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Abstract

In vertebrate species, the main mechanisms of defence against various types of
pathogens are divided into the innate and the adaptive immune system. While the for-
mer relies on generic mechanisms, for example to detect the presence of bacterial cells,
the latter features mechanisms that allow the individual to acquire defenses against
specific, potentially novel features of pathogens and to maintain them throughout
life. In a simplified sense, the adaptive immune system continuously generates new
defenses against all kinds of structures randomly, carefully selecting them not to be
reactive against the hosts own cells.
The underlying generative mechanism is a unique somatic recombination process

modifying the genes encoding the proteins responsible for the recognition of such
foreign structures, the so-called antigen receptors. With the advances of high throughput
DNA sequencing, we have gained the ability to capture the repertoire of different
antigen receptor genes that an individual has acquired by selectively sequencing the
recombined loci from a cell sample. This enables us to examine and explore the
development and behaviour of the adaptive immune system in a new way, with a
variety of potential medical applications.

The main focus of this thesis is on two computational problems related to immune
repertoire sequencing. Firstly, we developed a method to properly annotate the raw
sequencing data that is generated in such experiments, taking into account various
sources of biases and errors that either generally occur in the context of DNA sequenc-
ing or are specific for immune repertoire sequencing experiments. We will describe the
algorithmic details of this method and then demonstrate its superiority in comparison
with previously published methods on various datasets.

Secondly, we developed a machine learning based workflow to interpret this data in
the sense that we attempted to classify such recombined genes functionally using a
previously trained model. We implemented alternative models within this workflow,
which we will first describe formally and then assess their performances on real data
in the context of a binary functional feature in T cells, namely whether they have
differentiated into cytotoxic or helper T cells.
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Preface

In this thesis, I will describe my work in the context of immune repertoire sequencing,
which ranged from the proper annotation of the early raw data to the interpretation
and application of Rep-Seq data. The thesis is divided into three parts.
In the first part, comprising three chapters, I will give an introduction to genetical,

biotechnological and immunological concepts that are relevant in the context of this
thesis. Most importantly, it will be defined what immune repertoire sequencing is and
what kind of data is generated in this type of experiment. Furthermore, I will introduce
notations and algorithms used in the subsequent chapters.
The second part, Clonotyping, comprises two chapters about a method I developed

to properly annotate the raw sequence data that is generated in repertoire sequencing
experiments. This work was published in

Leon Kuchenbecker, Mikalai Nienen, Jochen Hecht, Avidan U. Neumann,
Nina Babel, Knut Reinert, and Peter N. Robinson
IMSEQ — A fast and error aware approach to immunogenetic sequence
analysis
Bioinformatics, 31(18):2963–2971, 2015.
doi: 10.1093/bioinformatics/btv309

and is described formally in the first chapter of the second part, followed by a chapter
where the method is benchmarked and compared to other competing approaches. The
benchmarks shown in this thesis have been extended in comparison to the evaluations
shown in the aforementioned publication. They have furthermore been complemented
by comparisons to a newer competing method that was published more recently.
In the third part of this thesis, Applications, I will cover the interpretation of the

annotated repertoire sequencing data as previously obtained. The applications are
divided into two general types, clonotype identity based applications and applications
that aim to functionally characterize cells based on the clonotype information. This
terminology will be defined in the corresponding chapters. The first described appli-
cation is work conducted by our collaboration partners, which I supported with my
research on clonotype annotation and quality control. It describes a potential clinical
application for immune repertoire sequencing in the context of renal transplantation
and was published in
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Mikalai Dziubianau, Jochen Hecht, Leon Kuchenbecker, Arne Sattler,
Ulrik Stervbo, Christian Rödelsperger, Peter Nickel, Avidan U. Neumann,
Peter N. Robinson, Stefan Mundlos, Hans-Dieter Volk, Andreas Thiel,
Petra Reinke, and Nina Babel.
TCR Repertoire Analysis by Next Generation Sequencing Allows Complex
Differential Diagnosis of T Cell-Related Pathology
American Journal of Transplantation, 13(11):2842–2854, 2013.
doi: 10.1111/ajt.12431

The chapter continues with an overview of other immune repertoire sequencing ap-
plications from literature and concludes with a method aiming to classify cells from
the sequenced sample on a functional level. For this purpose, I developed a workflow
based on machine learning, more precisely Support Vector Machines. A number of
alternative models are described and their classification performance comparatively
evaluated. This work was not previously published.
In the last chapter of this thesis, I will then conclude with a short overview over

current challenges in the context of immune repertoire sequencing and an outlook
comprising latest developments that will potentially impact this field of research.

In accordance with the standard scientific protocol, throughout this thesis I will
use the personal pronoun we to indicate the reader and the writer, or my scientific
collaborators and myself.
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1. Genetics and Biotechnology

In this chapter, we will briefly introduce the biological and biotechnological background
of the methods discussed in the subsequent chapters. This comprises primarily basic
genetic principles and, building on that, the two biotechnological methods that are
most important in the context of this thesis: DNA amplification based on PCR and
DNA Sequencing. Since an in-depth coverage of these subjects is out of the scope of
this thesis, the interested reader is referred to standard literature such as “Lewin’s
Genes” by Krebs et al. [1].

1.1. Genetic Principles

The hereditary information of life forms as we know them is encoded in their genome,
a set of deoxyribonucleic acid (DNA) and molecules contained in every nucleated cell
of an organism. In this section, we will outline the terminology and basics of DNA,
protein biosynthesis and genetic variation as it will be discussed in the context of this
thesis.

1.1.1. DNA

A DNA molecule is a large polymer chain composed of monomers referred to as
nucleotides, which are composed of three subunits: a sugar (deoxyribose), a phosphate
group and a nitrogenous base. The latter can be either adenine (A), cytosine (C), guanine
(G) or thymine (T). DNA mostly occurs as two paired chains, referred to as strands,
bound through hydrogen bonds at the bases: each adenine is paired with a thymine
and each cytosine is paired with a guanine, and vice versa. The paired molecule forms
a coiled helix structure with the sugar-phosphate backbone pointing outwards and
the base pairs (bp) pointing inwards. A DNA strand is directional, the two ends of the
strand are referred to as the 3’ end and the 5’ end, corresponding to the carbon atom
labelling within the sugar. The two strands are oriented in opposite directions. In
combination with the previously described complementary system of bases, one strand
is referred to as being reverse complementary to the other. Due to the complementary
nature of the strands, the information contained in the order of bases in the strand is
encoded redundantly, a feature that is exploited both in DNA replication as well as in
DNA repair mechanisms.
In most complex organisms, the genome comprises multiple double stranded DNA

9



1. Genetics and Biotechnology

molecules, referred to as chromosomes. The set of chromosomes itself again occurs
multiple times, a phenomenon known as ploidy. Mammals, including humans, are
diploid, i.e. carry two sets of chromosomes - one maternal and one paternal set.
While more and more functional mechanisms of DNA molecules are discovered, a

core feature of DNA molecules is their role in the biosynthesis of proteins.

1.1.2. Protein Biosynthesis

Proteins aremacromolecules comprising one ormultiple amino acid chains, also referred
to as polypeptides. Cells can synthesize these molecules based on information contained
in the base pair sequence of the DNA. In eukaryotes, the synthesis process comprises
four main steps: transcription, RNA splicing, translation and protein post-processing.

Initially, a region of the genome encoding for a protein chain, a gene, is transcribed,
i.e. copied into a single-stranded ribonucleic acid (RNA) molecule. RNAmolecules differ
from DNA molecules in two main aspects: the nucleotides contain ribose instead of
deoxyribose and the base uracil (U) is synonymously used instead of thymine. While the
genomic sequence of the DNA remains unmodified in this process, the RNA molecule
acts as a temporary intermediate product in the biosynthesis process and is subject to
modifications. Most importantly, in eukaryotes certain regions of the gene, so-called
introns, are excised from the RNAmolecule, while the rest of the gene sequence, known
as exons, remain in the RNA - a process known as splicing. The RNA molecule is then
translated into a polypeptide chain, according to the genetic code which maps triplets
of nucleotides (codons) to single amino acids, e.g. “CAU” to histidine. Lastly, the
polypeptide is post-processed into its final spacial conformation, i.e. folded, mostly
in conjunction with other, independently synthesized polypeptides in order to form
the final, functional protein. A schematic overview of the entire process is shown in
Figure 1.1.

1.1.3. Genetic Variation

Variation in the genetic code occurs at various levels: across species, across individuals
of the same species as well as across cells within the same individual. In the context of
this thesis it is important to make a distinction in the latter case.

Generally, the mechanisms of cell proliferation, which include the replication of the
cells DNA, aim for a perfect copy, i.e. all cells of the same individual carry a copy of
the same genome. One exception are gametes, i.e. ova and sperm cells, that contain a
single set of chromosomes, which was generated by pairwise recombination of both
chromosome sets, creating a new chromosome set. Upon sexual reproduction, the
chromosome sets of two gametes are joined and form the unique diploid genome of a
new individual. This recombination process is germline specific, i.e. it does not occur
in cells that do not develop into ova or sperm cells. Variation that occurs outside the

10



1.2. Biotechnological Methods

T G T A C A A T G T C C T G A A G A A T A T T T
A C A T G T T A C A G G A C T T C T T A T A A A

U G U A C A A U G U C C U G A A G A A U A U U U

Transcription - A region of the
genome is transcribed into a single-
stranded pre messenger RNA

RNA Postprocessing - e.g. Splicing,
where introns are removed from the
RNA while exons remain

Translation - A chain of amino acids
(polypeptide) is synthesized based on
the RNA sequence

N V L K N. . . . . .

Protein Postprocessing - One or
multiple polypeptides form the final
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Figure 1.1.: A schematic overview of protein biosynthesis. (1) A region of the genome,
typically a gene, is transcribed into RNA, which is then (2) spliced, i.e. its introns are
excised. (3) The RNA sequence is then translated into an amino acid chain. (4) Multiple
amino acid chains are combined and folded in order to form the final protein.

germline is referred to as somatic variation. It generally comprises accumulated, in
most cases non-deleterious, mutations which develop due to environmental factors or
errors during DNA replication. However, in the context of cells that are part of the
immune system, another targeted recombination process has evolved that acts on the
somatic and not on the germline level, leading to genetic variation that is inherited
somatically, i.e. upon cell proliferation, but not to offspring. This mechanism will be
discussed in more detail in Chapter 2.

1.2. Biotechnological Methods

Since the first major steps in understanding DNA were undertaken by Watson and
Crick [2], a huge number of biochemical mechanisms related to DNA and its function
have been discovered. Some of these mechanisms have been adapted to be applied
in a controllable fashion under laboratory conditions. Two of these biotechnological
methods stand out as they form the foundation for many other, more complex methods
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and thus have contributed substantially to genetic research: the artificial replication of
DNA and DNA sequencing. As both of them play a major role in the methods described
in this thesis and in the interpretation of the generated data, we will briefly describe
them in the following sections.

1.2.1. Polymerase Chain Reaction

Polymerase chain reaction (PCR) [3] describes a group of protocols designed to mas-
sively amplify, i.e. replicate DNA molecules. They are based on the usage of DNA
polymerases, proteins which occur naturally and are responsible for DNA replication.
DNA polymerases can synthesize, more precisely fill gaps in a DNA strand in 5’ to 3’
direction, given a partially single stranded DNA molecule.
A typical PCR mix contains the original, template DNA molecules, the DNA poly-

merases, a sufficient amount of single nucleotides (dNTPs) as building blocks for the
amplification process and PCR primers. PCR primers are short stretches of DNA, which
have to be reverse complementary to a target region within the strands of the template
DNA and can be produced artificially. All components reside in a buffer medium and
the reaction is controlled through cyclic changes of the temperature.

The reaction comprises three main stages, which are controlled by applying different
temperatures: At first, the double stranded DNA is denatured into single stranded
DNA. In the second, annealing phase the primers bind to the reverse complementary
sites in the templates. The temperature and primer concentration are chosen such that
pairing occurs predominantly between primers and templates and not between the
original template strand pairs. In the final phase, the complementary strand is extended
by the DNA polymerases, starting from the bound primer. The temperature for the
extension step is chosen according to the optimal range of the used polymerase. After
the extension step we again have double stranded DNA molecules in the reaction mix
and the process is repeated until the desired amplification is achieved. The process is
illustrated in Figure 1.2. Since the number of DNA fragments is approximately doubled
in every cycle, the PCR amplification performance is exponential in the number of
cycles.
PCR has become an indispensable tool in most experimental methods involving

DNA. It can be used to amplify short DNA fragments as well as longer fragments
with sizes up to several kilobases (kb). It does, however, also introduce certain biases
and errors, which can pose a difficulty in many applications. Most importantly, the
polymerases introduce sequence errors, i.e. false base incorporations, at a certain rate.
Due to the branching nature of the PCR process, these errors propagate further in
subsequent PCR cycles, thus erroneous molecules can make up a significant portion
of the final product. The issue can to some degree be addressed by the choice of the
polymerase. Taq Polymerase, the first polymerase to be used for PCR, has an estimated
error rate in the order of ∼ 10−5. There exist other PCR polymerases which feature
proof reading activity and reach error rates in the order of ∼ 10−6 [4]. However,
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Original double stranded DNA
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Figure 1.2.: The basic PCR steps. The originally double stranded DNA molecules are
(1) denatured at a high temperature into single stranded DNA. (2) The forward and
reverse primers then anneal at the target sites at a low temperature and (3) the DNA
polymerase extends the second strand. The entire process is repeated multiple times.

polymerases with higher fidelities are often more difficult to handle in the reaction,
making Taq polymerases a standard tool up until today.
Another type of error that is introduced by PCR particularly affects quantitative

methods which take into account the ratio of different fragments. Since the amplifica-
tion performance is not perfect, i.e. only a certain fraction of fragments is amplified
in every step, the relative abundances of unique fragments after the amplification do
not necessarily reflect the original abundances of templates. Additionally, biochemical
properties of the templates such as the base sequence itself, the fragment length or
the primer binding affinity can influence the amplification performance systematically.
One approach to counteract such biases is the use of uniquemolecular identifiers, which
will be described in the context of immune repertoire sequencing in Section 2.4.3.

1.2.2. DNA Sequencing

The term DNA Sequencing describes methods and technologies that aim to detect the
base pair sequence of DNAmolecules. Given a mixture of DNAmolecules, the goal is to
obtain a list of sequences, referred to as reads, over the alphabet ΣDNA = {A,C,G, T}
which reflect the order of bases in the DNA molecules present in the sample.

Most sequencing methods are based on the extension of reverse complementary
strands using DNA polymerases (“sequencing by synthesis”), similar to the PCR de-
scribed in the previous section. Starting off with a high number of copies of a single
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DNA molecule to be sequenced, early approaches [5] are based on mixing a certain
fraction of terminating dNTPs for one single base, e.g. adenine, into the reaction. These
modified dNTPs prevent the incorporation of further, subsequent nucleotides. Every
incorporation of an adenine into a newly synthesized strand will then have a certain
chance to lead to the termination of the elongation process at that position. Thus, the
independent synthesis reactions lead to molecules of different lengths - each ending in
the same base. The positions of that particular base can then be recovered based on
the lengths of the fragments that were produced.

Second generation sequencing approaches, commonly referred to as next generation
sequencing (NGS) or high throughput sequencing (HTS), which are still the most used
sequencing technologies until today, are a further improvement of this approach and
yield a significantly higher throughput at lower costs. While in the original approach,
one DNA fragment was used to report one position in the sequence, NGS methods are
able to detect subsequent base incorporations in various molecules in a highly parallel
fashion. This is made possible by two main features: (1) The spatial immobilization of
DNA molecules, which allows for the association of multiple base incorporation events
to the same molecule and (2) an alternative solution to the permanent termination of
strand elongation. Multiple such solutions have been developed and commercialized,
the most prominent being the recently discontinued 454 Pyrosequencing and the Illu-
mina sequencing [6] platforms. The latter has been established as the de facto standard
today due to its low sequence error rates.
The first step in the Illumina sequencing procedure is the library preparation. This

primarily involves the attachment of sequencing adapters at each end of each single
stranded DNA molecule, a specific 5’ adapter and a specific 3’ adapter. The actual se-
quencing reaction takes place on a glass surface, the flow cell, which was manufactured
such that two types of short DNA oligonucleotides complementary to the adapters
are uniformly distributed and fixated on the glass surface. The sequencing library is
then added into the flow cell, where the single stranded DNA templates bind to the
oligonucleotides on the flow cell surface. A DNA polymerase complements the missing
strand, using the surface oligonucleotides as a primer, and the original template strand
is denatured and washed away. Single stranded DNA molecules with the sequence of
interest are now immobilized on the flow cell surface.

Next follows a step referred to as bridge amplification. The single stranded molecules
are amplified in a PCR reaction, where previously unused oligonucleotides fixated on
the flow cell serve as primers. These bind to the unbound adapters of the DNA strands,
which then form a connection between two surface fixated oligonucleotides, hence the
name bridge amplification. After the denaturation step the newly synthesized DNA
strand is therefore already fixated to the flow cell surface. Since both template and
product are spatially immobilized, the bridge amplification causes the formation of
clusters of copies on the flow cell surface. After cleaving off one of the two types of
complementary strands from the flow cell surface and washing them away, the clusters
now consist of identical DNA molecules and the actual sequencing reaction can begin.
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The sequence detection is performed by synthesis using primers that bind to the free
ends of the DNA molecules. The four terminating dNTPs are added with four different
fluorescent dyes. After one dNTP was incorporated at every DNA molecule, the dyes
are excited by a light source and the signal is detected by a camera. The simultaneous
emissions from an entire cluster amplify the signal sufficiently to be reliably detected,
thus one cluster produces one read. The terminator is then washed away from the 5’
ends of the currently synthesized strands and the procedure is repeated.

Like PCR, sequencing methods introduce a certain amount of errors, i.e. report false,
missing or additional bases in the read sequences. On Illumina systems, the error rate
increases with the read length and is additionally biased by the base sequence itself [7].
Over time, errors such as false, missing or multiple dNTP incorporations accumulate
within each cluster. However, unlike PCR, most sequencers provide a quality score
with each base they report, thus delivering a measure of confidence in the correctness
of that particular base call which can be used in subsequent applications to quantify,
filter or correct errors. On Illumina systems that score is based on the homogeneity of
the signal emitted after every cycle.
Another quality related issue specific for Illumina systems is the proper detection

of cluster boundaries. The design aims at a uniform spatial distribution of clusters
across the flow cell surface, however, to a certain extent clusters can form in close
proximity. The cluster detection happens in the first few cycles (4-5) [8], i.e. if clusters
have emitted distinct signals in early cycles they can be separated by the Illumina
software. If the DNA molecules are, however, identical at the 5’ end, clusters in close
proximity may be treated as one, resulting in erroneous reads. This is problematic in
PCR amplicon sequencing applications, including the immune repertoire sequencing
approach which we will describe in Section 2.4. These methods generally achieve lower
sequencing qualities than applications with more diverse sequence content do.
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2. Immunology and
Immunogenetics

In this chapter, we will briefly introduce the immunobiological background of the topics
and methods handled in the subsequent chapters of this thesis. The concepts described
here apply to mechanisms known from vertebrate species unless stated otherwise.
For more background on this subject, we refer the interested readers to “Janeway’s
Immunobiology” by Murphy and Weaver [9].

2.1. General Concepts

The term immunology describes the study of the body’s protection mechanisms against
pathogens - primarily viruses, bacteria, fungi and parasites. Generally, defense mech-
anisms can be divided in three types or stages: anatomical barriers, innate immunity
and adaptive immunity. While anatomical barriers such as skin or mucosal tissue aim
to prevent the pathogenic intrusion, the latter two mechanisms become active once a
pathogen has successfully violated those boundaries. The types of countermeasures
that are applied by those systems primarily depend on on the type of infection, e.g.
intracellular pathogens such as viruses or small bacteria can be defeated by killing the
affected (own) cells, while extracellular pathogens like large bacteria are isolated and
digested.

2.2. Innate Immune System

In comparison with adaptive immunity, the components of the innate immune system
are evolutionary older. They comprise specialized cells and mechanisms that act against
infection in a generalized way, i.e. without being specific for one particular pathogen
but by recognition of so-called inflammatory inducers. These are markers for the
presence of a pathogen, e.g. extracellular ATP as a marker for bacterial activity. Once
cells that are capable of detecting inflammatory inducers pick up such a marker, they
signal other cells which then act situation dependent, e.g. by triggering the synthesis
of antiviral proteins or by ingesting and killing microbes.
The innate immune system is a fast responder that is able to act within minutes

after an infection. It is, however, limited due to its fixed response triggers. The high
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mutation rate in many pathogenic species constantly leads to the evolution of new,
adapted pathogens that are able to remain unseen by the innate immune system.

2.3. Adaptive Immune System

The key mechanism that has evolved to supplement the innate immune system is
the adaptive immune system. While innate immune mechanisms can also be found in
plants, fungi and many other organisms, the adaptive immune system can only be
found in vertebrate species. Instead of being an entirely independent component, it
both integrates into the innate mechanisms, e.g. by making pathogens visible to the
innate system through signalling, but also adds its own effector mechanisms. Cells of
the adaptive system are able to recognize pathogenic molecules, primarily proteins and
polysaccharides, referred to as antigens. In contrast to innate mechanisms, they do not
rely on a limited number of specific features of those molecules, but are able to adapt
to new, previously unseen substances. The adaptive mechanisms respond substantially
slower than the innate mechanisms, with response times in the range of hours to days.
However, the adaptive immune system is able to memorize pathogenic encounters,
leading to a more efficient response at future infections known as immunity.

2.3.1. T and B Lymphocytes

Two types of lymphocytes form the key components of the adaptive immune system: T
and B cells. They express a membrane protein, the antigen receptor, which in both cases
comprises two kinds of polypeptide chains: the receptor of the predominant type of T
cells contains an α (TRA) and a β (TRB) chain and the B cell receptor, in its basic form,
contains one identical pair of heavy (IGH) and one identical pair of light (IGL) chains.
The antigen receptor is responsible for the recognition of antigens and the transmission
of an activation signal to the cell upon interaction with a matching ligand. Instead of
capturing an antigen as a whole, antigen receptors recognize small substructures of
antigens, so-called epitopes. In a simplified sense, every antigen receptor is specific
for only one antigen epitope and each B or T cell expresses only a single antigen
receptor. However, different cells express different antigen receptors, a mechanism
made possible by the somatic recombination of the gene encoding the receptor. The
recombination occurs early after the differentiation of a stem cell into the T or B cell
lineage and will be described in detail in Section 2.3.3.
While a cell is, in most cases, initially unique with respect to its antigen receptor,

as soon as it encounters a matching antigen it starts to proliferate and transmits its
recombined receptor gene to the daughter cells. Through the proliferation of active
cells the response to antigens is boosted for the time of the infection. Furthermore,
after the pathogen is successfully defeated, the subpopulation of antigen specific cells
reduces again, however, not down to a single cell but rather to a population of memory
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cells. That mechanism ensures that future encounters with the same antigen will be
responded to more rapidly and more efficiently.
While T and B cells are evolutionary closely related [10], there are some major

differences regarding their function and their way of recognizing antigens. The T cell
receptor (TCR) is always membrane bound, whereas B cell receptors can be secreted into
the extracellular space and are then referred to as immunoglobulins (IGs) or antibodies.
Since it has been established as the standard terminology, we will refer to B cell
receptors as immunoglobulins throughout this thesis, unless we want to explicitly
distinguish the membrane bound from the secreted state.
Another fundamental difference between the TCRs and IGs is the way they bind

antigen epitopes: while immunoglobulins can recognize epitopes that are still bound
in larger, complex molecules, T cell receptor epitopes have to be preprocessed, i.e.
excised from the original molecules and loaded onto a presenting membrane protein
for recognition. The details are briefly described in the following section.

2.3.2. T Cell Antigen Recognition

In order for a T cell receptor to recognize an antigen epitope, the epitope has to be
mounted onto anMHC molecule, a group of proteins encoded in the eponymous region
of the genome referred to as themajor histocompatibility complex. In humans, the term
human leucocyte antigen (HLA) is used equivalently. The ligand of a TCR is therefore
not a single antigen epitope, but the complex of the MHC molecule and the epitope,
known as the peptide MHC complex (pMHC).
There are two main types of MHC molecules, class I and class II. The MHC is

polygenic and highly polymorphic, i.e. eachMHCmolecule class is encoded by multiple
genes and for each gene there is a high number of variants within a species’ population.
For example, there are three genes encoding the MHC-I molecule, thus a cell expressing
MHC-I expresses up to six different variants of the molecule. While MHC-I is expressed
by all nucleated cells, MHC-II is expressed only by certain immune cells specialized
in the absorption, digestion and presentation of antigens. Corresponding to the two
subtypes of MHC molecules, there exist two subtypes of T cells: those that express the
TCR co-receptor CD4 and those that express the co-receptor CD8. CD8 T cells bind
MHC-I molecules and are known as cytotoxic T cells based on their primary function
to kill cells that show signs of infection, e.g. present virus epitopes on their MHC-I
molecules. CD4 T cells on the other hand bind MHC-II molecules and are known as
helper T cells. Their primary function is to mediate an immune response by secreting
signalling molecules called cytokines, which guide other immune cells to the site of
infection.

A schematic view of the presentation of peptides and the interaction of T cells with
the pMHC complex is shown in Figure 2.1. The target antigen, in this case a protein, is
digested inside the presenting cell and the peptides are loaded onto MHC molecules.
The pMHC complex is then embedded into the cell membrane, presenting the peptide
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Figure 2.1.: (a) A schematic view of how antigen epitopes are presented to the TCR.
(1) The presenting cell digests larger proteins to smaller peptides. (2) The peptides
are loaded into an empty MHC molecule right after its biosynthesis, which is then
(3) embedded into the membrane presenting the peptide to the extracellular space.
(b) A detailed view of the TCR-pMHC interaction. The CDRs of each TCR chain point
towards the pMHC complex. The CDR3 interacts primarily with the peptide, while the
germline encoded CDR1 and CDR2 interact primarily with the MHC. MHC-I molecules
enclose both ends of the peptide, present peptides of a fixed length and bind T cells
expressing the CD8 co-receptor. MHC-II molecules can bind T cells expressing the CD4
co-receptor and can load longer peptides with overhangs outside the binding cleft.

to the extracellular space. Depending on the class of the MHC molecule, either CD4
or a CD8 T cell that matches the pMHC can bind to the complex. Within each T
cell receptor chain, the so-called complementary determining regions (CDRs) face the
pMHC. The CDRs show a higher degree of variability across different TCRs, while the
other regions of the protein are relatively conserved. Both in IGs and TCRs the CDRs
are what is primarily in contact with the ligand, where in T cells the CDR3 interacts
with the center of the peptide and the CDR1 and CDR2 interact with the MHC and the
peptide termini [11, 12].
While MHC-I molecules are known only to present protein peptides, the MHC-II

pathway can also process polysaccharides to low molecular weight carbohydrates and
present them outside the cell [13].

