values are depicted in 
lavender (values obtained from Bernal et al. 2015a where extrapolated as points from their regional gravity sections). b)   Basement map in depth (km) of the LMV, based on Mora et 
al. 2017a).  c) Crustal thickness map without sedimentary infill, obtained by subtracting the basement map in (b) from the crustal map in (a). It must be noted that the thinner crust 
(<20 km) in the NW of the LMV, where no thickness data is available, resulted from mapping extrapolation. 
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Table 5.2. Compilation of extension calculations in previous (Montes et al. 2010) and this study, according to the 
different methods that were used. Further explanation in the text.  

 

5.5 Discussion 
 

According to paleo-tectonic reconstructions (Müller et al., 1999; Pindell and Kennan, 2009; 

Boschman et al., 2014; Matthews et al., 2016; Mora et al., 2017b), the plate-tectonic setting of 

northwestern Colombia since the Oligocene has been characterized by a slow (~2 cm/yr) and nearly 

orthogonal convergence and subduction of the Caribbean oceanic plate beneath the South American 

plate (Figure 5.5). The formation and Oligocene to Recent evolution of the LMV has therefore been 

influenced by the interaction with the Caribbean oceanic plateau, which has been considered as a 

flat-slab subduction (Bernal et al., 2015a; Mora et al., 2017a, b). Hence, the stratigraphic 

succession in the LMV must have recorded any major changes in the convergence and subduction 

regime. However, the last 30 Ma were characterized by low convergence obliquities and relatively 

low velocities, which do not appear to show abrupt changes in their trend (Figure 5.13), making 

difficult to correlate reported tectonic events such as subsidence or uplift pulses with regional plate 

tectonic events. In spite of the relative stability of the Oligocene to Recent convergence between 

the Caribbean plate and NW South America, our results indicate a close relationship between the 

lower Miocene unconformity, the increase in subsidence and sedimentation in the LMV and the 

uplift of the Eastern Cordillera and related mountain ranges. Such an uplift resulted in the formation 

of the Magdalena fluvial system, when the eastern LMV was connected to the Middle Magdalena 

valley. Our results also highlight the influence of inherited basement structures on tectonic 

segmentation of the LMV, with the development and evolution of the two main depocenters. In this 

section, we start by discussing the possible causes of the formation of the LMV, then the basin and 

depocenter evolution, subsidence history and trends, and finally we propose possible mechanisms 

that controlled the basin evolution, in the absence of major variations in the Oligocene to Recent 

plate-tectonic regime.  

 

5.5.1 Origin of the Lower Magdalena Valley basin 

 

The best-supported and more widely accepted hypothesis for the plate tectonic setting of NW 

Colombia in Late Cretaceous times, relates to the subduction of the “normal” thickness oceanic 

Caribbean plate and later of the Caribbean plateau beneath South America (Mantilla et al., 2009; 

Bernal et al., 2015a, b; Mora et al., 2017b). Mora et al. (2017a) and Silva et al. (2016) recently 

proposed the existence of a subduction-related, Upper Cretaceous magmatic arc that forms the 

basement underneath the LMV. Though no evidence has yet been found of Paleocene to Eocene 

arc magmatism under the LMV, there are reports of Paleocene to lower Eocene magmatic arc rocks 

in the northern CC and SNSM (Bayona et al., 2012; ANH, 2011a; Bustamante et al., 2017), 

suggesting that there was a continuous, Upper Cretaceous to lower Eocene magmatic arc, extending 

between those areas. Dickinson (1995) attributed forearc subsidence to several factors, one of them 

Extension calculations 

in LMV (β and %)
Comments

Tectonic subsidence curves 1.1 to 2 (10-50%) β=2 to 4 (50-75%) in deep Plato depocenter

Line-length in cross-section 12.1% Algarrobo Ft. accounts for 7% 

Crustal thickness measurements 1.13 to 1.45 (12-32%*) β=2 (50%) in Montería area*

Montes et al., 2010 1.5 to 2 (33-50%) NE-SW extension between 86 and 115km

*assuming initial crustal thickness of 40km
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being the cooling and thermal subsidence of the arc massif. Noda (2016) proposed a general model 

of forearc basin evolution and argues that during the infant stage of subduction, the forearc may be 

extensional until the sinking plate retreats the hinge to obtain a sufficient downdip motion, and that 

such extension possibly leads to fault controlled subsidence in the overriding crust. According to 

the aforementioned, we consider that the formation of the LMV is related to the cooling and thermal 

subsidence of the Cretaceous to lower Eocene, intra-continental magmatic arc of NW Colombia, 

and to the fault-controlled subsidence at the initial subduction stages. Cooling caused the 

extensional reactivation of the main pre-Oligocene basement features such as the Mojana and Sucre 

faults that limit the San Jorge graben, and the Pivijay, Apure, Pijiño and other faults of the Plato 

depocenter. Extensional reactivation of inherited basement structures was crucial for the tectonic 

segmentation of the LMV, with the formation and development of its two basin depocenters (Plato 

and San Jorge). However, it is also possible that initial subsidence could have been caused by crustal 

thinning due to possible Cretaceous to Eocene subduction erosion (Clift and Vannucchi, 2004), as 

suggested by Mora et al. (2017a, b).  

 

5.5.2 Oligocene to Recent forearc basin evolution 

 

Our results show that fault-controlled subsidence took place in the LMV from Oligocene to middle 

Miocene times, spanning for 15- 19 Ma, and that it was replaced by sagging which lasted for ~14 

Ma. An increase in sedimentation at ~ 17 Ma, after an early Miocene regional unconformity, would 

have influenced the change of fault-controlled subsidence to sagging, thus implying that 

sedimentary loading became the main subsidence mechanism since middle Miocene times. The 

increased sediment supply also strongly influenced the plate interface, by lubricating the subduction 

channel, thus affecting the transmission of stresses to the upper plate and producing underplating. 

Crustal thickening by tectonic underplating of subducted materials has been proposed as a cause of 

uplift in forearc coastal terranes such as the Chile forearc (e.g. Glodny et al., 2005; Clift and Hartley, 

2007). In the LMV, underplating has been proposed based on deep seismic imaging by Mora et al. 

(2017a, Figure A 1), and in this study we have identified Miocene to Recent paleo-highs in seismic 

sections in the current SJFB (e.g. section 1 in Figure 5.6 and Cibarco high in Figure 5.17), which 

would represent forearc highs. Therefore, uplift in the forearc as seen in the western LMV and 

current San Jacinto fold belt, may be related to tectonic underplating. The occurrence of a deformed 

outer high to the W (San Jacinto fold belt) and an undeformed forearc basin behind it, to the E 

(LMV), is explained if the continental basement beneath the LMV acted as a static backstop (Figure 
5.18), with geologically reasonable contrasts in mechanical properties compared to the sediments 

just trenchward of it (Byrne et al., 1993; Mantilla et al., 2009).  

In late Oligocene times, low-angle subduction was ongoing when the pre-Oligocene 

magmatic arc subsided and the LMV experienced SE-NW and NE-SW-trending extension and 

fault-controlled subsidence, with the formation of the two basin depocenters. The Oligocene basin 

was far from being overfilled, hence it was probably an underfilled, mostly sloped, forearc basin 

(sensu Dickinson, 1995), or an accretionary extensional forearc basin (sensu Noda, 2016).  

The early Miocene unconformity seems to mark an important change in sedimentation in 

the LMV, as shown by our results. This unconformity partly overlaps in age with plate tectonic 

events such as the breakup of the Farallón plate and the initial collision episode of the Chocó-

Panamá block, though there is no concrete evidence to support a direct correlation. However, such 

tectonic events could have exerted some influence in the uplift of Andean terranes, which started 

shaping the drainage systems in northern Colombia (Hoorn et al., 2010; Caballero et al., 2013a; 

Reyes-Harker et al., 2015; Anderson et al., 2016). The early Miocene increase in subsidence 

coincides with faster exhumation rates in surrounding areas such as the Santander Massif (Mora et 

al., 2015; Van der Lelij et al., 2016) and the Santa Marta Massif (Villagomez et al., 2011b). Further 

south, in the Eastern Cordillera, Parra et al., (2010) and De la Parra et al. (2015) in the Eastern 

foothills and Caballero et al. (2013a) in the Western foothills, documented a clear correlation 

between increasing subsidence rates and faster thrust-induced denudation rates by about 20 Ma. 
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Figure 5.16. Simplified, Oligocene to Recent evolution of the LMV, as shown in a NNE-SSW-trending regional 
section. Oligocene to middle Miocene fault-controlled subsidence which affected Sequences 5 to 7, was replaced 
by sagging during deposition of Sequences 8 to 10. After the middle Miocene, the two depocenters (Plato and San 
Jorge) started to experience different subsidence and uplift phases.  



5 Controls on forearc basin evolution: Insights from LMV tectonostratigraphy   

106 

 

 

 
 
Figure 5.17. Simplified, Oligocene to Recent evolution of the LMV, as shown in a SE-NW-trending regional section. 
After Eocene to Middle Miocene fault-controlled extension, connection with the Middle Magdalena caused 
sigmoidal progradation to the NW of Sequences 7 to 9 in the Plato depocenter, until it became overfilled. 
Pleistocene to Recent shortening was responsible for the inversion of previous extensional faults and intense 
erosion towards the area of the Algarrobo fault (AF). 
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After the unconformity, there was a change in both sedimentation style and amount of 

sedimentary supply to the basin. The upper part of Sequence 6 (lower to middle Miocene) starts 

exhibiting progradation of deltaic clinoforms to the NW, indicating connections with important 

drainage systems, which supplied enormous amounts of sediments from the SE and S. At the same 

time, there was more development of forearc highs in the San Jacinto area, suggesting increasing 

sediment supply to the trench and continued underplating. The basin was still underfilled and mostly 

extensional, but it was possibly changing from sloped to ridged (sensu Dickinson, 1995), due to the 

occurrence of mainly submerged paleohighs (Figure 5.18). Fault controlled subsidence and NE-SW 

and SE-NW-trending extension continued active in the LMV. 

Deposition in the LMV was quite stable from middle to late Miocene times (Sequences 7 

and 8), but highly influenced by a well-established connection with the proto-Magdalena and Cauca 

drainage systems, which delivered abundant, mostly distal, fine-grained sediments to the basin. 

Therefore, the subduction channel was continuously lubricated by sediments delivered to the trench, 

while underplating and subsequent uplift in forearc high areas continued. An extensional regime 

prevailed in the LMV, though fault-controlled subsidence decreased with time and was gradually 

replaced by sagging.  

A second important change in sedimentation occurred after the late Miocene unconformity, 

when upper Miocene to lower Pliocene Sequence 9 was deposited and partial erosion of Sequence 

7 and 8 took place in the southern LMV. Wijninga et al. (1996), Mora et al. (2008), Hoorn et al. 

(2010) and Mora et al. (2010b) documented that the main phase of topographic growth in the 

Colombian Eastern Cordillera occurred between the late Miocene (~15 Ma) and Plio-Pleistocene 

(~3 Ma) while denudation rates were the fastest (Mora et al., 2008; Caballero et al., 2013b) and 

deformation rates reached the Cenozoic peaks (>8 mm/year, Mora et al. 2013a). Therefore, uplift 

in the eastern Cordillera and surrounding areas was increasingly more important for the shaping of 

the drainage systems, which delivered important amounts of sediments to the basin.  From middle 

Miocene to Pliocene times, the morphology of the basin evolved from an underfilled, marine, sloped 

to ridged basin, to an overfilled, terraced to shelved, shallow marine forearc basin, with the 

occurrence of SSW-NNE-trending, submerged or locally emergent paleo-highs (Figure 5.18).  

An important shortening event that affected the LMV, evident from seismic data, occurred 

shortly after the deposition of Sequence 9 (Figure 5.10b), in middle Pliocene times (~3.6 Ma, Figure 
5.13). Erosion of older sequences, mainly 7 to 9, occurred in areas such as the Magangué-Cicuco 

high and southern LMV, while normal faults such as those bounding the San Jorge graben were 

slightly inverted. Such inversion was related to NE-SW-trending contraction, though SE-NW-

trending contraction also occurred in the forearc highs (San Jacinto). This shortening event did not 

affect the overlying Plio-Pleistocene Sequence 10, as evidenced from the seismic data. Good 

examples of structures inverted by this tectonic event are shown in sections 1, 3 and 5 of Figure 5.6.  

After the middle Pliocene shortening event, the subsidence and uplift patterns in the basin 

depocenters changed, and the north (Plato) was uplifted while the south (San Jorge) started rapidly 

subsiding by sagging (Figure 5.13, Figure 5.16). The deposition of transitional to continental 

Sequence 10 was influenced by the late Pliocene to Pleistocene peak deformation rates in the 

northern Andes (Mora et al., 2008 and Caballero et al., 2013a), related to the final collision of 

Panamá and to the closure of the Central American Seaway (O´Dea et al., 2016). Since the northern 

LMV (Plato) became a positive relief area, offshore areas such as the Magdalena fan and the trench 

continued to receive huge amounts of sediment from the Magdalena River, and from the Sinú River 

farther south (Figure 5.11). 
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Figure 5.18. Interpreted evolution of the morphology of the LMV and San Jacinto from an Upper Cretaceous to 
Eocene underfilled, sloped forearc basin (sensu Dickinson, 1995) with an active magmatic arc, to the current 
amagmatic and overfilled, benched continental forearc basin. Increased Miocene sediment flux, the inherited 
basement structure and a flat-slab subduction were the main controls on Oligocene to Recent forearc basin 
evolution, as discussed in the text. 

 
The San Jorge depocenter of the southern LMV continued sagging as fluvio-deltaic deposits 

of the proto-Cauca and San Jorge Rivers filled the lowest areas. In Pleistocene times (~1.7 Ma) the 

San Jacinto fold belt was tilted to the SE due to deep, northwest-verging thrusting occurring in the 

accretionary prism farther west (Figure 5.6 to Figure 5.8). This tilting caused only subtle 

reactivation and localized inversion of structures within the Romeral Fault System. The uplift of 

the San Jacinto fold belt resulted in a more continuous forearc high, which would be the surface 

expression of continued underplating processes, driven by the high sediment supply to the trench. 

The development of a relatively continuous forearc high in San Jacinto was fundamental for the 

formation of the Sinú River valley, which became an additional and important source of sediments 

to the Morrosquillo Gulf offshore area. At the same time, it isolated the Cauca and San Jorge rivers 

and connected them to the Magdalena River in the north. Such processes produced the present-day 
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morphology of the basin, which can be described as an overfilled, benched, continental forearc 

basin (sensu Dickinson, 1995; Figure 5.18).  

 

5.5.3 Tectonic segmentation and depocenter evolution in the LMV 

 

Since middle Eocene times, the San Jacinto fold belt and the LMV became part of the same forearc 

basin, which deepened to the W, towards the trench area, as the accretionary prism started to 

develop. Upper Oligocene and Miocene depocenters were more developed in the north (Plato, 

Figure C 2b), and they migrated landward to the E, probably due to the development of forearc 

highs. In Pliocene times, after the north became overfilled, the southern depocenter (San Jorge) 

started becoming more important and it migrated landward (to the E). While the landward migration 

of depocenters is a distinctive feature of compressional accretionary forearc basins (sensu Noda, 

2016), the depocenter shifting from north to south indicates tectonic segmentation into differentially 

subsiding zones, as seen in several forearc basins such as the Great Valley of California (Angevine 

et al., 1990; Xie and Heller, 2009; inset in Figure 5.14). Forearc basin segmentation has also been 

related to continental forearc basins formed in flat-slab subduction settings (Ridgway et al., 2012), 

where marked along-strike changes in basin configuration were related to insertion of wide 

fragments of thick crust. Other causes of forearc basin tectonic segmentation include bathymetric 

changes in the underlying subducted slab that isostatically impact the overlying plate (Kobayashi, 

1995), and collision of crustal fragments in the subduction zone (Clift and MacLeod, 1999).  

Our results suggest that the pre-Oligocene basement fabric in the LMV, which is different 

beneath each depocenter (Mora et al., 2017a and Figure C 3), was probably the main cause of the 

tectonic segmentation of the basin. The Oligocene extensional reactivation of inherited basement 

faults allowed the formation of the two depocenters, while later fault reactivations controlled the 

response of each depocenter to the regional stress regimes. For instance, the NE-SW-trending 

contraction that we document in the southern LMV after the deposition of Sequence 9 (Figure 
5.10b) is perpendicular to the SE-NW contraction trend, which is directly related to the convergence 

vector of the Caribbean relative to South America (Figure C 3). Therefore, two possible tectonic 

events could be related to the NE-SW-trending contraction observed in the southern LMV (Figure 
5.13). The first one could be the escape of the northwestern Andean block, which occurred after 11 

Ma along the East Andean front fault zone in Colombia and the Boconó fault system in Venezuela, 

as implemented in the paleotectonic model of Matthews et al., (2016; Figure 5.5).  The second one 

would be the collision stages of the Chocó-Panamá block with northern South America, occurring 

in late Miocene to Pliocene times (Montes et al., 2015; O’Dea et al., 2016), which could have also 

caused the selective reactivation of the basement faults in the LMV (Figure 5.13).  

 

5.5.4 LMV Subsidence history and trends   

 

Global studies of basin subsidence history (Xie and Heller, 2009) concluded that subsidence curves 

from forearc basins, as a group, have a diverse range of shapes, indicating that a variety of factors 

may contribute to basin subsidence. According to Dickinson (1995), there are four subsidence 

mechanisms in forearc basins: negative buoyancy of the descending slab, loading by the subduction 

(accretionary) complex, sediment or volcanic loading and thermal subsidence of the arc massif. Our 

results suggests that in the LMV, thermal subsidence of the arc and crustal thinning were more 

important initially (late Oligocene to middle Miocene), and then they were replaced by sedimentary 

loading as the main subsidence mechanism in the basin during the late Miocene to Recent. Flexural 

compensation due to sediment loading could have also occurred in the LMV, though it depends on 

the strength of the lithosphere (Allen and Allen, 2005).  

Our subsidence curves (Figure 5.13) and burial history charts (Figure C 1) show that the 

most dramatic change in subsidence occurred after the early Miocene unconformity, between 17.3 

and 12.7 Ma, when there was a notorious increase in subsidence with the deposition of Sequence 
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6. Initial subsidence of the oldest, Oligocene to lower Miocene, Sequences 5 and 6 was fault-

controlled. Early to late Miocene subsidence related to Sequences 6 to 8 was much higher and 

reached values of 2.5 km in the axis of the Plato depocenter. It thus appears that as fault-controlled 

subsidence decreased, sediment supply increased and rapidly loaded the basin depocenters, causing 

subsidence by sagging. In late Miocene times (10-7 Ma), subsidence was interrupted by an uplift 

and erosion episode whose expression is the late Miocene unconformity (Figure C 1). After the late 

Miocene tectonic episode, subsidence re-started and was also higher in the Plato depocenter, where 

greatest thicknesses of the Tubará Sequence were preserved. Tubará subsidence was then abruptly 

interrupted by the middle Pliocene tectonic episode (Figure C 1) which caused intense erosion in 

the Magangué-Cicuco high and southern LMV. The final, well-documented subsidence episode in 

the LMV occurred in the south, where more than 2 km of mainly continental sediments of Sequence 

10 (Corpa) were deposited in a sag basin.  

Comparison with subsidence curves from other forearc basins in the world shows a fair 

match (Angevine et al., 1990, inset in Figure 5.14). Data from the few wells in the northern SJFB 

show that the area experienced lower but constant subsidence rates compared to the LMV, and the 

SJFB curves show a similar trend to other forerarc basins in the world. The data from the deep Plato 

depocenter in the northern LMV (steep pink curve in the inset of Figure 5.14) matches very well 

the trend of the Japan forearc basin reported by Angevine et al. (1990), while the data from other 

shallower areas in the LMV shows a less steep curve related to the lower amount of tectonic 

subsidence. The marked differences in subsidence rates and trends between the SJFB and LMV in 

Oligocene to Recent times show that while the main depocenters in the LMV were rapidly 

subsiding, the SJFB experienced much less subsidence, possibly due to the development of forearc 

highs. The high sedimentation rates in the LMV, especially in the Miocene, suggest that there was 

an important influence of sediment load in the total basin subsidence. Tectonic segmentation within 

both the LMV and the SJFB is also evident from the subsidence curves (inset in Figure 5.14).   

 

5.5.5 Proposed mechanisms controlling LMV evolution 

 

Our results and analyses allow us to conclude that the LMV is an amagmatic and tectonically 

segmented forearc basin. Among all the mechanisms controlling the evolution of forearc basins, we 

consider based on our results, that three mechanisms strongly controlled the evolution of the LMV. 

Such mechanisms are: sediment flux due to uplift and drainage evolution in hinterland areas, pre-

existing basement fabric and configuration of the subducting plate.   

Our reconstruction of the extension, subsidence, sedimentation and paleogeographic 

history suggests that sediment flux in the LMV was an important mechanism in controlling basin 

evolution because, 1) it supplied sediment to the trench and as a consequence, triggered 

underplating and uplift in forearc high areas, 2) it rapidly filled the basin, providing sedimentary 

loads which kept the depocenters subsiding, as fault-controlled subsidence became less effective, 

and 3) it defined the basin geometry and type. Due to the sediment flux, the LMV evolved from an 

underfilled, sloped, marine forearc basin to an overfilled, benched, terrestrial forearc basin (sensu 

Dickinson, 1995, Figure 5.18). Considering the classification by Noda (2016), the whole margin 

evolved from an extensional non-accretionary-type to a compressional accretionary-type forearc 

basin, and such evolution was strongly controlled by changes in sediment flux.   