2.3.3. V(D)J Recombination

In the early 1980s, Tonegawa [14] and his team successfully deciphered the genetic
mechanism behind the diversity observed in the antigen receptors of different cells.
They discovered that the high number of antigen receptors was not (solely) based on
a high number of encoding genes in the germline genome, but that instead a somatic
modification of the gene loci takes place upon the differentiation of T and B cells. In
1990, Tonegawa was awarded with the Nobel Prize in Physiology or Medicine for his
contribution to this discovery.
The genes of T and B cell receptor chain genes contain a variable region, referred
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Figure 2.2.: A schematic view of the human T cell receptor β chain germline locus
before recombination. The locus comprises NV = 65 V gene segments and NJ = 15 J
gene segments, the latter being separated into two groups, each lead by a single D gene
segment. There are recombination signal sequences (recombination signal sequencess
(RSSs)) with either 12bp or 23bp spacers flanking each segment at the potential junction
site(s). Gene segments occur in both orientations.

to as the V region. In cells other than T or B cells, that region is not present in a
functional configuration. Instead, the loci comprise sets of building blocks or templates
for the V region, so-called gene segments. There are three types of gene segments:
variable (V), diversity (D) and joining (J). 1 A functional antigen receptor gene V region
always comprises exactly one V and one J segment in exactly this order. For the B cell
heavy chains as well as for T cell β chains, one (or in rare cases two) D gene segments
occur between the V and J segment. In the recombined locus, the V region is followed
by an intron and subsequently the constant (C) region, which does not undergo any
modifications. The diversity of antigen receptor genes arises from the fact that multiple
variants of V, D and J segments are encoded in the germline genome, thus part of
the variability is accounted for by the combinatorial possibilities of selecting one of
each segment type. This variability is further enhanced by the fact that during the
recombination of the locus additional modifications of the nucleotide sequence occur
at the junction sites at which two gene segments are joined.
The overall architecture of an antigen receptor gene locus in the unmodified,

germline genome is shown in Figure 2.2 which shows the human T cell receptor β
chain locus. It comprises ∼ 75 V gene segments spanning a range of ∼ 500kb, ∼ 15 J
gene segments, 2 D and 2 C gene segments which are organized in two groups and
span ∼ 20 kb together [15]. The other antigen receptor gene loci are organized in
a slightly different way, but the general mechanism of the recombination process
described in the following section applies to all loci, with the only difference being that
the D segment is not incorporated into the gene loci that encode the smaller chains (T
1Note the potentially confusing choice of nomenclature regarding the character V : a V segment is one
of three building blocks for a V region. See Figure 2.5.
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Figure 2.3.: During the V(D)J recombination, the gene segments are brought together
by cut and join operations performed on the gene locus. (a) If the gene segments are in
the same orientation, they are brought together through the removal of the intermediate
DNA, leading to the formation of excision circles. (b) If the target segments are not in
the same orientation, a inversion is performed instead, with no DNA being removed.
Adapted, based on Lefranc and Lefranc [15].

cell receptor alpha chain, immunoglobulin light chain).
Every gene segment is flanked by recombination signal sequences (RSS) at their

termini that can form a junction to another gene segment. They are recognized by the
proteins involved in the recombination process, which then bring the two RSSs and
therefore the two gene segments together to initiate the formation of a junction. The
RSSs begin and end with well conserved motifs which are separated either by a 12bp
or a 23bp spacer sequence. Junctions can only be formed between a site flanked by a
12bp spacer RSS and a second site flanked by a 23bp spacer RSS. The two different RSS
types ensure that only V-D and D-J junctions are formed in those genes that contain a
D segment, that only V-J junctions are formed in the other genes and that the gene
segments are joined in the proper orientation.

The alteration into a locus that comprises single V, (D) and J segments consecutively
is performed by cut and join operations. In most cases, the gene segments occur in
the same orientation on the genome [15], in which case two segments are joined by
excision of the intermediate DNA as shown in Figure 2.3(a). The excised DNA is joined
as well and therefore forms circles, known as excision circles. Since the circular DNA
is not replicated upon cell division, the presence of such molecules can be used as a
marker for T cells that have recently emigrated from the thymus [9]. In a minority of
cases, the segments are in opposite orientation on the chromosome, in which case two
such segments are joined by inversion as shown in Figure 2.3(b). In this case, no genetic
material is removed from the genome, i.e. no excision circles are being generated.
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Figure 2.4.: The junction formation using the example of the DJ junction. (1) Hairpin
formation at the blunt ends of the gene segments. (2) Single strand cleavage potentially
causing overhang. (3) Addition of random nucleotides at the overhang. (4) Pairing of
the strands. (5) The junction is completed by means of DNA repair mechanisms.

The diversity of genes for the same type of antigen receptor is however much
larger than the possible number of combinations of gene segments. As previously
mentioned, it is additionally boosted when the junctions between gene segments are
formed. Instead of just being joined, the ends of the gene segments are modified
on the single nucleotide level when the junction is formed. The process of junction
formation is illustrated in Figure 2.4. Initially, after the double stranded DNA was cut
open precisely at the site between the RSS and the coding gene segment, a hairpin is
formed at the blunt end of the double strand. Next, the hairpin is opened by induction
of a single-strand cut whose position is variable, resulting in a palindromic overhang,
since the now consecutive nucleotides were formerly complementary. The nucleotides
forming the palindromic overhang are referred to as P nucleotides. Subsequently, both
endonucleases and exonucleases act on the single-stranded overhang, inducing random
removals and additions of single nucleotides. If additional nucleotides remain after this
process, they are referred to as N nucleotides. Lastly, the modified overhangs of the
two segments are overlapped and the junction is completed by means of DNA repair
of missing and mismatching nucleotides.

Due to the random nature of the recombination, the efficiency of the process itself is
relatively low. In fact, the majority of the recombination events leads to non-functional
genes, mostly because the random nucleotide insertions and deletions induce frame
shifts or stop codons [9]. Furthermore, many of the germline encoded gene segments
are in fact pseudo gene segments, meaning they are non-functional, which additionally
decreases recombination efficiency.
The recombination of the longer heavy and β chain loci occurs before the recom-
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Figure 2.5.: The schema of the mature, recombined human TRB locus. The V, D and J
gene segments are joined with additional P and N nucleotides (gray) at the junction
sites. The CDR1 and CDR2 are enclosed in the entirely germline encoded V gene
segment, while the CDR3 (∼ 40bp) comprises the junction sites and thus random, not
germline encoded nucleotides. The C region remains separated from the V region by
an intron.

bination of the shorter light and α chain loci. An evaluation mechanism validates
whether the recombination was successful, i.e. whether e.g. a β chain is expressed. If
the recombinations fails, it may be repeated on the same locus if sufficient material is
still available in the genome or on the second chromosome. Only once the first chain
is expressed is the recombination of the second chain locus initiated.
An overview of a recombined human TRB gene locus is shown in Figure 2.5. The

CDR1 (∼ 15bp) and CDR2 (∼ 18bp) are encoded in the germline V gene segments and
their positions defined according to the IMGT numbering scheme [16]. The CDR3 on
the other hand comprises the segment junctions and therefore nucleotide sequences
that are not germline encoded. It is defined as the region between the conserved Cys104
encoding triplet in the V gene segment and the conserved P118 encoding triplet in the J
gene segment, again, following the IMGT numbering scheme.

2.3.4. Additional Recombination in B Cells

In T cells, the TCR locus is not further modified following V(D)J recombination during
thymic development. In mature B cells however, there are two mechanisms that
continue to alter the antigen receptor gene loci.
The first mechanism is known as class switching. There are five main classes of

immunoglobulins, IgM, IgD, IgG, IgE and IgA. The class is determined by alternative C
regions: while the switch between IgM and IgD is controlled by alternatively splicing
the corresponding C region to the V region, the switch to the other IG classes requires
another somatic recombination of the gene loci, which happens long after the V(D)J
recombination when the B cell was stimulated by a matching antigen.
The second mechanism of late somatic recombination are somatic hypermutations
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(SHMs), which describes point mutations that are induced in the V region upon cell
division. The mutations occur at a rate between 10−5 and 10−3 [17], accumulating with
each generation. This mechanism adds another layer of adaption, which can further
optimize the antigen affinity by selection. While this thesis focusses primarily on T
cells, SHMs will to some degree become relevant in Chapter 4 where we will discuss
a method to annotate recombined V regions, since they are hard to distinguish from
technical artifacts.

2.3.5. Allelic Exclusion

Generally, the concept of “one cell - one receptor” is crucial to the idea of an effective
and efficient adaptive immune system. If a cell was specific for multiple antigens
simultaneously, activation by one antigen and subsequent proliferation of that cell
would boost the immune response against other antigens as well, with potentially
unwanted side effects. Such a situation could arise if both alleles of one antigen receptor
chain were recombined into functional genes. To prevent such a situation, various
mechanisms ensure that the V(D)J recombination is limited to one chromosome and
locus at a time and immediately suppressed if a recombination is successful. This
process is known as allelic exclusion and is successfully achieved in the large majority
of cells [18]. There are, however, exceptions, such as the T cell receptor α chain alleles
which are known to be recombined simultaneously and the recombination machinery
is deactivated only relatively late during early cell development, thus a fraction of T
cells break with the one receptor rule and express two receptors that differ in their α
chain [19].

2.3.6. Antigen Receptor Affinity Assessment

Once the cell expresses an antigen receptor on the surface, it undergoes a process
known as positive and negative selection. Basically, the antigen receptor has to show
a minimum degree of activation, i.e. binding affinity when exposed to a variety of
antigens (positive selection). Additionally, the affinity to self-antigens must no be too
high, i.e. recombinations that are likely to contribute to auto-immune responses rather
than to respond to foreign antigens are negatively selected. Only cells that pass both
selection stages emigrate from the thymus or bone marrow into the periphery.
Since T cells do not bind antigens directly, but require epitopes to be presented by

MHC molecules, they are exposed to pMHC ligands during their thymic development.
For them the binding affinity assessment furthermore includes the distinction between
MHC-I and MHC-II specificity. T cells start off as double positives - depending on
which ligand the newly generated antigen receptor binds best, the cell will loose
either the CD4 or the CD8 TCR cofactor and thus become either a cytotoxic cell or a
cytokine-secreting helper cell respectively.
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2.4. Measuring TCR / IG Repertoires

Repertoire Sequencing (Rep-Seq) describes methods that aim to capture the repertoire
of B or T cells quantitatively based on their antigen specificities using high throughput
sequencing. We refer to the somatically recombined configurations of the antigen
receptor genes that define the cells antigen specificity as the cell’s clonotype. Thus, the
goal of Rep-Seq can be defined as determining the clonotypes and their abundances
given a sample of cells. Due to the separate loci of the TRA and TRB (or IGH and
IGL) genes, it is technically difficult to detect both genes in a combined fashion. It is
therefore established practice to capture only one of the two genes. Since the TRB
and IGH genes feature the larger variability in comparison to their counterparts, these
genes are typically selected for sequencing. Throughout this thesis, we will use the
term Rep-Seq to refer to single chain immune repertoire sequencing and the term
clonotype to describe the antigen specificity as defined based on a single chain. We
will, however, provide an outlook on the currently emerging technologies regarding
the simultaneous capture of both antigen receptor chain genes in Section 8.3.1.
The basic principles of single chain Rep-Seq protocols and differences in common

approaches are described in the following sections.

2.4.1. Cell Characterization

Depending on the experimental goal, it is often desired to isolate cells of different
subpopulations according to functional features of interest. This is typically achieved
through flow cytometric methods such as fluorescence-activated cell sorting (FACS),
which is a well established tool to quantify and separate cells based on markers on
their surface, usually membrane proteins [20] (immunophenotyping). Typical markers
are those that uniquely correspond to T cell subtypes such as CD4 (helper T cells), CD8
(cytotoxic T cells), CD45RO (memory T cells), or activation markers like Interferon
gamma (IFNγ), which can be used to select antigen specific T cells after exposing them
to a particular antigen in culture.

2.4.2. Gene Enrichment

Once the target population of cells is defined and prepared, the initial step before
sequencing is a targeted enrichment of the gene of interest, e.g. TRB. The enrichment
is achieved through a PCR using primers that specifically bind at sites close to the
perimeters of the region of interest, as one typically wants to recover as much of the V
region as possible. Approaches based both on genomic DNA and on RNA have been
proposed.

DNA based Rep-Seq enrichment [21, 22] requires a multiplex PCR, i.e. multiple for-
ward and reverse primers. This is due to the fact that even for the germline encoded
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part of the V region, namely the V and the J gene segment, there are multiple variants
that may occur in the recombined gene. The sets of forward and reverse primers is
typically not as large as the set of V and J gene segments, since some of them share
common conserved sequences that can be used as a primer binding site. Multiplex PCRs
come with additional sources of errors compared to simplex PCRs. Apart from general
issues that arise from the reaction being more difficult to control, e.g. due to increased
hybridization between primers, there are also two main issues that specifically affect
Rep-Seq. Firstly, while every PCR with mixed templates will be skewed to some degree
after the amplification [23], this effect is further enhanced in a multiplex setting, due
to some primers performing better than others. In a quantitative application such as
Rep-Seq this can drastically reduce the data quality, since the measured proportions do
not reflect the biological truth. Secondly, primers may be cross reactive, e.g. the primer
designed for one J gene segment might bind to a gene that incorporated another J gene
segment. The product will then be a hybrid of J gene segments, since the primer itself
is incorporated during the amplification and further cycles will further amplify such
products as they are. If the primer binding site is considered in the subsequent analysis
steps, this can lead to false gene segment annotations.

RNA based Rep-Seq [24] can be used to overcome the limitations of the multiplex
PCR: after splicing, the well conserved C region is directly adjacent to the J gene
segment, therefore allowing a single reverse primer. Moreover, instead of using a
multiplex forward primer set to target the V gene segment, one can utilize the template
switching [25] protocol. The template switching protocol makes use of specific reverse
transcriptases which add a few non-template C-nucleotides to the DNA product after
reaching the 5’ end of the template RNA. A previously added 5’ adapter with a poly-G
tail can then bind to the product currently being synthesized, leading to a continued
transcription against the adapter. The adapter sequence is subsequently used as a
forward primer binding site in the PCR amplification.

The RNA-based protocol reduces the amplification biases induced by the heteroge-
neous amplification performances within the primer sets, however, adds complexity
over the DNA based approach. Furthermore, using RNA as the original material again
introduces a certain degree of quantitative skewing due to the potentially different
expression levels of the antigen receptor gene across the cell sample. Depending on
the C region primer site, part of the read length might be lost due to the remaining C
region part of the amplicon. In the case of IG repertoire sequencing this might however
be intended, if the B cell isotype is to be determined.

2.4.3. Unique Molecular Identifiers

An experimental effort to overcome or at least contain two main issues that arise during
the gene enrichment stage, i.e. the induction of PCR errors and quantitative skewing,
is the usage of short stretches of random nucleotides, which are introduced into the
target fragments as early in the amplification process as possible [26, 27]. They are
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often referred to as unique molecular identifiers (UMIs), and have been used in various
quantitative NGS applications [28, 29, 30, 31]. The random nucleotide sequence is used
as a barcode for a particular template, i.e. every subsequent copy will carry the same
barcode. Fragments with PCR errors can then be identified based on the observation
that they carry the same barcode as a more abundant, highly similar sequence. A
quantitative correction can be performed by counting unique barcodes instead of
sequences.
In Rep-Seq protocols, UMIs can be introduced as part of the template switch frag-

ments [24] or the target primers [32].

2.4.4. Sequencing

After the target fragments have been enriched, sequencing adapters are appended.
Since the ends of the fragments are known from the previously used primers, the
sequencing adapters can be incorporated in another PCR step with primers carrying
an adapter tail instead of using a ligation step, leading to a fixed orientation of the
sequencing reads. The region of the highest interest is the CDR3, thus when performing
single end sequencing the reads are generated from the J/C end of the fragments, since
the V segment is substantially longer and the CDR3 region would not be reached
with common read lengths. If both ends of the amplified fragments are sequenced
in a paired end configuration, the second read will in most setups contain only V
gene segment sequence. Note that under error-free conditions, due to the protocol
being fragmentation free and based on well defined primer locations, two genetically
identical T or B cells should generate the exact same read (pair)s. The most common
read configurations are illustrated in Figure 2.6. We will refer to the reverse read that
covers the target fragment from the J/C end as the V(D)J read and to the optional
forward read that covers the additional V gene segment information as the V read.
For T cell Rep-Seq, it is sufficient to cover as much of the V and J gene segments

as necessary for a unique identification against the germline reference. In IG Rep-
Seq, if somatic hypermutations are of interest, it is desirable to cover the germline
encoded parts of the V region as well. Generally, the Illumina sequencing platform
has been established as the method of choice for Rep-Seq, due to its low error rate in
comparison with other available methods. It has been used by far in most of the TCR
studies [33, 34, 22, 35], while for IG Rep-Seq sometimes 454 sequencing has been the
preferred method [36, 37, 38]. This is not only due to the fact that the study of SHMs
requires coverage of the germline region, but also because the CDR3 of IG heavy chain
genes is often longer than that of TCR β chains. However, with read lengths becoming
longer with newer releases of Illumina sequencing kits, this argument is becoming less
relevant.
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(a) RNA based enrichment

forward read

reverse read

(b) DNA based enrichment

forward read

reverse read

V D J

CDR3 C region

Figure 2.6.: The most common read configurations in targeted Rep-Seq experiments.
The reverse read generally covers the CDR3 region with some extent of non-CDR3 V
and J gene segment sequence. (a) In RNA based protocols with C segment primers,
a fraction of the C fragment and the entire J gene segment is included in the reverse
read. (b) In DNA based approaches using J primers, the read begins inside the J gene
segment and a larger amount of V gene segment is included. In both cases, an optional
second read (paired end sequencing) can additionally cover an upstream region of the
V region, usually only parts of the V gene segment.
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In this chapter, we will define basic notations used throughout the thesis. Further-
more, we will introduce some well known sequence comparison problems and their
algorithmic solutions, as they form the foundations for the methods described in the
subsequent chapters. We will also define the notations we formally use to describe
clonotypes and clonotype repertoires as previously described.

3.1. General Notations

3.1.1. Indicator Function

We will use 1 to denote an indicator function for boolean terms. Given the boolean
term T , it is defined as

1(T ) :=

{
1 if T is true
0 if T is false.

3.2. String Notations

We define a string to be a sequence of characters from a finite, non-empty alphabet
Σ. The most relevant alphabets in computational biology are the DNA alphabet
ΣDNA = {A,C,G, T} of size |ΣDNA| = 4 and the canonical amino acid alphabet
ΣAA = {A,C, ..., Y } of the |ΣAA| = 20 amino acids that are encoded by the standard
genetic code.
We furthermore define Σq to be the set of all |Σq| = |Σ|q strings of length q over

the alphabet Σ. Such strings are also referred to as q-grams (equivalent terms found
in literature are k-mer, which is also interchangeably used in this thesis, and k-tuple).
Additionally, Σ∗ =

⋃
i∈N0 Σi denotes the set of all finite words over the alphabet Σ.

3.2.1. Substrings

In the following we will use a one-based indexing to describe substrings of strings. In
particular, given a string s ∈ ΣL and two integers i, j ∈ {0, . . . , L} and i < j,
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• s[0] denotes the empty word ε,
• s[i] ∈ Σ denotes the ith character in s,
• s[i . . . j] denotes the substring of s starting at position i and ending at position j
in s.

3.3. String Comparison and Sequence Alignments

A common problem when working with biological sequences is the approximate string
matching problem, i.e. the comparison of sequences based on a similarity measure
rather than identity. When comparing the sequences of genes or proteins, either
against each other or against a reference database, both biological diversity as well as
technical errors make exact string matching techniques not applicable.

In this section we will first discuss a common measurement to define the similarity
of two sequences and furthermore describe algorithms in order to compute such
similarities. The nomenclature used in this section is closely derived from Gusfield
[39].

3.3.1. Edit Distance

One of the oldest and most important similarity measures for sequences is the Edit
Distance or Levenshtein Distance [40]. It is based on the idea of a virtual transformation
of one sequence into another, using a set of predefined operations.
Definition 3.1. An edit transcript representing the transformation of a string s1 into
another string s2 is a sequence over the alphabet ΣT = {I,D, S,M}, denoting charac-
ter insertions, deletions, substitutions and matches respectively.

Note that the edit transcript for a given pair of strings is not necessarily unique.
Definition 3.2. Given two strings s1 and s2, the edit distance distE(s1, s2) =
distE(s2, s1) is given by the minimal number of edit operations {I,D, S} ⊂ ΣT

required to perform a transformation of s1 into s2.

The optimal edit transcript corresponding to the edit distance of two sequences is not
necessarily unique, however, their number is finite. An example for an edit transcript
is shown in Figure 3.1(a).

3.3.2. Alignments

Another, more common way to represent a pairwise sequence transformation is a
sequence alignment. It is an explicit representation of the character-wise relation of
two sequences.
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I S M M M M D M M S M

C G T C T T G C A A

T A G T C T G C G A

s1 =

t =

s2 =

C G T C T T G C A A

T A G T C T G C G A

s∗1 =
s∗2 =

(a) (b)

Figure 3.1.: (a) An example edit transcript t representing the transformation of s1
to s2. The characters corresponding to each operation are referenced by arrows. (b)
The alignment representation equivalent to the edit transcript shown before. Matches
are indicated with vertical bars, gaps with horizontal bars. Gaps and mismatches are
highlighted with a red cross.

Definition 3.3. A (global) sequence alignment of two strings s1, s2 ∈ Σ is a 2× L∗

matrix, where the rows of the matrix contain versions of s1 and s2 interleaved with
a gap character “-”, i.e. s∗1, s∗2 ∈ Σ ∪ {-} with |s∗1| = |s∗2| = L∗. The placement of the
gap characters is constrained, such that no column in the alignment contains two gap
characters.

Edit transcripts and alignments can be used equivalently to describe pairwise se-
quence transformations. In an alignment, columns without gap characters represent
either matches, i.e. s∗1[i] = s∗2[i], or mismatches, i.e. s∗1[i] ̸= s∗2. Columns with a gap
character in s∗1 describe an insertion and columns with a gap character in s2 a deletion.
The sequence alignment for the pair of sequences previously shown is depicted in
Figure 3.1(b).
In contrast to edit transcripts, alignments directly reflect the symmetrical nature

of sequence transformations, since insertions and deletions are equivalently denoted.
An edit-distance based alignment between two strings s1 and s2 is optimal, if the
corresponding edit transcript is optimal. Given such an optimal alignmentA = {s∗1, s∗2},
we can derive the edit distance using

distE(s1, s2) =
L∗∑

i=1

1(s∗1[i] ̸= s∗2[i]).

3.3.3. Computing Sequence Similarity

Given this definition of a pairwise sequence similarity, we will now show how to obtain
this similarity measure in a generalized form, based on a recursive description [41] of
the cost function.

Definition 3.4. Given two sequences s1 and s2 of lengths |s1| = n and |s2| = m, the
(n+ 1)× (m+ 1) edit matrix D is defined s.t. D(i, j) denotes the edit distance of the
prefixes s1[0, . . . , i] and s2[0, . . . , j], where s[0] denotes the empty string.
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We will now describe how to obtain the edit matrix D, using generic costs for each
edit operation, i.e. δG ∈ Z for insertions and deletions (gaps) and δS : (x, y) → Z
with x, y ∈ Σ for substitutions and matches. The equivalent for the edit distance as
described in Section 3.3.1 would be δG = 1 and δS(x, y) := 1(x ̸= y).
To obtain a prefix of length n from the empty string ε we have to insert n gaps, i.e.

D(i, 0) = i · δG (3.1)
D(0, j) = j · δG. (3.2)

The remaining entries of the matrix are then defined by the following recurrence:

D(i, j) = min

⎧
⎪⎨
⎪⎩

D(i− 1, j) + δG

D(i, j − 1) + δG

D(i− j, j − 1) + δS(s1[i], s2[j]).

(3.3)

The distance between s1 and s2 is then defined as the value of the last computed entry
of the matrix, i.e.

distE(s1, s2) = D(n,m). (3.4)

While the naïve, recursive solution to obtain D(n,m) based on Equation 3.3 would
be straight forward to implement, it is highly redundant and therefore computationally
unnecessarily expensive. Instead, the edit matrix is computed using dynamic program-
ming, i.e. in a bottom-up fashion starting with a matrix pre-initialized according to
Equations 3.1 and 3.2. The remaining fields are then computed either row by row or
column by column, making use of the fact that each value depends only on previously
computed values. The edit matrix can therefore be computed in O(n ·m) time and
space.
Further generalizations of this algorithm exist, most notably a formulation that

enables the computation of local similarities between sequences and a generalized gap
cost specification [42, 43]. A common approach is the differentiation of an initial gap
(“gap open” cost δGO) and subsequent gaps following directly after the initial gap (“gap
extension” cost, δGE).

3.3.4. Obtaining Optimal Alignments

Given the definition of the edit matrix, we now know how to obtain the edit distance,
but not yet the corresponding optimal alignment(s). An efficient way to do so is to
maintain pointers indicating the origin of each entry of the edit matrix, i.e. which
of the cases in Equation 3.3 fulfills the minimality condition. Each matrix entry can
therefore hold up to three pointers to previously computed adjacent entries.

Given an edit matrix and such traceback pointers, we can now enumerate all optimal
alignments by inspecting all paths leading from D(m,n) to D(0, 0). Taking into
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- C G T C T T G C A A

- 0 1 2 3 4 5 6 7 8 9 10

T 1 1 2 2 3 4 5 6 7 8 9

A 2 2 2 3 3 4 5 6 7 7 8

G 3 3 2 3 4 4 5 5 6 7 8

T 4 4 3 2 3 4 4 5 6 7 8

C 5 4 4 3 2 3 4 5 5 6 7

T 6 5 5 4 3 2 3 4 5 6 7

G 7 6 5 5 4 3 3 3 4 5 6

C 8 7 6 6 5 4 4 4 3 4 5

G 9 8 7 7 6 5 5 4 4 4 5

A 10 9 8 8 7 6 6 5 5 4 4

C G T C T T G C A A

T A G T C T G C G A

C G T C T T G C A A

T A G T C T G C G A

C G T C T T G C A A

T A G T C T G C G A

C G T C T T G C A A

T A G T C T G C G A

(a) (b)

Figure 3.2.: (a) The edit matrix for two strings s1 and s2. The arrows indicate the
traceback pointers and bold arrows are part of optimal paths from D(m,n) to D(0, 0).
(b) The four optimal alignments corresponding to the four paths highlighted in the
edit matrix.

account that horizontal edges correspond to gaps in s1 and vertical edges correspond to
gaps in s2, we can recover the alignment rows s∗1, s∗2 inO(n+m) time for each optimal
alignment. Figure 3.2 shows the edit matrix for the pair of sequences previously used
in Figure 3.1 as well as the traceback pointers and the four optimal alignments derived
from them.

3.3.5. Distance vs. Score

The alignment cost minimization problem shown in Section 3.3.3 can be transformed
into an equivalent score maximization problem by negating δG and δS and changing
Equation 3.3 to maximize. We will use the notation

dist(a, b)

when minimizing a cost function that rewards dissimilarity and punishes similarity
and equivalently

score(a, b)

when maximizing a cost function that rewards similarity and punishes dissimilarity.

35



3. Preliminaries

3.3.6. Alternative Scoring Schemes

The edit distance scoring scheme has many advantages, in particular with respect
to available algorithmic optimizations and filters (some of which we will discuss in
Section 4.4.3 f.). However, there are also limitations. A binary match vs. mismatch
relation does not reflect the nature of similarity and dissimilarity of the biochemical
entities represented by characters from biological alphabets, such as DNA or protein
alphabets. To better integrate this information into the comparison process, it is
common practice to use more complex functions for δS , that take those properties into
account [44].
Note that the edit distance scoring scheme treats matches neutrally. Pairwise dis-

tances are therefore only comparable, if they refer to sequences of equal lengths. In
cases where longer alignments should yield a higher score than shorter alignments,
matches have to be rewarded, e.g. by using δM(a, b) := 1 − 2 · 1(a ̸= b) in a score
maximization based setting.

3.3.7. Banded Alignments

If we have prior knowledge about the optimal alignment trace and can therefore
constrain its path, we can use a banded alignment in order to save computation time
and space. A popular example is the case where we are only interested in the pairwise
global alignment (similarity) of two sequences if their distance does not exceed a
certain threshold k. Since the trace of the optimal alignment only deviates from the
main diagonal of the edit matrix when insertions and deletions occur, we can limit our
computation to the 2 · k + 1 diagonals surrounding (and including) the main diagonal.
The required time and space is then O(k ·min(n,m)) and thus linear in the sequence
length.

3.3.8. Overlap Alignment

An overlap alignment is a constrained form of the free-end-gaps alignment, which
does not penalize both leading and trailing gaps flanking either sequence. Recall the
nomenclature of the n×m edit matrixD for two sequences s1 and s2 of lengths n and
m respectively, which was introduced in Section 3.3.2. Assume that we want to allow
trailing gaps in s1 and leading gaps in s2. We can obtain the optimal overlap alignment
by changing the DP algorithm to allow an entry into the leading sequence at any point
without accounting for those gaps, i.e. changing Equation 3.1 to

D(i, 0) = 0 ∀ i ∈ {0, . . . ,m}. (3.5)

The distance is then defined by changing Equation 3.4 to

dist(s, t) = min
j
(D(|s|, j)). (3.6)
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ε G G A C T T A C A T T A G A G C T A C G
ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1
A 2 2 2 1 2 1 1 0 1 1 1 1 0 1 1 2 2 1 0 1 2
C 3 3 3 2 1 2 2 1 0 1 2 2 1 1 2 2 2 2 1 0 1
A 4 4 4 3 2 2 3 2 1 0 1 2 2 2 1 2 3 3 2 1 1
T 5 5 5 4 3 2 2 3 2 1 0 1 2 3 2 2 3 3 3 2 2
A 6 6 6 5 4 3 3 2 3 2 1 1 1 2 3 3 3 4 3 3 3
C 7 7 7 6 5 4 4 3 2 3 2 2 2 2 3 4 3 4 4 3 4
A 8 8 8 7 6 5 5 4 3 2 3 3 2 3 2 3 4 4 4 4 4

G G A C T T A C A T T A G A G C T A C G

T A C A T A C A

δG = 1 δM(a, b) := 1(a ̸= b)
dist = minj D(m, j)

ε C A T G A C A C A T T A G A G C T A C G
ε 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T 0 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A 0 1 0 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
C 0 -1 0 1 2 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A 0 0 -2 -1 0 1 1 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
T 0 1 -1 -3 -2 -1 0 0 0 1 0 1 2 3 4 5 6 7 8 9 10
A 0 1 0 -2 -2 -3 -2 -1 0 -1 0 1 0 1 2 3 4 5 6 7 8
C 0 -1 0 -1 -1 -2 -4 -3 -2 -1 0 1 1 1 2 3 2 3 4 5 6
A 0 0 -2 -1 0 -2 -3 -5 -4 -3 -2 -1 0 1 0 1 2 3 2 3 4

C A T G A C A C A T T A G A G C T A C G

T A C A T A C A

δG = 1 δM(a, b) := 1− 2 · 1(a ̸= b)
dist = minj D(m, j)

(a) (b)

Figure 3.3.: Special cases of free-end-gaps alignments, (a) an overlap alignment and (b)
a semi-global alignment. The figure shows an optimal alignment, the corresponding
edit matrix with the entries comprising that alignment highlighted, as well as the
scoring scheme used.

Note that with this reformulation of the DP algorithm, we can no longer use the edit-
distance distE , since an overlap of length 0 would always yield an optimal alignment
with distE(s1, s2) = 0. To obtain meaningful alignments, one either has do choose
a different scoring scheme that rewards matches or to define an alignment band,
i.e. define a minimal overlap or constrain the alignment even further. An example
for an overlap alignment with a scoring scheme that rewards matches is shown in
Figure 3.3 (a).

3.3.9. Semi-Global Alignment

Similar to the overlap alignment, a semi-global alignment is a special case of a free-
end-gaps alignment, where both leading and trailing gaps in one of the two sequences
are tolerated - in case of the pattern matching problem in the pattern. Again, this is
achieved by a slight modification of the equations described in Section 3.3.2, namely
Equation 3.2 which is changed to

D(0, j) = 0 ∀ j ∈ {0, . . . , n} (3.7)

and Equation 3.4 which is again changed as shown in Equation 3.6. An example for an
optimal, edit-distance based semi-global alignment is shown in Figure 3.3 (b).

37



3. Preliminaries

3.4. Clonotypes and Repertoires

Recall the final configuration of antigen receptor genes as described in Section 2.3.3.
Since, at least in the case of TCRs, all nucleotide modifications are contained in the
CDR3, we can express a recombined antigen receptor gene by the incorporated gene
segments and the sequence of the CDR3 region. Throughout this thesis and most
importantly in the upcoming clonotyping chapter, we will use the following formal
notation for the term clonotype. Given two sets of reference V and J segments

SV =
{
sV1 , . . . , s

V
NV

}
sVi ∈ Σ∗

DNA

SJ =
{
sJ1 , . . . , s

J
NJ

}
sJi ∈ Σ∗

DNA

we describe a clonotype as a tuple

c =
(
cV , cJ , cCDR3

)
, where

cV ⊆ {1, . . . , NV }
cJ ⊆ {1, . . . , NJ}

cCDR3 ∈ Σ∗
DNA.

With cV = {n} we indicate that the recombined gene contains the nth V gene segment
sVn , allowing for multiple assignments to incorporate potential ambiguities in the data.
Furthermore, we define a clonotype repertoire (C,F) as a collection of such clonotypes
C = {c1, . . . , cN} with associated absolute frequencies F = {f1, . . . , fN}. Ideally,
in a measured clonotype repertoire every clonotype would have a unique V and J
segment assigned and the associated frequencies would reflect the number of cells
with that clonotype in the given sample. In practice one has to deal with gene segment
ambiguities that cannot be resolved due to technical limitations and use abstract
quantities such as read counts or UMI counts as clonotype frequencies, as described in
Section 2.4.3.

In the case of immunoglobulins, this clonotype definition is insufficient, since the V
and J segment component of the recombined gene cannot be described by the reference
sequence due to somatic hypermutations. This can easily be accounted for by adding
the modified gene sequences or a representation of the modifications such as a CIGAR
string [45]. We will however neglect this, since it does not have any implications on
the clonotype annotation method described in the following chapter.
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4. Clonotyping & Repertoire
Generation

The first post-experimental step of repertoire sequencing involves the handling of the
raw data and its transformation into a dataset that allows for higher level clonotype
repertoire analyses. In this chapter, we will define the task of clonotyping, i.e. exactly
that initial data analysis step and name the challenges in properly solving that task. We
then present an algorithmic workflow to solve the clonotyping problem. To evaluate
the method, a simulation approach was developed in order to generate artificial Rep-
Seq reads and finally an evaluation of the clonotyping method is performed based on
both simulated as well as real datasets.

4.1. Introduction

In principle, the raw reads already represent the investigated antigen receptor reper-
toire. As described in Section 2.4.4, the underlying experimental protocol will result
in identical reads (or read pairs) for every cell carrying the same antigen receptor
gene under ideal conditions, i.e. assuming perfect primer performance and no other
technical errors. Thus, associating every observed sequence with its frequency could
be considered a valid representation of an immune repertoire.

In practice, analysis pipelines aim to identify the gene components, i.e. the V and J
segments and the CDR3 sequence. We refer to this as clonotyping, i.e. we use this term
to describe the process of correctly assigning these components to every read. This
common practice has several reasons:

• Technical errors

Even after thorough purification, the experimental steps undertaken to enrich
the target gene will amplify non-target DNA to some extent, e.g. from cross
reacting PCR primers. These fragments will be sequenced alongside the actual
antigen receptor gene sequences. Annotating every sequence with its antigen
receptor specific features facilitates the removal of sequences that do not show
the expected sequence patterns. Additionally, in particular in the case of T cell
receptors, defining the clonotype based on the most likely V and J segments
eliminates false clonotype diversity originating from sequence errors in those
regions of the read.
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4. Clonotyping & Repertoire Generation

• Non-functional recombinations

Especially DNA based protocols will potentially also enrich non-functional,
silenced V(D)J recombined gene sequences in addition to the functional gene on
the homologous chromosome. With a proper annotation of the sequences, one
can filter out gene sequences that show frame shifts or stop codons and therefore
drastically reduce the impact of the silenced genes.

• Receptor similarity

As briefly discussed in Section 2.3.2, the different regions of the antigen receptor
protein and thus their corresponding regions in the underlying, recombined gene,
fulfill different functions. Therefore, depending on the application, it makes sense
to group the observed receptor genes according to their gene features. In some
studies, receptors are aggregated based solely on their CDR3 region [46, 47] or
based on identical V and J segments and similar CDR3 regions [48].

• Compression

A more practical advantage of handling clonotype information in an annotated
fashion is the high degree of redundancy across even distinct gene recombinants.
Most of the gene is conserved, even in the case of hypermutated IG genes.
Therefore, storing IDs of the incorporated V and J gene segments, the CDR3
region and a record of the observed differences is significantly more compact.

We developed a method to solve the clonotyping task that not only annotates every
read individually, but furthermore takes the information from all observed reads into
account in order to generate an error corrected repertoire. Additionally, we are able to
incorporate paired end reads (see Section 2.4.4), to improve the V segment assignment,
as well as unique molecular identifiers (see Section 2.4.3) for the correction of sequence
errors and the generation of bias normalized repertoires. Furthermore, some existing
methods do not compute the alignments between the germline gene segments and
recombined gene, but solely rely on aggregating index structures to report the most
likely gene segment. In contrast, our method reports those alignments while still being
highly performant with respect to the required computation times. This makes our
method applicable to the analysis of IG genes, where somatic hypermutations are of
interest, but also for the potential detection of gene segments or gene segment alleles
not present in the used reference database. The details of this method are described in
the following sections.

4.2. Method Overview

The interpretation of Rep-Seq data differs in many aspects from that of other common
next generation sequencing data. When we investigate the genomic variation of
an individual (whole genome sequencing (WGS), whole exome sequencing (WES)) or
differential gene expression based on RNA abundance (RNA-Seq), we map the reads
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Figure 4.1.: A simplified illustration of a multiple sequence alignment, obtained by
mapping reads of an individual against the human genome reference sequence in order
to study polymorphisms. Single sequence deviations can be accounted for by sufficient
redundancy (coverage), such that in a multiple sequence alignment positions that are
in agreement with the reference (1) as well as homozygous (3) and heterozygous (2)
variation can still be detected with a high degree of certainty, even though they contain
errors.

against a known reference such as the genome or transcriptome of the investigated
species using read mapping methods [49, 50, 51, 52, 53, 54]. With some exceptions,
the large majority of produced sequence data is expected to be identical to a known
reference. Where it isn’t, we can usually make quite strong assumptions about the
deviations. A human genomic variant, for example, should either occur on all (in the
homozygous case) or in about half (in the heterozygous case) of the reads covering the
affected location. Deviations that occur in just a few reads can safely be discarded as
technical artifacts.

These assumptions usually enable us to handle technical artifacts, such as sequencing
and PCR errors, by designing the experiment with a sufficient degree of redundancy,
i.e. read coverage. Figure 4.1 shows a simplified example of a multiple sequence
alignment of reads mapped against a reference as in WGS or WES experiments. We
can clearly see how the redundancy available through the read coverage can account
both for errors indicating deviations at positions that are actually in agreement with
the reference as well as positions that show homozygous and heterozygous (single
nucleotide) variations.
In antigen receptor repertoires, almost no assumptions can be made about the

frequency distribution of clonotypes or about their CDR3 regions. Naïve cells are
likely to occur as singletons, while subpopulations specific for an antigen originating
from a recent infection or vaccination will probably be dominant in the repertoire -
and many intermediate stages occur due to the complex behavior of proliferation and
decline depending on various factors. Furthermore, biologically generated clonotypes
that differ in a few or even just single nucleotides in the CDR3 region are expected
to occur even though the theoretical space of clonotypes is extremely large. This
is due to the selective pressure involved in the repertoire generation process in the
thymus (see Section 2.3.6). We therefore cannot handle technical errors as in other
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Figure 4.2.: A TRB Rep-Seq read (top row) aligned to the best matching TRBV and
TRBJ gene segments (bottom row). The mismatches in the non-CDR3 part of the read
can be classified as technical artifacts, whereas the mismatches within the CDR3 region
can either be technical or biological variation.

NGS experiments.
Figure 4.2 shows an example for a pairwise alignment between a TRB Rep-Seq

read and the best matching TRBV and TRBJ gene segments and how technical errors
at different positions might affect the clonotyping results. The mismatches located
outside the CDR3 regions are likely to be caused by technical errors, which can be
inferred because the correct sequence of those regions is known through the germline
reference sequences. On the other hand, the mismatches located within the CDR3
region are expected due to the random removal and addition of nucleotides during the
recombination process (see Section 2.3.3). We cannot assume that the germline sequence
within this region is actually incorporated in the gene during the recombination and
therefore have to find other means to account for technical errors within the CDR3
region than a reference comparison.

The challenge to infer quantitative information while we can make no assumptions
about the individual clonotype abundances combined with the necessity to detect
de-novo sequence content while the degree of sequence variation and the number of
variants is unknown, makes this problem different from standard NGS applications.
We therefore developed, implemented and evaluated a novel approach for the proper
annotation of Rep-Seq reads, which consists of the following steps:

1. Read preprocessing

Initially, a quality filter based on the quality score reported by the sequencing
platform is applied. Reads with an average per base quality below a user defined
threshold qmin are discarded. Identical reads are then collapsed, while the read
count information is kept for the subsequent steps.

2. UMI clustering of similar reads

If unique molecular identifiers were incorporated during the experimental prepa-
ration of the sample, the reads are clustered based on their barcode and sequence
similarity. The process is described in the upcoming Section 4.3.
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3. V and J segment assignment

The main step of the clonotyping phase is the identification of the incorporated
V and J segments by comparing each read sequence with the sets of reference
sequences SV and SJ . The process is optimized to be feasible for a large number
of reads while remaining fully sensitive and exact. It is described in detail in
Section 4.4.

4. Identification of the CDR3 sequence

Using the information about the best matching V and J gene segments that have
been identified in the previous step, we define the CDR3 region based on where
the germline encoded Cys104 and Phe118 triplets align to the read. After the CDR3
region is defined, another simple filtering step is applied, ensuring that both
triplets are in-frame and that there are no stop codons in the CDR3 region. Unless
explicitly requested otherwise by the user, those reads are discarded since they
most likely originate from a non-functional recombination (see Section 2.3.3).

5. Repertoire generation and error correction

After all unique reads have been clonotyped, a preliminary repertoire is defined
based on the original number of non-unique reads that yield the same clonotype
information, defined based on the incorporated V and J segments and the CDR3
region. This preliminary repertoire is then post-processed to account for am-
biguous segment assignments and sequencing and PCR errors. The details of the
repertoire post-processing are described in Section 4.5 f.

The main steps from the raw read data to a clonotype repertoire are described in
the following sections.

4.3. UMI Based Read Clustering

As described in Section 2.4.3, the ability to correct sequence errors and PCR induced
frequency biases can be greatly enhanced if the DNA fragments are labelled with
unique molecular identifiers (UMIs) in an early stage of handling the templates.

We incorporated the ability to use UMI information into the clonotyping workflow.
The preprocessed raw data prior to this step are unique pairs of reads and UMIs
(r1, . . . , rn and u1, . . . , un) and the corresponding counts f1, . . . , fn. We then inspect
for every read rref every other more abundant read rtar, i.e. fref < ftar, starting from
the most abundant target read rtar descending to the least abundant. For every such
pair we check whether the barcodes are identical or similar up to a hamming distance
of δUMI and whether the read sequences have an error rate of at most εUMI (based on
the number of edit operations). If both conditions are fulfilled, we consider rref an
erroneous version of rtar, re-assign the counts and inspect no further rtar for this read.
We additionally constrain the maximum frequency ratio between rref and rtar, i.e.
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1: function UMICorrection(R = r1, . . . , rN ,F = f1, . . . , fN ,U = u1, . . . , uN )
2: pairs← ∅
3: for i← 1, . . . , N do ▷ Parallel execution
4: L← Length(ri)
5: for j ← N, . . . , (i+ 1) do
6: if fi/fj > rUMI then
7: Break ▷ Subsequent reads have lower counts
8: else if dH(ui, uj) > δUMI then ▷ UMI comparison
9: Continue
10: else if distE(ri, rj)/L ≤ eUMI then ▷ Read comparison
11: pairs← pairs ∪ {(i, j)}
12: Break ▷Match found
13: end if
14: end for
15: end for
16: SortAscending(pairs, by = second component)
17: for all (i, j) ∈ pairs do
18: fj = fj + fi
19: fi = 0
20: end for
21: end function

Algorithm 4.1: The UMI correction method. Given a list of readsR ordered from the
least abundant to the most abundant, the corresponding frequencies F ∈ N+ and the
corresponding list of UMI sequences U , the method modifies the frequency vector F
to reflect the count reassignments performed during the correction. δUMI and eUMI are
user specified parameters.

fref/ftar ≤ rUMI with 0 < rUMI < 1. δUMI, εUMI and rUMI being user-defined parameters.
The approach is outlined in Algorithm 4.1. By separating the actual modifications

from the computationally expensive comparisons we can easily parallelize the latter.
Since we are not interested in the actual alignments between the reads but only in their
edit distances, we can furthermore make use of an efficient bit parallel algorithm [55] to
compute the distance, which will be described in more detail in Section 4.4.4. Also note
that after the comparison step (Line 16 ff.) we iterate the pairs of unique reads from
the least abundant to the most abundant target read, allowing subsequent corrections
reflecting the branching nature of subsequent PCR errors to be taken into account.

4.4. V and J Segment Assignment

As described in Section 2.4.4, the primary clonotype information is contained in a read
spanning parts of the V and J region as well as the intermediate CDR3 region of the
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Figure 4.3.: Two TRB Rep-Seq reads, both encoding clonotypes incorporating the gene
segments V19 and J1-4. The clonotype encoded in the upper read has a CDR3 length
of 45 nt, the one encoded in the lower read of 33 nt. The lower read therefore contains
additional V segment information, highlighted in dark gray.

gene. We defined this read as the V(D)J read which is optionally complemented by a
second read covering an additional part of the V region from the 5’ end of the gene
referred to as the V-read. In this section we will describe how we identify the gene
segments based on the V(D)J read using efficient filtering and alignment algorithms.
We will see how the obtained information can be further refined using the additional
V-read in Section 4.4.6.

4.4.1. Overview

In our method design, we assume that the V(D)J read does not contain any additional
sequences, i.e. artifacts such as sequencing adapters have been clipped off with an
appropriate method [56, 57, 58] if necessary. Also, if the protocol includes sequence
originating from a neighboring intron (DNA based approach) or C-segment (RNA based
approach) downstream of the J segment, it has been removed prior to the analysis.

Our aim is to identify the V and J segments incorporated in the recombined gene by
comparing each read to the set of germline reference sequences. Recall that the V and
J segments contain well conserved motifs embedding the triplets encoding for Cys104
and Phe118, as described in Section 2.3.3. While these define the boundaries of the
CDR3 region, the germline segments contain sequence beyond that point, i.e. which
contributes to the genes CDR3 region. This sequence is of different lengths in different
germline gene segments and additionally undergoes modifications to various degrees.
In order to obtain a distance measure that does not prefer certain gene segments due
to their longer germline CDR3 component, we only consider the non-CDR3 part of
the gene segments when comparing the pairwise alignments. We refer to the V gene
segment up until and including the Cys104 triplet as well as to the J gene segment from
the Phe118 triplet on as the CDR3-truncated gene segment sequences.

We also have to keep in mind that two reads will mostly contain a different amount
of V segment, even if the reads are of the same length and the underlying gene uses
the same V segment. This is due to the varying length of the CDR3 region, as shown
in Figure 4.3.
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With the above assumptions in mind, aligning the CDR3-truncated gene segment
sequences against the V(D)J read requires an overlap alignment as described in Sec-
tion 3.3.8, i.e. we don’t want to penalize trailing gaps on the V segment sequence where
the read covers the CDR3 and J segment sequences and also not leading gaps on the
read where the V region is not covered. The same applies inversely for the J segment.
A naïve solution to identify the V and J segment incorporated in a given V(D)J

read would be to compute the pairwise overlap alignment score between every gene
segment and every read and assign those to the read that yield the best alignment
score. However, due to the high number of computationally expensive comparisons,
this is a relatively inefficient approach. In the following sections we will devise a more
efficient strategy.

4.4.2. Segment Core Fragments

To solve the V and J segment assignment problem, we divide it into a pattern matching
problem and a banded overlap alignment problem. The pattern matching problem is to
find approximate occurrences of a short sequence, the pattern, in a longer sequence,
the text. More precisely, given a set of patterns we want to identify those patterns with
a semi-global alignment distance (see Section 3.3.9) below a given threshold and their
corresponding regions in the text. This problem is intensely studied in the context
of biological sequences and therefore fast methods to enhance the performance of
our segment identification problem already exist. Note that inversely to the common
problem of mapping reads against a reference genome, we are looking for occurrences
of short reference sequences inside the reads.

We design the pattern matching problem by defining a region in the reference gene
segment sequences that we expect to find as a whole in any read sequence originating
from a clonotype that incorporates it. We refer to these regions inside the V and J
segments as segment core fragments (SCFs). The location of the SCF within the gene
segment given a length LV |J

SCF is defined such that it contains the LV |J
SCF nucleotides

adjacent to the CDR3 region, including the boundary triplets encoding for Cys104 and
Phe118:

scf(sVi ) := sVi [p
Cys
i − LV

SCF + 3, pCysi + 2] ∀i ∈
{
1, . . . , |SV |

}

scf(sJi ) := sJi [p
Phe
i , pPhei + LJ

SCF], ∀i ∈
{
1, . . . , |SJ |

}

where sV |J
i denotes the ith V or J segment and pCys|Phei denotes the Cys / Phe encoding

triplet position of the ith V or J segment. An example for four V segments is shown in
Figure 4.4.
Since the segment core fragments (i.e. our patterns) will all be of equal length, we

eliminate the need for distance or score normalization and maintain the ability to use
the edit distance scoring scheme. Note that the SCFs SV

C and SJ
C are not necessarily
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Figure 4.4.: An excerpt from the four human TRBV gene segments 1, 2, 3-1 and 4-1
(from top to bottom). We define the segment core fragment to be a region of fixed
length (in this example LSCF = 23nt) starting inside the V segment and ending in the
Cys104 triplet.

unique especially for small values of LSCF, i.e.

SV
C = {scf(s) | s ∈ S}

⏐⏐SV
C

⏐⏐ ≤
⏐⏐SV

⏐⏐
SJ
C = {scf(s) | s ∈ S} .

⏐⏐SJ
C

⏐⏐ ≤
⏐⏐SJ
⏐⏐

Based on the SCF definition, we now partition the gene segment assignment problem
into the following steps, which are applied for every read to be clonotyped:

• Filtering

Initially, we apply a filtering method that reduces the search space of SCF vs.
read alignments that have to be computed.

• Verification

Every SCF proposed by the filter is verified against the proposed area within the
read and only those are kept that yield an alignment score within user specified
parameters.

• CDR3-truncated gene segment alignment

For every valid occurrence of an SCF within the read, we compute the full overlap
alignment between the CDR3-truncated gene segment sequences defining the
SCF and the read. We can use the identified location in combination with an
error threshold to narrowly band this alignment.

The three stages of the gene segment assignment are described in more detail in the
following sections.

4.4.3. Filtering

The goal of the filtering step is to reduce the search space for the semi-global alignments
between the SCFs and the reads on two levels: It reduces the number of SCFs that have
to be aligned against the read and furthermore, for each SCF, limits the area within
the read that has to be considered. To accomplish this, we make use of SWIFT, a fully
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sensitive alignment filter developed by Rasmussen et al. [59]. The filter can be used to
reduce the search space for the following problem:

Problem 4.1. Given a text t and a pattern p of length L = |p| ≤ |t|, find all substrings
t′ of t, s.t. distE(t′, p) ≤ e.

We refer to t′ as an e-match of p in t. To accomplish the search space reduction, the
authors make use of the following q-gram counting lemma:

Lemma 4.1. Let t′ be a substring of a text t, p a pattern of length L = |p| ≤ |t| and
q ∈ N+. If distE(t′, p) ≤ e, there exist at least (L+ 1)− q(e+ 1) q-hits within e+ 1
consecutive diagonals within the corresponding edit matrix.

Proof. Given a string p of length L, there are L− q + 1 possible starting positions for
substrings of length q. For any position in p, at most q such q-grams overlap at that
position. Thus, the distribution of e errors can affect at most q · e q-grams, leaving
(L+ 1)− q(e+ 1) q-grams intact. Therefore, if there is a e-match of p in a text t, the
corresponding edit-matrix will contain at least that many q-hits. For every insertion or
deletion, the q-hits continue on an adjacent diagonal, thus they are distributed across
at most e+ 1 diagonals.

A key accomplishment of the SWIFT method is the generalization of Lemma 4.1 to
pairwise local matches of a minimum match length n0 and with a relative maximum
error rate ε. The algorithm then defines lower bounds for the number of q-hits within
parallelograms in the edit-matrix, that do not necessarily span either dimension entirely.
The authors furthermore developed a method to enumerate such parallelograms

based on a q-gram index built over one of the sequences. Given the alphabet Σ and
the q-gram length q, the index consists of a lookup table L that points to a list of
starting positions of g in the sequence for all g ∈ Σq . After the index was generated, a
window is slid across the second sequence, keeping count of the number of q-hits in
all overlapping parallelograms of the target size. Whenever a parallelogram reaches
the threshold, a candidate region is reported.

Since we are interested in semi-global matches of the segment core fragments within
the read, we omit the generalization to local matches and instead use a simplified
version of SWIFT solely based on Lemma 4.1, as previously shown by Weese et al. [52]
in the context of read mapping. Keeping track of the q-hit counts becomes simpler, as
we are only interested in parallelograms spanning the pattern entirely, i.e. consecutive
groups of full length diagonals as previously described. The computational overhead
for opening and closing parallelograms (i.e. the respective q-hit counters) along the
pattern can therefore be avoided.
Note that the number of adjacent diagonals given by Lemma 4.1 is a lower bound -

obviously the same minimum number of q-hits is also found in a larger group of
diagonals. As long as the inspected groups of diagonals overlap by at least e+ 1, the
filter algorithm remains to be fully sensitive. The authors make use of this in order
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Figure 4.5.: A simplified visualization of the edit matrix between an excerpt from
an input read and the SCF for TRBV4-1. The SCF (LV

SCF = 20) matches with an edit-
distance of 3. Each dot represents a match, matches of size q ≥ 3 are connected. Given
Lemma 4.1, with a maximum error e = 3, the algorithm would look for windows
spanning at least e+ 1 diagonals with (L+ 1)− q(e− 1) = 9 or more q-hits. In this
example, the window width is set to 11 ≥ (e+ 1) and the only window exceeding the
q-hit threshold is the one containing the desired alignment.

to reduce the number of q-hit counters that have to be maintained during the search.
Instead of e+ 1, they inspect groups of size ∆+ e+ 1. If ∆ is chosen as a power of 2,
the addressing of the counters can be further optimized using bit operations. These
improvements trade filter specificity, but do significantly reduce the time and space
requirements of SWIFT.

We initially build the required q-gram index structure over the set of SCF sequences
and then slide along each read sequence to obtain the filter results. A visualization
of the edit matrix between a read and an SCF with the corresponding q-hit counters
per diagonal (for illustration) and per group (as actually implemented) is shown in
Figure 4.5.
Segment core fragments that do not yield a group of diagonals exceeding the q-hit

threshold are not investigated further. Otherwise, the corresponding region within the
read is validated with respect to the given SCF as described in the next section. Note
that the filter might yield multiple, disjoint regions within the read. If that is the case,
we validate the entire region enclosed by the first and the last reported read position.
This potentially reduces the specificity of the filter step, but does not have a major
impact in practice due to the relatively high specificity of the SCF sequences as well as
the high efficiency of the subsequently used verification algorithm.

51



4. Clonotyping & Repertoire Generation

4.4.4. Verification

Given the read sequence and the reduced set of SCFs, each associated with a potential
target region within the read, we now need to validate whether each SCF yields a
semi-global alignment score within the target region and the user specified score
constraint. At this stage, we use an efficient bit-parallel string comparison method
proposed by Myers [55]. The algorithm solves the optimization problem described in
Section 3.3.2, but only provides the score and no option to trace back the corresponding
alignment. When used in its semi-global form, one can obtain the alignment score for
every end-position of the pattern in the text.
The algorithm computes the edit matrix column by column and bit-parallel over

the rows. For that purpose, the columns of the edit matrix are encoded in multiple
boolean vectors. The encoding exploits the fact that for the edit distance the differences
between any entry and the three previously computed adjacent entries in the matrix
are constrained. Given a fixed alignment column j, the algorithm uses the following
bit vectors of lengthm:

Vertical positive difference V Pj[i] := 1(D(i, j)−D(i− 1, j) = 1)

Vertical negative difference V Nj[i] := 1(D(i, j)−D(i− 1, j) = −1)
Horizontal positive difference HPj[i] := 1(D(i, j)−D(i, j − 1) = 1)

Horizontal negative difference HNj[i] := 1(D(i, j)−D(i, j − 1) = −1)
Diagonal zero difference D0j[i] := 1(D(i, j)−D(i− 1, j − 1) = 0)

This representation of the edit matrix is based on the fact that the difference of hori-
zontally or vertically adjacent cells is either -1, 0 or 1 [60, 61]. The bit vectors partially
encode the same information redundantly and are only calculated as intermediate
results in order to reduce the number of required operations. Additionally to the
binary encoded DP matrix columns, the algorithm uses a pattern mask PM for every
character c ∈ Σ, encoding its occurrences in the pattern p:

PMc[i] = 1(p[i] = c) ∀ c ∈ Σ, i ∈ {1, . . . ,m}

The recurrence of the algorithm for the computation of the columnsD(i, 1) toD(i, n)
is shown in Algorithm 4.2. The initialization of the bit vectors representing D(i, 0)
is straight forward from Equations 3.1 and 3.7. The overall time complexity of the
algorithm is in O(⌈m/w⌉ · n), where w is the machine word length of the underlying
architecture, i.e. for patterns shorter than w the runtime is inO(n). For our application
this means that the runtime remains linear in the length of the proposed target region
within the read, as long as we choose LV

SCF, L
J
SCF ≤ w. Note that there is no critical

constraint induced by the alphabet size here, since the bit operations are not executed
on the strings but the virtual contents of the edit matrix.
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4.4. V and J Segment Assignment

1: for j ∈ {1, . . . , n} do
2: D0j ← (((PMt[j] & V Pj−1) + V Pj−1) ∧ V Pj−1) | PMt[j] | V Nj−1

3: HPj ← V Nj−1 | ∼ (D0j | V Pj−1)
4: HNj ← D0j &V Pj−1

5: V Pj ← (HNj << 1) | ∼ (D0j | (HPj << 1))
6: V Nj ← D0j & (HPj << 1)
7: if HPj & 10m−1 ̸= 0 then
8: scorej = scorej−1 + 1
9: else if HNj & 10m−1 ̸= 0 then
10: scorej = scorej−1 − 1
11: end if
12: end for

Algorithm 4.2: The bit-parallel recursion step of Myers algorithm to compute the
jth column of the DP matrix, given a pattern of lengthm, a text t of length n and the
initialized bit vectors.