However, we consider that the pre-existing basement structural fabric underneath the LMV 

was also crucial for the formation and evolution of the LMV. Tectonic segmentation of the LMV 

with the formation of its two depocenters was possible due to the differential reactivation of the 

inherited, basement fault families identified under the Plato depocenter in the north and the San 

Jorge depocenter in the south (Mora et al., 2017a; Figure C 3). Such segmentation probably 

influenced the development of the proto-Magdalena and Cauca drainage systems and would 

therefore be the cause of the variations we see in terms of sedimentary thicknesses and facies from 

one depocenter to the other. 

Concerning the configuration of the subducting plate, we have shown using paleo-tectonic 

models that tectonic plate kinematics and configuration were stable throughout the evolution of the 
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LMV (Figure 5.5). However, such evolution was probably influenced by the low-angle subduction 

of an irregular Caribbean oceanic plateau, which would have caused the along-strike tectonic 

segmentation and stratigraphic variations observed in the LMV, as observed in other similar basins 

(Ridgway et al., 2012). Moreover, though we relate uplift in the forearc highs with high sediment 

supply to the trench and underplating, it is possible that flat-slab subduction also influenced 

exhumation in forearc high areas and produced regional and local unconformities, as proposed by 

Ridgway et al. (2012). Flat-slab subduction would also be responsible for the lack of a magmatic 

arc in the LMV, a condition that would otherwise have formed a completely different forearc basin.   

5.5.6 Implications for hydrocarbon potential 

 

Because of their low geothermal gradients and the absence of good reservoir and source rock facies, 

forearc basins are not considered especially attractive targets for hydrocarbon exploration 

(Dickinson and Seely, 1979; Brooks, 1990; Dickinson, 1995; Ridgway et al., 2012). However, the 

LMV is an important hydrocarbon province in northern Colombia, where production is obtained 

from upper Oligocene to lower Miocene clastic and carbonate reservoirs of Sequences 5 and 6, 

accounting for ~7% of Colombia’s gas production (De Freitas et al., 2013). We consider that due 

to its very particular history and characteristics, some of the obstacles for the development of 

petroleum systems in the LMV were partly overcome. In first place, tectonic segmentation allowed 

significant extension and high sediment flux to be focused in the two basin depocenters. A relatively 

continuous, high sediment supply from hinterland areas, taking place during ~15 Ma, allowed 

favorable conditions for hydrocarbon generation in a forearc setting. In spite of not very high 

geothermal gradients, the high sediment flux and rapid burial in a relatively short time, made 

possible the entrance of source rocks into the hydrocarbon generation window, as will be shown in 

Chapter 6. Tectonic segmentation allowed a complex sedimentary facies distribution, resulting in 

different source and reservoir qualities in each of the depocenters. Most gas and light oil fields in 

the LMV are located in basement highs around the northern Plato depocenter, where upper 

Oligocene to lower Miocene shallow marine clastic and calcareous reservoirs were deposited, while 

source rocks were rapidly buried to depths in excess of 3.5 km (12000 feet) in the central Plato 

depocenter. In the south (San Jorge), where fewer gas fields exist, conditions for hydrocarbon 

generation were not as favorable as in the north (Chapter 6), due to more intense shortening and 

erosion episodes (Figure C 1) and to the development of different quality source and reservoir rocks. 

Nevertheless, further research is required to assess the remaining hydrocarbon potential of the 

LMV, and of the forearc high areas to the W, in the San Jacinto fold belt, which also appears as an 

important exploration frontier in NW Colombia.    

  

5.6 Conclusions 
 

The formation of the Lower Magdalena amagmatic, forearc basin occurred in a stable setting from 

the Oligocene to the present, characterized by the slow and nearly orthogonal, low-angle subduction 

of the Caribbean plateau. In this work, we used a regional database to reconstruct the subsidence, 

extension, sedimentation and paleo-geographic history of the Lower Magdalena forearc basin, and 

to propose possible mechanisms controlling basin evolution, in the absence of major changes in 

plate kinematics and in a flat-slab subduction setting. Six Oligocene to Recent tectono-stratigraphic 

sequences were identified, comprising a general shallowing-upwards and progradational 

succession. We show that after the collapse of a pre-Oligocene magmatic arc, late Oligocene to 

early Miocene fault-controlled subsidence allowed initial basin fill at relatively low sedimentation 

rates. Extensional reactivation of inherited, pre-Oligocene basement faults was crucial for the 

tectonic segmentation of the basin with the formation of its two depocenters (Plato and San Jorge). 

Oligocene to early Miocene uplift of Andean terranes made possible the connection of the Lower 

and Middle Magdalena valleys, and the formation of the most important Colombian drainage 

system (Magdalena River system). The proto-Magdalena river in the north and the proto-Cauca 

river in the south both started delivering high amounts of sediment in middle Miocene times, as 
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fault controlled subsidence was gradually replaced by sagging, due to increased sedimentary load. 

Such an increase in sedimentation delivered huge amounts of sediments to the trench, causing the 

formation of an accretionary prism farther west of San Jacinto. This probably weakened the plate 

interface and caused underplating, with the development of forearc highs in the San Jacinto area. 

Inherited basement structures and flat-slab subduction of an irregular Caribbean plateau would be 

related to the along-strike basin segmentation and to the formation of two main depocenters (Plato 

and San Jorge), each one with particular subsidence and uplift histories and hydrocarbon potential. 

A stronger backstop under the Lower Magdalena explains shortening in the forearc high and 

accretionary wedge areas to the W, while the Lower Magdalena remained essentially unaffected. 

Our results highlight the fundamental roles of sediment flux, of inherited basement structure and of 

flat-slab subduction on the evolution of forearc basins such as the Lower Magdalena.         
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Abstract 
 

A three-dimensional model of the Lower Magdalena Valley basin of NW Colombia was built from 

seismic and well data and used to reconstruct the thermal and maturation history of the basin. We 

reconstructed the stratal architecture of the basin, implemented within the model episodes of uplift 

and erosion, and constructed a geothermal gradient map, which was used to construct heat flow 

maps for 3-D modeling. Model results indicate that the onset of hydrocarbon generation occurred 

at ~15 Ma (middle Miocene) for upper Oligocene to lower Miocene hydrocarbon source rocks in 

the northern part of the basin (Plato depocenter), while younger lower Miocene sources started 

generating  at ~ 9 Ma (middle-late Miocene). Maturation was influenced by sedimentation at very 

high rates of thick, deep marine to deltaic, Oligocene to upper Miocene sequences. Late Miocene 

generation was interrupted by shortening and uplift events at Pliocene (4-3 Ma) and Pleistocene 

times, though it appears to be ongoing in main depocenters. Low to fair source rock quality appears 

to be compensated by high thicknesses of the Oligocene to lower Miocene sources, which would 

still be generating below 3350 m (11,000 ft) in the main pod of active source rock in the northern 

Lower Magdalena (Plato depocenter). By contrast, the effects of shortening pulses and low heat 

flow would have inhibited maturation of Oligocene to lower Miocene source rocks in the San Jorge 

graben of the southern Lower Magdalena, suggesting the need of additional hydrocarbon sources 

to explain the dry gas occurrences in that part of the basin. Proposed additional sources are pre-

Oligocene units preserved in the western San Jorge depocenter and biogenic generation.  

 

Keywords: Lower Magdalena Valley basin, basin modelling, thermal and maturation history, 

petroleum systems, Colombia 

 

6.1 Introduction 
 

Forearc basins are commonly considered to have a low hydrocarbon potential due to poor reservoir 

facies development and low geothermal gradients (Dickinson and Seely, 1979; Brooks, 1990; 

Ridgway et al., 2012). However, there are examples of prolific forearc basins such as the Cook Inlet 

in Alaska and the Talara basin of Perú (Dickinson and Seely, 1978; Janssen et al., 2012). The Lower 

Magdalena Valley basin (LMV) of northwestern onshore Colombia (Figure 6.1) has been recently 

classified as a forearc basin (Mantilla et al., 2009; Bernal et al., 2015b; Mora et al., 2017b), in spite 

of the absence of an active magmatic arc. Precisely due to the lack of arc magmatism, the origin 

and evolution of the LMV have been recently related to flat-slab subduction of the Caribbean 

oceanic plateau beneath South America since Oligocene times (Mora et al., 2017b). The LMV is 
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considered a poorly explored basin that holds a moderate amount of hydrocarbon reserves, 

accounting for ~7% of Colombia’s gas production (De Freitas et al., 2013). However, we consider 

that there might be significant underestimated potential, considering the poor understanding of the 

basin evolution and petroleum systems. Most of the previous regional studies were focused on the 

construction of a tectono-stratigraphic framework, paleo-geographic reconstructions and on the 

characterization of source, reservoir and sealing rocks (Aleman, 1983; Beroiz et al., 1986; Hocol, 

1993; ESRI-ILEX, 1995; ICP, 2000; Bernal et al., 2015b; Chapter 5 of this thesis). Other studies 

have dealt with the definition of petroleum systems based on geochemical analyses of rocks, fluids 

and gases (Petrobras/Ecopetrol, 1996; ICP, 2000; Rangel et al., 2003; ANH, 2011b). However, 

very few studies (e.g. He, 2000) have attempted an integration of the existing information into a 

three-dimensional model of the basin. The objective of this contribution is to present the results of 

an integrated, three-dimensional basin modelling of the LMV, which incorporates the plate tectonic 

and basin evolution, as well as the tectono-stratigraphic framework recently proposed by Mora et 

al. (2017 a, b) and in Chapter 5 of this thesis, and to discuss implications on the petroleum systems.   

The LMV has been a commercially-productive hydrocarbon province since the discovery of 

the El Difícil oil field in 1942. With the later discovery in the southern LMV (San Jorge depocenter) 

of the Jobo-Tablón field in 1946 and of the Cicuco field (1956) in the Magangué-Cicuco basement 

high (Figure 6.1), the basin became an important mainly gas-producing province. The most recent 

gas discoveries were Guepajé-Ayhombe (1992), La Creciente (2006) and Bonga-Mamey (2011) in 

the western Magangué-Cicuco high, and the Nelson (2012) and Clarinete (2015) dry gas discoveries 

in the western San Jorge depocenter. Source rocks are considered to be Oligocene to Miocene 

shallow marine to deltaic mudstones with mostly type-III kerogen (ICP; 2000), which would have 

generated hydrocarbons in the two main basin depocenters, the Plato depocenter in the north and 

the San Jorge depocenter in the south (Figure 6.1). Light oil and gas condensate is produced in 

basements highs surrounding the Plato depocenter to the east (e.g. Cicuco and El Dificil), while wet 

gas is produced in the western Magangué-Cicuco high (e.g. Bonga-Mamey, La Creciente), and dry 

gas is produced in the western San Jorge depocenter (e.g. Jobo-Tablón, Nelson and Clarinete). The 

most important uncertainties in terms of generation relate to the heat flow (present-day and past) 

and to source rock kinetics, though erosion also has a large uncertainty. Therefore, several scenarios 

of heat flow, kinetics and erosion were tested and the results will be discussed.  

 

6.2 Geological Framework 
 

The LMV and San Jacinto fold-belt (SJFB) of northwestern Colombia are located in an area in 

which the Caribbean oceanic plate, including the Chocó -Panamá block, and the South American 

continental plate have been interacting throughout the Cenozoic (inset in Figure 6.1). Though there 

has been some debate about the existence of a flat-subduction of the Caribbean under South 

America, beneath the Lower Magdalena Valley, recent geophysical studies (Mantilla, 2007; 

Mantilla et al., 2009; Bernal et al., 2015a; Mora et al., 2017b) have provided new and more robust 

evidence supporting a flat-subduction. The basin is then part of a subduction complex which 

includes an accretionary prism (Sinú) and forearc high (San Jacinto) to the W, and an inactive 

magmatic arc (northern Central Cordillera) to the E and SE (Figure 6.1). Flat subduction that 

apparently started in late Eocene to early Oligocene times (Mora et al., 2017b), could have caused 

slab refrigeration (Dumitru, 1990; Dumitru et al., 1991; Stevens- Goddard and Carrapa, 2017), 

which would have contributed to decrease the temperature and heat flow in the whole subduction 

complex.  
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Figure 6.1. Location of the 3-D model, database and distribution of hydrocarbons in the Lower Magdalena Valley 
basin, showing the basement structure and the main structural provinces within the basin. The pink contour is the 
limit of the LMV and of the 3-D model; distinction between dry gas, wet gas and light oil/condensate accumulations 
(red, orange and green contours respectively with the corresponding fields depicted), was based on the 
relationship between produced oil condensate vs gas (bbls/MMscf). Calibration wells are shown in black labels 
with text in italics. LMV: Lower Magdalena Valley basin; MCH: Magangue-Cicuco high; RFS: Romeral Fault System; 
PFS: Palestina Fault System; SMF: San Marta Fault; SiF: Sinú Fault; SNSM: Sierra Nevada de Santa Marta; WC: 
Western Cordillera; CC: Central Cordillera. Inset, tectonic map of northwestern South America with topography 
and bathymetry, showing the location of the Lower Magdalena Valley basin (LMV), the Sinú-San Jacinto fold belt 
(SSJFB), and the active volcanoes. Present-day tectonic plate motions are shown in yellow (after Trenkamp et al., 
2002). WC: Western Cordillera; CC: Central Cordillera; EC: Eastern Cordillera; RFS: Romeral Fault System; PFS: 
Palestina Fault System; BF: Bucaramanga Fault; SMF: Santa Marta Fault; OF: Oca Fault; BoF: Bocono Fault. 

 

The LMV is a lozenge-shaped basin, covering an area of 42,000 km2, located between two major 

basement terranes, the northern Central Cordillera (CC) in the S and SE and the Sierra Nevada de 
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Santa Marta (SNSM) in the NE (Figure 6.1). The Santa Marta left-lateral strike-slip fault is 

separating the northeastern part of the basin from the SNSM, while the northern extension of the 

Romeral Fault System (RFS) is separating the Lower Magdalena from the SJFB to the west. Pre-

Oligocene sedimentary units are exposed in the SJFB, which is considered the northward extension 

of the Western Cordillera of Colombia (Barrero et al., 1969; Duque-Caro, 1979; Cediel et al., 

2003) and is related to an oceanic-type basement. The RFS, which is also considered to continue 

from the south to form the western boundary of the LMV, appears to be separating the oceanic to 

transitional basement under the belt from the felsic continental basement of the South American 

crust which floors the LMV in the east (Duque-Caro, 1979, Flinch, 2003; Mora et al., 2017a). 

Mora et al. (2017a) recently proposed the presence of oceanic affinity terranes in the basement of 

the western LMV, suggesting that the complexity of the RFS described farther south in maps and 

outcrops between the Central and Western Cordilleras, continues to the north. In fact, the northern 

extension of the RFS is also an important tectonostratigraphic feature as shown by the different 

stratigraphic successions which are preserved on both sides of the fault system (Figure 6.2). In the 

SJFB, located east of the RFS, there are Upper Cretaceous to Eocene sedimentary units which are 

not preserved in the LMV to the east (Duque-Caro, 1979; Mora et al., 2017b). By contrast, 

Oligocene to Recent units, which have been mostly eroded in the SJFB, are very well preserved in 

the LMV. 

 

6.2.1 The Basement of the LMV 

 

The basement under the LMV is considered to be the extension the basement terranes, which 

outcrop in the northern CC and therefore consists of a core of Permo-Triassic metamorphic and 

igneous rocks, which were intruded by Upper Cretaceous granitoids (Silva et al., 2016; Mora et al., 

2017a). However, the existence of an oceanic affinity terrane in the basement of the western LMV 

was recently proposed, based on Hafnium isotope geochemistry of an Upper Cretaceous pluton 

(Bonga pluton, Mora et al., 2017a). In terms of basement fabrics, the basement of the LMV 

comprises extensional faults with two predominant orientations, a main SE-NW trend in the western 

half of the basin and a secondary SW-NE trend in the northeastern part (Mora et al., 2017a; Figure 
6.1). Such structural grain was formed by several mechanisms including the Romeral and Palestina 

strike-slip movement, Jurassic rifting and Late Cretaceous to Eocene forearc extension due to 

oblique convergence (Mora et al., 2017a). The extensional reactivation of the pre-existing basement 

fabric was crucial for the subsidence and sedimentation history of the LMV basin.  

    

6.2.2 Upper Cretaceous to Lower Oligocene sequences in the SJFB 

 

The SJFB records the existence of a Late Cretaceous to Early Eocene forearc basin which was 

inverted and fossilized in Early to Middle Eocene times and was then covered by Middle Eocene 

to Lower Oligocene clastics (Mora et al., 2017b). Mora et al. (2017b) divided the sedimentary 

succession in the SJFB into four tectono-stratigraphic sequences, bounded by regional 

unconformities which relate to major tectonic events (Figure 6.2). The two older Upper Cretaceous 

to Lower Eocene sequences (Sequence 1- Cansona and 2- San Cayetano) are preserved mainly to 

the west of the RFS, while the younger Middle Eocene to Lower Oligocene sequences (3- Chengue 

and 4- San Jacinto), fossilized and sealed the RFS as they extended farther to the east, into the 

western LMV.   
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6.2.3 Upper Oligocene to Recent units in the LMV 

 

The Oligocene to Recent units in the LMV were subdivided into six sequences according to my 

proposal in Chapter 5, and here we will follow such subdivision and sequence numbering (Figure 
6.2). Structural maps in depth of the main stratigraphic surfaces are depicted in Figure 6.3. 

 

 
 
Figure 6.2. Stratigraphic column of the LMV, San Jacinto and Sinú fold belts, based on different sources (e.g. Hocol, 
1993; ICP, 2000; Guzman, 2007; Mora et al. 2017b and Chapter 5). Biostratigraphy is based on numerous papers 
and industry reports by Duque-Caro (1979, 1984, 1991, 2000, 2001), and tectonic events are after Villagómez et al. 
(2011a, b), Parra et al. (2012), Saylor et al. (2012), Mora et al. (2013a), Caballero et al. (2013a, b), Mora et al. (2015), 
De La Parra et al. (2015). 

 
 

6.2.3.1 Sequence 5: Upper Oligocene to lowermost Miocene 
  

Though Eocene deposits could exist at the base of the some depocenters of the LMV, the oldest and 

clearly identified sedimentary deposits correspond to the Oligocene to early Miocene Sequence 5 

(see Chapter 5, Figure 6.2), equivalent in outcrops to the El Carmen Formation (Duque-Caro, 1972; 

Duque et al., 1996; ICP, 2000; Guzman et al., 2004; Guzman, 2007). This unit crops out in the 

eastern flank of the SJFB where it has been described as a dark grey mudstone succession with 

abundant planktonic foraminifera and local development of sandy layers towards the base (Oso and 

Nepomuceno sandstone members, Duque-Caro et al, 1996; Guzman, 2007). Well data from the 

western LMV show that the sequence is transgressive and was deposited in shallow marine 

environments (details Chapter 5). The age of this unit has been constrained by planktonic 

foraminiferal zonations (Blow, 1969; Duque-Caro et al., 1996) and includes the zones P.18 to N.6, 

comprising the Oligocene to Lower Miocene (Burdigalian). The sequence exhibits the highest 

thicknesses in the western part of the LMV, towards the San Jacinto fold belt, where more than 1.5 

km would be preserved in local depocenters (Figure 6.4). This sequence is informally called Lower 

Cienaga de Oro (Hocol, 1993; ICP, 2000). 
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6.2.3.2 Sequence 6. Lower to middle Miocene  
 

The lower to middle Miocene sedimentary sequence (Sequence 6, according to Chapter 5), has 

been well studied in several outcrops of the northeastern SJFB such as the Carmen-Zambrano 

stratigraphic section, where biostratigraphic zonations based on planktonic foraminifera were made 

(Petters and Sarmiento, 1956; DePorta, 1962; Stone, 1968; Duque et al., 1996; Guzman et al., 

2004; Guzman, 2007). It consists of mudstones with local development of sandstones and 

limestones (Barcelona Member), which were deposited in wave-dominated delta and prodelta 

environments (Guzman, 2007). The unit has been related to the planktonic zones N.7 to N.10 

(Burdigalian to Serravallian, Duque-Caro et al., 1996; Guzman, 2007), and it is commonly limited 

at the base by a regional Early Miocene (Burdigalian) unconformity. Thickness maps from well and 

seismic data show that average thickness of the sequence is 400-600 m (1200-2000 ft) and that it is 

thickest in the eastern Plato depocenter where more than 2.5 km (>8000 ft) of Lower to Middle 

Miocene deposits are preserved (Figure 6.4). This sequence is informally called Upper Ciénaga de 

Oro (Hocol, 1993; ICP, 2000). 

 

6.2.3.3 Sequences 7 and 8: Middle to upper Miocene 
  

The middle to Late Miocene succession (Sequences 7 and 8, Chapter 5) has been studied in the 

Carmen-Zambrano and other stratigraphic sections and has been called Hibácharo, (Upper) 

Porquero and Mandatú Formation (upper unit of the Rancho Group, Guzman, 2007). The Mandatú 

Formation in the Carmen-Zambrano area displays a deepening-upward pattern, grading from tidal 

mud-dominated delta-front deposits to deeper mudstone deposits with slump structures (Guzman, 

2007). This succession has been related to the planktonic foram zones N.11 to N.15 (Serravallian 

to Tortonian, Duque-Caro et al., 1996; Guzman, 2007) and is also limited at the bottom by a middle 

Miocene (Serravallian) unconformity. These sequences are informally called Middle and Upper 

Porquero (Hocol, 1993; ICP, 2000). 

 

 

6.2.3.4 Sequence 9: Upper Miocene to lower Pliocene (Tubará) 
 

A regional late Miocene unconformity separates the late Miocene fine-grained, deltaic units from a 

coarser-grained succession, which receives different names according to its locality (Zambrano, 

Cerrito and Tubará; Duque-Caro et al., 1996; Guzman, 2007) and which corresponds to Sequence 

9 according to Chapter 5 (Figure 6.2). The interpreted depositional environment for this succession 

is much more proximal and consists of transitional to continental deposits which have been related 

to the N.17 to PL.2 planktonic foram zones, spanning from the late Miocene (Tortonian) to the early 

Pliocene (Duque-Caro et al., 1996; Guzman, 2007). In this work we will use the name “Tubará” 

for this succession, which displays the northwestward migration of shelf margin clinoforms in the 

Plato depocenter. 

 

6.2.3.5 Sequence 10: Upper Pliocene to Pleistocene (Corpa) 
 

The youngest sedimentary package that will be studied in this work, comprises continental to 

transitional, mostly coarse-grained, late Pliocene to Pleistocene deposits, which as usual, receive 

different names according to the locality and facies (Sincelejo, Betulia, Corpa and Popa, Duque-

Caro et al., 1996; Guzman, 2007). While the names “Sincelejo” and “Corpa” refer to coarse-grained 

fluvial to transitional deposits, flood-plain and lacustrine deposits have been called “Betulia”, and 

shallow-marine limestones which outcrop in the northernmost SJFB have been called “Popa” 

(Duque-Caro et al., 1996; Guzman, 2007). In this work we will call “Corpa” this late Pliocene to 

Pleistocene thick succession, which is mostly preserved in the southern LMV, and which 

corresponds to Sequence 10 according to the proposal in Chapter 5 of this thesis.  
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Figure 6.3. Maps of tops of the main tectono-stratigraphic sequences implemented into the PetroMod 3-D model. 
The top basement map merges with the Eocene unconformity in the western LMV. AA’ indicates location of the 
transect shown in Figure 6.6.  
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Figure 6.4. Thickness maps of the main tectono-stratigraphic sequences in the model area, as implemented into 
the program PetroMod. 

  

 

6.2.4 Sedimentary petrology and provenance 

 

The sedimentary infill of the LMV comprises an overall coarsening- and shallowing-upwards 

succession, typical of forearc basins, which display more distal marine facies towards the W and 

NW. However, tectonic segmentation of the basin in two main depocenters (Figure 6.1), possibly 

related to flat subduction (Chapter 5), caused that both depocenters had a different subsidence and 

uplift history, as well as different facies distribution. Due to its marine, fine-grained nature, the 

sequence has fairly good microfossil content, especially planktonic foraminifera which have 

allowed the identification of foram zones as those proposed by Petters and Sarmiento (1956) and 

Blow (1969), for the biostratigraphic dating of the succession and initial paleo-bathymetric 

interpretations (Duque-Caro, 1979; 1984; 1991). Hence, micro-paleontological planktonic foram 

zonations have been relevant for performing seismic ties with the wells and for the proper 

identification and interpretation of the depositional sequences in the reflection seismic data. The 

coarse-grained fractions which are more preserved in the E and SE and towards the base of the 

stratigraphic sequences, comprise litharenites, sublitharenites and lithic and feldspathic arkoses and 

quartzarenites, with the development of carbonates on some basement paleohighs. However, most 

of the basin infill comprises fine-grained, terrigenous and also calcareous claystones and siltstones. 

Sediment source areas have been located in the E, SE, NE and S, and correspond to the unroofing 
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of basement and sedimentary units which are reported in the Eastern, Central and Western 

Cordilleras towards the SE and S, and of the Sierra Nevada de Santa Marta (SNSM) and Perijá 

massifs towards the E and NE. Sediments in the eastern and southeastern portions of the basin 

exhibit a higher influence of Permo-Triassic and older basement rocks with continental affinity of 

the Central and Eastern Cordilleras, while sediments in the western and southwestern portions 

display more influence of Cretaceous allochtonous terranes with oceanic affinity of the Western 

Cordillera (see Chapter 5).    

  

6.2.5 Structural geology and basin geometry 

 

The San Jacinto fold belt and the Lower Magdalena Valley were both formed in a forearc setting 

which resulted from the interaction between the Caribbean oceanic plateau with the northwestern 

corner of the South American continental plate (Duque-Caro, 1979; Mantilla et al., 2009, Bernal 

et al., 2015a, Mora et al., 2017 a,b). Following the early Eocene tectonism, the area of the Romeral 

Fault System (RFS) collapsed and allowed the deposition mostly to the west of the fault system, of 

the Middle Eocene to Lower Oligocene Chengue and San Jacinto sequences, between 45 and 30 

Ma. The Oligocene collapse of the Upper Cretaceous to Eocene magmatic arc to the east of the RFS 

allowed the deposition of marine Upper Oligocene to Recent sequences in both the LMV and the 

San Jacinto fold belt. Oligocene to Recent sedimentation was focused in two main depocenters 

within the LMV, separated by a SE-NW-trending basement high, called the Magangué-Cicuco 

High. The deeper Plato depocenter is located in the northern half of the basin, which the San Jorge 

depocenter, which is a SE-NW-trending graben, is located in the southern half. While flat 

subduction has been suggested as a cause of the observed along-strike variations in structure and 

stratigraphy, the high sediment supply, especially after early Miocene times, provided the 

sedimentary load, which kept subsidence ongoing, and also allowed the burial of potential source 

rocks into oil-window depths (Chapter 5).    

For 3D-modeling purposes we consider here four regional Oligocene to Recent 

unconformities, which are related to uplift and erosion events: Earliest Miocene, late Miocene, 

middle Pliocene and Pleistocene to Recent (Chapter 5, Figure 6.2). The earliest Miocene 

unconformity spans from 23 to 17.3 Ma and separates the Sequence 5 from Sequence 6. Reflection-

seismic data showed the existence of localized upper Oligocene to lower Miocene paleo-highs in 

the western LMV, close to the boundary of the San Jacinto fold belt, where these sequences are 

thinner or can even be absent. During the deposition of Sequences 6 to 8 in middle to late Miocene 

times, subsidence was much higher in the northern Plato depocenter compared to the southern San 

Jorge depocenter (Chapter 5). In late Miocene times, the southern and central LMV were uplifted 

and large parts of the Lower to Middle Miocene succession were eroded, especially in the 

Magangué-Cicuco high. The late Miocene unconformity, spanning from 12.7 to 11.9 Ma and 

separating the Upper Porquero and the Tubará Sequences, is related to this uplift pulse. After 11.9 

Ma, subsidence restarts in the Plato depocenter, allowing the deposition of thick fluvio-deltaic 

sediments of the Late Miocene-Early Pliocene Tubará Sequence. The southern LMV is uplifted 

again in middle Pliocene times, causing the erosion of important thicknesses of underlying 

sequences, especially the Tubará sequence. The expression of this uplift phase is the impressive, 

angular, Middle Pliocene unconformity, spanning from 3.6 to 3.1 Ma, separating the Tubará from 

the Corpa Sequences. While the LMV has remained an extensional area to the present-day, 

Pleistocene (~1.7 Ma) contraction and inversion deformed the San Jacinto area and created the 

west-verging San Jacinto fold belt. However, a digital-elevation model of the LMV shows that 

today there is active subsidence in the San Jorge graben while the Plato depocenter has been slightly 

uplifted and is a subtle positive feature (Chapter 5).   
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6.3 Conceptual geological model 
 

We used a regional database provided by Hocol S.A. for the construction of the 3D model presented 

here, including most of the reflection-seismic and drill hole data in the basin and surrounding areas. 

In this study we have integrated previous interpretations and maps of the acoustic basement 

presented by Mora et al. (2017a), as well as those of Oligocene to Recent stratigraphic sequences 

studied in Chapter 5. We also integrated information from several geological mapping and 

sampling reports which have been carried recently along the fold belt (Guzman et al., 2004; B&G, 

2006; Guzman, 2007; ATG-ANH, 2009; Ecopetrol/ICP, 2014).  

 

6.3.1 Tectono-stratigraphic model 

 

To construct the tectono-stratigraphic model, we carried out regional seismic interpretation and 

mapping in two-way-time (TWT) of the main sequences described by in Chapter 5 in 

Schlumberger’s Petrel v.2013 software. The following sequences were interpreted and mapped: 1) 

near top of the basement, equivalent to the west to the middle Eocene unconformity; 2) near top 

upper Oligocene (top P.20 to P.22 planktonic foram zones); 3) Lower Miocene (top N.7 zone); 4) 

Middle Miocene (top N.8 to N.11 foram zones); 5) Upper Miocene unconformity, equivalent to the 

base of the Sequence 9 (Tubara); 6) Middle  Pliocene unconformity, equivalent to the base of the 

Sequence 10 (Corpa); 7) Lower Pleistocene, equivalent to the top of the lower part of Sequence 10; 

8) Topography, equivalent to the top of Sequences 9, 10 and recent deposits. For thermal modeling, 

we depth-converted the maps obtained in Petrel and exported them as surface maps to 

Schlumberger´s PetroMod v. 2011.1.1 software, and lithologies as indicated by facies distribution 

were assigned.   

Thickness and depth maps show similar trends and values as those presented in previous 

studies (e.g. ICP, 2000), though the database we used is more complete (Figure 6.3 and Figure 6.4). 

Based on regional seismic interpretations, integrated with well and outcrop data, we built erosion 

maps which were implemented in the 3-D model (Figure 6.5).  The basin infill is thickest in the 

southeastern Plato depocenter where in spite of the lack of deep well data, our seismic 

interpretations suggest that the basement is found at ~ 8 km (~24,000 ft). In the deepest San Jorge 

depocenter of the southern LMV, the basement would be found at ~6.5 km (~21,000 ft). The oldest 

sequence (upper Oligocene to lower Miocene Sequence 5) is thickest towards the San Jacinto fold 

belt to the W (~1.5 km = ~ 5,200 ft), though high thicknesses may also be preserved in the deep 

Plato depocenter (see Chapter 5). Lower to middle Miocene deposits (Sequence 6) are thickest in 

the eastern Plato depocenter where at least ~3.6 km (~12,000 ft) would be preserved, considering 

that the base of the sequence has not been reached by any well. High thicknesses of the middle to 

upper Miocene sediments of Sequences 7 and 8 were also deposited especially in the northern LMV 

(Plato), though important thicknesses were eroded in some areas such as the Magangué-Cicuco high 

(Figure 6.5). Consequently, more than 2 km (6,500 ft) of sediments corresponding to Sequence 9 

are preserved in the Plato depocenter. After Sequence 9 filled the northern part of the basin, 

important thicknesses of this sequence were eroded in middle Pliocene times (Figure 6.5). In late 

Pliocene to Pleistocene times, more than 3 km (10,000 ft) of fluvio-deltaic to lacustrine deposits of 

the proto-Cauca river, corresponding to Sequence 10, were unconformably deposited and are 

mostly preserved in the southern LMV (San Jorge depocenter, see Chapter 5).  

 

6.3.2 Erosion events 

 

Four main erosion events were identified in the study area. The oldest one, of early Miocene age, 

appears to be the less important in terms of eroded thicknesses (Figure 6.5). A second, late Miocene 

tectonic event, corresponding to the base of Sequence 9 (Tubará), was responsible for the erosion 

of important thicknesses of Sequences 7 and 8 especially in the Magangué-Cicuco high. The third 
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erosion event corresponds to the base of Sequence 10 (Corpa) and accounts for the erosion of Early 

Miocene shortening caused the erosion of the upper, fine-grained portion of Sequence 5 in most of 

the basin. A middle Pliocene event accounted for the erosion of most of Sequence 9 in the southern 

LMV, where only a thin basal part of this sequence is preserved. The fourth, Pleistocene to Recent 

shortening event was responsible for the uplift of the northern LMV (Plato) and for the final tilting 

and contraction in the San Jacinto fold belt towards the W, causing the intense erosion of most of 

the Oligocene to recent units.  

According to the identified erosion events, we used the Petrel software to construct erosion 

maps that were exported and added to the PetroMod 3D model. Using seismic, outcrop and well 

data, we calculated the possible original depositional stratigraphic thickness of each sequence and 

constructed the respective original thickness maps. We also constructed maps of the preserved 

thickness of each sequence. Finally, we obtained approximated eroded thickness maps from the 

difference between the previously constructed thickness maps (original vs preserved). Though the 

LMV has remained relatively undeformed, we showed in Chapter 5 that uplift pulses accounted for 

the erosion of considerable parts of the stratigraphic defined sequences. Therefore, our erosion 

estimates are an approximation and can imply an important error, which will affect the modeling 

results. Of all the erosion events, the early Miocene unconformity implies the least erosion, being 

related to the removal of 50 to 120 m of section of Sequence 5 in the western and northwestern 

LMV (Figure 6.5a). In the southeastern LMV and in the eastern Maganagué-Cicuco High, 500 to 

1000 m of section corresponding to Sequences 7 and 8 of the Porquero unit has been removed by 

the late Miocene erosional event (Figure 6.5b). The middle Pliocene erosive event would have 

removed more than 1 km of sediments of Sequence 9 (Tubará) in the southern LMV while the 

Pliocene to Recent shortening event was more intense in the northeastern LMV, where 700 – 1000 

m of section mostly corresponding to Sequences  8 to 10 were removed.  

 

 
 
Figure 6.5. Erosion maps implemented in the 3-D model. a). Erosion related to the lower Miocene unconformity; 
b) erosion related to the upper Miocene unconformity; c) erosion related to the Pliocene unconformity and d) 
erosion related to Pleistocene to recent uplift and erosion. 
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6.3.3 Facies and lithology distribution  

 

Based on previous regional facies maps and paleogeographic reconstructions (ICP, 2000; Chapter 

5), we interpret that Sequence 5 was a shallow-marine, transgressive sequence which onlapped the 

basement from W to E, filling paleo-topographic lows. Its lower part of upper Oligocene age, 

comprises reservoir facies while its upper part is fine-grained and comprises organic-rich 

mudstones. These mudstones of Sequence 5 are considered to be important source rock intervals in 

the basin. Lower to Middle Miocene Sequence 6 was deposited in wider areas farther to the E and 

also has a lower, transgressive clastic and carbonate portion which also has reservoir facies. Its 

upper portion exhibits a progradational pattern from E to W and displays deltaic facies, which are 

both reservoir and source rocks. Lower to middle Miocene deposits reflect the connection of the 

LMV with the northern Middle Magdalena Valley basin (MMV), and the formation of the 

Magdalena River system, which started to discharge huge amounts of sediments in the eastern 

LMV.  Middle to Upper Miocene Sequences 7 and 8 consist of mostly fine-grained, deltaic to deep 

marine deposits which continue prograding to the WNW and are mainly sealing and overburden 

units. Upper Miocene to Lower Pliocene Sequence 9 displays coarser-grained delta plain deposits, 

which represent the overfilling of the northern LMV (Plato, Bernal et al., 2015b; Chapter 5) by the 

proto-Magdalena river. Upper Pliocene to Pleistocene deposits of Sequence 10 (Corpa), which are 

mostly preserved in the southern LMV (San Jorge) are fluvio-deltaic and prograde from S to N, 

representing a thick overburden in the San Jorge depocenter. These deposits correspond to the 

advance to the north of the proto-Cauca river, which filled the southern part of the LMV (Chapter 

5). Figure 6.6 shows the proposed facies distribution both in cross section view and an example of 

a facies map of the lower half of Sequence 5. 

According to the previously described facies types and distribution, and taking into account 

previously constructed paleogeographic maps for each sequence (Chapter 5), we defined 30 facies 

types, each one with an assigned lithology. Petroleum system elements (source rock, reservoir, seal, 

etc.) were assigned to the respective facies. For the source rock facies, TOC (Total organic carbon) 

and HI (hydrogen index) maps were included, based on the regional compilation of geochemical 

data. A summary of the ages, horizons, depth maps, erosion maps, layers, facies maps and 

petroleum system elements implemented in the 3D model is shown in Table 6.1.  
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Figure 6.6. Northeast-southwest transect through the PetroMod 3-D model of the LMV, showing the implemented tectono-stratigraphic sequences and facies. The facies map of the 
upper Oligocene, Sequence 5 (lower part) with the location of the transect is also depicted.   
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Table 6.1. Ages, horizons, maps and petroleum system elements and events implemented in our 3-D model of the Lower Magdalena Valley basin. 

0.00 Erosion_23_Top Recent erosion Erosion

0.80 Top UpperSequence 10 UpperCorpa Topography_DEM Pleistocene_Recent_Erosion Sequence 10 UpperCorpa Deposition UpperCorpa_Facies Overburden

1.02 Sequence 10 UpperCorpa_1 Sequence 10 UpperCorpa_1 Sequence 10 UpperCorpa_1 Deposition UpperCorpa_Facies_Split_1 Overburden

1.25 Sequence 10 UpperCorpa_2 Sequence 10 UpperCorpa_2 Sequence 10 UpperCorpa_2 Deposition UpperCorpa_Facies_Split_2 Overburden

1.48 Sequence 10 UpperCorpa_3 Sequence 10 UpperCorpa_3 Sequence 10 UpperCorpa_3 Deposition UpperCorpa_Facies_Split_3 Overburden

1.70 Top LowerSequence 10 LowerCorpa IntraSequence 10 LowerCorpa Sequence 10 LowerCorpa Deposition LowerCorpa_Facies Overburden

2.05 Sequence 10 LowerCorpa_1 Sequence 10 LowerCorpa_1 Sequence 10 LowerCorpa_1 Deposition LowerCorpa_Facies_Split_1 Overburden

2.40 Sequence 10 LowerCorpa_2 Sequence 10 LowerCorpa_2 Sequence 10 LowerCorpa_2 Deposition LowerCorpa_Facies_Split_2 Overburden

2.75 Sequence 10 LowerCorpa_3 Sequence 10 LowerCorpa_3 Sequence 10 LowerCorpa_3 Deposition LowerCorpa_Facies_Split_3 Overburden

3.10 Erosion_21_Top MidPliocene_lowerCorpaUnconf Erosion

3.58 Base Sequence10_Corpa_Unconformity BaseSequence10_Corpa Erosion base Seq10_Corpa Sequence 9 Tubara Deposition Tubara_Facies Overburden

4.43 Sequence 9 Tubara_1 Sequence 9 Tubara_1 Sequence 9 Tubara_1 Deposition Tubara_Facies_Split_1 Overburden

5.29 Sequence 9 Tubara_2 Sequence 9 Tubara_2 Sequence 9 Tubara_2 Deposition Tubara_Facies_Split_2 Overburden

6.14 Sequence 9 Tubara_3 Sequence 9 Tubara_3 Sequence 9 Tubara_3 Deposition Tubara_Facies_Split_3 Overburden

7.00 Erosion_19_Top UpperMiocene unconformity Erosion

8.00 Base Sequence9 Tubara Unconformity Base Sequence9 Tubara Erosion base Seq9_Tubara Sequence 7 and 8 Deposition Mid_UppMioc_UppPorquero_Facies Seal and overburden

8.78 Sequence 7 and 8 _1 Sequence 7 and 8 _1 Sequence 7 and 8_1 Deposition Mid_UppMioc_UppPorquero_Facies_Split_1 Seal and overburden

9.56 Sequence 7 and 8 _2 Sequence 7 and 8 _2 Sequence 7 and 8_2 Deposition Mid_UppMioc_UppPorquero_Facies_Split_2 Seal and overburden

10.34 Sequence 7 and 8_3 Sequence 7 and 8_3 Sequence 7 and 8_3 Deposition Mid_UppMioc_UppPorquero_Facies_Split_3 Seal and overburden

11.12 Sequence 7 and 8 _4 Sequence 7 and 8 _4 Sequence 7 and 8_4 Deposition Mid_UppMioc_UppPorquero_Facies_Split_4 Seal and overburden

11.90 Hiatus_17_Top MiddleMioc unconf Hiatus

12.70 Top UpperSequence 6 LowerPorquero Top UpperSequence 6 LowerPorquero Sequence 6 upper part Deposition L_MidMioc_Facies Seal

13.62 Sequence 6 upper part_1 Sequence 6 upper part_1 Sequence 6 upper part_1 Deposition L_MidMioc_Facies_Split_1 Seal

14.55 Sequence 6 upper part _2 Sequence 6 upper part _2 Sequence 6 upper part_2 Deposition L_MidMioc_Facies_Split_2 Seal

15.47 Sequence 6 upper part _3 Sequence 6 upper part _3 Sequence 6 upper part_3 Deposition L_MidMioc_Facies_Split_3 Seal

16.40 Top LowerSequence 6 UpperCienagadeOro Top LowerSequence 6 UpperCienagadeOro Sequence 6 Lower part Deposition LMiocene_Facies Source rock

16.62 Sequence 6 Lower_1 Sequence 6 Lower_1 Sequence 6 Lower part_1 Deposition LMiocene_Facies_Split_1 Reservoir rock

16.85 Sequence 6 Lower_2 Sequence 6 Lower_2 Sequence 6 Lower part_2 Deposition LMiocene_Facies_Split_2 Source rock

17.07 Sequence 6 Lower_3 Sequence 6 Lower_3 Sequence 6 Lower part_3 Deposition LMiocene_Facies_Split_3 Reservoir rock

17.30 Erosion_15_Top LowerMiocene_Unconf Erosion

23.80 Top Sequence 5 LowerCienagadeOro Top Sequence 5 LowerCienagadeOro Erosion_base Seq6 Sequence 5 Deposition Oligocene_Facies Seal

25.04 Sequence 5_1 Sequence 5_1 Sequence 5_1 Deposition Oligocene_Facies_Split_1 Source rock

26.28 Sequence 5_2 Sequence 5_2 Sequence 5_2 Deposition Oligocene_Facies_Split_2 Reservoir rock

27.52 Sequence 5_3 Sequence 5_3 Sequence 5_3 Deposition Oligocene_Facies_Split_3 Source rock

28.76 Sequence 5_4 Sequence 5_4 Sequence 5_4 Deposition Oligocene_Facies_Split_4 Reservoir rock

30.00 Basement_Unconformity Basement_Unconformity Buffer layer basement

31.00 Buffer layer at base of model Buffer at base

Facies Map
Petroleum 

System Elements

Age 

(Ma)
Horizon Depth Map Erosion Map Layer Event Type
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6.3.4 Geothermal gradient 

 

The modeled area of the LMV overlies a thinned continental crust with thicknesses ranging from 

20 to 40 km (Poveda et al., 2015; Bernal et al., 2015a), and appears to be in a thermal subsidence 

stage in the San Jorge graben, while to the north (Plato) it is currently being uplifted (see Chapter 

5). Geothermal gradient and heat-flow data in the LMV and SJFB are scarce, restricted to industry 

reports (e.g. ICP, 2000; He, 2000) and to the geothermal gradient map of Colombia 

(Ingeominas/ANH, 2008). For that reason we compiled the bottom-hole temperatures (BHT’s) from 

Hocol’s drill hole database, consisting of 205 wells, and constructed a geothermal gradient map the 

LMV and SJFB (Figure 6.7a) by assuming an actual, average surface temperature of 30°C (86°F). 