4.4.5. CDR3-Truncated Gene Segment

For every matching SCF in SV |J
C∗ ⊆ S

V |J
C reported by the verification algorithm we

now compute a narrowly banded overlap alignment (see Section 3.3.8) between the
read and any CDR3-truncated gene segment that defines that SCF, i.e. for all

sV ∈ SV
∗ :=

{
sV
⏐⏐ scf(sV ) ∈ SV

C∗
}

sJ ∈ SJ
∗ :=

{
sJ
⏐⏐ scf(sJ) ∈ SJ

C∗
}
.

(4.1)

The band is defined by the location of the SCF within the segment reference (which is
well defined as described in Section 4.4.2), the location of the SCF within the read as
reported by the verification step and two additional parameters, εV and εJ , defining
the maximum error rate tolerated in the read to gene segment overlap alignment.
Since the overlap length for each read and gene segment is defined after the SCF has
been matched, the error rate can be transformed into an upper bound for the absolute
number of errors and thus into an alignment band.

After all relevant gene segments have been overlapped with the read, the best scoring
gene segment is reported as the one incorporated in the gene. If multiple gene segments
score equally, they are all reported. Therefore, the output of the segment assignment
step are two sets of gene segment IDs, cV and cJ , for each read.

4.4.6. Non-Overlapping Paired End Sequencing

The V and J segment assignment procedure described up until here covers the analysis
of the V(D)J read. As stated in Section 2.4.4, in a non overlapping paired end sequencing
scenario we have an additional V read covering an upstream region of the V segment.
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4. Clonotyping & Repertoire Generation

If such information is available, we use it to improve and speed up the V segment
identification within the V(D)J read. We again use a combination of the SWIFT filter
and the bit parallel verification algorithm to derive a set of V segments that score
optimally, this time against the V read. The roles are switched in this case, i.e. the
V read is the pattern and the V gene segments are the text to conduct the filtering
and verification against, similar to the classical read mapping problem. Given a set of
V segments identified based on the V read, cV ∗, we then constrain the V(D)J read V
segment identification. The filtering and verification steps are performed as previously
described, but on limited sets of segment core fragments SCV

∗ defined as

SCV
∗ =

{
scf(s) | s ∈ cV ∗} .

The incorporated gene segments are then defined as described in Section 4.4.5, but
instead of investigating all V segments that define the verified SCFs as shown in
Equation 4.1, we only consider alignments against V segments previously identified by
comparing the V read, cV ∗.
Altogether the V read inclusion therefore reduces the V gene segment ambiguity,

i.e. resolves cases where the V segments cannot be uniquely identified based on the
V(D)J read. It furthermore improves the performance of the V(D)J read based segment
identification by decreasing the search space size, however, at the additional cost of
analysing the V read.

4.5. Repertoire Error Correction

As initially discussed in the introduction, we have two main types of errors that lead to
false clonotyping, PCR and sequencing errors. Redundancy (coverage) cannot be used
to avoid such errors in the same way as it could be done in many other sequencing
applications (see Section 4.2). Additionally, filtering away reads with a low sequencing
quality score can strongly disturb the quantitative information obtained from Rep-Seq
samples, as shown in Figure 4.6, due to the biased nature of sequencing errors.
Unique molecular identifiers (see Section 4.3) are certainly the most powerful tool

to avoid erroneous clonotyping and furthermore obtain bias-free frequencies for the
identified clonotypes. However, UMIs are an additional experimental effort and fur-
thermore take up a part of the available read length. In practice, a lot of samples are
generated without UMI adapters. We therefore developed an independent strategy to
correct sequence errors based on the preliminary clonotype repertoire derived from
unfiltered (or less strictly filtered) reads. Reads that can be rescued using this strategy
are then not discarded and contribute to the final repertoire. The method is based on a
hierarchical clustering approach and is fully parametrizable with respect to the desired
degree of correction. We refer to this as standalone error correction.
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Figure 4.6.: The top 20 clonotypes and their frequencies obtained from a low quality
Rep-Seq sample when applying an initial read quality filter including only those reads
with an average quality ≥ 10 (orange) and ≥ 30 (blue). The stricter quality threshold
of 30 strongly affects the clonotype order and almost removes the most dominant
clonotype.

4.5.1. Basic Idea

Sequencing and PCR errors that occur outside the CDR3 region would decrease the
pairwise alignment score between the gene segments and the read. They do however
not necessarily falsify the identification of the gene segment, since the errors would
have to systematically mimic the sequence of another gene segment to do so. The
procedure therefore solely aims to correct errors inside the CDR3 region, i.e. targets
clonotypes that share the same V and J segment information and have nearly identical
CDR3 regions. We define the similarity of two CDR3 regions based on its Hamming
distance, i.e. require the two sequences to be of the same length. Since clonotype
calls with CDR3 regions out of frame are discarded, it is highly unlikely for sequence
artifacts to cause a false clonotype call through insertions and deletions.

As described in Section 1.2.2, sequencing errors potentially come with a quality score
indicating that a base call and thus a detected clonotypemay be false. On the other hand,
PCR error induced clonotypes cannot be distinguished from real, but low frequency
ones. Our approach therefore distinguishes between the two error types and allows
the user to decide how far the error correction should go with respect to either type of
error. The method is furthermore guided by a majority vote, i.e. we assume that any
experimental step (PCR, sequencing) will produce the desired, error-free outcome in
most of the cases and that errors occur less often. The main idea of the error correction
strategy is therefore to identify pairs of clonotypes that fulfill clustering criteria based
on the ideas described above and to assume that the less frequent clonotype of the two
is a technical artifact of the more frequent clonotype.
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4. Clonotyping & Repertoire Generation

The exact formulation of the clustering criteria as well as the actual clustering strat-
egy performed on the identified clonotype pairs that fulfill those criteria is described
in the following sections.

4.5.2. Clustering Criteria

Given a major clonotype cH with a count fH and a minor clonotype cL with a count fL
where fH > fL, we consider cL to be an erroneous version of cH and apply a correction
if all of the following conditions are met.

Frequency ratio We expect the minor clonotype to occur substantially less often
than the major clonotype. However, due to the systematic nature [62, 7, 63, 64] of both
sequencing and PCR errors, a hard threshold on the abundance of the minor clonotype
is not applicable. We therefore require that

fL
fH

< rmax 0 < rmax < 1,

i.e. that the ratio of the frequencies of both clonotypes does not exceed rmax.

Gene segment match The clonotypes have to match with respect to their identified
V and J segments. In order to be maximally sensitive when choosing the cluster targets,
we consider an overlap in the sets of identified gene segments to be sufficient, i.e.

cVL ∩ cVH ̸= ∅ ∧ cJL ∩ cJH ̸= ∅.

CDR3 sequence similarity The critical choice is that of the CDR3 sequence simi-
larity, i.e. whether we consider differences in the CDR3 sequence as true biological
or falsely induced technical diversity. As initially stated, we want to allow the pa-
rameterized correction of both PCR and sequencing errors. To be able to evaluate the
preliminary clonotypes based on the sequencing quality scores, we keep track of the
mean quality score over all contributing reads of every position inside the CDR3 region.
Given a clonotype c, we denote the mean quality score of the ith CDR3 position as
q(cCDR3i ). Given cL and cH with a CDR3 length of |cCDR3L | = |cCDR3H | = ℓ, let

E(cL, cH) =
{
i | cCDR3L [i] ̸= cCDR3H [i], i ∈ {1, . . . , ℓ}

}

be the positions at which the CDR3 sequences of cL and cH differ, i.e. |E(cL, cH)| =
dH(c

CDR3
L , cCDR3H ). Furthermore, let

Qlow(c) =
{
i
⏐⏐ q(cCDR3i ) ≤ t, i ∈ {1, . . . , ℓ}

}
, with

t =
ℓ

median
i=1

(
q(cCDR3i )

)
− smin ·

ℓ

sd
i=1

(
q(cCDR3i )

)
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4.5. Repertoire Error Correction

denote the positions within the CDR3 sequence of clonotype c, whose quality score
is at least smin standard deviations lower than the median quality score across the
CDR3 sequence. Given two error thresholds eq and es, the CDR3 sequence of the less
abundant clonotype cCDR3L then has to fulfill

max (0, |E(cL, cH) ∩Qlow(cL)| − eq) + |E(cL, cH) \Qlow(cL)| ≤ es

for cL and cH to be considered for clustering. In words, we allow up to eq errors in
cCDR3L that are explained by a drop in quality and additionally es errors that are not
explained by a drop in quality. If there are less than es errors with no quality drop but
more than eq quality related errors, the remaining “slots” for quality unrelated errors
can be used for errors at low quality positions.

Note that the CDR3 sequence criterion does not take the quality of the major clono-
type cH into account. This choice was made to account for the often systematic nature
of sequencing errors - if a position is likely to produce an erroneous call, many reads
have a low quality (but correct) base call at that position. We therefore solely rely on
the abundance when assessing whether a clonotype is more likely to be correct than
another, and not on the quality of the more frequent clonotype.

4.5.3. Clustering Algorithm

With the clustering criteria defined, we can now inspect all pairs of clonotypes within
the preliminary repertoire and identify those that fulfill the requirements on the
frequency ratio, gene segment match and CDR3 sequence similarity. Initially, all pairs
of clonotypes that fulfill the frequency ratio criterion are checked for the remaining
criteria and, if they are met, stored for later processing as shown in Algorithm 4.3.
After all pairs are defined, the redistribution of counts is performed from the least

frequent minor clonotype to the most frequent minor clonotype, allowing for a hi-
erarchical clustering: a clonotype c will only be subject to redistribution after all
clonotypes have been checked that might redistribute their reads to c. This hierarchi-
cal redistribution approach also resolves the potentially false redistributions towards
other low-quality clonotypes discussed above, as the reads can be redistributed further
towards the correct clonotype subsequently.

Example An example for this behaviour is shown based on three clonotypes taken
from a real dataset in Figure 4.7. The figure shows clonotype cL in comparison with
two other clonotypes cH,1 and cH,2 that have been identified as cluster targets for
cL. The read counts fulfill cH,1 ≫ cH,2 > cL. The CDR3 sequences of cL and cH,1

disagree only at position 27, at which cL has a low quality base. cL and cH,2 additionally
disagree at position 12, again with a low quality score associated in cL. The clustering
algorithm would therefore treat cL as erroneously generated from cH,1 and cH,2 and
redistribute fL between fH,1 and fH,2, maintaining their ratio. cH,2 is probably not the
true biological origin of cL, however, this choice remains without effect since later on,
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4. Clonotyping & Repertoire Generation

1: function ErrorCorrection((C,F)) ▷ (C,F) is sorted asc. by ct count
2: Mi ← ∅ ∀i ∈ {1, . . . , N} ▷ The major clonotype IDs for minor CT i
3: for i← 1, . . . , N do ▷ Parallel execution
4: for j ← N, . . . , (i+ 1) do
5: if fi/fj > rclust then
6: Break ▷ Subsequent reads have lower counts
7: else if CheckCriteria(ci, cj) then
8: Mi ←Mi ∪ {i}
9: end if
10: end for
11: end for
12: for i← 1, . . . , N do
13: F∗ ← {fj |fj ∈ F , j ∈Mi} ▷ Collect major ct counts
14: RedistCounts(fi,F∗) ▷ Redistribute minor count to major counts
15: end for
16: end function

Algorithm 4.3: The main error correction routine. The input of the routine is a
repertoire (C,F) of size N , sorted by the clonotype read counts, i.e. f1 ≤ f2 ≤ · · · ≤
fN . The clonotype pairs are processed in two stages. First, all pairs of clonotypes are
checked for the clustering criteria. Second, the clonotype read counts are redistributed
in a hierarchical fashion, from the least abundant to the most abundant clonotype.

1: function RedistCounts(fL,FH = fH,1, . . . fH,N )
2: SortDescending(FH ) ▷ Sort major clonotypes largest to smallest
3: for i← 1, . . . , n do ▷ First round of redistribution
4: f rel

H,i = fH,i/
∑N

j=0 fH,j ▷ Relative major ct freq
5: v = ⌊f rel

H,i · fL⌋
6: fH,i = fH,i + v; fL = fL − v;
7: end for
8: for i← 1, . . . , fL do ▷ Second round of redistribution
9: fH,i = fH,i + 1; fL = cf − 1;
10: end for
11: end function

Algorithm 4.4: The redistribution of clonotype read counts aims to maintain the
frequency ratio of the major clonotypes receiving the clonotype read counts. If the
ratios cannot be preserved perfectly, the redistribution favors larger clonotypes as a
target.
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Figure 4.7.: An example for a minor clonotype cL (center, CDR3 sequence shown
twice) and two valid major clonotypes cH,1, cH,2 (top and bottom) taken from real
sequencing data, with the corresponding frequencies fulfilling fH,1 ≫ fH,2 > fL.
Alongside the pairwise alignments between the CDR3 sequences of cL and both cH,1

and cH,2 the mean sequencing quality values for each base of each CDR3 sequence are
shown. The threshold for low quality bases for smin = 1 is indicated in red.

when cH,2 is inspected as a minor clonotype, its read count will be distributed further
to cH,1.
When read counts are redistributed from one minor clonotype to multiple major

clonotypes, the read count ratios of the major clonotypes are preserved as good as
possible. In borderline cases, more abundant major clonotypes are preferred. The exact
redistribution strategy is shown in Algorithm 4.4.

4.6. Repertoire Finalization

Lastly, some final modifications to the repertoire generated so far are made, aiming to
remove remaining artifacts from the preliminary clonotype repertoire (C,F).

4.6.1. Segment Ambiguity Resolution

As stated in Section 4.4.5, equally scoring gene segments lead to multiple gene segment
assignments for single clonotypes. In many cases, this is unavoidable due to experimen-
tal constraints, e.g. depending on the primer design, read length and CDR3 length some
sets of gene segments might differ only in regions that are not captured. In other cases,
however, such ambiguities might be caused by technical artifacts or unspecific primer
hybridization leading to a shift in the captured sequence. This only affects a fraction
of the reads encoding the same clonotype and therefore might split the clonotype into
multiple clonotypes with a different number of gene segment assignments. The same
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effect can also be caused by a fallback mode implemented for paired end data: If a
V read is discarded due to a low average quality as described in Section 4.2, but the
corresponding V(D)J read is not, the latter is analyzed with the standard single end
routine. For some clonotypes this may result in a less precise V segment assignment
and thus cause a split situation as well.
To capture those resolvable ambiguities, we apply a routine similar to that of the

sequence error clustering described in Section 4.5.3, just that we now enumerate pairs
of clonotypes cL, cH ∈ C with equal CDR3 sequences cCDR3L = cCDR3H and a subset
relation in both segment sets, i.e.

cVL ⊆ cVH ∧ cJL ⊆ cJH .

At most one of the terms can be fulfilled by equality, since all clonotypes c ∈ C are
unique by definition. For every observed CDR3 sequence the corresponding clonotype
pairs are then ordered from large to small gene segment sets and iteratively redistributed
as previously described. The entire algorithm is described in Appendix A.1.

4.6.2. Removal of LowQuality Clonotypes

As initially stated in Section 4.5, the aim of the standalone error correction is to
preferably reduce the number of false clonotype calls by correction rather than by
filtering. This is of course not entirely possible, thus after we have exhausted all the
described methods, we remove remaining clonotypes c with

|cCDR3|
mean
i=1

(
q(cCDR3i )

)
< qCDR3min ,

where qCDR3min is a user defined parameter. To properly complement the initial read
filtering, the parameters should be chosen such that qreadmin < qCDR3min , i.e. to initially allow
more reads to go into the analysis and discard those clonotype clusters with low quality
CDR3 sequences after the correction has been exhausted.

4.7. Implementation

We implemented the clonotyping method described in this chapter in an application
called IMSEQ. It was implemented in C++ 14 as a command line utility, designed for
Unix-like systems. It uses SeqAn [65], a generic library for sequence analysis with a
strong focus on biological data, which provides implementations of a large variety of
string comparison algorithms such as the alignment filter and alignment computation
methods discussed in this chapter. IMSEQ furthermore supports multithreading to
execute time critical routines in parallel. In particular, the following methods are paral-
lelized: the pairwise read comparisons computed for the UMI based error correction
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as indicated in Algorithm 4.1, the main per read clonotyping routine described in
Section 4.4 and the standalone error correction as indicated in Algorithm 4.3.

The software was licensed under the GNU General Public License (GPL) Version 3, the
source code and binaries are freely available from www.imtools.org. The tool features a
variety of user-definable options and diagnostic outputs alongside the main clonotype
frequency information.

4.7.1. Gene Segment References

The most common set of reference sequences for the various germline components
of immunoglobulin and T cell receptor genes for a growing number of species is the
one provided by the International Immunogenetics Database (IMGT) [66], IMGT/Gene-
DB [67]. IMSEQ requires the reference sequences for the V and J gene segments of
the species and receptor chain of interest in a FASTA [68] file following a particular
annotation syntax within the FASTA IDs. Most importantly, the IDs have to specify
the position of the Cys and Phe triplets within each sequence. The exact format is
described in Appendix A.2. The publicly available IMSEQ releases already come with
pre-compiled reference files based on the IMGT/Gene-DB entries for human T cell
receptor α and β chains as well as for human immunoglobulin heavy and light chains.

4.8. Summary

In this chapter, we have described IMSEQ, an error-aware method to annotate reads
from Rep-Seq experiments and generate clonotype repertoires. It uses fast and robust
alignment algorithms to annotate the incorporated V and J segments to each input
sequence. The gene segment alignment is highly parametrizable, allowing the user
to configure the underlying algorithms depending on the experimental setup, data
quality and desired performance regarding the computational speed. At the same time,
the implementation comes with carefully chosen, thoroughly tested pre-defined or
automatically tuned parameter settings.
The application is able to process both single end and non-overlapping paired

end data. Data from protocols resulting in overlapping paired end data can easily
be integrated by either preprocessing them with a fusion tool for overlapping read
pairs [69] or by using the integrated trim function in IMSEQ to artificially reduce
the read lengths. IMSEQ is able to handle antigen receptor gene sequence data from
both T cells and immunoglobulins and from any species, as long as the corresponding
germline gene reference data is available.
We have furthermore described the effect of technical artifacts such as fluctuating

read abundances due to PCR amplification biases as well as sequence artifacts due
to PCR and sequencing errors. Two types of approaches were discussed and are
available in IMSEQ: a standalone error correction, that optionally takes into account
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single nucleotide quality scores from the underlying sequencing platform and a UMI
based error correction that can make use of UMIs if available.
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5. IMSEQ Evaluation

In this chapter we will briefly describe other clonotyping methods that have been
published and evaluate the performance of IMSEQ in comparison to those methods. A
main aspect of this evaluation will be an assessment of each method’s error correc-
tion capabilities. For this purpose we developed a simulation framework, which we
apply in order to generate Rep-Seq datasets under different conditions with respect to
sequencing and PCR errors. We will furthermore evaluate the available methods using
real, experimental data and assess the influence of some of IMSEQ’s parameters on its
performance.

5.1. Existing Methods

Multiple tools with partially different objectives exist in order to solve the clonotyping
problem. Prominent reference implementations that serve as de facto gold standards
for the sole per read annotation include those from the IMGT, i.e. V-QUEST [70],
and IgBlast [71], the clonotyper provided and maintained by the National Center for
Biotechnology Information (NCBI).

In this section, we will give a brief overview over existing tools and methods related
to the analysis of Rep-Seq data. We will then benchmark the performance of IMSEQ and
those tools with a comparable scope for various tasks and datasets, both on simulated
and real data. A summary of those methods and their features is additionally shown in
Table 5.1.

5.1.1. IMGT/V-QUEST

IMGT/V-QUEST [70] is a web-based clonotyping tool, designed for the detailed analysis
of single clonotypes. It is limited to 50 input sequences and can report various features
of each recombined gene sequence in a number of output formats such as plain text,
HTML pages or Microsoft Excel sheets. The reported features go beyond the V and J
segment alignments or the CDR3 sequence identification. They furthermore contain
a detailed analysis of the segment junctions, a mapping into the IMGT numbering
space [16], individual mutation statistics, etc. Thus, it is primarily designed for the
in-detail analysis of single or few gene sequences.
Some of the limitations were overcome when the high-throughput successor,
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TCR yes yes yes no no yes yes yes yes
IG yes no yes no no no yes yes yes

split PE yes no yes no yes no no no no

HTS data yes yes yes yes yes yes no no semi(1)

Multithread yes yes yes no no no no web web

UMI based yes no(2) no(2) semi(3) no no no no no
standalone yes yes yes no semi no no no no

IMSEQ

MITCR

MIXCR

Decombinator

TCRklass

VIDJIL

IgBlast

V-Quest

HighV-Quest

Supported data

Performance

Error correction

Table 5.1.: Feature comparison of available clonotyping tools. (1) HighV-Quest sup-
ports the submission of up to 500,000 input sequences. (2) The developers of MITCR
and MIXCR provide a separate tool [47] for the UMI based correction of NGS reads
which can be used to preprocess the data. (3) Decombinator only supports the exact
UMI protocol used in-house by the authors without further modifications to the source
code.

IMGT/HighV-QUEST [72], was made available. It again is implemented as a hosted
web service, requiring a one-time registration and the submission of the data to the
providers. Initially restricted to 150,000 sequences, since late 2013 up to 500,000
sequences can be submitted. Those limits still don’t allow for standard, deep high-
throughput repertoire capturing and the analysis times span between hours and days.
The output is still very detailed and with a per-gene focus. Neither of the tools actually
considers the repertoire as a whole, i.e. takes into account relationships between the
detected clonotypes for error or frequency correction. Consequently, UMI sequences
are also not supported. Every species for which the IMGT maintains a germline
reference database can be analysed.

5.1.2. IgBlast

NCBI’s IgBlast [71] is kind of the standalone, open-source pendant to the IMGT/V-
QUEST tools. It too stems from the low-throughput sequencing era of clonotype
analysis and reports detailed information for each input sequence without looking at
the clonotype repertoire as a whole. Besides the standalone tool, a web service [73] is
provided, which provides access to a subset of the IMGT maintained species. While
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the NCBI initially maintained its own database of germline TCR and IG sequences,
it now frequently synchronizes with the IMGT reference database and adds a few
pseudogenes not contained in the upstream IMGT reference. Despite the name, IgBlast
supports the analysis of both T cell receptor and immunoglobulin sequences. IgBlast
is implemented in C++, open source and public domain software as “United States
Government Work” under the terms of the United States Copyright Act.

5.1.3. MITCR

MITCR [74] is a standalone application, limited to the analysis of T cell receptor gene
sequences. It uses a fixed q-gram seed located at the Cys and Phe boundaries and
extends alignments for all reference segments both away from and into the CDR3
region. Matches and mismatches are scored differently for high and low quality bases,
with a fixed scoring scheme allowing values within {−2,−1, 1, 2}. The best matching
segment and every segment with an alignment difference of at most 4 to the optimal
one are reported. MITCR is furthermore capable of correcting technical errors. Re-
garding sequencing errors, reads are binarily classified as “high” or “low” quality reads.
Depending on the user, the low quality clonotypes can either be discarded or mapped
to the best matching high quality clonotype. For PCR errors, an edit-distance and
frequency ratio based approach is implemented. MITCR defines clonotypes as identical
when they share the same CDR3 sequence, i.e. it is not capable of distinguishing clono-
types with identical CDR3s but different V and / or J segments. MITCR is implemented
in Java, open source and licensed under the GPL v3.

5.1.4. MIXCR

The successor of MITCR, MIXCR [75], is able to analyse both T cell receptor and
immunoglobulin genes. It is also written in Java, freely available and open source.
The V and J segment assignment now uses a seed based filter [76] and a refined error
correction strategy that takes the exact error positions into account. Also the CDR3-
defined clonotype restriction was lifted. MIXCR is open source and licensed under a
custom license.

5.1.5. TCRklass

TCRklass [77] is yet another q-gram based clonotyper. It builds a q-gram index over the
V and J reference sequences and then counts the number of matching q-grams in each
read. The V and J segments that yield the most hits are assigned. The CDR3 region is
then defined strictly based on the q-hit location for those q-grams that incorporate the
Cys and Phe motifs. The error handling is limited to the removal of reads that are likely
to yield a false CDR3 region. Reads with only high quality bases in the CDR3 region are
always accepted, whereas reads with a low quality base in the CDR3 region are dropped
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if no identical sequence exists among the high quality cohort. Unique clonotypes are
defined as unique combinations of V segments, J segments and CDR3 regions. As the
name suggests, the tool is limited to the analysis of TCRs, most importantly because
no alignments between the input sequences and the V and J segments are computed,
making an assessment of somatic hypermutations impossible. TCRklass is implemented
in Perl and C++, freely available and licensed under the GPL v3.

5.1.6. Decombinator

Decombinator [78] is a Python based clonotyper, freely available and open source. It
performs the V and J segment matching using the exact pattern matching algorithm
by Aho and Corasick [79]. The approach is based on unique substrings for each
reference gene segment, which are searched for using the exact matching algorithm.
To incorporate errors, the authors extended this approach to allow a hamming distance
of at most one. The standard output comprises a custom clonotype definition that
consists of five features, V ID, J ID, number of V errors, number of J errors and the
sequences of the non-V, non-J parts of the CDR3 region. The software does, however,
offer an option to postprocess the data and recover the traditional V, J, CDR3 clonotype
information. Newer versions of Decombinator support the use of UMIs, however,
strictly bound to the in-house UMI protocol used by the authors, who state that the
method might work on other protocols after some modification to the python code.
The sequencing and PCR error correction in Decombinator is limited to the germline
encoded regions of the gene.

5.1.7. VIDJIL

Another tool that comes with its very own definition of a clonotype is VIDJIL [80, 81].
Its clonotyping method is based on a q-gram index which stores every q-gram that
occurs among the reference gene segments as either unique V, unique J or ambiguous
V/J. Every read is then inspected for matching q-grams from the pre built index and
checked for consistency (e.g. if J q-grams match after V q-grams etc.). The clonotype is
then defined as the sequence of length w (default w = 40) centered between the last
matching V q-gram and the first matching J q-gram location within the read. The w-
windows are not very robust against errors, in particular those that occur in the last (or
first) q base pairs of the V (or J) region. To enhance the method’s error robustness, the
authors extended the approach to gapped q-grams and added a posterior clustering that
identified w-windows that are likely to originate from the same clonotype. However,
due to the definition of the w-window, this is again a method with a strong focus on
the CDR3 region that is most likely not able to distinguish clonotypes with identical
CDR3 sequences but different V and J segments.
The VIDJIL suite furthermore consist of an analysis server that can either be self-

hosted or used as a service. The focus of the analysis tool is wider than just the task
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of clonotyping, i.e. offers a whole tool chain for biologists to study and visualize
information gained from repertoire analysis. To provide access to the traditional
clonotype information, the VIDJIL web interface features a direct interface to IgBlast
and other traditional clonotypers to inspect the w-window clonotypes in more detail.
VIDJIL is open source and GPL v3 licensed.