Considering that most of the data consists of single BHT measurements, a 10% correction was 

applied to account for the cooling effect of the drilling mud in the temperatures (Figure D 1a). 

However, we also had access to temperature data from a couple of well tests, which has the 

advantage of not being affected by the cooling effect of the drilling mud. Comparison of the data 

from the tests, which were performed at stratigraphic intervals relatively close to the basement, with 

the BHT data did not show a large difference (2-5°C; 3.6 – 9°F), an indication that the 10% 

correction we applied is reasonable. In the LMV, most of the wells reached the basement, hence the 

measured bottom-hole temperatures in this basin represent the near top of the basement. In other 

areas such as the SJFB, where the basement has not been reached by any wells, the measured 

bottom-hole temperatures correspond to different stratigraphic intervals, mostly within pre-

Oligocene units.  

Our geothermal gradient map shows that the different tectonic provinces in and around the 

study area have different temperature trends (Figure 6.7a and Figure D 1a). The coldest province is 

the Sinú-offshore area, west of the Sinú lineament, where a thick succession of young, Miocene to 

recent poorly-consolidated sediments is preserved and low gradients < 14°C /km (7.7°F/1000 ft) 

were obtained. The southern LMV (San Jorge depocenter), the western Magangué-Cicuco high and 

the southern SJFB are also cold (geothermal gradients < 20° C/ km, 11°F/1000 ft), while the 

northern LMV (Plato), most of the SJFB and the southern Sinú fold belt are warmer and exhibit 

gradients between 20 and 30 °C/km (11 to 16.5°F/1000 ft). These values are in agreement with the 

map of geothermal gradients of Colombia (Ingeominas/ANH, 2008), while our obtained average 

geothermal gradient of 19.6°C/km is in agreement with previous studies (e.g. ICP, 2000), which 

reported a gradient of 20°C/km (11° F/1000 ft). 

 

6.3.5 Upper boundary conditions 

 

We used our regional well and outcrop database to constrain the paleo-water depths (PWDs) for 

each of the sequences implemented in the model. Regional paleo-water depth maps were 

constructed in Petrel and exported to PetroMod. The overall succession in the LMV exhibits a 

general shallowing- and coarsening-upwards trend, starting with shallow-marine, upper Oligocene 

deposits towards the base of Sequence 5, passing to deltaic and deep marine deposits from the upper 

Sequence 5 to Sequence 8, and then changing to fluvio-deltaic (Sequence 9) and mostly fluvial 

deposits of Sequence 10. Therefore, paleo-water depths range from shelf depths (100-200 m) 

towards the base of Sequence 5, to delta front, prodelta and even turbiditic deposits (200-1,500 m) 

in Sequences 6 to 8, and then to shallower depths related to deltaic and fluvial deposits (30-200 m) 

in Sequence 9 and 10.  

Oligocene to Pleistocene sediment-water interface temperatures (SWITs) were modeled in 

accordance to Wygrala (1989) considering the current latitude of the study area in northern South 

America. A present-day surface temperature of 30°C (86°F) has been assumed for the northwestern 

Colombian Caribbean lowlands, based on statistical, historical climate and temperature reports. 
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Figure 6.7.  a). Present-day geothermal gradient map of the LMV, San Jacinto and Sinú fold belts, obtained from BHT and well test data. b). Present-day average heat flow map of the 
LMV, obtained from the geothermal gradient map, using an average thermal conductivity value of 2 W/m/K; such value was selected considering that the succession in the LMV is 
mostly fine-grained. c). Oligocene heat flow map assuming a minor decrease in heat flow since 35 Ma (average difference of ~10 mW/m2). MCH: Magangue-Cicuco high; RFS. Romeral 
Fault System; PFS: Palestina Fault System; SMF: Santa Marta Fault; SiF: Sinu Fault. 
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6.3.6 Lower boundary conditions: basal heat flow 

 

Concerning the basal heat flow data, we followed two different approaches to construct present-

day heat flow maps of the study area that will be used for modelling purposes. The first approach 

was to use the heat flow values from the calibration of the 1D-models that we built in the LMV and 

SJFB, using the wells with vitrinite reflectance, Tmax or other temperature or maturity 

measurements. The heat flow values which gave the best match between the modeled curves and 

the measured temperature and maturity values were used to make preliminary, regional heat flow 

maps of the LMV and SJFB. These maps provided the first idea of heat flow values and trends in 

the study area. The second approach was to use the fundamental relation for conductive heat 

transport given by Fourier’s Law, which states that the heat flow is directly proportional to the 

temperature gradient and takes the mathematical form 

 

Q= -K(dT/dz)                                                            (6.1)  

 

where K is the coefficient of thermal conductivity, T is the temperature at a given point in the 

medium and z is the coordinate in the direction of the temperature variation (Allen and Allen, 2005). 

Considering the absence of thermal conductivity laboratory measurement of rocks in the basin, we 

assumed a range of thermal conductivity values according to the dominant lithologies in the study 

area (claystones and siltstones), and we produced three different maps which represent three 

different present-day, basal (near basement) heat flow scenarios: a low heat-flow map which was 

obtained by using a thermal conductivity value of 1.2 Wm-1 K-1, a mean heat-flow map was obtained 

with a thermal conductivity value of 2 Wm-1 K-1 and a high heat flow map was obtained by using a 

thermal conductivity value of 2.8 Wm-1 K-1(see Figure D 2). The map obtained with the thermal 

conductivity value of 2 Wm-1 K-1 yielded the current basal heat flow values which were closest to 

previously obtained values by He (2000), and to the calibrations of the 1-D models. Therefore, our 

present-day basal heat flow maps follow the same trends of the geothermal gradient map and have 

values which are comparable to previous studies and to calibration data. 

Forearc basins unrelated to arc magmatism exhibit low heat flows (20-45 mW/m2) and 

hence fall in the category of hypothermal (cooler than normal) basins (Allen and Allen, 2005). This 

seems to be the case of the LMV and SJFB where heat flows can be low (30-40 mW/m2) in the 

southern SJFB, according to temperature data from recent stratigraphic wells drilled by the ANH 

(National Hydrocarbons Agency). Nevertheless, heat flow can also be higher in other areas such as 

the central and northern SJFB and eastern Plato depocenter in the northern LMV (40-58 mW/m2, 

Figure 6.7b). The SJFB exhibits a high heat flow trend which is roughly parallel to the trend of the 

fold belt, suggesting a relationship with its stratigraphic and structural configuration, which is 

markedly different compared to that of the LMV, as shown by Mora et al. (2017b). The low heat 

flow values in the southern SJFB may be related to the presence of nearby outcrops of peridotites 

and basalts which produce almost no radiogenic heat (Allen and Allen, 2005). The basement under 

the LMV seems to display a more uniform configuration, yet the gradients and basal heat flow 

trends are quite different from the SW to NE. Considering that granitic rocks produce large amounts 

of radiogenic heat (Allen and Allen, 2005), it would be expected that the LMV would exhibit higher 

heat flow values considering the reports of granitoid plutons in several areas (Mora et al., 2017a). 

However, the occurrence of granitic plutons in cold areas such as the SW (San Jorge depocenter) 

and the western Magangué-Cicuco high, where sedimentary infill is much thinner, suggests that 

there is not much influence of possible heat conduction from the basement. Heat flow variation 

caused by in-situ heat generation by radioactive decay is expected to be much more prominent that 

the effects from the underlying crust. Change in radioactive heat production should occur in the SE-

NW direction from one facies belt to the other, yet the gradient and heat flow maps do not show a 

clear change in that direction. Variations observed in modern basal heat flow are thus more likely 

to represent influences of the local hydrodynamic regime, which would be more related to the 

sedimentary infill of the basin. 
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Mora et al. (2017b, Chapter 5) proposed that there has been amagmatic, flat subduction of 

the Caribbean plateau beneath NW Colombia since middle Eocene times. This would imply in first 

place that the flat subduction of the cold Caribbean plateau would have been responsible for 

possible slab refrigeration (Dumitru, 1990; Dumitru et al., 1991), lowering the temperature above 

the flat slab zone since the Oligocene, and in second place, that the thermal and heat-flow regime 

remained fairly constant since the basin started to be filled in late Oligocene times. We also 

converted the vitrinite reflectance values to paleo-temperatures, using the EASY%Ro model of 

vitrinite maturation of Sweeney and Burnham (1990), and assuming a heating rate of 1°C/Ma. With 

this procedure, we obtained a difference of ~8°C between the Oligocene-lower Miocene paleo-

temperature gradients and the present day gradients. Based on all the aforementioned, we 

implemented in our 3-D model basal heat flow maps for the Oligocene, which are 10°C hotter than 

the present-day, basal heat flow map (Figure 6.7c).  

We also tested different basal heat flow scenarios for calibration purposes (Figure 6.8), 

three with variable heat flows with time and one with a constant heat flow. In the first mean or 

average scenario, we ran the simulation using the previously described, mean present-day and 

Oligocene heat flow maps. Two other variable heat flow scenarios included present-day and 

Oligocene maps which had either 10% higher and lower heat flows than the average maps. For the 

fourth scenario, we assumed a constant heat flow of 40mW/m2 from the Oligocene to the present. 

The modelled curves according to each scenario were then plotted in the vitrinite reflectance and 

temperature extractions which will be described in the next sections. It must be taken into account 

that the variation in heat flow between the northern and southern LMV, as depicted in Figure 6.8, 

is due to the fact that the maps we used were built from geothermal gradients, therefore they show 

a variation in basal heat flow according to the location (e.g. higher basal heat flow in the north).   

 
 

 

Figure 6.8. Basal heat flow scenarios implemented and tested in the 3-D model. The pink curve (2) is the average 
or mean heat flow scenario obtained by using the geothermal gradient and a thermal conductivity value of 2 
W/m/K. The blue curve (1) is the low heat flow scenario corresponding to the average heat flow minus 10%, and 
the red curve (3) is the high heat flow scenario corresponding to the average heat flow plus 10%. The graph in the 
left corresponds to the location of the San Benito-1 well in the southern LMV while the graph in the right 
corresponds to the location of the Granate-1 well in the northern LMV. The difference in heat flows from north to 
south shows that the assumed present-day, basal heat flow varies according to the location in the basin. 

 

 

6.3.7 Calibration data: vitrinite reflectance 

 

Vitrinite reflectance and temperature data from several wells were available from Hocol’s database 

for model calibration (Figure D 1b). The most complete calibration data is available in the 

Magangué-Cicuco high and the northern LMV (Plato depocenter), while only scarce calibration 

data is available in the southern LMV (San Jorge depocenter). A detailed revision of the available 

geochemical data in the study area showed that its quality is not very good and that it must be taken 

with care. In first place, geochemical analyses were done in very different laboratories, for such 

reason some of the data is inconsistent or anomalous. Additionally, much of the data is old and 
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comes from wells drilled more than 30 years ago. Concerning vitrinite reflectance, several wells 

showed anomalous linear trends with depth, (e.g. Tupale-1, Figure 6.9 and Figure D 1b) and some 

even had inverted trends. Furthermore, samples at shallow depths tend to display very high vitrinite 

reflectance, suggesting the occurrence of reworked material in the younger sequences. According 

to all the aforementioned, we discarded wells with anomalous geochemical and temperature data, 

and used the most reliable ones for calibration (Figure 6.9 to Figure 6.13 

Model predictions of vitrinite reflectance after Sweeney and Burnham (1990) are in 

accordance with measured values in most of the wells (Figure 6.9). Vitrinite reflectance trends of 

wells indicate moderate increases in maturity with depth, reaching vitrinite reflectance values of 

0.6 % between 3,048 and 3,658 m (10,000 and 12,000 ft) in the Plato depocenter, corresponding to 

Sequences 5 and 6 (upper Oligocene to lower Miocene). By contrast, in the San Jorge depocenter 

the lower sequences (5 and 6) exhibit low maturities with vitrinite reflectance values below 0.6%. 

Towards the upper part of most of the vitrinite reflectance profiles, younger sequences (6 to 9) show 

anomalously high maturities, suggesting that there would be some reworking of organic matter.  

We performed 1-D extractions from the 3-D model and displayed burial history diagrams 

that show subsidence and uplift history at a certain location, which could be a well or a pseudowell. 

Such diagrams are very useful to analyze the evolution of temperature and maturity through time 

(Figure 6.10). Vitrinite reflectance predictions indicate that Oligocene and older sediments in the 

central Plato depocenter have been thermally mature (> 0.6% Ro) since early Miocene times. In the 

southern LMV (San Jorge depocenter), most of the wells such as La Esmeralda-1, remain immature 

and have not entered the oil window. Only a pseudowell in the deepest part of the depocenter to the 

W (Pseudowell-TironW), would show maturities indicative of an incipient entrance to the oil 

window, especially in Pleistocene times (Figure 6.10).  

Concerning erosion, though some bends in the 1-D curves could relate to some of the 

Miocene unconformities, the most complete vitrinite reflectance profiles come from wells drilled 

in the Plato depocenter, where there was less influence of regional shortening and uplift events. In 

the areas where there was more deformation and uplift, the lack of systematic vitrinite reflectance 

data hampers the identification of possible unconformities or other changes in the normal trends.  

Model results for vitrinite reflectance at selected intervals within the sequences with highest 

generating potential (upper Oligocene to lower Miocene Sequences 5 and 6), show that maturity, 

as indicated by vitrinite reflectance is highest in the northern LMV (Plato depocenter), where 

reflectance values of 2% and higher were obtained (Figure 6.11). Maturity in the southern LMV 

(San Jorge depocenters) is much lower with the highest vitrinite reflectance values around 0.6% 

occurring in the deepest reaches in the northwestern part of the depocenter. 
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Figure 6.9. One-dimensional model extractions at selected well locations showing modeled (curves) and measured (triangles) vitrinite reflectance data from wells. Each curve 
corresponds to a different heat flow scenario: the pink curve (3) is the average or mean basal heat flow from the Oligocene to Recent, obtained from the geothermal values by using a 
thermal conductivity value of 2 W/m/K; the dark blue curve (2) is the mean Oligocene to Recent, basal heat flow minus a 10% while the red curve (4) is the mean heat flow plus a 10%; 
the black curve (1) corresponds to a constant heat flow of 40 mW/m2 from the Oligocene to Recent. Compare vitrinite reflectances of the wells in the upper part, located in the northern 
LMV (Plato), with wells in the lower part, located in the southern LMV (San Jorge). 
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Figure 6.10.  One-dimensional histories extracted from the model at three well locations for temperature (left) 
and vitrinite reflectance (right). There is a marked contrast in histories between the north (Plato) and the south 
(San Jorge).  
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Figure 6.11. Model results for vitrinite reflectance in percent at tops of the two main source rock levels (upper 
Oligocene sequence 5 and lower Miocene, lower sequence 6). Modelled flow paths and hydrocarbon accumulations 
are also plotted, showing a good match with the real accumulations.  

 

     

6.3.8 Temperature  

 

Present-day temperature trends are quite similar to the maturity trends indicated by the vitrinite 

reflectance (Figure 6.11 and Figure 6.12), showing that the highest temperatures predicted by the 

3-D model occur in the Plato depocenter of the northern LMV. At the San Jorge depocenter in the 

southern part of the basin, predicted temperatures do not exceed 150°C (302° F). Predicted 

temperature gradients are low in all the LMV (Figure 6.13), though they are higher in the north 
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(Plato, >20°C/km), and lower in the south (<20°C/km). In spite of the few temperature data for 

calibration, the modelled temperatures show a normal increase in temperature gradients with depth. 

The continuous deposition and subsidence in the Plato depocenter as shown in the 1-D temperature 

histories (Figure 6.10), contrasts with the San Jorge depocenter in the south, where the effects of 

Pliocene uplift and erosion decreased the temperature of the sediments and inhibited an earlier and 

faster maturation.  

 

 
 
Figure 6.12. Model results for temperature in °C at the tops of the two main source rock levels (upper Oligocene 
sequence 5 and lower Miocene, lower sequence 6). 
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Figure 6.13. One-dimensional extractions at selected well locations showing modeled (curves) and measured (crosses) temperature data from wells. Each curve corresponds to a 
different heat flow scenario: the pink curve  (3) is the average or mean basal heat flow from the Oligocene to Recent, obtained from the geothermal values by using a thermal conductivity 
value of 2 W/m/K; the dark blue curve (2) is the mean Oligocene to Recent, basal heat flow minus a 10% while the red curve (4) is the mean heat flow plus a 10%; the black curve (1) 
corresponds to a constant heat flow of 40 mW/m2 from the Oligocene to Recent.   
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6.4 Results: Transformation Ratios 
 

Based on the thermal maturation model, transformation ratios were calculated mostly using 

published type III kinetics of Burnham and Sweeney (1989) and Sweeney and Burnham (1990), 

though several runs were made using other type III kinetics (Behar et al., 1997 for the Mahakam 

delta and Pepper and Corvi, 1995), as well as type II kinetics of Sweeney and Burnham (1990). 

Previous studies have shown that type III kerogen is dominant in Tertiary shallow marine to deltaic 

deposits of the LMV (ICP, 2000; Vargas and Mantilla, 2006). Our revision of source rock 

characteristics shows that upper Oligocene to lower Miocene, organic-rich rocks in Sequences 5 

and 6 have better characteristics in the north (Plato depocenter), where they have higher hydrogen 

indexes (30-250 mgHC/gTOC) and could contain some type II kerogen, while in the south (San 

Jorge depocenter), hydrogen indexes are lower (30-100 mgHC/gTOC) and there is only type III 

kerogen. Results after using all the previously mentioned type III kinetics show that almost 

complete transformation has occurred at the base of Sequence 5 (upper Oligocene) in the deepest 

parts of the Plato depocenter of the northern LMV (Figure 6.14), though there was complete 

transformation in more areas of the depocenter by using the kinetics of Behar et al. (1997). 

Transformation ratios decrease in lower Miocene sediments and only minor transformation 

occurred in middle Miocene sediments. Using type II kinetics of Sweeney and Burnham (1990) 

resulted in complete transformation of organic matter in almost the entire Plato depocenter and in 

higher transformation ratios in the lower part of Sequence 6. The upper part of Sequence 6 (lower 

to middle Miocene) was not transformed at all. 

In the San Jorge depocenter of the southern LMV, results indicate that there is no 

transformation of both Sequences 5 and 6 with all the type III kinetics, while using type II kinetics 

causes only minor transformation in the western part of the depocenter (Figure 6.14). According to 

our results, significant transformation would only occur in a high heat flow scenario, which is not 

supported by the temperature and maturity data, and in a type II kinetics scenario, which is not the 

case of the source rocks in the LMV. Therefore, it appears that the gas accumulations existing in 

the southern LMV are not explained by thermogenic generation from Oligocene to Miocene source 

rocks, in a pod located in the western San Jorge depocenter, as it has been previously suggested.  

The 3-D models we built have a grid spacing of 2 km x 2 km, contain 565,068 elements, 

14 lithologies, 30 facies and 31 layers. In spite of the thick layering and a not very fine grid, we 

obtained fairly good results in terms of modeled hydrocarbon accumulations versus the real fields 

in the LMV. Our model predicts mostly gas accumulations in Sequence 5 reservoirs, located in high 

areas surrounding the Plato depocenter of the northern LMV, with fewer accumulations in Sequence 

6 reservoirs. Some of the predicted accumulations coincide with important existing wet gas fields 

(e.g. Bonga and La Creciente to the W of the Plato depocenter). In the south, the model predicts 

much less gas accumulations, some of which are in agreement with the few gas fields that occur in 

that area. Though we consider that the modeled fields have a fair correlation with the real fields, it 

is also evident that further refinement of the model is needed to obtain a better match between 

modelled and real fields. Such refinement refers for example to the implementation of the main 

faults, which were not implemented in this model. Further activities that would enrich the models 

are the usage of source rock specific kinetics obtained in the laboratory as well as of biogenic 

kinetics. 
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Figure 6.14. Transformation ratios predicted by the model applying type II and III kinetics of Sweeney and Burnham (1990), Behar et al. (1997) and Pepper and Corvi (1995). 



  6 Three-dimenstional insight into the LMV 

139 

 

 

Transformation ratios plotted against time (Figure 6.15) indicate that in a large part of the Plato 

depocenter (Granate-1 well), most of the transformation of organic material in upper Oligocene 

sediments (continuous lines in Figure 6.15) has already occurred during the middle Miocene (15-

10 Ma), regardless of the kinetics applied. However, the earliest and fastest transformation occurred 

when the type II kinetics of Sweeney and Burnham (1990) were applied (red curve), and the latest 

and slowest with the type III kinetics of Behar et al (1997, green curve). Fastest transformation of 

the sediments towards the base of Sequence 5, related to type III kinetics, occurred with the models 

by Pepper and Corvi (1995) and Sweeney and Burnham (1990).  