5.1.8. pRESTO

pRESTO [82] is a pre-processing tool for Rep-Seq data. It can perform various steps
prior to and independently from the actual clonotyping, such as the removal of errors
and duplicates based on UMIs, the fusion of overlapping reads, clipping of Rep-Seq
specific primers and quality filtering. It does not perform any clonotyping itself though,
i.e. is solely meant to complement an existing clonotyping tool. After the removal of
PCR duplicates and collapsing erroneous reads based on UMIs, the preprocessed data
could even be suitable for the analysis through IMGT/HighV-QUEST, as suggested by
the authors. pRESTO additionally complements the sequence IDs with information
about the aggregation process, enabling a subsequent analysis taking into account the
original sequence abundances. It is implemented in Python, open source and licensed
under the CC BY-SA 4.0 license.

5.1.9. Commercial Providers

Apart from publicly available standalone or hosted clonotyping solutions, a number of
commercial providers have emerged providing both the experimental as well as the
data analytical component of TCR and IG repertoire analysis. Since their clonotyping
methods are not disclosed, we cannot benchmark and compare them to other methods.
They do however play a major role in practice, as Rep-Seq is a translational field
research and there is a large need for certified, ready to use solutions.

5.2. Simulation

In order to assess and compare the performance of clonotyping tools, we developed a
simulation method called IMSIM, which can be used to generate recombined TCR and
IG gene sequences, given a set of reference V, D and J segment sequences. The formation
of the segment junctions is fully parametrizable, as described in the following section.
Additionally, we added the possibility of simulating the processes of PCR amplification
and applied already available methods to simulate the sequencing process.

67



5. IMSEQ Evaluation

5.2.1. V(D)J Recombination

To generate a recombined gene sequence given the sets of gene segment reference
sequencesSV ,SD andSJ , the algorithm reproduces what is known about the biological
process of V(D)J recombination (see Section 2.3.3). At first, the D and J segments are
joined. The junction build process has 7 parameters:

nD3
D , nJ5

D ∈ N0 := the number of deletions at the 3’ D and 5’ J end
nD3
P , nJ5

P ∈ N0 := the number of palindromic insertions at the 3’ D and 5’ J end
nD3
N , nJ5

N ∈ N0 := the number of random insertions at the 3’ D and 5’ J end
nDJ
O ∈ N0 := the length of the DJ overlap.

Equivalent parameters nV 3
D , nD5

D , nV 3
P , nD5

P , nV 3
N , nD5

N and nV D
O exist for the V-DJ junc-

tion, which is formed after the DJ junction. For every recombination event, these
parameters are drawn from a user specified discrete distribution. A built-in default,
which is also used for the evaluations shown in the next section, was manually tuned
to produce clonotypes with a CDR3 length distribution close to that observed in real
datasets. The probabilities for each V segment as well as for each DJ segment combina-
tion can be manually specified as well, otherwise a uniform distribution is assumed.
To determine a junction sequence, at first the desired number of deletions is per-

formed from either end. Since the different gene segments contain a different number
of nucleotides beyond the Cys and Phe triplets into the CDR3 region, the drawn values
for nD cannot always be realized, i.e. they are constrained by the available number
of nucleotides. After the deletion, the palindromic and random sequences are added
according to nP and nN . After the modifications on either sequence have been per-
formed, they are overlapped by nO nucleotides and mismatches are resolved using
a fair coin toss. Again, restrictions apply in order to prevent modifications that go
beyond the Cys and Phe triplets.

5.2.2. PCR Amplification

Additionally, the amplification step of a Rep-Seq experiment is simulated using a
basic PCR model. It starts given the set of sequences produced by the simulation. In
every PCR cycle, every sequence has a probability of pr to be replicated. During the
replication, every nucleotide is replaced with a probability of pe, while the probability
of the replacement nucleotide is even among the three available choices. The user can
choose between two alternative termination criteria, either a fixed number of PCR
cycles nC which will produce varying numbers of sequences or a target number of
sequences nQ, i.e. the PCR is terminated “mid cycle”.
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5.2.3. Implementation

IMSIM was implemented in C++ 11 without any external dependencies, licensed under
the GPL v3 and is publicly available under www.imtools.org.

5.2.4. Sequencing

The sequencing process was simulated usingMason 2 [83], a free open source software
for the simulation of Illumina, 454 and Sanger reads. For our evaluations we used
Mason’s “fragment sequencing” mode in the Illumina configuration, where an input
file with multiple sequences is provided and Mason simulates equally long read pairs
of a specified length from either end of the provided fragments.

5.3. Method Evaluation

In this section, we will evaluate IMSEQ’s performance, both on its own regarding
an assessment of parameters and their influence, as well as in comparison to other
methods. The web based V-Quest tools and IgBlast are not designed for the analysis of
high throughput data and also simply perform an independent, per read analysis of the
data without looking at the repertoire as a whole. Thus they are excluded from the tool
comparison, with the exception of IgBlast which we will initially use as a gold standard
to proof the validity of the simulated data. While MITCR was evaluated in the original
IMSEQ publication [84], we now evaluate its successor MIXCR, since the authors
officially deprecated MITCR in favor of MIXCR. VIDJIL and pRESTO have a different
scope than IMSEQ and in practice depend on the use of an additional clonotyper. They
are therefore also not considered in the comparison.
At first we will look at each tools performance on simulated, error free, full length

TRB gene sequences. We will then assess the impact of the segment core fragment
length and the error rate parameters on the computational time to annotate the data
with the clonotype information required by IMSEQ. Furthermore, we will simulate
amplicon sequencing data with both PCR and sequencing errors. Lastly, we will
compare each method’s performance on real data both from in-house experiments as
well as based on publicly available data.

Generally, we perform all evaluations based on V and J gene segment identity and the
nucleotide sequence of the CDR3 region. The allele information for V and J segments
is dropped, i.e. we only consider whether the segment has been correctly identified on
the gene level. Since Decombinator does not provide an output format that contains the
untranslated CDR3 sequences, the evaluation for this method is performed based on
the amino acid sequence of the CDR3 region, i.e. false positive calls of Decombinator
are not counted as long as they are silent mutations of a correct clonotype.
If not explicitly stated otherwise, IMSEQ was applied using its default settings.
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Among other parameters, this includes a minimum average read quality of qmin = 20
in combination with a posterior threshold of qCDR3min = 30, a J SCF length of LJ

SCF = 12,
a V SCF length automatically tuned as described in Appendix A.3, maximum gene
segment error rates of εV = 0.05 and εJ = 0.15 and a corresponding pair of maximum
SCF errors eV |J

SCF = ⌈εV |J · LV |J
SCF ⌉.

To avoid a potential bias and since not all methods support non-overlapping paired
end data, all evaluations were run on single-end simulated or real data. All measure-
ments were taken on a Intel Xeon X5675 3.06 GHz dual CPU system with 12 (+12) cores
and 64 GB RAM running Mac OS X 10.11.

5.3.1. Evaluation Criteria

We perform the evaluation on two levels: On the read level we assess the extent to
which the underling clonotype repertoire has been correctly reconstructed based on
the read counts assigned to each clonotype. Let F = {f1, . . . , fN} be the detected and
F ref{f ref

1 , . . . , f ref
N } the simulated absolute clonotype frequencies. We then define the

number of false positives, false negatives and true positives as follows:

#FP :=
N∑

i=1

min(fi − f ref
i , 0) (5.1)

#FN :=
N∑

i=1

min(f ref
i − fi, 0) (5.2)

#TP :=

(
N∑

i=0

fi

)
−#FP. (5.3)

On the clonotype level we evaluate only whether a clonotype was detected or not,
independent of its frequency. This evaluation gives us insights, for example in how far
the clonotype diversity has been overestimated due to technical artifacts or whether a
method fails to annotate certain recombinations entirely.

5.3.2. Error Free Simulated Data

We simulated 500,000 unique, error free, full length human TRB gene sequences using
IMSIM as described in Section 5.2. We use this dataset to validate the different methods
under perfect conditions, i.e. with no gene segment ambiguities due to partial sequences
or PCR and sequencing artifacts. The gene sequences were then presented to each tool
as reads, without actually simulating a sequencing step.

The results of the evaluation are shown in Table 5.2. We included IgBlast to confirm
the validity of the V region sequences simulated and all sequences were clonotyped
correctly. Since IgBlast correctly annotated all the provided sequences, we conclude
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Tool Settings Precision Recall #assigned Precision Recall Time [s]

IgBlast default 1.0000 1.0000 500,000 1.0000 1.0000 > 3 h

IMSEQ no clust 1.0000 1.0000 500,000 1.0000 1.0000 P 42

IMSEQ default 1.0000 1.0000 500,000 1.0000 1.0000 P 50

MIXCR no clust 1.0000 1.0000 500,000 1.0000 1.0000 P 52

MIXCR default 1.0000 0.9999 500,000 0.9999 0.9999 P 254

Decombinator default 0.9598 0.9592 499,947 0.9593 0.9592 139

TCRklass default 1.0000 0.9988 499,395 1.0000 0.9988 476

Clonotype Read

Table 5.2.: The tool performance comparison on simulated, error-free full length TRB
V-region sequences. IGBLAST is included as a gold standard for the clonotyping of
error-free data in order to confirm the validity of the simulated sequences. Tools that
support multithreading were used with 24 threads and their running times marked
with “P”. Optimal values are highlighted in green, values less than 1% below the
corresponding optimum are shown in boldface.

that our simulation framework is valid. We can furthermore observe that apart from not
being able to perform a repertoire error correction, IgBlast is also unsuitable for high
throughput data due to the extremely long computational time required - clonotyping
the 500,000 unique sequences took more than three hours on the test system.

IMSEQ also clonotypes all input sequences correctly, both with the repertoire error
correction explicitly disabled (“no clust”) and with the default settings. Even though
there are many clonotype pairs similar enough to be considered equal by the clustering
criteria described in Section 4.5.2, the maximum clustering ratio prevents a false
correction since all clonotypes are unique and thus equally abundant. Furthermore,
also MIXCR properly clonotypes all input data when the repertoire error correction is
explicitly disabled. With the default settings, MIXCR falsely collapses some clonotypes -
even though the main clustering routine correctly reports that nothing can be clustered
due to the missing hierarchy between the clonotypes. According to the application log,
a “pre-clustering” routine though falsely corrects the data. This only affected a very
small fraction of the clonotypes with two particular V gene segments. Since they are
falsely detected as other, true clonotypes, the clonotype precision is still 100%, while it
slightly drops at the read level. Since this effect seems to be limited to a well defined
subset of the data with no obvious explanation, this is more likely a bug than a true
methodological limitation.

The remaining two methods, Decombinator and TCRklass, actually falsely annotate
a significant fraction of the data. Decombinator yields both a precision and a recall of
∼ 95%, on a read as well as on a clonotype level. A manual inspection of the produced
data revealed problems related to certain gene segments that are apparently generally
falsely assigned. Furthermore, some of the false annotations appear to be related to
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modifications of the germline V and J region inside, but close to the boundaries of the
CDR3 region. Lastly, TCRklass does not falsely assign clonotypes to the simulated
sequences, but fails to clonotype a small fraction of the data. The problem appears to
affect clonotypes incorporating almost any V and J segment, a particular pattern could
not be derived.

Regarding the computational time required for assigning the 500,000 unique clono-
types it is important to note that IMSEQ and MIXCR support multithreading, while
the other tools do not. IMSEQ and MIXCR with disabled standalone error correction
routines perform the raw clonotyping rather fast, IMSEQ processes the data in 42 s
and MITCR in 52 s. When using the default settings, which in both cases include a
repertoire error correction step, IMSEQ and MIXCR require 50 s and 254 s respectively
- while in either case no clustering is performed due to the uniform distribution of
clonotypes (with the exception of the “pre-clustering” step of MIXCR). Decombinator
and TCRklass, the single threaded methods, terminate after 139 s and 476 s respectively.
It should be noted that IMSEQ scales sub-linearly with the number of threads, i.e. using
only a single thread the dataset was processed in 185 s.

5.3.3. IMSEQ Alignment Parameters

The runtime performance of IMSEQ is primarily determined by the SCF length (LV |J
SCF )

and error (eV |J
SCF ) parameters, as well as by the permitted error rate for the V and J

segment overlap alignments εV |J .
• The length of the segment core fragments has a strong influence on how many
gene segments have to be validated. Too short SCFs might not be unique across
multiple gene segments and thus trigger a high number of overlap alignments.
Too long segment core fragments on the other hand might exceed the amount of
gene segment available in a read and thus lead to discarded reads.

• The number of errors allowed within the segment core fragments is directly bound
to the specificity of the filter method described in Section 4.4.3. A high number
of allowed errors in turn requires more SCFs to be validated, while a low number
of allowed errors might not tolerate the technical artifacts present in the data.

• The gene segment overlap alignment error rate has a direct influence on the time
required for each overlap alignment following an SCF match. A rather permissive
error rate yields wider bands with higher running times, while a too strict error
rate again might not account for errors in the data.

The applicable range for the segment core fragment lengths LV
scf and LJ

scf are con-
strained by the number of V and J gene segment bases guaranteed to be present in each
input sequence (see Section 4.4.2). The performance impact of those values is primarily
related to the uniqueness of the SCFs regarding the corresponding gene segments.
For the human TRBV gene segments this is illustrated in Figure 5.1, which shows the
maximum number of V gene segments associated with the same SCF for different SCF
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Figure 5.1.: The maximum number of human TRBV segments mapping to the same
segment core fragment for different SCF lengths.
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Figure 5.2.: The IMSEQ running time for the analysis of 500,000 unique unique clono-
types for various combinations of the V SCF length LV

SCF and the maximum V and J
segment error rate εV = εJ .

lengths. While for LV
SCF < 10 more than 20 V gene segments might contain the same

SCF, for LV
SCF > 25 the SCFs are almost unique.

The parametrization of the segment core fragments is more critical for the V gene
than for the J gene. In contrast to the V fragment, the covered J area is usually well
defined by the chosen primer locations. Furthermore, in the TRB gene there are fewer
J than V gene segments and they are additionally more diverse. For LJ

SCF ≥ 15 the
segment core fragments are unique for this particular gene.
To understand the impact of those parameters, we tested the method’s runtime

performance on the dataset of 500,000 unique clonotypes for different V SCF lengths
LV
SCF. Additionally, we varied the permitted error rates for the V and J gene segment

overlap alignments εV |J . The maximum number of SCF errors eV |J
SCF is coupled to the

values of εV |J , i.e. set to the smallest integer value that ensures the same error rate on
the SCFs. The results for four different error rates and V SCF lengths from 10 to 45
are shown in Figure 5.2. As expected the running time decreases with stricter error
rate constraints and larger V SCF segment lengths. While for shorter SCFs the error
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rate has larger impact on the running times, the difference becomes smaller for longer
SCF lengths. While larger error rate thresholds imply computational cost induced by
wider bands in the overlap alignments, longer SCFs strongly reduce the number of
those alignments that have to be computed in the first place, even for relatively high
error rates.

While it is not possible to define a universal set of parameters, especially since the SCF
lengths depend on the implemented protocol and the primer locations for the targeted
enrichment PCR, we estimate a set of parameters depending on the provided reference
data and the input data. The implemented heuristic for setting these parameters is
described in Appendix A.3.

5.3.4. Simulated Errors

Next, we extended the simulation to incorporate technical artifacts as we would expect
them to occur in real data and generate two datasets. Both datasets are based on an
initial simulation of 1,500 human TRB gene sequences, which are additionally subjected
to the PCR simulation routine using a PCR replication probability of pr = 0.8 and a
PCR base substitution error rate of pe = 10−4 to generate nQ = 1.5 · 106 sequences as
described in Section 5.2.2. Dataset 1 is then truncated to a uniform sequence length of
150 bp, while Dataset 2 is generated by passing the generated gene sequences on to
Mason in order to simulate 150 bp Illumina reads. Regarding the Illumina error model,
Mason’s default parameters were used. We again evaluated each tool’s performance
against the simulated ground truth on the clonotype and read level, which is shown in
Table 5.3.

To illustrate the effect of technical artifacts on the data and the corresponding over
estimation of diversity present in a sample we initially show the result acquired using
IMSEQ without any posterior correction (denoted as “no clust”). Even though 98% of
the sequences are clonotyped correctly, the remaining sequences containing artifacts
inside the critical CDR3 region or in distinctive positions within the V and J segments
lead to the detection of 1,925 (Dataset 1) and 14,610 (Dataset 2) clonotypes instead of
the simulated 1,500. This results in a clonotype precision as low as 0.10 in the latter
case, which includes sequencing errors.
In their default settings, which involve a standalone error correction, both IMSEQ

and MIXCR reliably correct the sequence errors present in the data. On the clonotype
level, IMSEQ reaches a precision of 0.99 with only PCR errors and 0.90 with PCR
and sequencing errors, while being fully sensitive in either case. MIXCR reaches a
clonotype precision of 0.95 and 0.68, being fully sensitive as well. Due to their limited
ability to handle errors, the performance of Decombinator and TCRklass is relatively
low. While they still yield a clonotype precision of ∼ 0.80 without sequencing errors,
it drops to 0.11-0.16 when sequencing errors are added. In the latter case, TCRklass
reports over 13,000 clonotypes instead of the simulated 1,500, which is almost as much
as IMSEQ reports with no correction at all.
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Tool Settings # total Precision Recall Precision Recall Time [s]

IMSEQ noclust 1,925 0.7792 1.0000 0.9897 0.9892 P 2

IMSEQ default 1,512 0.9921 1.0000 0.9971 0.9966 P 2

MIXCR default 1,585 0.9464 1.0000 0.9932 0.9892 P 14

Decombinator default 1,744 0.8217 0.9553 0.9495 0.9485 17

TCRKlass default 1,866 0.8028 0.9987 0.9907 0.9874 140

IMSEQ noclust 14,610 0.1027 1.0000 0.9016 0.8903 P 4

IMSEQ default 1,658 0.9047 1.0000 0.9959 0.9835 P 5

MIXCR default 2,201 0.6815 1.0000 0.9884 0.8966 P 18

Decombinator default 9,088 0.1578 0.9560 0.8968 0.8673 19

TCRklass default 13,188 0.1137 0.9993 0.9110 0.8879 107

Clonotype Read

Dataset 1: PCR errors

Dataset 2: PCR and sequencing errors

Table 5.3.: The tool performance comparison on 1,500 unique clonotypes with simu-
lated posterior PCR amplification to 1.5 · 106 sequences (Dataset 1) and subsequent
Illumina 2x150 paired end sequencing simulation (Dataset 2). Optimal values are high-
lighted in green, values less than 1% below the corresponding optimum are shown in
boldface.

With respect to the running times, IMSEQ is by far the fastest of the tested methods,
processing the dataset with PCR and sequencing errors in 5 s, compared to 18 s for
MIXCR, 19 s for Decombinator and 107 s for TCRklass.

5.3.5. Real Data

In order to assess each method’s standalone error correction abilities on real data, we
make use of samples that were prepared using unique molecular identifiers. We initially
analyse the data using IMSEQ without the standalone error correction (es = eq = 0)
but with the UMI based read correction enabled (δUMI = 1, εUMI = 0.05, rUMI = 0.2).
We then use the result as a ground truth to evaluate each tool’s performance regarding
the UMI independent error correction.
Since clonotypes that are detected by another method but could not be detected

by IMSEQ during the reference annotation would increase that other method’s false
positive count, we limit the sequences to those that IMSEQ was able to annotate. While
this comparison is nevertheless not entirely bias-free, with each tool’s performance on
perfect data in mind it still gives us valuable insights in the relative error correction
capabilities of the methods when compared to each other.
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We perform the evaluation on two independent UMI labelled datasets that were
prepared by different labs using different Rep-Seq protocols:

• Dataset 1: In-house multiplex PCR data

An in-house dataset from a healthy individual. The sample was prepared based
on DNA with an initial, 5 cycle linear PCR step using only unique J primers
including a UMI 10-mer. Subsequently, a regular PCR step was performed, using
multiple V specific forward primers and a single reverse primer targeting a
binding site introduced during the linear PCR step. The dataset contains 11.7 m
reads.

• Dataset 2: External data produced using the template switch protocol

A publicly available external dataset from a sample obtained from an individual
participating in a Leukemia study [85] at baseline (patient p744 at day 0). The
sample was prepared using an RNA based template switch protocol as previously
described by Shugay et al. [47], which does not require a multiplex PCR and is
therefore less prone to PCR induced frequency biases. The dataset contains 5.7 m
reads.

Each dataset was filtered for only those reads that show the intended primer +
UMI signature, i.e. were likely successfully prepared according to the protocol. After
generating the UMI corrected dataset, each tool was run using its default parameters,
i.e. including the available standalone error correction measure but without taking the
UMI sequences into account.

The results for both datasets are shown in Table 5.4. Since the results no longer show
a clear ranking of the methods with respect to both precision and recall, we added the
F1 score to the evaluation, which is defined as the harmonic mean of the two:

F1 := 2 · precision · recall
precision + recall

.

Again, we see that the standalone error correction abilities of Decombinator and
TCRklass are limited - Decombinator’s clonotype precision is only slightly above that
of IMSEQ with no error correction. TCRklass performs better than Decombinator but
still worse than IMSEQ and MIXCR, reaching a clonotype precision of∼ 0.77 for either
dataset.

IMSEQ andMIXCR perform similarly. For Dataset 1, MIXCR yields a higher precision
but a lower recall than IMSEQ. When using the F1 measure, IMSEQ clearly performs
better on the clonotype level, whereas MIXCR performs slightly better on the read
level. When looking at the second, template switch protocol based Dataset 2, IMSEQ
clearly outperforms MIXCR with regard to the standalone error correction capabilities
for all measures taken into account.
It should be noted that the tools generally perform better in this evaluation com-

pared to the simulated PCR and sequencing errors, even though the error rates in
the simulation were not set particularly high. This is likely due to the used reference
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Tool Settings Precision Recall F1 Score Precision Recall F1 Score

IMSEQ no clust 0.6748 0.9993 0.8056 0.9755 0.9730 0.9743

IMSEQ default 0.9320 0.8936 0.9124 0.9819 0.9797 0.9808

MIXCR default 0.9525 0.8081 0.8744 0.9871 0.9779 0.9825

Decombinator default 0.7032 0.8585 0.7731 0.9019 0.8868 0.8943

TCRklass default 0.7683 0.9314 0.8420 0.9795 0.9710 0.9752

IMSEQ no clust 0.6200 0.9984 0.7650 0.9737 0.9692 0.9714

IMSEQ default 0.9933 0.9848 0.9890 0.9966 0.9930 0.9948

MIXCR default 0.8926 0.9086 0.9005 0.9550 0.9427 0.9488

Decombinator default 0.6404 0.7475 0.6898 0.8976 0.7227 0.8007

TCRklass default 0.7746 0.8333 0.8028 0.9411 0.8115 0.8715

Clonotype Read

Dataset 1: In-house multiplex PCR test data

Dataset 2: External data produced using a template switch protocol

Table 5.4.: Standalone error correction evaluated on two real datasets. The reference
dataset was generated using IMSEQ with UMI based and no standalone posterior error
correction. Each tool was then run only with the standalone error correction enabled.
Additionally, the results for running IMSEQ without any error correction is shown
for reference. Optimal values are highlighted in green, values less than 1% below the
corresponding optimum are shown in boldface.

dataset - the purely UMI based correction will likely not correct all errors present in
the sample and thus present a “simpler” task to the competing tools. Nevertheless, it
provides meaningful insight regarding the relative performance of each tool compared
to another.

5.3.6. Error Correction Parameter Choice

To better understand the interplay between the error correction performance and
the used parameters, namely the number of allowed quality related errors, eq, and
the number of allowed unrestricted errors, es, we tested a wider range of parameter
combinations on the public dataset from the template switch protocol sample. The
results for es ∈ {1, . . . 4} and eq ∈ {1, . . . , 6} with a fixed maximum cluster ratio of
rmax = 0.25 are shown in Figure 5.3. One can clearly see that allowing a single error
has the largest impact on improving the clonotyping precision. With es = eq = 1, i.e.
up to two errors in the CDR3 region, we already reach a precision of 0.99, which does
not improve significantly for more permissive correction settings - while drastically
reducing the recall at some point due to false correction events.

We can furthermore see that the quality score based error correction can indeed be

77



5. IMSEQ Evaluation

Pr
ec
isi
on

0 1 2 3 4 5 6
0

1

2

3

4

0.6200 0.9153 0.9221 0.9224 0.9224 0.9224 0.9224

0.9828 0.9933 0.9937 0.9938 0.9939 0.9939 0.9939

0.9937 0.9944 0.9946 0.9947 0.9949 0.9949 0.9949

0.9947 0.9953 0.9956 0.9957 0.9958 0.9958 0.9958

0.9956 0.9962 0.9964 0.9964 0.9964 0.9964 0.9964

eq
e s

Re
ca
ll

0

1

2

3

4

0.9984 0.9901 0.9896 0.9893 0.9891 0.9889 0.9887

0.9863 0.9848 0.9834 0.9819 0.9806 0.9798 0.9793

0.9824 0.9774 0.9730 0.9686 0.9654 0.9636 0.9619

0.9719 0.9606 0.9497 0.9417 0.9356 0.9318 0.9292

0.9511 0.9284 0.9099 0.8967 0.8879 0.8822 0.8797

e s

F 1
sc
or
e

0

1

2

3

4

0.7650 0.9513 0.9546 0.9547 0.9546 0.9545 0.9544

0.9846 0.9890 0.9885 0.9878 0.9872 0.9868 0.9865

0.9880 0.9858 0.9837 0.9815 0.9799 0.9790 0.9781

0.9832 0.9776 0.9721 0.9680 0.9648 0.9627 0.9614

0.9728 0.9611 0.9512 0.9439 0.9390 0.9358 0.9344

e s

Figure 5.3.: The precision, recall and their harmonic mean (F1 score) for various
combinations of the eq and es parameters, computed based on the real data error
evaluation, Dataset 2 (template switch protocol).

used more confidently with respect to the distinction of technical vs. true biological
diversity: allowing a single quality related correction (es = 0, eq = 1) yields a precision
gain 35-fold of the corresponding loss in recall, while allowing a single unverified
correction (es = 1, eq = 0) yields a precision gain 30-fold of the loss in recall.
The equivalent analysis based on the in-house multiplex PCR based sample does

not show such a clear distinction between the two error types, which is likely due to
the fact that the error landscape in that sample is dominated by PCR artifacts due to
the higher number of PCR cycles. The results for both samples at different maximum
cluster rates rmax are shown in Appendix A.4.

5.3.7. UMI Frequency Impact

Lastly, we quantified the impact of a frequency normalization based on unique molecu-
lar identifiers, i.e. in how far the frequency vector describing the clonotype repertoire
differs when built from the number of reads vs. the number of UMIs contributing to
each clonotype. For this purpose, we again used the two real datasets described in the
previous section.
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This time, we enabled IMSEQ’s UMI mode as in a normal production scenario, i.e.
while otherwise using the default settings including the posterior standalone error
correction. When UMIs are incorporated, IMSEQ can produce two counts for each
observed clonotype, the number of reads and the number of UMIs. In either case, the
clonotyping routine uses the UMI information to correct for sequence artifacts in the
data. The UMI based repertoire additionally accounts for the effects of biased PCR
amplification, thus the comparison of the two frequency vectors can give us an insight
how strong the read abundance for each clonotype is affected by the PCR bias.

The impact on the (according to the UMI corrected frequencies) top ranking clono-
types is shown in Figure 5.4. Each sample contains a few dominating clonotypes
(comprising up to 6% of the repertoire, not shown) which are relatively robust against
PCR induced rank shifts. The following clonotypes however (as shown from rank 6
onwards) suffer frommajor false quantifications when using the read counts to estimate
the repertoire composition. Subpopulations with clonotypes of similar abundances
appear highly heterogeneous in the read count derived repertoire. While not being
representative, the data from the two different enrichment protocols also shows a trend
for the template switch protocol to be more robust against such biases, as the rank shifts
and frequency heterogeneity in the observed interval is lower in that dataset. This
is indeed expected due to the fact that the template switch protocol unlike the DNA
based approach does not require a PCR with multiple forward and reverse primers,
potentially performing at different efficiencies. Nevertheless, also in a PCR with only a
single primer pair some fragments are amplified with a higher efficiency than others,
e.g. due to their size or sequence, and even leaving such biases aside, the stochastic
nature of the PCR process will likely lead to a skewed result. Our evaluations underline
the necessity for UMIs to be both used on the experimental end and supported on the
computational end, i.e. by any method for the generation of repertoires.