Concerning the lower Miocene sediments at Plato (dashed lines in Granate-1 graph in 

Figure 6.15), the onset of transformation of organic matter occurs later, at ~9 Ma and it is faster 

when type II kinetics of Sweeney and Burnham (1990) are applied. The fastest transformation 

related to type III kinetics occurs with the models of Pepper and Corvi (1995) and Sweeney and 

Burnham (1990). In the southern LMV (Tiron-2 and pseudowell TironW in Figure 6.15), only 

insignificant and very recent transformation occurs, regardless of the kinetics applied and including 

type II kinetics of Sweeney and Burnham (1990).  

 

 

 
 
Figure 6.15. Transformation ratios at the base of the upper Oligocene Sequence 5 and at the top of the lower 
Miocene, lower Sequence 6 at several well locations applying type III kinetics of Sweeney and Burnham (1990), 
Behar et al., (1997) and Pepper and Corvi (1995); type II kinetics were also applied to see their effect on 
transformation ratios in the basin. Continuous lines are upper Oligocene sources and dashed lines are lower 
Miocene sources. Note the marked contrast between the north (Granate-1) and the south (Tiron-2 and TironW), 
where transformation was insignificant. 
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6.5 Discussion  
 

6.5.1 Hydrocarbon to source rock correlations 

 

According to Magoon and Dow (1994), a petroleum  system  encompasses  a  pod  of  active  source  

rock  and  all  related  oil  and  gas  and  includes all the essential elements and  processes needed  

for  oil and  gas accumulations to exist. It has a stratigraphic, geographic and temporal extent and 

its name combines the names of the source rock and the major reservoir rock, also expressing the 

level of certainty. Magoon and Dow (1994) thus proposed that if the petroleum system is considered 

known, its name is followed by an exclamation mark (!); if it is considered hypothetical, it is 

followed by a point (.) and if it is considered speculative its name is followed by a question mark 

(?). In the LMV, available geochemical studies (Petrobras/ECP, 1996; ICP, 2000; Rangel et al., 

2017) have indicated that there is essentially one oil family related to shallow marine, Tertiary 

rocks, which displays a good correlation with the upper Oligocene to lower Miocene source rocks 

of Sequences 5 and 6 (informally called “Ciénaga de Oro” Formation, ICP, 2000). Such oil to 

source rock correlation is best supported in the Plato depocenter of the northern LMV, where more 

data from oils and source rocks is available, and where several hypothetical petroleum systems have 

been proposed (e.g. Ciénaga de Oro (.) and Porquero - Ciénaga de Oro (.); Vargas and Mantilla, 

2006).  In the southern LMV, the main hydrocarbon accumulations consist of dry gas which 

according to the only available isotopic analyses (Beroiz et al., 1986), has a mixed biogenic and 

thermogenic origin. Biomarker data from hydrocarbons in the southern LMV do not correlate with 

any oil from the northern LMV (Plato), and it has been previously suggested that generation in the 

south occurred in the deepest part of the San Jorge depocenter. However, in addition to the lack of 

data in the south, this area has not been previously modeled in detail. 

 

6.5.2 Implications of 3-D modeling results on Petroleum Systems in the 
LMV 

6.5.2.1 Northern LMV (Plato depocenter) 
 

The 3-D model of the Lower Magdalena Valley basin presented herein provides additional 

constraints for sites of potentially active hydrocarbon generation. Modeling results indicate that 

upper Oligocene to lower Miocene deposits are mature in the northern part of the basin (Plato 

depocenter) and immature in the southern part (San Jorge), due to different source rock qualities,  

burial histories and heat flows. For that reason, 1-D and 2-D extractions from the 3-D model show 

that the oil window is found at shallower depths in the north (Plato), where modelled temperatures 

and maturities indicate that the early oil window is located between ~3,300 and 4,000 m (~11,000 

and 13,000 ft, Figure 6.16). The oil window at Plato would cover an area of 4,213 km2 (1,042,000 

acres). In the southern LMV, temperature and maturity data indicate that only sediments buried 

deeper than ~4,500 m (~15,000 ft) in the western San Jorge depocenter, would be in the early oil 

window (Figure 6.16). A third pod of active source rock would also exist in the deepest part of the 

Algarrobo pull-apart basin, where only middle Miocene sediments have been drilled by exploratory 

wells, but where older Tertiary sediments of sequence 6 and 5 would be preserved. The absence of 

oil and gas seeps in the area of influence of the Santa Marta fault, which forms the northeastern 

limit of the Algarrobo pull-apart basin appears to be a point against possible generation in this area. 

This could be related to the coarse-grained, clastic facies of Oligocene to lower Miocene units that 

have been recently reported in the Aracataca basin (Piraquive, 2016; Piraquive et al., 2017). 

However, the lack of temperature and maturity data hampers a better definition of this possible pod 

of active source rock.  
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The results of our 3-D model allow us to characterize in much more detail than in previous 

studies the petroleum systems in the LMV, following the definition of Magoon and Dow (1994). 

The Plato depocenter is the area of the LMV in which more well data are available, where more oil 

and gas fields are located and where the best hydrocarbon to source rock correlations have been 

obtained. Therefore, this study confirms the previously proposed petroleum systems in the northern 

LMV (Ciénaga de Oro (.) by Vargas and Mantilla, 2006; Ciénaga de Oro (!) and Porquero-Ciénaga 

de Oro (!) by ANH (2011b). However, considering that our tectono-stratigraphic framework is 

different from the one used by Vargas and Mantilla (2006) and ANH (2011b), we would propose 

at least three known petroleum systems in the Plato depocenter and surroundings: A petroleum 

system that only includes Sequence 5, which would be called Lower Ciénaga de Oro-Lower 

Ciénaga de Oro (!); a system with source rocks in Sequence 5 and reservoirs in Sequence 6, called 

Lower Ciénaga de Oro- Upper Ciénaga de Oro (!); and a system only including Sequence 6 which 

would be called Upper Ciénaga de Oro (!), Figure 6.17a). 

 

6.5.2.2 Southern LMV (San Jorge depocenter) 
 

The oil-source rock correlations, the distribution of hydrocarbons in the basin and the results of our 

3-D modeling all suggest that the Plato depocenter is not related to the dry gas accumulations in the 

western San Jorge depocenter. Hence, we propose that different petroleum systems are responsible 

for such accumulations. Proprietary industry reports have suggested that an equivalent hypothetical 

petroleum system, called Ciénaga de Oro (.), exists in the San Jorge depocenter, and that it would 

be responsible for the dry gas accumulations existing there. We do not discard that such hypothetical 

system is partly responsible for the dry gas accumulations in the south petroleum system (Figure 
6.17b). However, the results of our 3-D model have shown that the area has been extremely cold 

and that potential source rocks are immature, even in the deepest part of the depocenter. This means 

that neither a pod of active source rock nor migration pathways have been properly defined for the 

southern LMV. Therefore, our results suggest the necessity of having other additional sources for 

hydrocarbon generation in the southern LMV.  

One possible source would be bacterial activity in the early stages of diagenesis, which 

would have generated biogenic gas (Waples, 1981). This is in agreement with the few isotopic 

studies that have been performed in the area (Beroiz et al., 1986), which conclude that the gases in 

the Jobo-Tablon area in the western San Jorge depocenter have isotopic values between biogenic 

and thermogenic compositions. Nevertheless, it is more likely that such biogenic generation would 

relate to gas accumulations at shallow levels, such as those reported in younger sequences (e.g. 7 

to 9, Porquero to Tubará). However, preliminary tests with biogenic kinetics suggest that such 

processes are more important in the south (San Jorge) while thermogenic processes are more 

important in the north (Plato), though further studies and modeling are needed to confirm this.  

A second source relates to the recent proposal by Mora et al. (2017a, b) who interpret pre-

Oligocene sequences preserved beneath the western San Jorge depocenter, west of the San Jerónimo 

fault. Several wells in that area have drilled a succession that was initially interpreted as the 

basement, and have found sediments that correlate in age and lithology with the Upper Cretaceous 

to Eocene sequences that outcrop in the San Jacinto fold belt to the west (Sequence 1 to 4 of Mora 

et al., 2017b). In San Jacinto, Sequence 1 (Upper Cretaceous Cansona) contains organic-rich 

mudstones and shales of deep marine origin and with type II kerogen, while Sequence 2 (upper 

Paleocene to lower Eocene San Cayetano) contains marine mudstones with type III kerogen (ICP, 

2000). The absence of wet gas or light oil accumulations in the south suggests that probable source 

rocks are type III, hence from all the pre-Oligocene potential source rocks, it is more likely that the 

source rocks in Sequence 2 (San Cayetano) would have contributed to the generation of dry gas in 

the south of the LMV. According to this, we propose a new, hypothetical petroleum system in the 

western part of the San Jorge depocenter (Figure 6.17c), called San Cayetano- Upper Ciénaga de 

Oro (?). Nevertheless, much more geochemical studies of source rocks and hydrocarbons are 

required in this area to solve the existing uncertainties. 
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Figure 6.16. Northeast-southwest cross section, map view and 3-D image of the LMV showing the pods of active source rock (white contours in the map and green infill in the cross 
section), migration pathways (arrows) and petroleum system elements in the basin. In the 3-D image, modelled flow paths and hydrocarbon accumulations at the top of the Oligocene 
Sequence 5 are plotted, showing a good match with real accumulations. In the north (Plato), known petroleum systems in Sequence 5 and 6 are proposed, in agreement with previous 
studies; in the south, pods of active source rock and migration pathways have not been well defined, hence speculative and hypothetical petroleum systems are proposed.  
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Figure 6.17.  Events charts proposed for the LMV in this study for the two basin depocenters (Plato in the north 
and Western San Jorge in the south). In the south (charts b and c), the critical moment is the present-day 
considering the results of our model, which considers that insignificant transformation of organic matter occurs, 
when Oligocene to lower Miocene thermogenic generation is assumed. 

 

 

 

6.5.3 Influence of basin evolution on LMV Petroleum Systems 

 

The LMV is a forearc basin which has been tectonically segmented into two depocenters, due to 

inherited basement structures and to flat-slab subduction processes, producing a particular structural 

configuration and stratigraphic and facies distribution (see Chapter 5). We have seen in this chapter 

that there are important differences in terms of heat flow and source rock quality between both 

depocenters of the LMV. Such differences allowed us to propose that there are different petroleum 

systems in each depocenter and it is clear that each depocenter has a different hydrocarbon potential. 

Checking out the location of the present-day oil and gas fields and the type of produced 

hydrocarbons (Figure 6.1), the differences between the northern depocenter (Plato) where most of 
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the fields are located, and the southern depocenter are evident. Therefore, our results are suggesting 

a direct relationship between basin evolution and hydrocarbons systems.  

Thermal history in forearc basins is also very particular and remains poorly understood.  As 

pointed out in Chapter 5, a Miocene to Recent high sediment supply has also contributed to partially 

overcome some of the major obstacles for the development of petroleum systems. Our 3-D 

modeling study in the LMV has provided important information about the thermal and maturation 

history of the basin and is the basis for future studies to quantitatively assess light oil and gas 

generation from organic-rich Oligocene to Miocene or older source rocks. Unfortunately, most of 

the wells are old, data is limited and its quality in some cases is not very good. Hence, we 

recommend the acquisition of different types of data such as systematic vitrinite reflectance and 

other geochemical data, temperature data including more well test data, thermal conductivity and 

kinetic lab analyses, as well as oil and gas isotopic analyses. The uncertainty regarding the possible 

pre-Oligocene pod of active source rock in the western San Jorge depocenter requires further 

analyses and drilling as deep as possible into that sequence. Further data acquisition and analyses 

will make possible the assessment the most relevant variables, heat flow and kinetics, and to obtain 

more accurate basin models which will provide a valuable aid for hydrocarbon exploration in the 

LMV.  

 

6.6 Conclusions 
 

A three-dimensional model of the Lower Magdalena Valley basin of NW Colombia was built from 

seismic and well data, and used to reconstruct the thermal and maturation history of the basin. We 

reconstructed the stratal architecture of the basin, implemented within the model episodes of uplift 

and erosion, and constructed a geothermal gradient map of the basin, which was the main input for 

the construction of heat flow maps for 3-D modeling. Calculated geothermal gradients were higher 

in the northern LMV (Plato) and lower in the south, and the obtained average geothermal gradient 

for the basin is low (19.6 °C/km; 11°F/ 1000ft). Obtained heat flows lie within the range reported 

globally for forearc basins unrelated to arc magmatism and indicate that the basin is hypothermal. 

Geochemical data indicate that better quality source rocks occur in the northern LMV (Plato). 

Model results indicate that the onset of generation occurred at ~15 Ma (middle Miocene) for upper 

Oligocene to lower Miocene source rocks in the northern part of the basin (Plato depocenter), while 

lower Miocene sources started generating at ~ 10 Ma (middle-late Miocene). Maturation was 

influenced by sedimentation at very high rates of thick, deep marine to deltaic, Oligocene to upper 

Miocene sequences. Late Miocene generation was interrupted by shortening and uplift events at 

Pliocene (4-3 Ma) and Pleistocene times, though it appears to be ongoing in main depocenters. Poor 

to fair source rock quality (low TOCs and HIs, type III to II kerogen) appears to be compensated 

by high thicknesses of the Oligocene to lower Miocene sources, which would still be generating 

below 3350m (11,000 ft) in the main pod of active source rock (Plato depocenter). By contrast, the 

effects of shortening pulses and low heat flow would have inhibited maturation of Oligocene to 

lower Miocene source rocks in the San Jorge graben of the southern Lower Magdalena, suggesting 

the need of additional hydrocarbon sources to explain the dry gas occurrences in that part of the 

basin. Possible explanations are generation through bacterial activity at early stages of diagenesis 

(biogenic gas) or a pre-Oligocene pod of active source rock in the western San Jorge depocenter. 

Basin segmentation due to inherited basement structure and to flat-slab subduction, led to the 

deposition of different source rocks, caused different subsidence and uplift histories as well as 

different thermal regimes in the northern and southern LMV depocenters. Therefore, we are directly 

relating basin formation and evolution to the hydrocarbon distribution and prospectivity in this 

basin. 
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7 Conclusion and Outlook 
 

In this thesis, I examined the plate tectonic, structural and stratigraphic evolution of the Lower 

Magdalena Valley basin and San Jacinto fold belt of Northwest Colombia, through the integration 

and interpretation of different kinds of geological and geophysical data such as reflection seismic, 

air gravity and magnetics, seismicity, basement and detrital zircon geochronology, Hf-isotope 

geochemistry, biostratigraphy, sequence stratigraphy and tectono-stratigraphy. The results of such 

examination were used as the main input for the three-dimensional basin and petroleum systems 

modelling that I carried out in the LMV and for preliminary 1-D and 2-D models in the SJFB, 

aiming to improve our understanding on the petroleum systems in those areas.  

 

The motivation for this project, as stated in Chapter 1, was to try to fill the gap that exists in the 

current understanding of the Cretaceous to Recent plate tectonic and basin formation and evolution 

in NW Colombia, in order to provide solid foundations for hydrocarbon exploration activities in 

the Lower Magdalena Valley basin and San Jacinto fold belt. In the first chapter I wrote several 

questions which I try to answer in this thesis, aiming to obtain a better understanding of the 

formation and evolution of the LMV and SJFB, as well as of the petroleum systems they hold. In 

this section I will provide the answers to these questions referring to each of the related chapters of 

my thesis. 

 

1. What is the structure and age of the basement underneath such basins? How, when, and 

in which tectonic setting was it formed? 

Through detailed interpretations of reflection seismic data and new U-Pb and Hf isotope 

geochemistry in zircon (Chapter 3), I was able to confirm that the basement of the Lower 

Magdalena Valley basin is the northward continuation of the basement terranes of the northern 

Central Cordillera, thus that the Lower Magdalena experienced a similar pre-Tertiary tectonic 

history as the latter. My detailed seismic mapping revealed that the basement structure of the Lower 

Magdalena is much more complex than previously considered and that it comprises two regions of 

different fault trends, a western region with a dominant ESE-WNW-trending fault family and a 

northeastern region with a NE-SW-trending family. The most important structural features in the 

Lower Magdalena are the Plato and San Jorge depocenters, which are separated by the Magangué-

Cicuco basement high. Estimated basement depths in these depocenters range from more than 24 

thousand feet (>7 km) in Plato and more than 17 thousand feet (>5 km) in San Jorge. New 

geochronological data prove the extension into the Lower Magdalena Valley basin not only of a 

Permo-Triassic terrane (232-300 Ma, Tahamí-Panzenú), but also of the Upper Cretaceous (75-89 

Ma) magmatic arc of the northern Central Cordillera, confirming the along-strike continuity to the 

north of the arc which includes the Antioquia and Sabanalarga plutons. Hf isotopic analyses from 

the Bonga Upper Cretaceous pluton suggest that the preceding melts were mantle-derived and 

possibly intruded young crust with oceanic affinity, which I interpret as the northern continuation 

of the Lower Cretaceous Quebradagrande Complex underneath the westernmost segment of the 

LMV. Therefore I propose that in Late Cretaceous times (Santonian-Maastrichtian), a “normal” 

thickness Caribbean plate was being subducted under the South American plate, producing a 

magmatic arc represented by the Bonga pluton which intruded a dominantly oceanic terrane. The 

NE-SW trend of basement faults in the northeastern Lower Magdalena is probably inherited from 

the Jurassic rifting event which is responsible for the conspicuous fabric of surrounding terranes 

outcropping to the east of the Palestina Fault system, while the ESE-WNW trend in the western 

Lower Magdalena is inherited from a Late Cretaceous to Eocene, extension and dextral strike-slip 

episode, which has been recognized in the western Andean forearc from Ecuador to Colombia.  
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2. How was the paleo-tectonic evolution of NW Colombia and how did it influence the 

formation and evolution of the SJFB and LMV? 

Through the integration of detailed tectono-stratigraphic analyses and paleo-tectonic 

reconstructions, I was able to link the kinematic and convergence history of the Caribbean and 

South American plates with the formation and infill of the LMV and SJFB. Therefore I directly 

connected the interpreted paleo-tectonic evolution of NW Colombia to the formation and evolution 

of the LMV and SJFB. 

In Chapter 4, I linked the Late Cretaceous to Eocene tectono-stratigraphy of the San Jacinto fold 

belt of NW Colombia with the plate tectonic evolution of northwestern South America, which 

experienced Caribbean plateau collision and flat subduction. Using a regional geology and 

geophysics database, I was able to relate the deposition of four unconformity-bounded forearc basin 

sequences to specific collision/subduction stages and to relate their bounding unconformities to 

major tectonic episodes. The oldest Upper Cretaceous sequence (Sequence 1-Cansona) was 

deposited in a marine forearc environment in which a “normal” thickness Caribbean plate was being 

subducted beneath northwestern South America, producing contemporaneous magmatism in the 

present-day northern Central Cordillera and Lower Magdalena Valley basin. Coeval strike slip 

faulting by the Romeral wrench fault system accommodated right-lateral displacement due to 

strongly oblique convergence.  In latest Cretaceous to early Paleocene times, the Caribbean oceanic 

plateau collided with South America causing a major shortening event and marking a change to a 

turbiditic marine sedimentation with abundant terrestrial input, that characterizes the upper 

Paleocene to lower Eocene San Cayetano sequence (Sequence 2). This sequence was also deposited 

in a forearc setting with an active volcanic arc that probably represents the final melting stage of 

the previously subducted “normal” thickness Caribbean slab. A lower to middle Eocene angular 

unconformity at the top of the San Cayetano sequence, a second major shortening event, the 

termination of the activity of the Romeral Fault system and the cessation of arc magmatism are 

interpreted to indicate the onset of low-angle subduction of the thick and buoyant Caribbean oceanic 

plateau beneath South America, which occurred between 56 and 43 Ma. Onset of low-angle 

subduction was probably caused by a major change in plate convergence angle and velocity, as 

suggested by paleo-tectonic reconstructions. Low-angle subduction of the Caribbean plateau has 

continued to the present and appears to be the main cause of the amagmatic, post-Eocene deposition.  

 

In Chapter 5, I used my regional database to reconstruct the subsidence, extension, sedimentation 

and paleo-geographic history of the Oligocene to Recent Lower Magdalena forearc basin, and to 

propose possible mechanisms controlling basin evolution, in the absence of major changes in plate 

kinematics and in a flat-slab subduction setting. I showed that after the collapse of a pre-Oligocene 

magmatic arc (Bonga), late Oligocene to early Miocene fault-controlled subsidence allowed initial 

basin fill at relatively low sedimentation rates. Extensional reactivation of inherited, pre-Oligocene 

basement faults was crucial for the tectonic segmentation of the basin and the formation of its two 

depocenters (Plato and San Jorge). Oligocene to early Miocene uplift of Andean terranes made 

possible the connection of the Lower and Middle Magdalena valleys, and the formation of the most 

important Colombian drainage system (Magdalena River system). The proto-Magdalena river in 

the north and the proto-Cauca river in the south both started delivering enormous amounts of 

sediment in middle Miocene times, as fault controlled subsidence was gradually replaced by 

sagging, due to increased sedimentary load. Such dramatic increase in sedimentation delivered huge 

amounts of sediments to the trench, causing the formation of an accretionary prism farther west of 

San Jacinto. This probably weakened the plate interface and caused underplating, with the 

development of forearc highs in the San Jacinto area. A stronger backstop under the Lower 

Magdalena would explain shortening in the forearc high and accretionary wedge areas to the W, 

while the Lower Magdalena remained essentially unaffected. These results highlight the 

fundamental role of sediment flux, of the inherited basement structure and of flat-slab subduction 

on the evolution of forearc basins such as the Lower Magdalena.      

 

 



  7 Conclusion and outlook 

147 

 

 

   

3. What is the configuration of the convergent margin between the Caribbean and South 

American plates in NW Colombia? 

 

I integrated different types of geological and geophysical data such as reflection-seismic, potential 

methods, seismicity, seismic tomography, well and outcrop data to propose a three-dimensional 

model of the geometry of the convergent margin of northwest Colombia. I support previous 

proposals of a flat-slab subduction of the Caribbean plateau beneath NW South America, which 

according to my interpretation appears to form different slab segments with different subduction 

angles, steepening towards the ESE. In Chapter 4 I mapped the subducting slab in order to propose 

a three-dimensional geometry of the convergent margin. I thus propose the existence of a tear or 

STEP fault (subduction transform edge propagator, Govers and Wortel, 2005) toward the western 

end of the Oca-El Pilar-San Sebastián fault system. The Caribbean plateau is therefore being torn 

into two major slab segments, a steeper slab to the south, imaged by a Wadati-Benioff zone and by 

seismic tomography, and a shallow to flat slab to the north, which corresponds to the Caribbean 

oceanic floor offshore northern Colombia and Venezuela.  

 

4. What kind of basins are the SJFB and LMV and which were the mechanisms that 

controlled their formation and evolution?  

In Chapter 4 I showed that the Cretaceous to Eocene units preserved in the San Jacinto fold belt 

were deposited in a forearc setting with an active magmatic arc, due to the oblique convergence of 

the Caribbean and “normal” thickness oceanic plate and the South American plate. Proposed basin 

formation mechanisms are oblique convergence caused arc-parallel extension and clockwise block 

rotation due to dextral strike-slip, as reported in similar forearc basins in Ecuador. After a major 

plate readjustment in early to middle Eocene times, convergence becomes more orthogonal and 

low-angle subduction shuts off the magmatism. In Chapter 5 I proposed that sedimentation began 

in Oligocene times due to the thermal collapse of the pre-existing magmatic arc, which caused the 

older faults to extensionally reactivate. Oligocene to Recent sedimentary infill of the the LMV 

occurred in the absence of major changes in terms of convergence velocity and obliquity, therefore 

controls on basin evolution are more related to hinterland areas where uplift and denudation of 

Andean terranes caused a dramatic increase in sediment supply in early to middle Miocene times. 

Hence, I propose that the initial fault-controlled subsidence possibly driven by crustal cooling was 

replaced by sedimentary loading in middle to late Miocene times. Sediment supply was also 

responsible for underplating and uplift in the forearc high in the current San Jacinto fold belt. 

However, low-angle subduction was also fundamental for the basin evolution because it precluded 

the formation of a magmatic arc and possibly also influenced the segmentation of the basin with its 

two depocenters. The different basement fabrics described in Chapter 3 also influenced the way the 

basin was deformed according to the regional stress field. According to the aforementioned, the 

LMV is an amagmatic forearc basin which was tectonically segmented due to inherited basement 

structures and to flat-slab subduction processes, and which was strongly controlled by sediment 

supply. 

5. What are the implications of the plate tectonic and basin evolution of the LMV and SJFB 

on hydrocarbon systems? 

I proposed in Chapter 5 that the LMV is an amagmatic, tectonically segmented forearc basin formed 

in a low-angle subduction setting, conditions that probably led to an overall decrease in regional 

heat flow (slab refrigeration?). In Chapter 6 I further discussed the general conception about the 

low hydrocarbon potential of forearc basins due to low heat flows and poor quality reservoirs. 

However, after my basin analysis, I consider that while the relatively low heat flow does not favor 
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hydrocarbon generation and migration, the high sediment supply which allowed the rapid 

deposition of thousands of meters of poor to fair quality, organic-rich source rocks in the 

depocenters of the LMV partly compensated for such low heat flows. This is demonstrated not only 

by the hydrocarbon production in the basin, but also by the 3-D modeling I carried out. High 

sediment supply overfilled the Plato depocenter in the north and allowed source rocks to enter the 

oil window since middle Miocene times.   

Basin segmentation due to basement inherited structures and flat-slab subduction, influenced the 

deposition of different source rocks, the different subsidence and uplift histories as well as the 

different thermal regimes in the northern and southern LMV depocenters. Therefore, I have been 

able to directly relate the proposed basin formation and evolution to the hydrocarbon distribution 

and prospectivity. In Chapter 6 I showed that such segmentation was crucial for hydrocarbon 

systems because it provided more favorable conditions for hydrocarbon generation and entrapment 

in the northern depocenter (Plato), compared to the southern depocenter (San Jorge). I showed that 

the subsidence and uplift histories in each depocenter were different, especially after late Miocene 

times and that in the north, not only the heat flows are higher, but also the source rocks have a 

higher quality. Hence, the present-day location of most of the hydrocarbon fields around the 

northern Plato depocenter is due to the particular basin evolution and infill of this segmented and 

amagmatic forearc basin. Results of my 3-D modelling also show that in the south the basin 

evolution and infill was not so favorable for hydrocarbon generation. However, there are still issues 

to be solved in that area, such as the fact that the existing hydrocarbon accumulations are not 

explained by thermogenic generation from Oligocene to lower Miocene source rocks.  

Finally, in the San Jacinto fold belt, thermal maturity data (e.g. GEMS, 2017) and preliminary 

modelling results support my interpretation in the sense that the area behaved as a forearc high from 

Miocene to Recent times. For such reason the source rocks are mostly immature and they probably 

were never deeply buried, a conclusion that appears to be not very favorable for hydrocarbon 

prospectivity but that requires much further studies. Nevertheless, the results of this thesis provide 

new insights into the controls and influence of plate tectonics and basin evolution on petroleum 

systems. 

 

Recommendations and the way forward 
 

After finishing this study, I have become more aware of the fact that though I think I obtained very 

interesting and useful results, my thesis is just the starting point for future studies in several different 

geoscientific fields in my study area.  

 

In the area of plate tectonics and geodynamics, I am surprised of the scarcity of data available in 

NW Colombia, compared to the neighbouring countries (Venezuela and Ecuador). Therefore, I 

recommend several activities in order to obtain a good image of the deeper parts of the crust and 

upper mantle, such as deep penetration, wide angle, reflection seismic acquisition, gravity 

modelling, seismic tomography and seismological and GPS data acquisition and analysis. Though 

my study area is relatively aseismic, it should be possible to obtain more focal mechanism solutions, 

especially from the San Jacinto fold belt. A complex but very interesting area is the south of the 

LMV and SJFB, where the Caribbean and Nazca plates are interacting in some way which we still 

do not understand, hence future research could focus in those areas. An important aspect to highlight 

is that more than 5 million people live in the area of influence of this convergent margin, which has 

not been properly characterized in terms of seismicity and physical properties of the subduction 

interface. Therefore, earthquake hazard studies in the northwestern Colombia convergent margin 

are also highly recommended and needed. 
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Good quality, conventional reflection seismic acquisition is also required in the SJFB, where the 

coverage is not very dense, imaging is very poor and there is high structural and stratigraphic 

complexity. The scale of the stratigraphic sequences I defined (mostly 2nd –order) is too regional, 

hence we need more detailed surface geology and well studies, with multiple rock analyses, such 

as different biostratigraphy tools (combination of forams, palynology, nannofossils, etc.), 

geochronology, thermochronology, paleomagnetism and others which will help to reconstruct in 

more detail the deposition of pre-Oligocene sequences in San Jacinto. It is evident that there are 

hydrocarbon systems working in the area, but more seismic, more wells and more field geology 

campaigns are required for a better assessment of the hydrocarbon potential of this frontier area. 

Construction and restoration of balanced cross sections for 2-D modelling of petroleum system are 

also necessary to properly reconstruct the thermal and maturation history of the fold belt.       

 

Though there is much more data and less geological complexity in the LMV, we need to produce 

more refined basin and hydrocarbon system multidimensional models to better understand the 

hydrocarbon systems and potential, especially in the southern LMV. I recommend doing lab 

analyses such as source rock kinetics, thermal conductivities and obtaining more temperature and 

heat flow measurements from well tests in order to produce more refined 3-D models which will 

provide quantitative resource assessment. Isotopic and biomarker analyses of hydrocarbons to do 

more oil to source rock correlations are also necessary especially for the southern part of the LMV.  
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Appendix A 
 

 

Supplementary figures for Chapter 3 (Mora et al., 2017a): 

 

 
 

 
Figure A 1. Uninterpreted and interpreted regional reflection-seismic cross-section showing the possible deep 
structure under the Lower Magdalena Valley basin and San Jacinto fold belt expression. A deep, SE-dipping 
detachment has been interpreted as the subduction megathrust which we have correlated and mapped with the 
oceanic acoustic basement in offshore areas. We also show the structural style of the San Jacinto belt and the 
interpretation which was done to obtain the basement map shown in Figure 3.4.    
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Figure A 2. Uninterpreted and interpreted, reflection-seismic line in the Jobo-Tablón area, showing the expression 
of an eastern, east-verging splay of the Romeral Fault System which we interpret here as the northern continuation 
of the San Jerónimo Fault.   

 



Appendix A   

152 

 

 
 
Figure A 3. Seismic-reflection line from a 3D-survey in the northern San Jacinto fold belt (see location in Figure 
3.2, Figure 3.4 and Figure 3.8), showing the extensional structural style of the pre-Oligocene sequences in that 
part of the fold belt (modified from Mora et al., 2013). 
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Appendix B 
 

 

Supplementary material for Chapter 4 (Mora et al., 2017b): 

 

Introduction  
 
The supplementary information provided here as additional text, includes detailed descriptions of the studied 

pre-Oligocene tectono-stratigraphic sequences in the San Jacinto fold belt of NW Colombia (Text B1), the 

methodology followed to carry out the U-Pb geochronology and Hf Isotope geochemistry (Text B2), and the 

procedure followed to construct the map and cross-section of the subducted Caribbean oceanic slab segments 

beneath NW South America, including relevant regional cross-sections (Figure B1). We also include as 

supplementary figures the uninterpreted reflection-seismic sections (Figures B2 to B5), which correspond to 

Figure 4.8 to Figure 4.11 in the main text.  

 

Text B1. Detailed description of tectono-stratigraphic sequences 

 

Sequence 1 (Cansona-Upper Cretaceous) 

 
The oldest sequence is of Upper Cretaceous age and comprises the bituminous shales, cherts and limestones 

of the Cansona unit (Duque-Caro, 1979; Guzman et al., 2004; Guzman, 2007). While a Coniacian age has 

been reported for the lower part, based on ammonites studied by Etayo-Serna et al. (1969), a Campanian-

Maastrichtian age has been proposed for the upper part, based on planktonic foraminiphera, nannoplankton 

and palynomorphs (Aleman, 1983, Guzman et al., 2007; ATG-ANH, 2009; Dueñas and Gómez, 2013). Given 

that it spans for more than 10 Ma, it can be classified as a 2nd-order cycle (Vail et al., 1977), which would 

correspond to a high rank/low frequency cycle in the hierarchy pyramid of Catuneanu et al. (2009).  Facies 

and thickness information of this sequence comes from several stratigraphic sections (Duque-Caro, 1979, 

Guzman et al., 2004, ATG-ANH, 2009). Biostratigraphic data compiled by Duque-Caro (2000, 2001) and 

Guzman (2007) show an absence of lower Paleocene planktonic foraminiferal zones (P.0 to P.2) in the SJFB, 

indicating the existence of a regional unconformity which marks the upper limit of this sequence (Figure 4.4). 

This unconformity would be related to the “Calima orogeny” proposed by Barrero (1979), based on 

observations in the Colombian Western Cordillera. Considering that its base is just exposed in one 

stratigraphic section (Cacao creek, Aleman, 1983, ICP, 2000), the measured thicknesses are incomplete and 

highly variable, though in the most complete section (Cacao) the measured thickness is approximately 762 

m.  

Very few petrographic analyses have been carried out to the rocks of this Upper Cretaceous Sequence. 

According to Ecopetrol/ICP (2014), the sandstones of this sequence range from lithic arkoses towards the 

base to litharenites towards the top, with a predominance of metamorphic and sedimentary lithics.  

Geochemical data from different sources (Beroiz et al., 1986; ESRI/ILEX, 1995; Petrobras/Ecopetrol, 1996; 

Niño, 2005; Sánchez and Permanyer, 2006 and Osorno and Rangel, 2015) shows that the organic-rich facies 

of the Upper Cretaceous Cansona sequence have high quantities of organic matter (Total Organic Content 

TOC > 1%) which is formed mainly by type II kerogen (Tissot et al., 1974; Peters and Cassa, 1994), in the 

form of amorphous organic matter with much less content of vitrinite, dinoflagellates, algae, and other 

components. These rocks were deposited in moderately deep marine settings with reduced terrigenous supply 

(Niño, 2005; Juliao-Lemus et al., 2016).  The fine-grained middle and upper parts of Sequence 1 (Cansona), 

may be correlated with Upper Cretaceous units in the northeastern Western Cordillera such as the Pendersico 

Formation (Alvarez and Gonzalez, 1978; Diaz-Cañas, 2015). 

 

Sequence 2 (San Cayetano-upper Paleocene to lower Eocene) 

 
Sequence 2 has received several names (Arroyo Seco, Luruaco) but in this work, it comprises the San 

Cayetano unit which has been dated as upper Paleocene to lower Eocene (planktonic foraminiferal zones P.3 

to P.9, Duque-Caro, 2000; 2001; 2011a, b, c; 2012b, 2013b) and according to its duration, it also corresponds 

to a 2nd-order cycle (Vail et al., 1977) or to a high rank/low frequency cycle (Catuneanu et al., 2009). The 

late Paleocene was characterized by a high global sea level (eustatic curves in Figure 4.2, Haq et al., 1987), 

which could have influenced the onset and extension of San Cayetano sedimentation. A late Paleocene 
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thermal maximum and an early Eocene climatic optimum (Zachos et al., 2001, Figure 4.2) would have also 

influenced sedimentation of this sequence. While very few samples have yielded an upper Paleocene age 

(zones P.3 to P.5), in most of the outcrops and wells the basal section of the unit is not exposed or was not 

drilled. In stratigraphic sections (e.g. San Cayetano section, northern San Jacinto anticlinoria), more than 

1600 m were measured (ICP, 2000). In the northernmost SJFB, old and recent wells have drilled a 

monotonous silty section of upper Paleocene to lower Eocene age, with thicknesses of more than 2000 m. 

The top of the San Cayetano sequence has been considered a regional unconformity of middle Eocene age 

which has been reported in surface geology studies and a few poor-quality reflection seismic sections. 

Biostratigraphic data show that there’s a big hiatus in the center of the SJFB, where the lower Eocene is 

missing, while to the north the section is more complete and the contact with the overlying sequence appears 

to be a disconformity (Figure 4.4).  

Well and outcrop data show that this sequence exhibits an overall fining-upward trend, with higher contents 

of sandy and conglomeratic lithologies in its lower half and higher contents of muddy lithologies towards the 

top. However, there are notorious facies variations from south to north that appear to define three areas with 

markedly different lithologies and facies, apparently controlled by structural features (Figure 4.4). 

Conglomerates and sandstones are dominant in the central part of the SJFB, while in the south the 

conglomeratic facies are subordinate. Towards the north, there’s a notorious facies change which appears to 

be related to a SE-NW-trending structural feature, which has been called in geological maps the “El Dique 

Fault” (EDF, Figure 4.1 and Figure 4.4; Gomez et al., 2007). The conglomerates and sandstones which occur 

in the central SJFB were deposited in fan deltas (Guzman, 2007), while the sandstones in the Luruaco area 

have been related to turbidites (Geosearch, 2006 and Figure 4.10).  

Petrographic analyses from outcrops in the northern SJFB show that Sequence 2 (San Cayetano) consists of 

litharenites with fragments of plutonic (granites), volcanic porphyritic, metamorphic (quartzites and schists) 

and sedimentary rocks (cherts and mudstones; Llinás, 2012). In the C-1 well, also located in the northern 

SJFB, dominant rock types are very fine to fine-grained litharenites, sublitharenites, subarkoses and arkoses. 

Lithics are mainly vulcanites, cherts, quartzites and other metamorphites, micrites, mudstones and few 

plutonites (Petroscopía S.A., 2013). 

Geochemical studies (Beroiz et al., 1986; Hocol, 1993; ESRI/ILEX, 1995; Niño, 2005; GEMS Ltda., 2007, 

2014) show a notorious change in the organic-rich facies of this sequence compared to the Upper Cretaceous 

Cansona sequence. While organic content is much lower (TOC<2%), the organic matter is formed mainly by 

vitrinite and in much less proportion by amorphous organic matter, liptinite and inertinite (Niño, 2005). This 

composition evidences a very clear input of higher land plants characteristic of a type III kerogen. Paleocene 

to Eocene sedimentary units equivalent to Sequence 2 are not well preserved in the northern Western 

Cordillera due to uplift and erosion, hence it is very difficult to make a comparison with that area.   

 

Sequence 3 (Chengue-middle to upper Eocene) 

 
Sequence 3 corresponds to the Chengue Group, defined by the P.10 to P.14 planktonic foraminiferal zones 

of middle to late Eocene age (Duque-Caro, 2000; 2001; 2011a, b, c; 2012b, 2013b); it spans for nearly 10 

Ma, hence it also corresponds to a 2nd-order or high rank/low frequency cycle (Vail et al., 1977; Catuneanu 

et al., 2009; Figure 4.2). Biostratigraphic data indicates that the unconformity between Sequences 2 (San 

Cayetano) and 3 (Chengue) corresponds to the P.9 to P.10 zones of Duque-Caro (2000, 2001, 2011 a, b, c), 

implying a time interval of 46 to 51 Ma which includes the limit between the lower and middle Eocene. This 

sequence has been eroded in the southern part of the SJFB and is more preserved in the northern part (Figure 
4.4). The sequence displays notorious facies and thickness changes from south to north, and the El Dique 

fault also seemed to exert some influence on sedimentation and facies distribution. While south of the fault 

there is a predominance of conglomeratic facies (Maco and Pendales units), north of the fault red algae 

carbonates are locally developed in the Arroyo de Piedra area (Figure 4.4).  

Carbonates of Sequence 3 were sampled from outcrops in the northern SJFB (Arroyo de Piedra limestones) 

and studied in thin section. They consist of packstones/biomicrites to grainstones/biosparites with red algae 

fragments and structures (ooid, oncoliths and rodoliths), and fragments of benthic foraminifera and 

echinoderms. These carbonates were also described in a core from a well located in the northern SJFB (M-

3X), in which seven shoaling-up high-frequency cycles or parasequences (Van Wagoner et al.,1990) were 

identified, and the interpreted environment was a shallow (<30m water depth), moderately high energy 

carbonate platform (Cross, 2014). Outcrop and well samples from the northern SJFB were also selected for 

detailed petrographic and C-, O- and Sr isotope stratigraphic analyses (Ares, 2014), in an attempt to obtain a 

better dating of the Eocene carbonates. Though preliminary conclusions from isotope chemostratigraphy 

suggested a good correlation in age between the carbonates in the northern SJFB (Arroyo de Piedra) and those 

in the central and southern SJFB (Toluviejo, Ares, 2014), in this study we consider that such a conclusion is 
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not well supported because the standard curve of the 87Sr/86Sr ratio for the Eocene is very flat (McArthur et 

al., 2001), making very difficult to obtain an accurate dating of Eocene carbonate samples. According to 

Faure and Mensing (2005), the most favorable conditions for dating marine carbonate rocks exist for samples 

of post-Eocene age (i.e. 40-0 Ma), because in this time interval, the 87Sr/86Sr ratio of seawater increase steadily 

from 0.70775 to 0.70918. Furthermore, the obtained Sr isotopic values were anomalously high and thus the 

obtained ages were too young, approaching the age of the southern carbonates (Toluviejo). Also in the north, 

the most abundant microfacies were algae-rich and benthic foraminiferal grainstones and packstones in which 

the most abundant foraminifera assemblage comprised Orbitoides (Discocyclina) and Nummulites, and the 

carbonates were interpreted as deposited in a shallow marine carbonate platform (Ares, 2014). However, 

recent detailed sedimentological studies of Oligocene to Miocene carbonates in northwestern offshore 

Venezuela suggest that deposition of carbonates with red algae and large benthic foraminifera is also possible 

in deeper marine settings such as distally steepened ramps, related to oligophotic (poor light) carbonate 

production (Pomar et al., 2015). Therefore, more detailed studies have to be carried out not only to define 

more precisely the depositional environments but also to obtain more reliable depositional ages of the 

Cenozoic carbonates in northwestern South America.  

The siliciclastic units of Sequence 3 were also studied in outcrop and thin section. The unit known as Maco 

conglomerate consists of polymictic conglomerates and calcareous, feldspathic litharenites in which the most 

abundant lithics are black chert fragments, followed by quartzarenites and minor metamorphic and igneous 

plutonic and volcanic rocks (Llinás, 2012). The thickness of Sequence 3 is highly variable and ranges from 

150 m (490 ft) in paleohighs to more than 1000 m (>3200 ft) in low areas.  Parra and Rincón (2014) recently 

studied foraminiferal assemblages in two stratigraphic sections in the northern SJFB and proposed an early 

to Middle Eocene age and deposition in shelf neritic to possible bathyal environments for the Chengue unit. 
 