5.4. Summary

After having introduced the IMSEQ method in the previous chapter, we now evaluated
its performance in the context of other existing methods. We initially compared
the methods on a descriptive feature level, before evaluating their performance on
simulated data. To generate such data, we developed a workflow that simulates the
V(D)J recombination and the PCR amplification and combined it with an existing
method to simulate Illumina reads. We then simulated both error free data and data
that contains PCR and sequencing errors in order to evaluate the standalone error
correction capabilities of each method. Additionally, we assessed the standalone error
correction mechanisms on real data that was prepared with UMIs, using the UMIs
to define a ground truth. The evaluations revealed that IMSEQ solves the clonotype
annotation task optimally among the compared methods, with MIXCR performing
comparably on one of the real datasets.

Furthermore, we inspected IMSEQs performance when varying critical parameters.
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Figure 5.4.: The clonotypes on frequency ranks 6 to 35 and their relative frequencies
(a) from an in-house sample prepared using a multiplex PCR protocol and (b) from a
publicly available sample using a template switch protocol. In each case the clonotypes
are ordered and selected based on the UMI based frequencies.
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5.4. Summary

We evaluated the impact of the number of allowed errors during the V and J gene
segment matching and the error thresholds for the standalone error correction to be
able to define meaningful default settings and provide an insight how sensitive the
method is to parameter changes.
Lastly, we showed that UMI based clonotype abundance estimates can deviate

strongly from those derived from raw read counts. Our results show that the use of
UMIs should be encouraged, if not become a standard operating procedure for Rep-Seq.
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6. Clonotype Identity Based
Applications

In this chapter, we will describe Rep-Seq applications that make use of the generated
clonotypes as identifiers for subpopulations of antigen receptors. That is, these ap-
plications do not derive any functional information directly from the identified gene
sequences, but use that sequence solely to estimate abundances of cells with identical
function and to track them across different samples or points in time. In the first
section of this chapter, we will talk about a clinical application that we assessed in the
context of renal transplant patients, while the second section of this chapter gives a
brief overview over other applications from literature.

6.1. Rep-Seq Driven Differential Diagnosis in Renal
Transplantation

The adaptive immune system plays a major role in the context of allograft transplanta-
tion, i.e. the transplantation of tissue, primarily organs, from one individual to another.
If there is a (partial) mismatch of HLA-haplotypes between the donor and the recipient,
the graft cells will express MHC molecules that the recipients immune system has
not been negatively selected against. Consequently, a cascade of immune processes is
activated, causing a targeted response against the foreign tissue and leading to local
and systemic inflammation. This can result in the deterioration of the graft tissue, a
process known as graft rejection.
The recognition of foreign MHC molecules is both T and B cell driven [9], with

the two factors being commonly referred to as T cell-mediated rejection (TCMR) and
antibody-mediated rejection (ABMR) respectively. We further differentiate between
two main types of graft rejection: acute rejection and chronic rejection. Acute rejection
describes episodes of mostly T cell driven responses against the graft, which usually
occur in the first months after transplantation. Chronic rejection occurs in highly
vascularized grafts (such as kidney (renal), liver, heart or lung transplants), and is char-
acterized by fibrosis of the grafts blood vessels [86]. The actual underlying mechanisms
leading to long term graft failure due to chronic rejection are not well understood. It is
believed to be caused by a complex of various factors, however, ABMR appears to play
a major role [87, 88]. The advanced development of immunosuppressant drugs (ISDs)
has substantially improved graft survival rates with respect to early acute rejection
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events, while chronic rejection still poses a major challenge and limits the graft survival
time span [89].

The management of acute rejection episodes with ISDs does, however, cause other
issues. Most importantly, the suppressed immune system is no longer able to protect
the host from pathogens as effectively as under healthy conditions. If there are no
effective medical strategies available against such pathogens, they pose a serious thread
to the host and graft. In the following sections we will describe such a pathogen, the
BK virus, its effect on renal graft recipients and in how far Rep-Seq can provide a
solution for a critical differential diagnosis in affected patients.

6.1.1. BK Virus

The BK virus (BKV), named after the initials of the first patient it was observed in, was
originally described by Gardner et al. [90] in 1971. It is a double stranded DNA virus
with a genome size of approximately 5,300 bp which has a very high prevalence in
the general population with seropositivity rates in the range of 60-100% [91]. Initial
infection typically occurs during childhood and is usually accompanied by no or mild
symptoms [91]. However, the virus remains persistent at a low level in the kidney in a
significant number of cases [92]. This is typically not accompanied by any complica-
tions, as the immune system keeps the viral counts low. In immunodeficient individuals,
however, the virus can reactivate from the dormant state and start replicating in the
renal tissue. It can then cause a number of kidney related diseases [91], a situation
referred to as BK virus associated nephropathy (BKVAN).

6.1.2. BKVAN as a Complication in Renal Transplantation

Due to the aforementioned treatment with ISDs in order to prevent and handle acute
rejection episodes in organ recipients, these patients suffer from massive immunode-
ficiency and thus often from BKV reactivation. In individuals with renal grafts this
poses a particularly complex situation, since the site of virus infection and the site of
potential graft-specific immune response is the same.
From a clinical perspective, the condition is considered manifested when the graft

function worsens. It is then crucial to differentiate between two potential causes: either,
BKV reactivation or an episode of acute rejection. In the first case, the graft tissue
is damaged due to the virus replication, while in the second case the damage occurs
because of graft infiltrating T cells. Since there is no effective antiviral treatment against
BKV available, the treatment options for either case are exactly complementary: in
case of an acute rejection, ISD treatment would have to be increased, while an ongoing
BKV reactivation would be treated by decreasing ISD administration in order to allow
the hosts immune system to clear the virus infection.

As stated by Babel et al. [93], differentiating between these two potential causes of
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graft dysfunction is time critical. Not only does the ongoing damage to the graft tissue
call for immediate action, but also an uprising BKV reactivation can only be countered
effectively in an early stage. If ISD administration is reduced early enough, cytotoxic T
cells can control the BKV reactivation and prevent a progression to BKVAN without
causing a significant level of intra-graft inflammation in most cases. If, however, the
BKV load rises above a certain threshold, the massive recruitment of T cells is not able
to clear the viral infection soon enough before the T cells will also start infiltrating
healthy graft cells in response to the foreign HLAs in addition to the BKV infected
cells. The response that was originally targeted at the BKV infected cells has then
turned against the graft and an ISD reduction is no longer advisable.

6.1.3. Differentiation of Acute Rejection and BK Virus
Reactivation

The state of the art method to differentiate an episode of acute rejection from BKV
reactivation is the histological examination of a tissue sample obtained through a renal
biopsy in conjunction with electron microscopy and virological diagnostics. Tubular
epithelial cells are inspected for cytopathic changes which serve as indicators for BKV
infiltration of the observed tissue [94]. The procedure, however, has a relatively limited
accuracy. Firstly, only a certain fraction of cells is affected by the virus, leading to a
significant amount of false negative findings due to sampling when the biopsies are
obtained [95]. Secondly, some of the visible changes caused by an acute rejection and
those caused by BKV infiltration are similar in their morphological appearance, leading
to false classifications [96]. In the following section we will describe a Rep-Seq based
approach to differentiate an acute rejection episode from BKV infiltration, which is
potentially more robust against these factors.

6.1.4. Rep-Seq Based Differentiation

The approach described here is based on Dziubianau et al. [97]. Instead of examining
observable changes in the tissue itself, in the Rep-Seq based approach we aim to identify
the cause of the graft tissue damage by examining the antigen specificity of the graft
infiltrating T cells through Rep-Seq. Two alternative approaches were evaluated to
acquire the subpopulation of T cells that is representative for the renal graft tissue
infiltrating cells, cell extraction from a renal biopsy and from a urine sample. Apart
from the graft infiltrating repertoire, two reference T cell samples are prepared to
obtain repertoires comprising the recipients clonotypes specific for BKV and for the
graft donors HLAs respectively. We then try to define the ongoing response in the
graft based on these three repertoires.

The preparation of the three samples is outlined in Figure 6.1. The graft infiltrating
repertoire is obtained directly either from urine or from a biopsy. To obtain the BKV
specific repertoire, recipient peripheral blood mononuclear cells (PBMCs), which can be
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Kidney graft
biopsy or urine Recipient blood Donor blood

Recipient PBMCs Donor PBMCs

Staining

Stimulation
Donor cells

Stimulation
BK virus

T cell sorting
stained + activated

T cell sorting
activated

Rep-Seq
BKV specific repertoire

Rep-Seq
Graft infiltrating repertoire

Rep-Seq
Donor specific repertoire

Figure 6.1.: The workflows to generate the three repertoires used in the Rep-Seq based
diagnosis approach are obtained: the graft infiltrating repertoire in question as well as
the two reference repertoires specific for BKV and donor HLAs respectively.

easily extracted from blood and include T cells, are stimulated with BKV antigens ex
vivo. They are then sorted by surface markers specific for activated T cells, i.e. those
that responded to the antigens. Lastly, a graft specific repertoire is measured by exposing
recipient PBMCs to donor PBMCs ex vivo, triggering a response against the donor
HLAs. To be able to subsequently distinguish the recipient and donor cells, the recipient
cells are stained with membrane dyes prior to the donor cell exposure. The cells are
then sorted again for activation markers and additionally for the recipient specific
staining. Each of the three samples is then independently sequenced as previously
described in Section 2.4.

The sorting step may include additional cell type refinements, such as CD4 or CD8.
If cells from the donor are unavailable, e.g. due to a non-living donation, allograft
specific T cells may be enriched using HLA type matched cells from an appropriate cell
bank, as previously described by Landwehr-Kenzel et al. [98] in the context of allograft
specific regulatory T cell enrichment.

6.1.5. Early Clinical Results

The workflow described in the previous section was applied for patients with acute
cases of renal allograft dysfunction. A summary of the results for two patients is shown
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Patient 1 Patient 2

Reference clonotypes Biopsy Urine Biopsy Urine

BKV CD4+ 1.55% 0.00% 10.33% 14.81%

BKV CD8+ 13.85% 1.10% 17.67% 33.83%

Allograft CD4+ n.a. n.a. 0.00% 0.77%

Allograft CD8+ 15.01% 0.62% 1.57% 0.00%

Table 6.1.: The cumulative relative frequencies of graft recipient CD4 and CD8 clono-
types that were identified as BKV specific or allograft specific within the repertoires
generated from renal biopsies and urine. From Dziubianau et al. [97].

in Table 6.1. The reference clonotypes were defined as the predominant clonotypes in
the BKV and allograft specific repertoires. The sorting step additionally differentiated
between the CD4 and CD8 T cell subtypes. The table shows the cumulative frequencies
of the reference clonotypes in the repertoires obtained from the renal biopsies and
urine samples as well as the diagnosis provided by the histology lab.
Patient 1 showed a severely impaired renal function with a high BKV load in the

blood (BK viremia). The histology report indicated BKVAN, but after a significant
reduction of the ISD treatment the graft impairment continued to progress. The Rep-
Seq based approach revealed that both BKV specific and allograft specific clonotypes
were abundant in the graft, suggesting that the T cells infiltrating the graft had already
progressed to react against the foreign tissue in addition to the BKV infected cells.
This finding was unavailable through the histology based diagnosis and could explain
the continuing graft failure. In contrast to the biopsy repertoire, the urine repertoire
contained the reference clonotypes only at low frequencies or not at all.

In Patient 2 the BKVAN histology finding was confirmed by the Rep-Seq approach,
as both BKV specific CD4 and CD8 clonotypes were abundant in the biopsy and urine
repertoires, while allograft specific clonotypes were nearly absent.

Additional cases are shown in the supplement of the original publication [97]. While
only a small number of patients was analyzed, the results indicate that the Rep-Seq
based differential diagnosis for BKV infiltration vs. acute rejection in renal graft
patients may be able to supplement or replace current histological methods. The mixed
results in urine derived repertoires can most likely be explained by the low number of
leucocytes in urine and their varying survival rates depending on the urine composition
and related factors such as pH or electrolyte concentrations. If these can be controlled
or adequately quantified in quality control procedures, urine based kidney repertoire
sampling might provide a non-invasive proxy for a biopsy based diagnosis.
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6.2. Other Rep-Seq Applications

To date there are few translational or already clinically applied Rep-Seq based methods.
A prominent example exists in the context of hematologic malignancies, i.e. leukemias
and lymphomas. A critical clinical parameter in these conditions is the minimal resid-
ual disease (MRD), which refers to a small number of malignant cells that remain in the
patient after treatment. The assessment of the MRD, which is a major cause of relapse,
has been shown to be a critical parameter to predict the clinical outcome of patients
and to base treatment decisions on [99]. However, to date it has not been established
as a standard diagnostic procedure, primarily because no practically applicable mea-
surement method is available. The approaches that have been explored so far can be
roughly divided into two categories: flow cytometry and real-time quantitative PCR
(qPCR) based approaches, where qPCR is a method to detect or quantify a targeted
DNA molecule using PCR [100].
Given a cell sample, the flow cytometry based approaches detect malignant cells

based on surface markers that are known to be uniquely expressed in the affected
cells. However, they feature a relatively low sensitivity in range of an affected cell
concentration of 10−4 [101] and come with standard technical difficulties in the context
of flow cytometry such as strong (operator dependent) variability. Also, it has been
observed that the used tumor specific surfacemarkers are to a large extent not expressed
by tumor cells after chemotherapy, i.e. the cells are invisible to these detection methods
after treatment [102].
qPCR based approaches involve the design of a tumor specific DNA probe, which

is then used in the qPCR detection or quantification process. Such target sites are
typically designed against rearranged genes, fusion gene transcripts or aberrant genes
which are specific for the tumor [103]. Since the tumor develops from a single cell in
most cases, in the case of hematologic tumors, i.e. malignant T and B cells, the V(D)J
rearranged antigen receptor gene locus is also specific for the tumor and can therefore
be used as a probe target. The method, however, requires sequencing the tumor before
hand and the subsequent design and production of a specific probe, which makes this
approach too labor intense to be applied rapidly in practice.
Rep-Seq based MRD detection and quantification approaches have therefore been

suggested and implemented by multiple labs [104, 105, 106]. Since before treatment the
cancer clonotype is by far more abundant than the healthy clonotypes, the identification
within the sequenced repertoire can be performed solely based on the frequencies,
i.e. without any experimental characterization of clonotypes. Due to the availability
of sequencers that can rapidly sequence small DNA samples as they occur in clinical
routine, such as the Illumina MiSeq or Life Technologies Ion Torrent, Rep-Seq can
serve as a more rapid and less laborious alternative to qPCR approaches, while still
being as sensitive, which was shown in the aforementioned studies.
Besides clinical applications, Rep-Seq has been applied to investigate fundamental

immunological questions, such as the actual sizes of the T and B cell repertoires in
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humans, which have been estimated to range in the order of 106 unique clonotypes
each, based on Rep-Seq studies [22, 104]. Also the number of unique clonotypes
in certain functional subgroups of cells has been studied, e.g. it has been shown
that memory T cell populations are more oligoclonal in comparison to naïve T cell
populations [107], which agrees with the common understanding of the development of
memory cell populations. Further studies have been conducted in the context of ageing,
i.e. in how far clonotype diversity and distribution is different in elder individuals,
or course of infection. Among others, Calis and Rosenberg [108] have reviewed the
methodology that has emerged around Rep-Seq as well as more applications and results
than mentioned here.
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7. Functional Clonotype
Characterization

In the previous chapter we have seen how Rep-Seq data can be used to derive in-
formation from clonotypes that have been characterized before by means of prior
observations or additional experiments. In this chapter, we will discuss a potential
approach to interpret clonotypes that haven’t been previously characterized.

7.1. Introduction

So far we have used the clonotype information as an identifier for a subpopulation of
the immune repertoire. Given that the underlying experimental and computational
methods reconstruct the sampled immune repertoire accurately, we can e.g. track the
abundance of pre-characterized clonotypes over time or in different tissues. What all
such applications have in common is that one only uses the recovered antigen receptor
gene sequence to make a statement whether two cells are functionally identical or not.
A far more challenging task is the question whether we can derive any kind of

functional information from the observed clonotypes without a prior characterization.
Due to the complex and highly individual nature of pMHC recognition by T cell
receptors (see Section 2.3.2) and the randomness involved in the generation of the
latter, it is hard to generalize such information from collected observations. Due to the
polymorphism of MHC genes, even an identical clonotype found in two individuals
might have a different function. On the other hand, two individuals that share a large
number of MHC alleles or are even genetically identical may defeat the same pathogen
with very different clonotypes, due to the independent development of each repertoire.

One approach to deal with these complications is the large scale collection of data,
i.e. observed clonotype function under known MHC conditions. Both studies taking
into account large cohorts [109] as well as suggestions for public databases designed to
collect data from literature or researcher submissions [110, 111] have recently emerged.
However, to date no comprehensive collection of clonotypes or widely accepted designs
for such databases exist. Given the large number of TCR clonotypes and HLA allele
combinations, the task of annotating all possible combinations is rather challenging.

Alternatively, one can attempt to generalize information from annotated clonotypes
to make a statement regarding the functionality of other, previously unseen clonotypes.
In this chapter we will describe and evaluate an approach based on supervised learning,
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more precisely on support vector machine classification.

7.2. Method Goals

The aim is to assign functional information to a previously unobserved clonotype based
on training data that was presented to the model beforehand. As an evaluation envi-
ronment we chose to classify T cell receptor β chain clonotypes based on their binary
differentiation into either the CD4 or the CD8 subtype (see Section 2.3.2 and 2.3.6). The
CD4-CD8 classification problem has several key advantages as a test environment for
a clonotype learning model:

Binary nature of the biological system Rare CD4-CD8 double positive cells aside,
the underlying biological mechanism is a binary differentiation pathway. Every cell,
initially expressing both cofactors, looses either the CD4 or the CD8 phenotype during
the early development in the thymus. On the computational end, multi-class prediction
methods add an additional layer of complexity, thus working with a binary system at
first yields the advantage of access to a variety of well established and less complex
methods.

Class balance Other functionally defined groups of T cells, like the various subtypes
of CD4 and CD8 T cells or subpopulations specific for a particular antigen, occur at
significantly lower abundances. In the case of antigen specificity, a handful of T cell
clonotypes may govern the response [112, 113], while the vast majority of the repertoire
does not match. A strong imbalance between the classes that are to be classified makes
the training and evaluation of a learning model more challenging, thus a balanced task
is more suitable for an initial model evaluation. Since almost every T cell is of either
the CD4 or CD8 subtype and both subtypes occur in the same order of magnitude (in
healthy individuals the ratio is approximately 2:1 [114]), one can easily sample equally
large subsets.

Data availability Since the CD4 and CD8 proteins are membrane bound co-
receptors of the TCR, they can be directly stained with specific antibodies and
separated using cell sorting methods. Due to their high abundance they can be easily
sampled in high numbers from PBMCs, which are available as a byproduct from blood
banks. Additionally, large amounts of data were available from in-house experiments,
since cells have been sorted according to the CD4 and CD8 subtype for all transplant
patients in the BKV study described in Chapter 6.
In the following sections we will first introduce the implemented methods and

their background before we then describe how we evaluate their performance on the
CD4-CD8 classification problem and discuss how they perform.
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7.3. Binary Classification by Supervised Learning

The methods described in this chapter are based on the concept of supervised machine
learning, which describes a range of approaches designed to estimate an unknown
function

f : X → Y

that assigns a non-observable value f(x) ∈ Y to any data point x ∈ X (often Rn)
comprising observable values. We refer to X as the feature space, to each x ∈ X as
a feature vector and to each dimension of X as a feature, while y ∈ Y is the output
residing in the output space. Generally, machine learning is applied when the existence
of a relation between the input features and the output variable can be assumed, but is
not understood, i.e. f is unknown. Instead, machine learning approaches try to derive
an estimator g to represent the relation between the features and the output based on
the data itself. In case of supervised machine learning, the function g is defined based
on labeled input data, i.e. data for which the output is already known.

We will deal with binary classification problems based on n observable, real valued
features in the following sections, thus the labeled input data of sizeN can be described
as

D := {(xi, yi) | xi ∈ Rn, yi ∈ {−1, 1}}Ni=1 .

7.3.1. Support Vector Machine Classification

Support vector machines (SVMs) [115] (in their basic form) solve the above problem
for linearly separable data, i.e. for data where an n − 1 dimensional hyperplane that
separates the data into the two classes exists. An example for linearly separable and
non separable data is shown in Figure 7.1 (a) and (b) respectively. If the data is linearly
separable, then the number of separating hyperplanes is infinitely large. The SVM
method optimizes for the maximum margin hyperplane, i.e. the hyperplane with the
largest Euclidean distance to the nearest data points, following the intuition that this
solution is most robust against deviations from the training data. The problem of
finding the maximum margin hyperplane is solved as an optimization problem.

Primal Form

Let the feature space be Rn. A hyperplane in that feature space can then be described
by

w⊺x+ b = 0 w,x ∈ Rn and b ∈ R, (7.1)

i.e. the hyperplane comprises those points x ∈ Rn that fulfill the equation. If w and
b define a separating hyperplane, then let (x∗, y∗) ∈ D be a labeled input data point
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Figure 7.1.: Example data illustrating linear separability for x ∈ R2 and y ∈ {−1, 1}
(visualized as + and -). (a) The data is linearly separable and the separating hyperplane
(solid) corresponding to the maximum margins separating the data (dashed) is shown.
(b) Data that is not linearly separable.

that is closest to the hyperplane. Since w and b are scale invariant with respect to the
hyperplane they describe, they can be normalized by multiplication with a scalar. Thus,
w.l.o.g. we can state that

|w⊺x∗ + b| = 1. (7.2)

Given that by definition the vector w is orthogonal to the plane, we can obtain the
distance between the nearest point x∗ and the plane (i.e. the size of the margin) by
projecting (x∗ − x) on w, where x is any point on the hyperplane:
⏐⏐⏐⏐
w

∥w∥(x
∗ − x)

⏐⏐⏐⏐ =
1

∥w∥ |w
⊺x∗ −w⊺x| = 1

∥w∥ |w
⊺x∗ + b−w⊺x− b| (1)= 1

∥w∥ ,

where (1) follows by substitution with Equations 7.1 and 7.2. Finding a solution for w
and b that maximizes 1/ ∥w∥ can be formulated as an optimization problem. Since ∥w∥
is difficult to optimize, we equivalently minimize 1

2
∥w∥2 = 1

2
w⊺w, resulting in the

following quadratic optimization problem, given N training data points {(xi, yi)}Ni=1:

minimize 1

2
w⊺w

subject to yi(w
⊺xi + b) ≥ 1 ∀i ∈ {1, . . . , N} (7.3)

Dual Form

A standard approach to optimize a target function under equality constraints is its
transformation into the Lagrangian dual problem. Using an extension that allows for
inequality constraints, the Karush-Kuhn-Tucker (KKT) conditions [116, 117], the same
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7.3. Binary Classification by Supervised Learning

approach can be used for the primal problem described above. The target function of
the optimization problem is rewritten as follows:

L(w, b, α) = 1

2
w⊺w −

N∑

i=1

αi(yi(w
⊺xi + b)− 1), (7.4)

where αi are Lagrange multipliers. Using the partial derivatives for w and b

▽wL = w −
N∑

i=1

αiyixi = 0 (7.5)

δL
δb

= −
N∑

i=1

αiyi = 0

we can simplify Equation 7.4 and the optimization problem becomes

maximize L(α) =
N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

yiyjαiαjx
⊺
ixj (7.6)

subject to αi ≥ 0 ∀i = {1, . . . , N} (7.7)
N∑

i=1

αiyi = 0.

The above problem can now be solved with respect to α using a quadratic program-
ming (QP) solver. Given a solution, we can then use Equation 7.5 to obtainw. To obtain
b, we can use the original constraint from the primal form given by Equation 7.3, which
has now become part of the target function. The equation is fulfilled with equality for
data points with a corresponding αi > 0, the so-called support vectors which constrain
the margin. It is guaranteed that ∃ i such that αi > 0, since the solution is otherwise
not optimal. Given w and b we can now define the decision function as

g(x) = sgn(w⊺x+ b) = sgn

((
N∑

i=1

αiyixi

)⊺

x+ b

)
.

The dual form has practical advantages over the primal form. The Lagrange multi-
pliers αi give us access to those data points that define the margin and consequently
those data points that define the decision function. Their number is expected to be
small compared to the total number of training vectors, which significantly decreases
the complexity of the decision function. Furthermore, a major advantage of the dual
problem formulation is that in order to define the optimization problem we only require
the input data in form of all pairwise inner products x⊺

ixj as shown in Equation 7.6,
which enables us to use kernel functions as will be described in Section 7.3.3.

Note that the size of Equation 7.6, which is passed on to the QP solver, is dominated
by theN×N values generated from the pairwise inner products of the training feature
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7. Functional Clonotype Characterization

vectors. Thus, the size of the problem for the solver depends on the number of training
samples, but is independent of the number of observed features, i.e. the dimension of
the feature vectors. The latter independence is exploited when implicit transformations
into high-dimensional features spaces are performed (kernel functions), while the
former dependence has practical implications with regard to the feasibility for larger
training datasets. For cases where solvers will no longer be able to obtain an exact
solution with applicable resources, heuristics can be used [118].
In practice, the linearity constraint on the data separation is usually not fulfilled.

There are two main factors to be considered: outliers, i.e. rare exceptions that do not
follow the general relation of the data, e.g. due to false measurements, and structural
non-linearity of the separating function. Both cases can be dealt with within the
SVM framework - outliers can be taken into account by relaxing the formulation to
a soft-margin SVM and a non-linear relation of the data from the two classes can be
dealt with using data transforms in the form of kernel functions. Both approaches are
combined in practice and will be described in the following two sections.

7.3.2. Soft-Margin SVM

In the basic SVM formulation, no feature vector from the training data is allowed to
violate the margin or even be misclassified, i.e. violate the hyperplane. Allowing for
outliers to violate these constraints can be achieved by adding a slack variable ξ that
relaxes the constraint relating the data points to the hyperplane. In the primal form,
the problem is then defined as follows:

minimize x⊺w + C
N∑

i=1

ξi

subject to yi(w
⊺xi + b) ≥ 1− ξi ∀ i ∈ {1, . . . , N},

where C is a parameter to control the “softness” of the margin: C →∞ corresponds
to the original, hard-margin SVM, while small values for C allow for a higher overall
slack.

Conveniently, in the dual form the corresponding Lagrangian term drops out, thus
the formulation of the objective function does not change, but the constraint on the
single αi in Equation 7.7 is changed to

0 ≤ αi ≤ C.

Note that the set of support vectors, i.e. feature vectors where the corresponding
αi > 0, now comprises two types of support vectors: those that lie on the margin
and those that violate the margin. The support vectors on the margin will be strictly
smaller than C , i.e. fulfill 0 < αi < C and can again be used to obtain b as previously
described.
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Figure 7.2.: Example data (a) before and (b) after an explicit transformation using
z = Φ(x) := (x21, x

2
2). After the transformation the data is linearly separable, as

indicated by the maximum margin hyperplane.

7.3.3. Kernels

To handle data where the underlying, unknown function f is non-linear, data transfor-
mations of the form

Φ : X → Z
can be used to transform the data into a different feature space where a separating
hyperplane exists. An example for such a transformation is shown in Figure 7.2 for
the example data previously shown. The objective function of the dual optimization
function is then defined based on the transformed data, i.e. Equation 7.6 becomes

L(α) =
N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

yiyjαiαjz
⊺
i zj. (7.8)

As previously stated, a convenient feature of the dual formulation of the optimization
problem is that the input data appears solely in the form of an inner product. This
gives rise to the kernel trick: If a closed form for the inner product in the Z space is
known, the actual transformation of the data can be omitted. This enables us to use
complex, high dimensional feature space transformations at potentially no extra cost.
A kernel function is defined as

K(x,x′) := Φ(x)⊺Φ(x′) = z⊺z

and can be used as an equivalent substitution for the inner product of data points in
Equation 7.8. From an abstract point of view, the kernel function can be seen as a
similarity measure for any two data points x,x′ ∈ X . It is important to note that the
corresponding optimization problem will provide a solution for various K, however
that solution will only correspond to a maximum margin hyperplane in a transformed
feature space Z if K corresponds to the inner product in Z .
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Polynomial Kernel

A popular choice as a kernel function is the polynomial kernel, which is defined as

K
poly
d,c (x,x

′) := (c+ x⊺x′)d,

where the degree d and the constant c are free parameters. The corresponding trans-
formed feature space spans dimensions for monomials of all degrees up to d. For
example, for d = 2, c = 1 and X = R2 the equivalent explicit transformation would
be Φ : R2 → R6 defined as

Φ(x1, x2) := (1, x21, x
2
2,
√
2x1,
√
2x2,
√
2x2x2).