Sequence 4 (San Jacinto-upper Eocene to lower Oligocene) 

 
Sequence 4 comprises the siliciclastic San Jacinto unit and calcareous Toluviejo unit (Figure 4.2 and Figure 
4.4). According to biostratigraphic studies (Duque-Caro, 1979; Guzman, 2007) it is defined by the P.15 to 

P.20 planktonic foraminiferal zones of upper Eocene to lower Oligocene age (Duque-Caro, 2000, 2001, 

2011a, b, c; 2012b; 2013a, b), and therefore it is also a 2nd -order or high rank/low frequency cycle (Vail et 

al, 1977; Catuneanu et al., 2009). The average thickness of Sequence 4 is 342 meters, though it is highly 

variable along depositional strike. This sequence was recently drilled by two stratigraphic wells, the 

SamanEst-1 and the T-2XP (Figure 4.3 and Figure 4.4). In the SamanEst-1, almost one thousand meters of 

interbedded mudstones, sandstones and conglomerates were found and the succession was dated as upper 

Eocene to lower Oligocene (zones P.15 to P.20, Duque-Caro, 2013a). The basal succession drilled by the 

well was made of polymictic conglomerates with abundant igneous, metamorphic and sedimentary lithics. In 

the T-2XP well in the southern SJFB, Sequence 4 displays both carbonate facies of the Toluviejo unit and 

clastic sandy facies of the San Jacinto unit (Figure 4.4). In other areas (e.g. Chalán), the Toluviejo unit has 

been described as a succession of calcareous sandstones and conglomerates, classified as quartzarenites to 

litharenites with sedimentary and igneous lithics, and packstones and grainstones of red algae and large 

benthic forams (Lepidocyclines).  

In thin section, the San Jacinto unit of Sequence 4 exhibits an increase in quartz content and a decrease in 

feldspar and lithic content, compared to the samples of the older sequences, and most samples were classified 

as sublitharenites and subarkoses, with minor arkoses to litharenites (Ecopetrol/ICP, 2014).  Geochemical 

studies of Sequences 3 and 4 (Chengue and San Jacinto) show that mudstones facies can have poor to very 

good organic matter contents (TOC commonly <3%; Hocol, 1993; ESRI/ILEX, 1995; Niño, 2005; GEMS 

Ltda., 2014), in the form of vitrinite and amorphous matter and with minor proportions of liptinite and 

inertinite. This evidences an important input of higher land plants characteristic of a type III kerogen for these 

sequences. 

 

Text B2. Methodology for Detrital zircon U-Pb Geochronology and Hf Isotope Geochemistry 

 
Zircons were separated from cores and cuttings using standard gravimetric and magnetic techniques. Prior to 

crushing, all samples were soaked in a strong organic solvent and thoroughly rinsed with water in order to 

remove any external contamination to the cores and cuttings caused by residual drilling mud. In the case of 

cuttings, samples were sieved with a 1 mm mesh and only the larger and similarly-looking rock fragments 

retained by the mesh were processed for zircon separations to minimize potential contamination by cavings. 

Zircon crystals were randomly mounted in epoxy resin and polished to expose an internal surface prior to 

laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS) measurements. Alongside 

each sample, fragments of the Sri Lanka (SL2) natural zircon crystal (564 Ma; Gehrels et al. 2008) were 
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mounted for use as the U-Pb primary reference material, and fragments of Mud Tank (176Hf/177Hf= 0.282507; 

Woodhead and Hergt, 2005), FC-1 (176Hf/177Hf = 0.282183; Fisher et al., 2014) and R-33 (176Hf/177Hf = 

0.282764; Fisher et al., 2014) were used as reference material for Hf isotopic compositions.  

Analytical procedures for the U-Pb and Yb-Lu-Hf isotopic measurements followed the methods described in 

Cecil et al. (2011); all analyses were conducted in a Nu Plasma multicollector-ICP-MS instrument coupled 

to a Photon Machines Analyte-G2 laser ablation system using static collection mode at the Arizona 

LaserChron Center, University of Arizona. In brief, for U-Pb geochronology, isotopes 238U, 232Th, 208Pb, 207Pb 

and 206Pb were measured simultaneously in faraday collectors whereas 204(Pb+Hg) and 202Hg were measured 

in discrete-dynode ion-multipliers. Instrumental inter-element and isotopic fractionations affecting the 

measured 206Pb/238U and 207Pb/206Pb compositions were corrected by a standard-sample bracketing approach 

using the Sri Lanka reference crystal, which was measured once or twice every five unknowns, and 

normalizing all data with respect to its known ID-TIMS values (Gehrels et al. 2008). For Yb-Lu-Hf 

measurements, all masses from 171 to 180 were measured simultaneously on ten faraday cups equipped with 

3 x 1011 Ω resistors. Hafnium mass fractionation was corrected by normalizing the data using an exponential 

law relative to a 179Hf/177Hf value of 0.7325 (Patchett and Tatsumoto, 1981). Ytterbium mass fractionation 

was corrected using a 173Yb/171Yb value of 1.129197 (Vervoort et al. 2004) and a session-specific 176Yb/173Yb 

bias correction factor derived from the measurement of high-Yb natural and synthetic zircon crystals (see 

Ibanez-Mejia et al. 2015 for details). All 176Hf/177Hf compositions reported here are relative to a Mud Tank 

value of 0.282507 (see Fisher et al. 2014); this reference crystal was analyzed once or twice every ~15 

unknowns during our session. Additionally, the reference crystals FC-1 and R-33 were also analyzed in 

repeated occasions throughout the session to monitor the accuracy of the Hf mass-bias and Yb interference 

corrections. These crystals are particularly well suited for the latter, owing to their relatively high HREE 

concentrations with respect to other widely available reference zircons and the average composition of natural 

crystals. We obtained mean values of 0.282167 ± 58 (2 S.D., n= 56, MSWD= 1.5) and 0.282725 ± 62 (2 S.D., 

n= 78, MSWD= 0.7) for FC-1 and R-33, respectively, which are accurate with respect to their reference 

solution-MC-ICP-MS values within quoted uncertainties. 

 

 

Text B3. Construction of the cross-section (Figure 4.12) and depth map (Figure 4.13) of the 

subducted oceanic slab beneath NW South America  

 
For the analysis of the subduction configuration under the SJFB and LMV, we first plotted the seismicity data 

from the Colombian Geological Service in a cross-section, which is nearly parallel to the convergence vector 

of the Caribbean plate, as measured by Trenkamp et al. (2002) in the San Andrés Island (Figure 4.12). Based 

on our regional reflection seismic interpretations and using stacking processing velocities, we then 

constructed a depth map of the near top of the subducting oceanic plate that connects with the subduction 

megathrust under the SJFB and LMV (Figure 4.9). Finally, we mapped the near top of the intermediate-depth 

seismicity data associated to the Bucaramanga slab of Pennington (1981) and merged it with reflection 

seismic depth map of the shallowest and flattest slab, obtaining a good approximation to the geometry and 

depth of the subducted oceanic plate beneath northwestern Colombia (Figure 4.13).  It must be noted that the 

earthquakes were not relocated using standard seismological procedures; however, considering that the error 

is relatively small (<10km), our plots serve the purpose of showing the broad geometry and configuration of 

the subduction zone in NW Colombia. 

As seen in the cross-section (Figure 4.12), seismicity increases and deepens to the E and SE, towards the 

Perijá Ridge, where we have a well-defined area of intermediate-depth seismicity, which represents the along 

strike projection to the north of the Bucaramanga intermediate seismicity nest (Zarifi et al., 2007). We plotted 

in the cross-section the near top of the oceanic subducting plate as interpreted from seismic reflection data 

(thick black line) and assumed a crustal thickness of ~15km based on previous estimates (Bernal et al., 

2015a). We also plotted the near top of the intermediate-depth seismicity data (dashed black line) 

corresponding to the Bucaramanga slab of Pennington (1981), which was recently redefined by Syracuse et 

al. (2016) and called by them “Caribbean” segment. The deepest and steepest slab segment to the ESE is a 

projection of the slab imaged by Bezada et al. (2010) under the Mérida Andes, using P-wave tomography.  

According to the map and cross section, the oceanic plate appears to be subducted under San Jacinto and the 

Lower Magdalena at a very low angle, in agreement with recent studies in the area (Bernal et al., 2015a; 

Mora et al., 2017a). There is a good correlation of our shallow top of the subducted oceanic slab with the 

intermediate-depth seismicity data farther to the east, suggesting the existence of a bend in the slab, 

approximately coinciding with the Palestina Fault System at the surface (Figure 4.12 and Figure 4.13). East 

of this bend, intermediate-depth seismicity is imaging the Caribbean flat-slab of Syracuse et al. (2016). The 

depth map of the top of the subducted oceanic slab (Figure 4.13) also shows the notorious change in slab dip 
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between the flattest segment below the SJFB and LMV and the intermediate-depth segment below the 

northern Central and Eastern Cordilleras, the Perija Ridge and the Sierra de Santa Marta (SNSM). The 

interpretation of reflection seismic data from northernmost Colombia, including offshore areas, shows also 

that the subducted slab changes its strike direction from SSW-NNE to almost W-E and that change coincides 

with the trace of the Oca Fault (OF), which is the western segment of the Oca-San Sebastián-El Pilar right-

lateral wrench system.  

In WNW-ESE cross-section (Figure 4.12), the subducted Caribbean plate can thus be subdivided into three 

slab segments of different dip and separated by kinks or bends: a northwestern shallow and very flat slab 

segment, a central intermediate-depth and flat slab segment and a southeastern deep and very steep slab 

segment imaged by Bezada et al. (2010). However, available data is not enough to properly image the 

transition from the intermediate-depth to the steep deepest slab segments, which instead of a sharp kink could 

be a smoother and curved transition, as depicted in Figure 4.12. According to our interpretations in the cross-

section, the northwestern flat slab segment currently underneath the SJFB and LMV is dipping at 8.2° to the 

ESE and has a length of 278 to 308 km from the trench to the area of the Palestina Fault system, where it 

reaches depths between 45 and 50 km. The central flat slab segment (Caribbean slab of Syracuse et al., 2016), 

is dipping 25° to the ESE and has a length of 341 to 371 km until it reaches depths between 180 and 200 km 

below the Mérida Andes. The southeastern slab segment, projected from the image by Bezada et al. (2010), 

would be dipping to the SE at an angle of 79° and extending down for 401 to 431 km to reach depths of nearly 

600 km. Based on these measurements, the total length of the Caribbean subducted slab beneath northern 

Colombia and western Venezuela would range from 1020 to 1110 km. Van Benthem et al. (2013) measured 

around 900 km of the Caribbean slab length from their tomographic images, which is not very different from 

our value, though they lack the detail of the two shallow flat slab segments that we have. 
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Supplementary Figures for Chapter 4 (Mora et al., 2017b): 

 

 

 

 

 
 

Figure B 1. Regional cross-sections showing the configuration of the subducted Caribbean oceanic plate, as 
interpreted from reflection-seismic mapping for the shallow part and intermediate-depth seismicity for the deep 
part.  
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Figure B 2. These are the same two seismic lines presented as Figure 4.8a and b, without interpretation. 
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Figure B 3. This is the same seismic line presented as Figure 4.9, without interpretation. 

 

 
 
Figure B 4. These are the same two seismic lines presented as Figure 4.10a and b, without interpretation. Line 
orientations are not shown due to confidentiality reasons. 
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Figure B 5. These are the same three seismic lines presented as Figure 4.11a to c, without interpretation. 
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Appendix C 
 

Supplementary text and figures for Chapter 5:  

 

TextC1.  

 

Construction of the Tectono-stratigraphic framework in the LMV 

 
We interpreted in two-way-time (TWT) more than 25,000 km of 2D and more than 2000 km2 of 3D-

reflection-seismic data, all of which were tied to most of the 150 wells that have been drilled in the basin. In 

this study we have integrated previous interpretations and maps of the acoustic basement presented by Mora 

et al. (2017a), as well as those of pre-Oligocene stratigraphic sequences mostly preserved in the SJFB and 

studied by Mora et al. (2017b). We have based our interpretations in the biostratigraphic data and charts that 

Duque-Caro (1979, 1984, 1991, 2000, 2001, 2010, 2013, 2014) has constructed for the LMV and SJFB ( 

Figure 5.2), based on previous planktonic foraminiferal zonations (Petters and Sarmiento, 1956; Blow, 

1969).  

We interpreted in TWT the main sequences and unconformities in the LMV and adjacent areas using 

Schlumberger’s Petrel seismic interpretation package, provided by Hocol S.A. These horizons were mapped 

in TWT and depth-converted using all the well data to create pseudo-velocity maps of all the basin. Seismic-

stratigraphic analyses were carried out in order to define stratal stacking patterns, terminations and contacts 

(Catuneanu et al., 2009). Well data (electrical logs, cores and reports) was also incorporated to the seismic-

stratigraphic analysis in order to define depositional environments and facies and to characterize each 

seismic-stratigraphic sequence in more detail. 

 

Subsidence history and extension in the LMV 

 
For the geohistory and subsidence analyses (Allen and Allen, 2005) we used data from 32 representative wells 

located in different parts of the basin, including the San Jacinto fold belt. After compilation of stratigraphic 

tops and thicknesses and plotting the observed (uncorrected) subsidence for each well, we integrated porosity 

data from the wells to estimate decompacted depths and assumed depositional water depths for each unit, 

based on biostratigraphy and facies analyses of electrical logs, cores and cuttings. To calculate the tectonic 

subsidence we integrated density data from the wells and other sources.  

We constructed a regional, NNE-SSW-trending, structural cross-section along the LMV, perpendicular to the 

main structural fabric, in order to calculate the amount of extension that the basin has experienced and for 

comparison with our calculations of extension from the basin subsidence analyses. The 338 km-long section 

was constructed in the Petrel software, using our 2D-seismic database and it was then exported to the Move 

software (Midland Valley) provided by Hocol S.A. and by the GFZ. The cross-section was depth-converted 

using velocity data from drill holes and the interpretation of the main sequences was performed in depth. 

With the interpreted depth-converted section, we calculated the extension using the simple line-length tools 

available in the Move software.     

The tectono-stratigraphic framework and the subsidence and extension results presented here were the basis 

for building multidimensional basin and petroleum system models in the LMV and San Jacinto, which were 

built using Schlumberger’s PetroMod software, version 2011, provided by the GFZ Postdam. Figure C 1 

shows two burial history charts extracted from the 3-D model of the LMV, at the locations of two 

representative wells, one in the northern LMV (Plato depocenter) and one in the southern LMV (San Jorge 

depocenter). The main subsidence and uplift/shortening episodes are shown in both locations and are 

discussed in the text.   

  

Detailed description of Oligocene to Recent tectono-stratigraphic sequences in the Lower 

Magdalena Valley basin 

 

Sequence 5 (Upper Oligocene to lowermost Miocene) 

 
Age: Based on studies of planktonic foraminifera in wells and outcrops, this sequence has been associated to 

the planktonic zones P.20 to N.6 (M.3), equivalent to an Early Oligocene to Earliest Miocene age. However, 

recent analyses in the south-western LMV (Planeta Rica-Montería road) suggest that the basal deposits of 
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this sequence can also be of (upper?) Eocene age. Given that it spans for more than 10 Ma, it can be classified 

as a 2nd-order cycle (Vail et al., 1977), which would correspond to a high rank/low frequency cycle in the 

hierarchy pyramid of Catuneanu et al. (2009).  

Contacts: In most of the LMV, the lower contact of the sequence is an unconformity with the crystalline 

basement, except for the eastern part of the basin, close to the limit with the San Jacinto fold belt, where it is 

unconformably overlying pre-Oligocene sedimentary sequences (3 and 4, Mora et al. 2017b). 

Biostratigraphic data from outcrops and drillholes (Duque-Caro, 2000, 2001, 2010, 2012) shows that the 

upper part of the sequence of Earliest Miocene age (foraminiferal zones N.4/M.1 to N.6/M.3, spanning from 

24 to 17 Ma) has been locally eroded, indicating the existence of a regional Early Miocene unconformity 

which marks the upper limit of this sequence.  

Structural and thickness maps: Integration of outcrop data with detailed reflection-seismic mapping of the 

Ciénaga de Oro sequence shows that it was deposited throughout the whole San Jacinto fold belt, where it 

appears to be thicker, and it retrograded to the E and SE, as it gradually filled the pre-existing paleo-

topographic basement lows. Seismic data shows that the Oligocene to Lower Miocene deposits gradually 

filled the proto-San Jorge and Plato depocenters from the W and NW and that the main structural basement 

features, such as the Sucre, Mojana and Pivijay faults, were actively extending. The El Dificil, Apure and the 

southeastern Magangué-Cicuco highs were positive relief features on top of which the lower part of the 

sequence (planktonic zones P.20 to P.22) was not deposited, but where small thicknesses of the upper part of 

the sequence could have been deposited. Seismic and well data show that the top of the sequence is found at 

more than 3.5 km in the San Jorge depocenter and at more than 5 km in the deepest Plato depocenter. The 

sequence exhibits the highest thicknesses in the western part of the LMV, towards the San Jacinto fold belt, 

where more than 1.5 km would be preserved in local depocenters. This is in agreement with the outcrop 

measurements which report highest thicknesses (>1 km) in the Alférez and San Jacinto sections in the eastern 

San Jacinto fold belt (Guzman et al., 2004; Guzman, 2007). These thickness trends indicate that the Oligocene 

to Earliest Miocene basin was deeper to the NW and shallower to the SE.  

Sequence description: While the upper part of Sequence 5 is not very well preserved due to erosion after the 

Early Miocene unconformity, the lower part of the sequence is better preserved and displays an onlap pattern 

to the SE (Figure 5.6 and Figure 5.7). Therefore, the lower part is interpreted as a retrogradational, 

transgressive package which records the advanced of marine sedimentation from NW to SE, filling initially 

the lowest areas of the basement paleo-topography. Outcrop and well data (electric logs and cores) show that 

this sequence displays a fining and deepening-upward pattern (Figure 5.4). In the northwestern Magangué-

Cicuco high, the lower part of the sequence displays calcareous sandy facies of Upper Oligocene age, which 

grade to Lower Miocene mudstones. Core analyses of the basal part of the sequence in the northwestern 

Magangué-Cicuco high (Salazar, 1993; Cross, 2014) show that it consists of highly bioturbated (Cruziana 

ichnofacies), sub-litharenites and subarkoses which were deposited in shallow marine, estuarine 

environments that show more proximal facies to the SE. This is in agreement with the seismic pattern, which 

shows a clear onlap of the basal strata to the SE, against the crystalline basement (Figure 5.7). Sandy, 

shallow-marine facies are present in the southern, southeastern and eastern LMV, close to the paleo-highs, 

while mudstone deeper-marine facies are more common towards the San Jacinto fold-belt in the W and NW. 

In the northern part of the belt (Barranquilla area), several wells have drilled a 600 m-thick mudstone Upper 

Oligocene succession which indicates distal marine-shelf depositional environments in that area. In the San 

Jorge depocenter, one well has drilled and sampled the Lower Ciénaga de Oro sequence, which comprises 

lithic sandstones and mudstones deposited in a shallow-marine environment. In the easternmost part of the 

Plato depocenter, close to the Santa Marta-Bucaramanga fault zone, the Lower Ciénaga de Oro comprises a 

relatively thick, mostly sandy succession of continental to transitional origin, which has not been drilled by 

any well. Seismic images do not provide a clear image of the basement in this area, where it should be found 

at very high depths, below the thick Upper Oligocene and possibly older succession. 

Though the low-frequency global eustatic curve of Haq et al. (1987,  

Figure 5.2) shows a descending sea-level from Early Oligocene to Early Miocene times, the higher-

frequency curves suggest a rising-sea-level trend. Well data shows that most of the sedimentary facies are 

clastic, except for the Pijiño and Pivijay areas where Oligocene carbonates were described. Based on well 

and seismic data, we interpret that a maximum-flooding event occurred in Earliest Miocene times, related to 

deposition of mudstones of the N.4 to N.5 foraminiferal zones. The stratigraphic location of the maximum 

flooding surface can be seen in some wells in the western Magangué-Cicuco high (Figure 5.4), and allows 

subdividing the sequence into systems tracts (Brown and Fisher, 1977; Catuneanu et al., 2009). The 

retrogradational deposits of the lower part of the sequence would be the transgressive systems tract while the 

locally-preserved aggradational deposits of the upper part of the sequence would be the highstand systems 
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tract. This sequence corresponds in outcrops to the Carmen Formation (Duque-Caro, 1979; Guzman et al., 

2004; Guzman, 2007).   

Petrography: Thin-section analyses show that sandy facies of Sequence 5 consist of subarkoses and 

sublitharenites with calcareous cement, lithics of volcanic, sedimentary (mostly cherts), metamorphic and 

igneous plutonic rocks (ICP, 1998; Chacon et al., 2001; ANH/U. Caldas, 2009, ICP, 2010). While the lower 

layers appear to be more lithic than the upper ones, the plagioclase content is higher than the K-feldspar 

content. Heavy minerals are pyroxene, epidote, tourmaline and zircon (ICP, 2000). These rocks were 

deposited initially in shallow marine environments with relatively high terrestrial supply (Lower Ciénaga de 

Oro), which gradually changed to deeper marine and more anoxic environments (Upper Ciénaga de Oro, 

Salazar, 1993; ICP, 2000; Guzman, 2007).  

 

Sequence 6 (Lower to Middle Miocene) 

 
Age: Biostratigraphic analyses from numerous wells (Duque-Caro, 2000, 2001, 2010, 2012) indicates that 

the age of Sequence 6, is lower to middle Miocene (Burdigalian to Serravalian, zones N.7/M.4 to N.11/M.8). 

Considering that it spans for less than 10 Ma, it can be classified as a 3rd-order cycle (Vail et al., 1977), which 

would correspond to a medium rank/medium frequency cycle in the hierarchy pyramid of Catuneanu et al. 

(2009). Well and seismic data show that within this sequence there are two higher order cycles, a lower, latest 

early Miocene cycle corresponding to the N.7/M.4 planktonic foraminiferal zone and an upper, earliest middle 

Miocene cycle, corresponding to the N.8/M.5 to N.11/M.8 planktonic foram zones. 

Contacts: Both outcrop and subsurface data indicate that most of the Upper Ciénaga de Oro sequence has 

been eroded (absence of foraminiferal zones N.4/M.1 to N.6/M.3), evidencing the existence of an Earliest 

Miocene regional unconformity.  Therefore, this Earliest Miocene unconformity is the lower contact of this 

sequence. Biostratigraphic data also show a regional absence of the N.11 and N.12 plaktonic foram zones 

(M.8 and M.9), which has been related to a Middle Miocene unconformity that marks the upper contact of 

this sequence.   

Structural and thickness maps: Deposition of this sequence extends farther to the E and SE and begins with 

retrogradational shallow marine clastics and carbonates which then change to progradational deltaic deposits 

(Figure 5.9). The main two extensional fault families which were actively extending since Late Oligocene 

times continued to be active but gradually decreased their activity through time. Concerning the lower cycle 

of the sequence (equivalent to the N.7/M.4 planktonic foram zone), the influence of a pre-existing basement 

paleo-topography is seen in the thickness maps which show that there was either non-deposition in the 

paleohighs or that they were covered by shallow water carbonates such as Cicuco, El Difícil and Apure. The 

upper cycle (N.8/M.5 to N.11/M.8 planktonic foram zones), displays more clastic facies which exhibit 

pronounced progradational seismic facies and stacking patterns in wells. Our thickness maps data show that 

average thickness of the sequence is 400-600 m (1200-2000 ft) and that it is thickest in the eastern Plato 

depocenter where more than 4 km (>12000 ft) of Lower to Middle Miocene deposits are preserved. Several 

wells (e.g. Arjona, Astrea, Tierrafirme) have drilled this sequence finding mainly transitional to continental 

sandstones which appear to have been mostly sourced from the Cesar-Ranchería basin in the NE.  

Sequence description: The lower cycle of the sequence, of latest Early Miocene age (planktonic zone 

N.7/M.4) continued filling the paleo-topography with clastic deposits in the low areas (San Jorge and Plato 

depocenters) and carbonate development in the paleo-highs such as the eastern Magangué-Cicuco, El Difícil 

and Apure highs (Figure 5.9 to Figure 5.11). These deposits are clearly onlapping the basement towards the 

E, SE and S in the southern LMV, where they have been studied in electrical logs and cores and are interpreted 

as shallow-marine retrogradational deposits of the transgressive systems tract of this sequence. The 

transgressive systems tract is not very thick and is limited at the top by a maximum-flooding surface which 

marks the onset of high-stand progradation.  

North of the Magangué-Cicuco high, the Lower to Middle Miocene sequence is thicker because it has been 

better preserved from Late Miocene to Recent erosional episodes. In the eastern Plato depocenter, the lower 

Miocene continental to transitional strata of the lower cycle of Sequence 6 has been considerably eroded by 

progradational marine clastics of the upper cycle, which were deposited in a steep slope and which comprise 

deep-water clastic deposits (mud to gravel-rich deposits, Richards, 2001). Such erosion formed an impressive 

submarine canyon which has been related to the proto-Magdalena drainage (ICP, 2000; Bernal et al., 2015c). 

Formation of the Algarrobo-Ariguaní pull-apart basin probably started in early Miocene times or possibly 

earlier, as suggested by seismic data. This sequence correlates with the Alférez Formation (Duque-Caro et 

al., 1996; Guzman, 2007) and with the Lower Porquero Formation described in outcrops of the eastern San 

Jacinto fold belt. The lower part of this sequence which contains carbonates and sandstones, also receives the 

operational name of “Upper Ciénaga de Oro”. 

Petrography: The clastic Lower to Middle Miocene facies consist of fine-grained sublitharenites. In the 

southern Sinú fold-belt (Floresanto-1 well, ICP. 2009), a fine-grained, coarsening-upwards succession of 
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litharenites, feldspathic litharenites and lithic arcoses with sedimentary (mudstones towards the base and 

cherts towards the top), igneous (volcanic and plutonic) and few metamorphic rock fragments is reported. 

Interpreted depositional environments are upper bathyal to outer neritic (Duque-Caro, 2000). The carbonate 

facies in the paleohighs comprise bioclastic and red algae wackestones and packstones in the El Dificil area 

(Ortiz, 1995) and reef limestones with multiple transported fossils in the Apure high (Chacon and 

Martinez,1994). 

 

Sequences 7 and 8 (Middle to Upper Miocene-Middle and Upper Porquero) 
 

Sequences 7 and 8 have been related to the N.12/M.9 to N.16/M.13 planktonic zones which correspond to a 

Middle to Upper Miocene age (Serravallian-Tortonian, Duque-Caro, 2000, 2001, 2010, 2012). Both 

sequences span for less than 10 Ma, so they can be classified as 3rd-order cycles (Vail et al., 1977), 

corresponding to medium rank/medium frequency cycles in the hierarchy pyramid of Catuneanu et al. (2009). 

While the lower contact of this succession is the Middle Miocene unconformity (absence of zones N.11/M.8-

N.12/M.9), the upper contact is a regional Late Miocene unconformity which has been widely reported in 

outcrop and subsurface studies (Duque-Caro, 1979; Hocol, 1993; Guzman, 2007). The sequences exhibit 

mainly fine-grained facies with progradational stacking patterns, which are best preserved in the depocenters 

where erosion was less intense. According to ICP (2000), while the lower part of Sequence 5 contains more 

igneous plutonic and sedimentary lithics, the proportion of volcanic rock fragments such as rhyolites, trakites 

and andesites, increases in younger sequences (6 to 9). 

 

Sequence 9 (Upper Miocene to Lower Pliocene-Tubará) 

 
Age: This sequence contains planktonic forams of the N.17/M.14 to Pl.2 zones (Duque-Caro, 2000; 2001, 

2010, 2012) which are indicative of an Upper Miocene to Lower Pliocene age (Tortonian to Zanclean). It also 

corresponds to a 3rd-order cycle of Vail et al. (1977) and to a medium/rank/medium frequency cycle of 

Catuneanu et al. (2009), given that it spans for less than 10 Ma. 

Contacts: Both contacts of this sequence are major regional unconformities which are closely related to uplift 

pulses in the eastern Colombian Andes, as will be discussed farther on, and which have been identified in 

outcrop, well and seismic data (Duque-Caro,1979; Hocol, 1993; ICP, 2000; Guzman, 2007). The lower 

contact corresponds to the Late Miocene unconformity (N.17/M.14 planktonic zone) while the upper contact 

corresponds to the Middle Pliocene unconformity (Pl.2-Pl.3 zones, Duque-Caro, 1984).  

Structural and thickness maps: Seismic and well data show that this sequence has been partially eroded in 

the southern LMV, south of the Magangué-Cicuco high, by a Middle Pliocene tectonic episode. Therefore, it 

is best preserved to the north of the Magangué-Cicuco high, especially along the Plato depocenter, where it 

displays thicknesses of more than 2 km (Figure 5.8 and Figure 5.10). However, Pleistocene to Recent uplift 

in the easternmost Plato depocenter, towards the Santa Marta-Bucaramanga fault, caused the erosion of a 

great portion of the sequence. 

Sequence Description: The Upper Miocene to Lower Pliocene sequence represents the increased progradation 

to the NNW of continental to shallow-marine deposits along the shelf, until they reached the present-day 

coastline in latest Miocene to early Pliocene times (Figure 5.8). Thick Upper Miocene to Lower Pliocene 

deposits are also preserved in present-day offshore areas, recording the shifting of the Magdalena River delta 

(Romero-Otero et al., 2015). Reflection-seismic data shows that this sequence is composed of low-angle (0.3-

0.6°) and wide (100-200 km) sigmoidal clinoforms which advanced from SSE to NNW, representing the 

advance of the paleo-Magdalena river. Vertical thicknesses of the Tubará clinoforms are in the order of 

thousands of meters, and they prograde at rates of 8 to 16km/Ma, two features which are characteristic of 

shelf-margin clinoforms (Steel et al., 2008). In such cases, the clinoforms grow into bathyal depths, 

suggesting that bathyal facies should be predominant in the NNW. By contrast, the upper parts of the slope 

and the topsets located towards the SSE would be dominated by continental to shallow-marine shelf deposits 

(Figure 5.10). Despite of the fact that not very much wells have been drilled along the Tubará clinoforms, 

available well data shows that the Tubará topsets in the SSE exhibit sandy fluvial to deltaic sandstones with 

coal interbeddings, while muddy deeper-water facies are dominant to the NNW. The clinoform shelf-edge 

trajectories are initially flat and then appear to be slightly rising (youngest clinoforms to the NNW), indicating 

low topset accumulation, which is best achieved during intervals of stillstand or falling relative sea level 

(Steel et al., 2008).   

Petrography: Sandy fluvio-deltaic facies which are more abundant in the clinoform topsets have been 

described as fine to coarse-grained sandstones in wells of the Plato depocenter. Petrography analyses show 

that compositionally they are lithic arkoses and feldspathic litharenites with high contents of volcanic rock 

fragments and subordinate metamorphic and plutonic rock fragments (ICP, 2000). Plagioclase is more 
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abundant than potassium feldspar, while there is a high content of hornblende. Clinoform topset deposits 

contain abundant coaly and plant remains indicating high supply from vegetated land areas.    

    

Sequence 10 (Upper Pliocene to Pleistocene - Corpa) 

 
Age: Considering that the deposits of this sequence have been ascribed to continental environments, there are 

very few studies aiming to properly describe and date the sequence. Taking into account the stratigraphic 

contacts above the Tubará Late Miocene to Early Pliocene sequence, and below the Quaternary (Late 

Pleistocene to Recent) deposits, we infer here a Late Pliocene to Early Pleistocene age for this sequence, 

spanning from 3 to 1.3 Ma (3rd order cycle). However, we recommend detailed palynological studies in order 

to properly date this sequence.   

Contacts: The lower contact above Sequence 9 (Tubará) is an angular unconformity very clearly seen in 

reflection-seismic data in the Magangué-Cicuco high and southern LMV (Figure 5.6). The upper contact is 

also unconformable below Late Pleistocene to Recent deposits preserved in the main, present-day depocenters 

of the LMV. 

Structural and Thickness maps: We divided the Corpa Sequence into two seismic packages which were 

mapped and are shown in Figure 5.11. The lower package, which we assign to the Late Pliocene, is preserved 

as a SSW-NNE-trending elliptic depocenter, located south and SW of the Magangué-Cicuco high. The 

structural map of the top of this lower Corpa package shows that it is more deeply buried to the NW of the 

San Jorge graben, where it lies at depths in excess of 3 km. However, the thickness map of this package shows 

that the thickest deposits occur farther south, to the SW of the San Jorge graben where it reaches a thickness 

of 2 km. The upper Corpa package, which we assign to the Early Pliocene, is forming a round depocenter 

with its deepest part also located to the NW of the San Jorge graben (Figure 5.11). The deepest part of the top 

of this package is found at a depth of 2.5 km. The thickness map of this package shows that the area where 

the thickest deposits are preserved (maximum thickness of 2.5 km), coincides with the structurally deepest 

area.  

Sequence Description: The expression of the Corpa Sequence in reflection-seismic data consists of low-angle 

clinoforms broadly prograding from South to North, which appear to represent the deposits of the paleo-

Cauca drainage system, including fluvial channels, lakes and swamps (Figure 5.11). In seismic images, the 

lower Corpa package exhibits an increased Late Pliocene progradation to the north of mostly fluvial deposits, 

which have been described in drill holes as conglomerates and coarse-grained sandstones which grade 

upwards to floodplain mudstones. The upper Corpa has been described in exploratory wells as a 

predominantly muddy succession with minor sandy and conglomeratic beds, representing lacustrine and 

swampy sedimentation which was preserved in a circular-shaped sag-basin located to the NW of the San 

Jorge graben (Figure 5.11). This sequence is not preserved to the north of the Magangué-Cicuco high, due to 

erosion/non-deposition. However, it correlates in age with the Popa limestones preserved in the northwestern 

SJFB.  

The internal seismic-stratigraphic architecture of the Corpa Sequence reveals the time when the SJFB started 

to be uplifted, which appears to be close to the boundary between the Pliocene and Pleistocene. Upper 

Pliocene seismic reflectors of the lower part of the Corpa Sequence exhibit a divergent pattern towards the 

W, indicating that the lower Corpa deposits thicken towards the W where there was more accommodation 

space. By contrast, the upper Corpa seismic reflectors show an onlapping pattern to the W, indicating that the 

SJFB started to behave as a positive feature in Early Pliocene times (section 3, Figure 5.6).  

Petrography: There are only outcrop samples available from the Corpa and equivalent units corresponding 

to Sequence 10 and they exhibit compositional variations according to location. Sandstones were classified 

as lithic arkoses, feldspathic litharenites and litharenites.   
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Supplementary Figures for Chapter 5: 

 

 
 
Figure C 1. Burial history charts for representative wells in the LMV, showing the main subsidence and shortening 
(uplift and erosion) episodes. The charts were extracted from well locations in a 3-D model of the LMV, constructed 
using the Schlumberger’s PetroMod software (v. 2011). a. Granate-1 well, located in the Plato depocenter of the 
northern LMV. b. La Esmeralda-1 well, located in the San Jorge depocenter of the southern LMV. 
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Figure C 2. a. Digital elevation model of the study area, showing the main morphological features. While the San 
Jorge depocenter continues subsiding, the Plato depocenter became a positive area possibly in Pleistocene times. 
b. Contours showing the location of the depocenters of each of the studied sequences, based on the isopach maps 
and illustrating the depocenter migration with time; see text for further explanation.  

 
 
Figure C 3. Basement fault families in the LMV, defined by Mora et al. (2017a), and the main stresses according to 
the plate displacement vector of the Caribbean relative to a fixed South America. NE-SE-trending compression and 
slight inversion of normal faults that occurred after late Miocene times, would be related to northern Andes 
“escape” or to collision stages of the Chocó-Panamá block. See text for further explanation.
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Appendix D 
 

 

Supplementary figures for Chapter 6: 

 

 

 

 
 
Figure D 1. a). Bottom hole temperatures (BHT) from wells in the study area plotted versus depth; a 10% 
correction accounting for cooling due to the drilling mud was applied. The best-fit line was set to intersect with 
the x-axis at the assumed present-day average surface temperature (30°C). The slope of the line corresponds to 
the average current geothermal gradient in NW Colombia (19.6°C/km). b). Plot of all the available vitrinite 
reflectance data (Ro) in the LMV and SJFB against depth. Circles are wells in the LMV while triangles are wells in 
the SJFB. Most of the vitrinite reflectance data is below 0.6% (immature), whereas only samples from the central 
Plato depocenter in the northern LMV and from the northern SJFB are early to mid-mature.  

 

      

 
 
Figure D 2. Different heat flow scenarios that were implemented and tested in the 3-D model. a) Low heat flow, 
obtained by using a thermal conductivity of 1.2 Wm-1 K-1. b). Mean heat flow, obtained by using a thermal 
conductivity of 2 Wm-1 K-1. c) High heat flow, obtained after using a thermal conductivity of 2.8 Wm-1 K-1.
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Zusammenfassung 
 

In dieser Arbeit verwende Ich einen regionalgeologischen und geophysikalischen Datensatz um die 

Entwicklung des Unteren Magdalena Talbeckens und des San Jacinto Faltengürtels im Nordwesten 

Kolumbiens von der frühen Kreide bis heute zu rekonstruieren. Meine detaillierte Interpretation 

von Reflexionsseismik und neuen geochronologischen Analysen zeigen, dass das untere Magdalena 

Becken die nördliche Verlängerung der Grundgebirgs Terrane der nördlichen Zentral Kordilleren 

ist. Diese bestehen aus permo-triassischen Metasedimenten welche von spätkreidezeitlichen 

Granitoiden intrudiert wurden. Die Analyse der Strukturen suggeriert, dass der NO-SW Trend der 

Störungen im Grundgestein im Unteren Magdalena Becken von einer jurazeitlichen Grabenbildung 

stammt, während der OSO-WNW Trend während eines spätkreidezeitlichen bis eozänem 

Blattverschiebungs- und Grabenbildungsphase entstand. Die Sedimente des San Jacinto 

Faltengürtes aus der der Oberkreide bis zum Untereozän, wurden im sich durch die schiefe 

Konvergenz der Karibischen und Südamerikanischen Platte bildenden marinen Forearc-Becken 

abgelagert. Es wird angenommen, das eine unter- bis mitteleozäne Winkeldiskordanz oberhalb der 

San Cayetano Sequenz, das Ende der Störungsaktivität im Romeral Störungssystem und der 

Rückgang der vulkanischen Aktivität, den Beginn der flachen Subduktion des Karibischen Plateaus 

unter die Südamerikanische Platte darstellt, welche vor 56 bis 43 Ma stattfand. Die flache 

Subduktion dauert bis heute an und ist die Hauptursache für magmatische post-eozäne 

Ablagerungen und die Bildung des unteren Magdalena Talbeckens. Nach dem Kollaps eines pre-

oligozänen magmatischen Bogens, spätoligozäne bis frühmiozäne störungskontrollierte Subsidenz 

erlaubte die ursprüngliche Verfüllung des unteren Magdalena bei niedriger Sedimentationsrate. 

Oligozäne bis frühmiozäne Anhebung der Anden Terrane machten eine Verbindung des unteren 

und mittleeren Magdalena Beckens möglich und führte somit zur Bildung des wichtigsten 

kolumbianischen Entwässerungssystems, dem Magdalena-Fluss-System. Dieses Flusssystem 

lieferte enorme Mengen Sediment im mittleren Miozän, während die Störungsaktivität nachließ und 

schrittweise durch eine setzungskontrollierte Absenkung ersetzt wurde, welche durch die große 

sedimentäre Auflast verstärkt wurde. Der dramatische Anstieg der Sedimentmenge führte zu einem 

hohen Sedimenteintrag im Graben und daher zur Bildung von forearc Erhebungen in San Jacinto 

und eines Akkretionskeils im weiter entfernten Westen. Diese Ergebnisse zeigen die fundamentalen 

Auswirkungen Veränderungen in Plattenkinematik und Sedimentfluss, auf Forearc-Becken, wie 

z.B. des unteren Magdalena und San Jacinto, haben. 

Meine Ergebnisse und Interpretationen zur Bildung, die zeitliche Entwicklung von der Kreide bis 

heute, der tektonostratigraphische Aufbau und die Sedimentfüllung des unteren Magdalena 

Beckens und des San Jacinto Faltengürtels, sind Eingangsparameter für die multidimensionale 

Becken- und Erdöl-System Modellierung welche ich durchgeführt habe. Ein dreidimensionales 

Modell des unteren Magdalena Beckens wurde aus Seismikdaten und Bohrungsdaten erstellt, und 

zur Rekonstruktion der thermischen und Maturitätsentwicklung des Beckens verwendet. Ich habe 

die stratigrafische Architektur des Beckens rekonstruiert, die verschiedenen Hebungs- und 

Erosionsphasen implementiert und eine geothermische Gradientenkarte erstellt, welche zur 

Generierung von Wärmeflusskarten in 3D benötigt wurden. Die Ergebnisse der Modellierung 

deuten darauf hin, dass die Bildung von Erdöl vor ca. 15 Ma (Mittelmiozän) innerhalb 

oberoligozäner Schichten im nördlichen Teils des Beckens (Plato-Depocenter) begann, während 

die Bildung von Kohlenwasserstoffen aus untermiozänen Ursprungsgesteine vor etwa 9 Ma (Mittel-

Spätmiozän) begann. Die Maturität wurde durch die schnelle und reichliche Sedimentation von 

tiefmarinen und deltaischen Sedimenten des Oligozäns und Untermiozäns beeinflusst. Die Bildung 

aus spätmiozänen Schichten wurde durch episodische Verkürzung und Anhebung während des 

Pliozän (4-3 Ma) und Pleistozän unterbrochen, obwohl im zentralen Ablagerungsraum die 

Maturation fortgesetzt wurde. Eine schlechte bis mittelmäßige Qualität der Ursprungsgesteine, wird 
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scheinbar durch die große Schichtdicke der oligozänen bis untermiozänen Gesteine kompensiert, 

welche immer noch Kohlenwasserstoffe unterhalb von 3350 m (11000 ft) generieren, vor allem im 

Zentralbereich der bisherigen Aktivität im nördlichen Teil des unteren Magdalena (Plato-

Depocenter). Im Gegensatz dazu, wurde die Maturation in oligozänen und frühmiozänen 

Ursprungsgesteinen durch die Verkürzungsphasen und einen niedrigen thermischen Gradienten 

verhindert. Daher werden weitere mögliche Kohlenwasserstoffquellen benötigt, welche das 

Vorkommen von Dry-Gas in diesem Teil des Beckens erklären. Als mögliche Quellen kommen 

pre-oligozäne Einheiten, welche im westlichen San Jacinto Depocenter vorliegen, oder Biogenese 

in Frage. Vorläufige 1D und 2D Modellierung im San Jacinto Faltengürtel, kalibriert mit 

thermischen Maturitätsdaten, unterstützt die vermutete Beckenentwicklung welche zeigt, dass der 

San Jacinto als Forearc-Anhöhe agierte und nicht in großer Tiefe lag. Die Ergebnisse aus dieser 

Arbeit geben neue Einblicke in die Auswirkungen von Plattentektonik und Beckenentwicklung auf 

Kohlenwasserstoff-Systeme. 
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