The computational complexity of the kernel function remains the same for all choices
of d and depends on the dimensionality of the input space X = Rn in the same way the
original problem formulation does, i.e. through the computation of the inner product.
Therefore, the kernel remains feasible even for large n and d, even though the (virtual)
corresponding transformed feature space Z becomes very high-dimensional.

RBF Kernel

The Gaussian radial basis function (RBF) kernel is defined as

KRBF
σ (x,x′) := exp

(
−∥x− x′∥2

2σ2

)
,

where σ is a Gaussian RMS width parameter. While the kernel is compact and easy to
compute, the corresponding transformed feature space Z is infinitely large and cannot
be explicitly computed. The kernel function can in parts be expressed as an infinite
sum of polynomial kernel functions with d ∈ [0, . . . ,∞] and is thus very flexible with
respect to various order relations within the data. It has been established as a general
purpose kernel for SVM classification and comes with the advantage that it adds only
a single parameter that requires tuning.

Linear Kernel

A kernel that corresponds to the inner product of the original feature vectors

K lin(x,x′) := x⊺x

is referred to as a linear kernel. It corresponds to the original SVM formulation using
Equation 7.6, but since the SVM method is primarily seen as a kernel based approach,
it has become standard terminology.
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7.3. Binary Classification by Supervised Learning

7.3.4. Multiple Kernel Learning

The Support Vector Machine concept can furthermore be extended to include multiple
kernels into the same model, referred to as multiple kernel learning (MKL) as opposed
to single kernel learning (SKL). The basic concept is to replace the kernel by a linear
combination of kernels, i.e.

K(x,x′) =
K∑

k=1

βk ·Kk(x,x
′)

where Kk denotes the kth kernel and βk a corresponding weight coefficient. Since
every linear combination of kernels is itself a valid kernel, this formulation is valid if
the individual Kk correspond to inner products in a transformed feature space. There
are two key ideas behind this concept: the incorporation of heterogeneous data sources
and an improvement of the model’s interpretability [119]. The latter can be achieved
by observing the weights βk, which become part of the learning process: if the input
data is partitioned and distributed across different kernels, the weights can be used to
infer in how far features or a particular feature encoding contribute to the solution.

The weight coefficients can either be obtained as part of the model selection process
(which will be described in Section 7.3.6), or by incorporating them into the optimiza-
tion problem that maximizes the separating hyperplane margin. Multiple solutions
to accomplish the latter have been proposed, we will use the solution proposed by
Sonnenburg et al. [119] and use the model selection only to tune the soft-margin SVM
and kernel parameters.

7.3.5. Kernel Normalization

While we can in principle classify data in any real valued (transformed) feature space, it
is often essential to normalize the data. One reason for this is that the original features
may be defined on different value ranges and thus alter the meaning of the distance
measure that is being optimized for. The normalization can be performed either in the
original or in the transformed feature space. Since the transformed feature space is not
explicitly known, the normalization has to be defined based on the kernel function.
Given a kernel K, we will use the following kernel reformulation in order to perform a
normalization in the transformed feature space:

Knorm(x,x
′) :=

K(x,x′)√
K(x,x) ·K(x′,x′)

.

It has been shown that this particular normalization within the transformed feature
space is superior to a data preprocessing step, since applying a kernel function often
comes with a loss of the original normalization [120]. Additionally, we are able to
use this type of normalization for kernels that perform a data type transformation,
i.e. where the original feature space does not comprise real valued numbers, but for
example sequences [121].
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7.3.6. Model Selection

Both the soft-margin formulation of the SVM classification as well as most kernels
involve parameters, i.e. describe a class of methods and the suitable method has yet to
be defined. In order to do so, a set of parameter combinations can be evaluated based
on the available training data using a n-fold cross validation. The training data D is
partitioned into n equally large partitions

D = D1 ∪ D2 ∪ · · · ∪ Dn,

where Di ∩ Dj = ∅ for all i ̸= j. The model is then trained n times, while each time
leaving out one partition when training and using it to evaluate the trained model’s
performance. It is quantified based on standard statistical performance measures for
binary classification such as the sensitivity, specificity and accuracy. Since we will deal
with balanced classes, we will use the accuracy as the standard performance measure
for our models. The overall model performance is defined as the mean performance
over all n training data partitions.
The search space of parameters is traversed by performing a grid search, i.e. by an

evaluation of all parameter combinations defined by a finite discrete range for each
single parameter. For some parameters the values are not directly interpretable, but
commonly applicable ranges of values exist and are initially applied. If the optimum
performance of the model is reached at the boundary of a defined range, the grid is
extended accordingly.

7.4. A Classification Framework for Antigen
Receptor Genes

The aim of the classification method shown here is to be able to classify single clonotype
gene sequences based on their function. In the following sections we will describe
approaches to transform the gene sequence either explicitly or implicitly using kernels.

As previously described, the recombined gene sequence of each chain can be viewed
as a composition of three components: the V and J segments and the CDR3 region.
While each of them defines a substring of a sequence, the gene segments are limited
by the segments available in the germline genome. We can therefore treat the gene
segment components of the recombined gene as categorical data, while we have to
consider more sophisticated methods to define a proper numerical feature space for
the CDR3 region.

We will then combine the separate components of the data using the MKL approach
described in Section 7.3.4. The data conversions and transformations for each com-
ponent are described in the following sections. Note that we will use a nomenclature
that assumes the original feature space to be the TRB clonotype repertoire, i.e. a kernel
function will always be defined asK : C × C → R. Every subkernel will operate on a
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single component of the clonotype feature space, which we denote in the superscript of
the kernel descriptor, e.g. KCDR3 denotes a kernel function that only takes into account
the CDR3 region.

7.5. V and J Segment Encoding

To encode the categorical V and J segment information, we use a sparse feature vector
with as many dimensions as there are gene segments where the values of all dimensions
are 0 except for the one corresponding to the incorporated gene segment which is set
to 1. Given the set of V gene segments SV with NV = |SV |, we define the transformed
feature space as RNV and the feature vector corresponding to a clonotype c as

ΦV (c) := x = (x1, . . . , xNV
) where xi = 1i=cV .

In a kernel formulation, this corresponds to

KV (c1, c2) := 1cV1 =cV2
.

The J gene segment is encoded equivalently.

7.6. CDR3 Region Encoding

In contrast to the V and J gene segments, the sequence of the CDR3 region is (for the
most part) random. In the following sections we will describe kernels to map the CDR3
sequences into a numerical feature space. We will describe the kernels in the context
of two clonotypes c1 and c2 with their corresponding CDR3 sequences cCDR31 and cCDR32

of lengths L1 and L2. Note that if not stated otherwise, the methods can potentially be
applied either on the nucleotide or on the amino acid sequence of the CDR3 region.
For a model aiming to assess clonotypes on a functional level it is however rather
obvious to operate on the amino acid level, since clonotypes with silent substitutions
are functionally indistinguishable.

7.6.1. K-Spectrum Kernel

Many approaches have been proposed to handle sequence information in kernelized
learning methods. One of the sequence kernels developed for protein sequences is the
k-spectrum kernel, initially used to predict protein homologies [121]. Given a k-mer
length k, it is defined as

KCDR3-KS
k (c1, c2) =

L1−k+1∑

i=1

L2−k+1∑

j=1

1cCDR31 [i...i+k−1]=cCDR32 [j...j+k−1].
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Figure 7.3.: (a) A typical TRB CDR3 length distribution across observed clonotypes,
as observed in an nonspecific sample of human cells. (b) The Gaussian weight function
used in the Weighted k-spectrum kernel for various values of σ.

This kernel formulation is equivalent to the explicit transformationΦCDR3-KS : C → RΣk ,
where each dimension corresponds to a k-mer over the alphabet Σ and the feature
vectors hold the absolute frequencies of those k-mers in the CDR3 sequence:

ΦCDR3-KS(c) :=
(
ϕa

(
cCDR3

))
a∈Σk

where ϕa(s) := # times a occurs in s.

As the kernel only counts pairwise k-mer matches, the locality information is lost
in the comparison. Two sequences are considered similar if they share many k-mers,
even if they occur in an entirely different locations.

7.6.2. Weighted K-Spectrum Kernel

Several approaches have been proposed to include the locality information in string
kernels. Among them is the weighted degree kernel [122], which is similar to the k-
spectrum kernel but uses a range of k-mer lengths and is position specific, and the
locality improved kernel [123], which is based on a mapping of each position in the
sequence into multiple feature space dimensions. What these kernels have in common
is that, unlike the k-spectrum kernel, they are defined only for sequences of the same
length and are therefore not applicable to the CDR3 region without restricting the
repertoire to clonotypes with equal CDR3 lengths.
While the lengths of the CDR3 regions are not identical, they are in a relatively

restricted domain (see Figure 7.3(a)). We therefore extended the k-spectrum kernel to
to the weighted k-spectrum kernel for input sequences of similar but not necessarily
equal lengths. It weights in how far the relative positions of matching k-mers agree.
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Given a k-mer length k it is defined as

KCDR3-WKS
k,ς (c1, c2) =

L1−k+1∑

p1=1

L2−k+1∑

p2=1

wς

(
p1
L1

− p2
L2

)
· 1cCDR31 [i...i+k−1]=cCDR32 [j...j+k−1]

(7.9)

where ως : R→ R is a Gaussian weight function defined as

ως(x) = exp

(
− x2

2ς2

)
.

The function is shown for a selection of values for ς in Figure 7.3(b). For ς = 0 the
kernel only considers k-mer matches at identical (relative) positions, whereas for
ς = ∞ the kernel becomes position independent, i.e. equivalent to the k-spectrum
kernel.

7.6.3. Weighted K-Spectrum Amino Acid Kernel

As previously stated, the clonotype gene sequence comparison should be performed
on the amino acid sequence level. The kernels described in the preceding sections
perform the character-wise comparison in a binary fashion, i.e. consider two compared
positions in the observed sequences either as equal or unequal. This is somewhat
inadequate for protein sequences, since some amino acids are known to be functionally
more similar than others. To quantify the similarity of amino acids, both substitution
or similarity matrices based on empirical observations [124, 125, 44, 126, 127, 128]
as well as mappings of amino acids into multi-dimensional feature spaces based on
biochemical properties [129, 130] have been published.
To incorporate the information of such feature maps Ψ : ΣAA → Rn that assign

numerical feature vectors to amino acids into the previously described string kernels,
we follow an approach suggested by Toussaint et al. [131]. They suggest to replace
the substring comparison 1s=s′ in the previous kernel formulations with a subkernel
that takes the amino acid features into account. Given two substrings s and s′ of equal
length ℓ and an amino acid feature map Ψ, they propose the following formulation
based on the polynomial kernel

KAA-P
Ψ,d (s, s′) :=

(
ℓ∑

i=1

Ψ(s[i])⊺Ψ(s′[i])

)d

and the following kernel based on the RBF-kernel

KAA-RBF
Ψ,σ (s, s′) := exp

(
−
∑ℓ

i=1 ∥Ψ(s[i])−Ψ(s′[i])∥2
σ2

)
,
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where d and σ are the parameters of the polynomial and RBF kernel as previously
described. We use the latter formulation for the substring comparison in our weighted
k-spectrum kernel, resulting in

KWKS-AA
k,ς,Ψ,σ (c1, c2) =

L1−k+1∑

p1=1

L2−k+1∑

p2=1

wς

(
p1
L1

− p2
L2

)

·KAA−RBF
Ψ,σ (cCDR31 [i . . . i+ k − 1], cCDR32 [j . . . j + k − 1]).

7.6.4. Explicit Amino Acid Feature Mapping

A key advantage of the string kernels discussed in the previous sections over an explicit
mapping of the characters to numerical features is the feasibility for long sequences.
However, since the CDR3 sequences are relatively short in length, an explicit, character-
wise application of an amino acid feature map remains computationally feasible in
this case. Given a set of clonotypes C of length L and an amino acid feature map
Ψ : ΣAA → Rp, this results in a transformation function Φ : C → RLp. Let

Ψ(t) := (ψ1(t), . . . , ψp(t))
⊺

be the p-dimensional feature vector for a symbol t ∈ ΣAA. Then

ΦΨ(c) :=
(
ψ1(c

CDR3[1]), ψ2(c
CDR3[1]), . . . , ψp(c

CDR3[1]), . . . ,

ψ1(c
CDR3[L]), ψ2(c

CDR3[L]), . . . , ψp(c
CDR3[L])

)⊺

describes the resulting p · L dimensional feature vector for a clonotype c. We can
then apply standard kernels such as the polynomial or the RBF kernel on the resulting
feature space.

However, such an explicit transformation is only defined for clonotypes with equally
long CDR3 regions. To overcome this limitation, we define a target length L∗ and
insert uniformly distributed dummy features with the mean feature values of two
adjacent positions if the original sequence is too short. If the original sequence is too
long, adjacent positions are merged, again using the mean feature values of the two
positions. Let L ̸= L∗ be the length of cCDR3 and ∆ = |L− L∗|. We then partition
cCDR3 into ∆ + 1 ideally equally large partitions. Let Q = {q1, . . . , q∆} be the last
positions of the first ∆ partitions. We then define as

Ψq
agg(c

CDR3) :=
Ψ(cCDR3[q]) + Ψ(cCDR3[q + 1])

2

the mean feature vector of the two positions adjacent to the partition. If |cCDR3| > L∗ we
shorten the resulting feature vector by replacing (. . . ,Ψ(cCDR3[q],Ψ(cCDR3[q + 1], . . . )
with (. . . ,Ψq

agg(c
CDR3), . . . ). If L < L∗, the feature vector is elongated by replac-

ing (. . . ,Ψ(cCDR3[q],Ψ(cCDR3[q+1], . . . )with (. . . ,Ψ(cCDR3[q],Ψq
agg(c

CDR3),Ψ(cCDR3[q+
1], . . . ), in either case for all q ∈ Q. While this approach comes with a certain degree
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of information loss, it follows the intuition of amino acids that are at a similar location
in either CDR3 region are more likely to bind to a similar region within the target and
thus share a functional domain.

7.7. Related Work

In 2004, Thomas et al. [46] presented an approach for the aggregation and classification
of entire repertoires of T cell receptor β chain CDR3 sequences. They perform an explicit
transformation of the repertoires into a numerical feature space using a bag of words
approach. Initially, for a fixed q a set of q-grams is sampled from the pool of all CDR3
sequences across all samples. The q-grams are transformed into a q ·m dimensional
feature vector defined by a character-wise application of an amino acid feature map
Ψ : ΣAA → Rm. The resulting vectors were subjected to k-means clustering, defining a
codebook of k reference vectors. With the codebook defined, the authors then encode
a repertoire of CDR3 sequences by an Rk dimensional feature vector: p q-grams are
sampled from the repertoire, transformed into q ·m dimensional vectors using the same
transformation as described above and assigned to the nearest vector in the codebook.
The feature vector of the repertoire is then defined as the spectrum of assignments, i.e.
the ith dimension denotes the number of assignments to the ith codebook vector. The
authors used the repertoire feature vectors to discriminate TRB repertoires of mice
prior and post immunization with an antigen using either hierarchical clustering or
an SVM. Their results showed that their models were able to distinguish repertoires
before and after the immunization quite well, while a distinction of samples taken 5,
14 or 60 days after immunization in a multi-class approach showed mixed results.

In contrast, Li et al. [132] performed a clonotype based classification of TRB CDR3
sequences using SVMs. They as well performed an explicit feature mapping, similar to
the approach described in Section 7.6.4, but without any length correction, i.e. restricted
to a subset of sequences of a fixed length. They too apply their model to the CD4 vs.
CD8 subtype classification problem and report prediction accuracies of approximately
88%.

7.8. Data Selection and Preparation

We will now briefly describe the in-house data that was used to evaluate the perfor-
mance of the different models and their configurations, how it was generated and
which preprocessing steps were applied.
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7.8.1. Sample Preparation

The experiments were performed by the lab of Prof. Dr. Nina Babel at the Berlin
Brandenburg Center for Regenerative Therapies (BCRT). PBMCs from patients blood
samples were stained with the following antibodies from Biolegend: CD3 App-Cy7
(Clone HIT3a), CD4 Alexa Fluor 700 (Clone RPA-T4) and CD8 FITC (Clone RPA-T8).
The cells were then flow cytometrically sorted on a BD Biosciences Aria II cell sorter.
Propidium iodide staining was used to exclude dead cells. After cell lysis and DNA
isolation the TRB genewas enriched in amultiplex PCR from genomic DNA as described
by Dziubianau et al. [97]. The target fragments were isolated and prepared for pooled,
paired end Illumina sequencing using indexed adapters both on the 3’ and the 5’ end
(dual barcoding). The dual barcoding was performed in order to avoid clonotype
“contamination” between any pair of samples sequenced on the same lane that is
induced by residual contamination across the adapter oligonucleotides (see Section 8.2).
The samples were then sequenced on an Illumina sequencing machine and the raw
data subsequently processed by IMSEQ (see Chapter 4).

7.8.2. Data and Data Preparation

The pool of available CD4-CD8 dataset pairs comprises samples from 16 donors, par-
tially from various points in time. Since the datasets originated from samples with
different cell numbers and sequencing depths, as well as of varying quality, we pre-
selected and preprocessed the datasets in order to fit the needs for a classification
evaluation setting.
Beyond the general data quality assessment, the proper handling of duplicates

and highly similar clonotypes that originate from technical artifacts is crucial. In
principle, similarities between feature vectors are what we want to detect and utilize
when applying machine learning methods. However, when dealing with clonotype
repertoires, we face the situation that two distinct feature vectors might actually
originate from the same clonotype - due to technical artifacts as described in Section 4.2.
This can lead to an overestimation of the model performance if measured using cross
validation: When the data is shuffled and partitioned, the artifacts are likely to be
separated into different subsets. Thus, when evaluated, the model is likely to perform
well on those feature vectors, generalizing the technical similarity between artifacts
rather than the biological similarity between true clonotypes. For a robust method
assessment, it is therefore crucial to limit the repertoire to high confidence clonotypes.

Furthermore, we want to compare the performance of models operating on different
subsets of features, i.e. models that take only the CDR3 region in to account vs. models
that also include the V and J gene segments. Feature vectors are not necessarily
unique under all subsets of features. To make the model performances comparable,
we therefore limit the repertoires to those clonotypes that are unique with respect to
the CDR3 sequence, even if they have different V and J gene segments incorporated.
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Figure 7.4.: A schematic overview of the data processing performed on the raw se-
quencing data prior to the model evaluation.

This enables us to evaluate models that take into account the V and J gene segments
without being biased by CDR3 duplicates. In this clonotype reduction step, only the
most frequent clonotype is kept.
An overview of the implemented data processing steps is shown in Figure 7.4.

Initially, the raw data is annotated and the standalone error correction is performed as
described in Section 4.5 using IMSEQ. We then remove all clonotypes with ambiguous
gene segment assignments and cross-sample duplicates, i.e. those clonotypes that
occur both in the CD4 and the CD8 samples. Such cases do occur at a low frequencies
due to sorting errors or double positive cells. After the removal of CDR3 duplicates as
described above, the samples are sorted from the most frequent to the least frequent
clonotype. When sampling from clonotype repertoires for model evaluation, the
clonotypes are obtained top-down, i.e. when performing a cross validation on n
clonotypes from each sample, the n most frequent clonotypes are used. Since low
quality clonotypes are expected to occur at lower frequencies, this maximizes the
number of high confidence clonotypes.
To ensure that we do not sample clonotypes from the “tail” of each repertoire, we

select datasets for evaluation with a minimum number of unique CDR3 clonotypes.
Given that we will operate with balanced training and evaluation samples of size
1,000-5,000, i.e. up to 2,500 clonotypes per class, we limit the datasets to those where
at least double, i.e. 5,000 unique CDR3 clonotypes after error correction are available
per sample and thus never exhaust a sample to more than 50%. The used datasets and
the corresponding clonotype counts are shown in Table 7.1.
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Donor Date CD4 CD8 CD4 CD8 CD4 CD8 CD4 CD8

A 2013-09-13 9,671 7,414 11,886 9,652 10,422 8,429 12,721 10,782

A 2013-10-24 11,252 8,195 14,954 12,734 12,996 10,673 16,851 15,589

A 2015-01-21 19,422 8,354 22,829 11,025 22,537 9,863 26,799 13,046

B 2013-03-28 11,251 5,101 15,174 8,189 12,914 7,129 16,970 10,457

C 2013-03-25 13,170 5,058 18,758 8,581 16,670 8,500 23,344 12,638

# CDR3s # CDR3s# V-J-CDR3s # V-J-CDR3s

Error correction No error correction

Table 7.1.: The five datasets selected for the evaluation of different data encodings
and kernels for the differentiation of the CD4 and CD8 T cell subtype. The datasets
originate from three unique donors. For each dataset, the number of unique “complete”,
i.e. V-J-CDR3 defined clonotypes and the number of unique CDR3 sequences is given.

7.9. Implementation

After the raw data processing and clonotype repertoire generation with IMSEQ, the
data was pre-filtered in R (removal of ambiguous gene segment assignments) and then
further processed in a native application written in C++. The application is based on
the Shogun [133] machine learning library’s implementation of the SVM framework
and utility functionality such as cross validation.

7.10. Model Parameters

In the following we will explore the parameter spaces of all CDR3 kernels together with
the soft margin SVM parameter C in order to identify optimal parameter combinations
for each model. The parameter space was explored using a grid search and each
parameter combination was evaluated using a 10-fold cross-validation (as described
in Section 7.3.6), based on the 2×500 highest ranking clonotypes of the previously
described five dataset pairs. The cross validation was performed on each dataset
individually. The average accuracies over all datasets and all cross validation partitions
are then built and used for the parameter selection. After we defined the optimal
parameters for each CDR3 based model, we will evaluate them comparatively in
conjunction with the V and J gene segment information using the identified parameters
and a larger dataset.
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Figure 7.5.: The evaluated model selection space for the k-spectrum kernel, i.e. the
grid of values for the soft-margin SVM parameter C and the kernel parameter k with
the corresponding mean accuracies (over all samples and cross validation partitions).

7.10.1. K-Spectrum Kernel

The parameter space that was explored for the k-spectrum kernel is shown in Figure 7.5.
The explored set of parameters was built over all combinations of the soft margin
parameter C ∈ [2−2, 2−1, . . . , 23,∞] and the k-mer length kernel parameter k ∈
[2, 3, . . . , 6]. The parameter combination of C = 1 and k = 3 performed best in the
given analysis and there is a generally strong trend towards the soft margin parameter
value C = 1. For harder margins, i.e. larger C , the performance gradually decreases
while higher values for k performing better than lower values. In the hard margin
configuration, the optimally performing choice for the k-mer length is k = 5, allowing
the SVM to properly separate all training data the cost of generalization.

7.10.2. Weighted K-Spectrum Kernel

For the weighted k-spectrum kernel, the soft margin performance optimum for C = 1
remains. We therefore only show the results for C = 1 and C =∞. Figure 7.6 depicts
the parameter performances for k-mer lengths k ∈ [2, 3, . . . , 6] and widths for the
Gaussian weight function ς ∈ [2−3, 2−3, . . . , 21]. Generally the impact of the weight
function, i.e. whether we consider k-mer matches that are (relatively) more distant
with respect to their positions in the two compared CDR3 sequences, does not strongly
affect the model performance. Regarding k, we again see a tendency towards smaller
k in the soft margin model and higher k in the hard margin model, with an overall
optimum at k = 3 and ς = 0.5 for C = 1.
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Figure 7.6.:A subset of the evaluatedmodel selection space for theweighted k-spectrum
kernel, i.e. the grid of values for the k-mer distance weight parameter ς and the k-mer
length k with the corresponding mean accuracies (over all samples and cross validation
partitions). The soft-margin parameter is fixed either as (a) C = 1 or as (b) C = ∞
(hard margin).

7.10.3. Weighted K-Spectrum Amino Acid Kernel

If we additionally integrate amino acid properties as described in Section 7.6.3, there
are two additional parameters, the used amino acid property map Ψ and the Gaussian
RBF subkernel weight σ. As previously done by Thomas et al. [46], we use the numer-
ical feature vectors provided by Atchley et al. [130] to map single amino acids (see
Appendix A.5).

The results for a subset of the explored parameter space are shown in Figure 7.7(a)
for σ ∈ [2−2, 2−3, . . . , 2−7] and k ∈ [2, 3, . . . , 6], while the parameters C = 1 and
ς = 2−3 are fixed. The k-mer length k = 3 remains optimal, while with respect to σ
the best performance is achieved for values ≤ 2−3. When we fix the k-mer length to
k = 3 and measure the performance of the k-mer distance weight ς against σ as shown
in Figure 7.7(b), we again see that the model performance is rather invariant for wide
ranges of parameter choices, with an optimum at ς ≃ 2−3 and σ ≃ 2−6.

7.10.4. Explicit Amino Acid Feature Mapping with RBF Kernel

Furthermore, we evaluated a model based on the length corrected, explicit feature
mapping described in Section 7.6.4. We again used the amino acid feature map by
Atchley et al. [130] and applied a Gaussian RBF kernel on the resulting numerical
feature space. For the transformation, a target length of L∗ = 17 was used in order to
preferentially insert dummy positions rather than deleting positions and thus loose
information. The length difference was restricted to be ∆ ≤ 5, i.e. a small fraction of
clonotypes that could not be mapped within these boundaries was discarded.
The model selection results for a parameter range of C ∈ [0.5, 1, 2] and σ ∈
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Figure 7.7.:A subset of the evaluatedmodel selection space for theweighted k-spectrum
amino acid kernel, with the corresponding mean accuracies (over all samples and cross
validation partitions), where either (a) the k-mer distance weight is fixed to ς = 2−3 or
(b) the k-mer length is fixed to k = 3. In both cases the soft margin parameter is set to
C = 1.
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Figure 7.8.: The evaluated feature space for the explicit amino acid feature mapping
combined with a Gaussian RBF kernel, where C is the soft margin SVM parameter and
σ the width parameter of the kernel.

[23, 24, . . . , 212] is shown in Figure 7.8. With respect to the soft margin parameter,
the model again performs best for C = 1, while the Gaussian RBF width parameter
yields the best average result for σ = 28.

7.11. Model Comparison

Lastly, we compared each model in a larger scale cross-validation with respect to
their accuracies as well as the number of support vectors as an estimator for the
generalization performance. Each model was evaluated in a 10-fold cross-validation
using balanced datasets based on the 2×2,500 highest ranking CD4 and CD8 clonotypes
separately for each of the five samples. Since the model selection as shown in the
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previous section often revealed multiple parameters close to the optimal combination,
multiple parameter sets were evaluated, but again revealed similar performance results.
We therefore show a single parameter combination for each model in Figure 7.9, while
the extended results are shown in Appendix A.6. The configurations shown here are the
k-spectrum kernel with k = 2, the weighted k-spectrum kernel with k = 2, ς = 0.125,
the weighted k-spectrum amino acid kernel with k = 3, ς = 0.125, σ = 2−6 and
the RBF kernel based on an explicit Atchley mapping with σ = 28. The soft margin
SVM parameter was set to C = 1 for all models. For the weighted and unweighted
k-spectrum kernels a value of k = 2 was selected, since this configuration resulted a
lower number of support vectors while yielding comparable accuracies.

Initially, each CDR3 kernel was evaluated as a single kernel learningmodel. Resulting
in a median accuracy of approximately 64%, the weighted and unweighted k-spectrum
kernels perform comparably. The amino acid version and the explicit mapping of the
CDR3 sequences into length normalized, Atchley factor based feature vectors range
slightly below that.
If we additionally incorporate the V and J segment information in form of cate-

gorical data handled by a linear kernel as described in Section 7.5, the performance
is consistently improved to over 72%. The performance of the individual models be-
comes indistinguishable, with each model performing more or less similarly. To further
investigate the role of the gene segment information, we additionally evaluated the
performance of an MKL model using only those features, i.e. an MKL model with two
linear kernels encoding the V and J gene segment information. It ranges slightly below
the full MKL models with a median performance of approximately 69% as shown in
the right panel in Figure 7.9.

The results for the number of support vectors are shown in Figure 7.9(b) and confirm
the results as defined based on the classification accuracy. The numbers of support
vectors are generally high, ranging consistently above 2,500 in the MKL models and in
the case of the SKL models partially even close to 4,000, indicating a suboptimal fit in
concordance with the accuracies.

While the performances are close, the traditional k-spectrum kernel and the weighted
k-spectrum kernel appear to yield the best results with respect to the highest accuracies
combined with the lowest number of support vectors.

7.12. Summary and Conclusion

We have described and evaluated an approach for the binary classification of single T
cell receptor β chain clonotypes and evaluated our methods on the biological binary
CD4-CD8 subtype system. We primarily focused on the encoding of the hypervari-
able CDR3 and presented four alternative methods to encode and use the sequence
information of that region in a learning model based on Support Vector Machines:
(1) the k-spectrum kernel as previously described by Leslie et al. [121], to which we
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Figure 7.9.: The cross validation results comparing all models based on balanced
datasets with 5,000 unique clonotypes. Each model was evaluated based on the five
datasets previously described and the box plots comprise the (a) accuracies and (b)
numbers of support vectors measured over all samples and all cross validation iterations.
The left panels show the results based on SKL, the center panels based on MKL which
additionally include the V and J segments and the right panels based on MKL using
only the V and J information.
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suggested two modifications - (2) a version that takes into account locality information
in sequences of similar length and (3) a version that additionally takes into account
amino acid properties. Lastly, we attempted to (4) explicitly map the CDR3 sequence
information into a numerical feature space, again based on amino acid properties.
We then evaluated the performance of each CDR3 kernel in a standalone, single

kernel learning configuration as well as in a multiple kernel learning adding two linear
kernels encoding the incorporated V and J gene segments. The evaluations revealed
a prediction accuracy of 64% for the SKL, 69% for the V-J MKL and 73% for the
V-J-CDR3 MKL models, with each CDR3 kernel performing more or less similarly.
The assessment of the number of support vectors as a measure for the generalization
error depicts a similar trend, i.e. a limited generalization with slightly better values
for the MKL models. The results, in particular the comparison between the V-J and
V-J-CDR3 MKL models, suggest that all the tested models perform primarily based on
the V and J segment information. It is important to recall that the V and J segments are
not entirely disjoint with the CDR3 sequence, but overlap with it to a variable degree
as shown in Figure 2.5. Therefore, the CDR3 sequence is to some extent informative
with respect to the incorporated gene segments and thus partially discriminative for
classes that primarily depend on the V and J segments. We do, however, see a small but
reproducible improvement when all features, i.e. also the CDR3 is taken into account,
which demonstrates the ability of the models to exploit discriminative information in
CDR3 which is not part of the germline encoded segments.
The limited capabilities of the evaluated models on the CD4-CD8 discrimination

problem can be either due to the fact that the available features do not encode the
necessary information or because the models fail to sufficiently generalize available
information. For the given data and evaluation results, both components are likely to
play a role:

The CD4-CD8 evaluation system As initially described, the CD4-CD8 discrimi-
nation problem has properties that are beneficial for a model evaluation task, such
as the binary nature of the problem and the biological balance of the classes. On
the other hand, however, the biological background suggests that it might not serve
well as a test environment for models based on the CDR3, since the regions of the
readily folded receptor protein that interact with the MHC ligand are assumed to lie
within the germline encoded region of the protein. Our findings stand in contrast to
those of Li et al. [132], who claim that the CD4 vs. CD8 fate of T cells correlates with
the CDR3 sequence and report classification accuracies of approximately 88% using a
CDR3 kernel. However, our results are in agreement with what is known about the
biological system. Classifying cells based on the germline encoded V and J segments
of the gene sequence appears to be possible up to a certain degree, with the missing
link possibly being the α chain. After all, when working with β chain sequencing data,
we are only observing data encoding one of two chains of the receptor. Therefore one
could speculate that with the models presented here, a more accurate classification
may be possible based on paired α-β repertoire sequencing data, which is currently
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not available.

CDR3 kernel performance Due to the comparable performances of the tested
CDR3 kernels and the limited overall performance it is hard to make a statement
whether the CDR3 kernels perform well or not - if the assumption is that CD4-CD8
discrimination problem is not suitable for the CDR3 kernel evaluation, we are simply
unable to assess that. However, other data that may be more suitable for the evalua-
tion task, particularly a classification by antigen specificity, comes with the initially
stated problems: very low clonotype numbers and, at the time of writing, insufficient
availability. Nonetheless, even if we may not be able to estimate the CDR3 kernel
performances with the data at hand, there is also room for future improvements on the
data encoding and handling. Treating a complexly shaped and folded protein as a linear
sequence of amino acids is a major generalization or aggregation step. Put differently,
if we present the TCR protein to a computational model this way, the relations to be
detected in order to solve the classification problem are hidden in deeper layers in
the data. More sophisticated approaches that preprocess the sequence e.g. to obtain
(partial) protein structures would expose some of the relations more directly to the
model and might therefore perform better and be an interesting subject for future
investigations.

Some of the issues regarding data availability can be expected to be (to some degree)
improved in the near future. With paired chain repertoire sequencing techniques,
which we will briefly discuss in Section 8.3.1, becoming available at increasingly high
scale, these methods may soon lift the restrictions that currently apply due to the
widely used single chain sequencing approaches. When databases based on large scale
studies with paired chain clonotypes annotated with the HLA genotype of the donor
and known functionalities become available, it would be interesting to reevaluate and
optimize the methods discussed here.
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8. Conclusion and Outlook

In this thesis, we have discussed the computational and analytical questions that arise
from T and B cell receptor repertoire sequencing. We started off from the processing
of the raw sequence data and discussed our method IMSEQ, which we developed and
evaluated with the various pitfalls, biases and errors in mind that can make Rep-Seq
data processing difficult. Continuing from properly annotated Rep-Seq repertoires,
we differentiated between two types of applications: those that use the identified
clonotypes solely as identifiers of a subpopulation of T cells with identical antigen
specificity, and those that aim to derive functional information from the recombined
antigen receptor genes. Regarding the former, we described a clinical application by our
collaborators in the context of renal transplant patients as well as other examples from
literature. We then presented a learning method based on support vector machines
that we developed to functionally classify antigen receptor clonotypes.
We will conclude this thesis with some general remarks regarding the ongoing

challenges in the context of Rep-Seq, which were not discussed in detail in the previous
chapters. Furthermore, we will give an outlook in the form of a brief insight into recent
developments: the ongoing efforts to capture both receptor chains using latest single
cell technologies and new findings in the context of the sequence based characterization
of antigen receptor genes.

8.1. General Remarks

Since the discovery of the somatic gene recombination process driving antigen receptor
diversity in the early 1980s, research on the adaptive immune system has made signifi-
cant steps forward. Early studies estimated repertoire features using first generation
sequencing technologies [134], which poses a serious limitation given the enormous
diversity of immune repertoires. Now, with high throughput sequencing technologies
at our hands, we have all the experimental tools needed for comprehensive studies
of immune repertoires. We are solely bound by the limits of sampling, since we can
obviously not obtain the entire T or B cell repertoire from a living individual.
Consequently, the key challenges have shifted towards the interpretation of the

generated data. While new Rep-Seq data is continuously being generated, some of the
key parameters of interest cannot be derived from the data in a satisfactory fashion.
A prominent example is the diversity of a repertoire, a parameter often asked for as
it is believed to give insights into the current activity of the immune system or may
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serve as a predictive parameter for disease or vaccine outcome when measured in
antigen specific repertoires. The proposed solutions range from simply counting the
number of observed clonotypes to diversity measures developed in the context of
ecology [135], where one observes counts of species and is interested in biodiversity.
The problem in Rep-Seq is, that we cannot clearly identify the species, i.e. clonotypes,
in the same sense as ecological species. Due to the technical artifacts introduced by
PCR and sequencing, we may observe multiple species instead of one true species, and
consequently overestimate the sample diversity. Even if we can contain the effect of
these errors, as shown in this thesis, i.e. we assume that we only observe true biological
entities, the question of species definition remains open to some degree. That is, it
may not be desired to treat two very similar clonotypes as different species in the same
way as we treat two clearly distinct clonotypes as different species when computing a
measure such as diversity.

8.2. Sensitivity to Contamination

Another important aspect that is rarely addressed in publications is contamination.
PCR is a process highly prone to contamination [136], which, as long as contained to
low levels, does not necessarily pose a threat to regular sequencing applications. When
preparing genomes, exomes or transcriptomes, the results will not be impacted by cross
contamination of a few molecules. In repertoire sequencing, however, it is very likely
that we observe a number of clonotypes only in single cells, i.e. have only one template
for amplification. Thus, we cannot simply discard all sequences that occur at very low
frequencies, as they might be true biological entities. To some degree, this problem
can be addressed with UMIs, i.e. if template is contaminated with product. Aside from
contamination during the PCR preparation, another source of contamination is the
pooling of samples in the same sequencing pool using index primers to demultiplex
them after sequencing. Even without contamination between the libraries, we have
often observed a certain degree of contamination between the index primers upon
delivery in our in-house experiments. In fact, in some caseswe could clearly identify low
level dilutions of one sample in another sample in a pattern that allowed us to deduce in
which order the primer oligonucleotides were synthesized by the manufacturer using
the same machine. Again, the observed degree of contamination would usually not
pose a problem to most other sequencing applications. Nonetheless, in the context of
Rep-Seq it should be taken into account. While the issue has been mentioned in a few
publications [24, 137, 138, 32, 139], in the majority of cases handling of contamination
is not mentioned, which at least rises questions about many of the comparative studies
that report sharing of clonotypes between individuals.
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8.3. Outlook

8.3.1. Paired Chain Repertoire Sequencing

Most Rep-Seq data produced to date is from bulk, single chain sequencing experiments
and from those, most are focused on the T cell receptor β chain or on the immunoglob-
ulin heavy chain. This is due to the fact that the α and β (or heavy and light) chains
are encoded on separate chromosomes, thus the bulk experimental setup as described
in Section 2.4.2 is not suitable for capturing both chains in a linked fashion. While
we can indeed amplify both genes with suitable PCR primers, the information which
pairs of genes originated from which cell is lost. Therefore, for a long time methods
that maintain the link information between the two chains were restricted to low
throughput approaches where every cell is treated and sequenced separately. Such an
approach is obviously unsuitable for samples of millions of cells.
Recently, several approaches have been made to develop paired chain repertoire

sequencing methods that achieve higher throughputs. They generally aim to minimize
the experimental effort that has to be applied on the individual cell level. In 2013,
DeKosky et al. [140] proposed an approach where the individual cells are separated
onto high density microwell plates. Inside the individual compartments the cells are
then lysed and the RNA captured. Subsequently, the target RNAs are fused in a linkage
PCR step, which targets the genes of the two chains as described in Section 2.4.2
and additionally achieves that the two products are linked to one. Throughout all
these steps, a separation of the cells is continuously achieved either through the well
compartments or emulsion. Only after the fusion of the two genes the reaction mix is
joined and regularly sequenced. In 2014, Georgiou et al. [137] mention the development
of a similar, improved method separating the cells in microdroplets. More recently,
in 2016, Stubbington et al. [141] have described an approach named TraCeR that is
based on single cell RNA-Seq (scRNA-Seq). Single cell transcriptomics significantly
advanced in recent years [142] and TraCeR can directly operate on that type of data
without any experimental requirements specific for capturing immune repertoires.
Additionally, this approach has the advantage that the transcriptome of each clone can
be studied. However, the efficiency is far below that of bulk methods, i.e. currently an
α chain clonotype can be annotated in 74-96% and a β chain clonotype in 70-93% of
the cells - while only a few hundred cells can be studied in an experiment. Despite the
efforts to increase the throughput, the total number of cells that can be analyzed by
the aforementioned methods is also orders of magnitude below that of bulk Rep-Seq,
ranging from hundreds to up to 105 cells.
A quite different approach has been suggested by Howie et al. [143] in 2015. They

too compartmentalize the cells within the sample on a well plate, but not on the single
cell level. Instead, the authors rely on the multiplicity of the clones, i.e. that one can
expect multiple clones of each clonotype within a sample. Each compartment is then
individually sequenced using a regular Rep-Seq approach, resulting in two repertoires
per compartment, one per chain. The pairing is then solved using combinatorial
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methods: A pair of genes originating from the same cell will always occur together
across different compartments. If the sample splits into enough compartments such
that clones from one clonotype are unlikely to occupy the same subset of compartments
as those from another clonotype, a high degree of pairing can be achieved. The method
achieves a similar throughput as the aforementioned ones, however, with only a
minimal additional experimental overhead in comparison to bulk Rep-Seq.

As the throughput and accuracy of paired Rep-Seq methods is expected to improve
in the near future, these methods will certainly boost the field of immune repertoire
analysis as they fill the yet missing piece to accurately genotyping T and B cells with
respect to their antigen specificity.

8.3.2. Advances in Functional Clonotype Interpretation

In mid 2017, Dash et al. [144] published a distance metric for paired chain clonotypes,
which they refer to as TCRdist. The distance measure is based on the amino acid se-
quences of the CDR1, CDR2 and the center part of the CDR3 of each chain. Additionally,
a region between the CDR2 and CDR3, which was shown to be facing the pMHC in
ternary structures, is included. The regions are mapped into a fixed alignment column
space using the IMGT numbering scheme [16] followed by a position-wise scoring
derived from the BLOSUM62 [44] matrix and using a gap penalty for positions that are
covered by only one sequence.

The authors generated datasets from a pool of T cells from 32 humans and 78 mice.
The cells were selected against 10 single MHC bound peptides separately using tetramer
staining, an experimental method originally developed by Altman et al. [145]. They
calculated the pairwise clonotype distances within the 10 repertoires and formed
clonotype clusters using either a dimensionality reduction method or a hierarchical
clustering algorithm. To identify the CDR3 residues determining the peptide specificity,
the authors then represented each cluster in terms of their V and J segment frequencies
and the positional amino acid frequencies within the CDR3. For each cluster, using a
random background clonotype set with the same V and J segments, they reduced the
CDR3 to those residues whichwere overrepresented independently of the germline gene
segments, hypothesizing that these are the residues of interest. For pMHCs of known
TCR bound ternary structure, the authors were able to confirm that the identified CDR3
residues were indeed in direct contact with the pMHC. They therefore concluded that
they had found a method able to derive the TCR gene components mediating epitope
recognition solely based on the clonotype repertoire sequence information.

Additionally, the authors introduced the concept of a nearest neighbor distance (NN-
distance), which, given a repertoire, is defined for every clonotype as a weighted
average TCRdist distance to the closest n other clonotypes, where n was chosen as
10% of the total repertoire. This measure was then used to assess the predictive power
of TCRdist by removing one donor from the pool and assigning each clonotype from
that donor to the repertoire where it has the lowest NN-distance. The authors state
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that they were able to correctly assign 78% of the mouse clonotypes and 81% of the
human clonotypes to their source repertoire.

At the very same time, Glanville et al. [146] published a slightly different approach,
coming to a similar conclusion. The authors use tetramer stained repertoires with a
single peptide specificity as well, but solely focus on the center parts of CDR3s. The
notion of a significant motif is introduced as an amino acid k-mer (k ∈ {2, 3, 4}) which
is at least 10-fold enriched over naïve repertoires and has a probability < 0.001 to
occur in the latter. Clonotypes are then clustered if they are either globally similar
within the CDR3, i.e. differ by at most 2 amino acids, or locally similar, i.e. share at
least one significant motif. The authors found that, when applying their method on a
mixed clonotype population of 8 specificities, 94% of the clustered clonotypes were
correctly grouped with other clonotypes of the same specificity. However, only 14% of
the clonotypes were clustered at all.
The authors also propose a classification approach based on their clustering meth-

ods by generating positional weight matrices (PWMs) from the identified clusters and
assigning new clonotypes by scoring the CDR3 regions against the cluster PWMs.
They claim positive classification results, without explicitly presenting an extensive
evaluation. They did, however, experimentally generate de novo TCRs by sampling
from the distribution of TCRs provided by the PWMs. The authors were able to show
that their newly designed T cells were specific for the targeted antigen in 8 out of
10 tries and that two of those showed an even higher activation than the biological
templates.

Interestingly and in contrast to the findings of Dash et al. [144], Glanville et al. [146]
concluded from their comparison of single and paired chain data that the TCR α chain
did not show any clear sequence motif and thus focus solely on the β chain in their
analyses.

Collectively, these recent methods provide an improved insight into T cell repertoires
on the sequence level, as obtained by Rep-Seq. The clustering methods improve our
understanding of parameters of interest such as repertoire diversity and potentially help
to overcome some of the limitations initially described in this chapter. It is furthermore
interesting to see that a certain degree of function prediction can be achieved solely on
the sequence level, at least for narrowly defined classes as achieved by single peptide
tetramer stimulation. At the same time, the identification of multiple distinct sequence
based clonotype clusters specific for the same pMHCwith low similarity across clusters
also clearly shows that the very same peptide can be recognized by rather dissimilar
TCRs, as also stated by the authors. Therefore, it still remains crucial to explore learning
methods that are able to generalize beyond the raw amino acid sequence and allow
more complex relations between clonotype features, as we proposed in Chapter 7.
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A.1. Gene Segment Ambiguity Resolution

In the following, we describe the gene segment ambiguity resolution routine used to
resolve cases, where the same clonotype is partially called with a more ambiguous set
of V or J gene segments. The concept is described in Section 4.6.1.

Let (C,F) with C = {c1, . . . , cN},F = {f1, . . . , fN} be a subpopulation of a clono-
type repertoire, where all clonotypes have identical CDR3 sequences. For every ci ∈ C
we then denote

submatch(ci) :=
{
j
⏐⏐(cj ̸= ci) ∧ (cVj ⊆ cVi ) ∧ (cJj ⊆ cJi ), 1 ≤ j ≤ N

}

as the set of indices of those clonotypes in C different from c, whose V and J segments
are a subset or equal to those of c. Let (C,F) furthermore be sorted in descending
order by the total number of gene segments assigned to each clonotype, i.e.

⏐⏐cVi
⏐⏐+
⏐⏐cJi
⏐⏐ ≥

⏐⏐cVj
⏐⏐+
⏐⏐cJj
⏐⏐ ∀0 ≤ i < j ≤ N.

We then redistribute the clonotype counts from every clonotype ci to its more refined
matching clonotypes:

1: for i← 1, . . . , N do
2: I ← submatch(ci)
3: F∗ ← {fj | fj ∈ F , j ∈ I}
4: RedistCounts(fi,F)
5: end for

where RedistCounts is equivalently implemented as shown in Algorithm 4.4. By
iterating through the clonotypes from the most ambiguous to the least ambiguous
we capture as many subsequent corrections as possible, i.e. design the clustering
hierarchically.
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A.2. IMSEQ Reference FASTA Format

The reference files for IMSEQ have to contain the V and J gene sequences of the gene
(e.g. TRB or IGH) and species of interest. The FASTA IDs have to comprise five fields
separated by the “|” character:

1. The gene name
2. The segment type, either “V”, “J” or “D”
3. The segment identifier
4. The allele number and
5. The position of the Cys104 and Phe118 encoding triplet. “-1” for D segments. The

counting is zero-based and points to the first character of the triplet.
IMSIM parses the same reference format as IMSEQ. D segment sequences are ignored
by IMSEQ.

Example

...
>TRB|V|9|02|270
gattctggagtcacacaaaccccaaagcacctgatcacagcaactggacagcgagtgacg
ctgagatgctcccctaggtctggagacctctctgtgtactggtaccaacagagcctggac
cagggcctccagttcctcattcactattataatggagaagagagagcaaaaggaaacatt
cttgaacgattctccgcacaacagttccctgacttgcactctgaactaaacctgagctct
ctggagctgggggactcagctttgtatttctgtgccagcagcgtag
>TRB|V|9|03|270
gattctggagtcacacaaaccccaaagcacctgatcacagcaactggacagcgagtgacg
ctgagatgctcccctaggtctggagacctctctgtgtactggtaccaacagagcctggac
cagggcctccagttcctcattcaatattataatggagaagagagagcaaaaggaaacatt
cttgaacgattctccgcacaacagttccctgacttgcactctgaactaaacctgagctct
ctggagctgggggactcagctttgtatttctgtgccagcagc
>TRB|J|1-1|01|17
tgaacactgaagctttctttggacaaggcaccagactcacagttgtag
>TRB|J|1-2|01|17
ctaactatggctacaccttcggttcggggaccaggttaaccgttgtag
...
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A.3. V Segment Core Fragment Length Auto Tuning

As described in Section 4.4.2, the segment core fragments are searched semi-globally in
the read sequence, i.e. they have to be contained as a whole. As illustrated in Figure 4.3,
depending on the incorporated J gene segment and the length of the CDR3 region, the
part of the read covering non-CDR3 V gene segment sequence varies in length between
clonotypes. While the length of the V SCF, LV

SCF, is a parameter that can be freely
configured by the user when invoking IMSEQ, by default it is set using the heuristic

LV
SCF =

⎧
⎪⎨
⎪⎩

10 if Lread
min ≤ 120

min

{
60

Lread
min − 110

otherwise
,

where Lread
min is the shortest V(D)J-read length observed in the input data. That is, we

use a minimum SCF length of 10, which is motivated by the fact that data which does
not contain at least 10 V gene segment bases outside the CDR3 region can most likely
not be reliably annotated, even when using paired-end data. Furthermore, we use a
maximum SCF length of 60, as we do not expect any performance improvements for
higher values as shown in Section 5.3.3. We start expanding the V SCF length from
a minimum V(D)J-read length of 120 and larger, based on the assumption that this
ensures sufficiently many bases of V gene segment, considering cases of long CDR3
regions.

It is important to note that these values are all based on the human TRB gene with
the Rep-Seq protocol as described in Section 2.4. While the characteristics are likely to
be slightly different in other genes, species or different protocols, an SCF length value
that is not perfectly adjusted to the data will most likely only have an impact on the
performance and not on the outcome of the analysis.
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A.4. Additional Error Correction Parameters

The precision, recall and their harmonic mean (F1 score) for various combinations
of the eq and es parameters, computed based on the real data error evaluation (see
Section 5.3.5 for details). The following figures show the results for both Dataset 1 and
2 as well as for rmax ∈ {0.25, 0.50, 0.75}.
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A.5. Atchley Amino Acid Feature Map

Atchley et al. [130] developed a set of five numerical features per amino acid. Initially,
they obtained 494 numerical amino acid indices, i.e. numerical descriptors for single
amino acid features Ω : ΣAA → R. After performing a feature reduction to eliminate
redundancies, 54 amino acid properties remained in their analysis, among them basic
features such as polarity, size or charge but also more complex features related to their
preference to occur in certain protein substructures. Based on these 54 amino acid
indices, they used factor analysis [147] and determined five descriptive factors for each
amino acid. The factors show a strong linkage to meaningful subgroups of the original
feature set, thus allow for a certain degree of interpretability: Factor I reflects features
related to polarity and free energy, Factor II is related to secondary structure, Factor III
to size, weight and volume, Factor IV to mutation probability and number of codons
and Factor V corresponds to features related to the charge of the molecule.

I II III IV V

A -0.59145974 -1.30209266 -0.7330651 1.5703918 -0.14550842

C -1.34267179 0.46542300 -0.8620345 -1.0200786 -0.25516894

D 1.05015062 0.30242411 -3.6559147 -0.2590236 -3.24176791

E 1.35733226 -1.45275578 1.4766610 0.1129444 -0.83715681

F -1.00610084 -0.59046634 1.8909687 -0.3966186 0.41194139

G -0.38387987 1.65201497 1.3301017 1.0449765 2.06385566

H 0.33616543 -0.41662780 -1.6733690 -1.4738898 -0.07772917

I -1.23936304 -0.54652238 2.1314349 0.3931618 0.81630366

K 1.83146558 -0.56109831 0.5332237 -0.2771101 1.64762794

L -1.01895162 -0.98693471 -1.5046185 1.2658296 -0.91181195

M -0.66312569 -1.52353917 2.2194787 -1.0047207 1.21181214

N 0.94535614 0.82846219 1.2991286 -0.1688162 0.93339498

P 0.18862522 2.08084151 -1.6283286 0.4207004 -1.39177378

Q 0.93056541 -0.17926549 -3.0048731 -0.5025910 -1.85303476

R 1.53754853 -0.05472897 1.5021086 0.4403185 2.89744417

S -0.22788299 1.39869991 -4.7596375 0.6701745 -2.64747356

T -0.03181782 0.32571153 2.2134612 0.9078985 1.31337035

V -1.33661279 -0.27854634 -0.5440132 1.2419935 -1.26225362

W -0.59533918 0.00907760 0.6719274 -2.1275244 -0.18358096

Y 0.25999617 0.82992312 3.0973596 -0.8380164 1.51150958
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A.6. Additional Model Parameters
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Figure A.1.: Additional parameters used during cross-validation. See Figure 7.9.
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Zusammenfassung in deutscher
Sprache

Die Fähigkeit von Wirbeltieren, Pathogene abzuwehren, basiert auf einer Reihe von
Mechanismen, die sich in zwei Bereiche unterteilen lassen: Das adaptive und das ange-
borene Immunsystem. Während angeborene Immunität auf generischen Mechanismen
beruht, welche z.B. das Vorhandensein von Bakterienzellen anhand von allgemeinen
Parametern erkennen, sind die adaptiven Mechanismen in der Lage, neue Wege zu
„erlernen“, bisher unbekannte Pathogene zu erkennen und zu bekämpfen. Vereinfacht
gesagt werden immer neue Strategien auf zufällige Weise generiert, wobei das einzige
Kriterium ist, dass sie nicht gegen den Wirtsorganismus selbst reaktiv sind.
Der dem adaptiven Charakter zugrundeliegende Prozess ist eine einzigartige, soma-
tische Rekombination der Gene, welche für die Proteine kodieren, die diese pathoge-
nen Strukturen erkennen: die Antigen-Rezeptoren. Durch die mittlerweile verfügbaren
Hochdurchsatz-DNA-Sequenziermethoden ist es uns heute möglich, das Repertoire
an Antigen-Rezeptor Genen, welches ein Individuum im Laufe der Zeit gebildet hat,
ausgehend von einer Zell-Probe sichtbar zu machen („Immun-Repertoire-Sequenzie-
rung“). Dies ermöglicht uns, das adaptive Immunsystem auf eine neue Art undWeise zu
untersuchen, woraus sich eine Reihe möglicher medizinischer Anwendungen ergeben.
Im Kontext der Immun-Repertoire-Sequenzierung wurde im Rahmen dieser Arbeit
zunächst eine Methode entwickelt, um die Rohdaten, die bei dieser Methode anfallen
möglichst fehlerfrei zu annotieren. Hierbei wurde ein besonderes Augenmerk auf
die verschiedenen technischen Fehlerquellen gelegt, sowohl auf solche, die allgemein
im Kontext von DNA-Sequenzierung auftreten, als auch auf solche, die spezifisch
für die Immun-Repertoire-Sequenzierung sind. Die Methode wird in dieser Arbeit
zunächst inhaltlich beschrieben, bevor anschließend im Rahmen einer Evaluation ihre
Überlegenheit im Vergleich zu zuvor veröffentlichten Methoden dargestellt wird.
Des Weiteren wurde ein auf maschinellem Lernen basierter Workflow entworfen, um
die annotierten Daten zu interpretieren. Ziel hierbei ist es, unter Verwendung eines
zuvor trainierten Modells eine gemessene Gensequenz funktional zu klassifizieren.
Innerhalb desWorkflows wurden verschiedeneModelle implementiert, welche in dieser
Arbeit zunächst formal beschrieben werden.
Anhand von realen Daten aus dem Kontext eines binären Merkmals von T-Zellen, der
erfolgten Differenzierung in T-Helferzellen und zytotoxische T-Zellen, werden anschlie-
ßend die Fähigkeiten der Modelle, korrekte Klassifikationen vorzunehmen, evaluiert.
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