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Preface

The work that led to this thesis is part of two collaborative projects in which I par-

ticipated. This thesis presents results from both projects. A panel of different bioin-

formatics and statistical methods suitable to analyze small RNA deep sequencing data

were identified and developed. Individual contributions for each project will be detailed

here:

Flexbar Project The work presented in Chapter 3 was published in the special

issue “Next-Generation Sequencing Approaches in Biology” in the journal Biology 1.

The Flexible Barcode and Adapter Remover (FLEXBAR) originated from the Flexible

Adapter Remover (FAR) and has been developed by Matthias Dodt in the bioinformat-

ics group of Dr. Christoph Dieterich. As part of this project, I developed the adapter

removal feature for SOLiD color space reads and focused on the application of small

RNA-seq in letter and color space. Additionally, I was involved in the design of FAR

and in the development of specific features of the subsequently added barcode detec-

tion function for demultiplexing. The final version of FLEXBAR (paper version) has

been extensively revised and enhanced by Johannes Röhr through the introduction of

novel and extended features, a cleanup in the source code, redesigned command-line

interface, and optimized parameter settings.

miRNA Project The bioinformatics workflow and the analysis and results presented

in Chapter 2 and 4 were published in Genome Biology and Evolution 2. As part of

this collaborative project, I designed and performed all computational experiments.

The experimental data sets were generated in the group of Dr. Christoph Dieterich

at the Berlin Institute for Medical Systems Biology (BIMSB) which is part of the

Max-Delbrück-Center for Molecular Medicine (MDC). The total RNA of the parasite

samples (Strongyloides ratti) were kindly provided by our collaborator PD. Dr. Norbert

W. Brattig from the Bernhard Nocht Institute for Tropical Medicine in Hamburg. All
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next-generation sequencing was performed in the group of Dr. Wei Chen at BIMSB.
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Chapter 1

Introduction

1.1 Objectives and Thesis Structure

Objectives The goal of this work is to identify and develop bioinformatics methods

and computational strategies to analyze small RNA deep sequencing data from free-

living and parasitic nematodes. By doing so, I want to address the question whether

miRNA genes impact developmental arrest and long-term survival in dauer and dauer-

like stages, i.e. the infective stage of parasites. In particular, I want to address the

long-standing hypothesis that dauer and infective larvae share a common origin. This

investigation is specifically focused on determining whether shared ‘dauer-infective’

miRNA expression signatures exist. This work will expand on previous studies and will

present a comprehensive profiling of known and novel miRNA genes in free-living and

parasitic nematodes with emphasis on developmentally arrested stages. Furthermore,

it will be the first to identify miRNA genes in any Strongyloides parasite. The questions

that I will address are significant because they will reveal important aspects of dauer and

dauer-like biology with emphasis on potential conserved miRNA regulatory mechanisms

in free-living and parasitic nematodes.

Thesis Outline In Chapter 1 I provide an introduction to the animal models in-

vestigated in this study, the biological mechanisms involved in post-transcriptional

regulation, and the experimental techniques of next-generation sequencing. Chapter

2 describes the bioinformatics methods and strategies used and implemented to ana-

lyze the small RNA deep sequencing data investigated in this study. In particular, six

computational analysis steps of the applied bioinformatics workflow are described in

detail. Moreover, the concept and usage of the flexible barcode and adapter remover

1



CHAPTER 1. INTRODUCTION

FLEXBAR, which was developed in our group, is introduced in Chapter 3. In Chapter

4 the methods introduced in Chapter 2 and 3 are applied to small RNA sequencing data

profiled from developmental arrested stages of free-living and parasitic nematodes and

the results are presented. Finally, Chapter 5 summarizes the analyses presented, dis-

cusses the results, and puts them in a broader context. Additionally, future directions

are outlined.

1.2 The Animal Models

Nematodes, or roundworms, are one of the most diverse group of animals and species-

rich phyla, comprising an estimated ∼1-10 million species. Nevertheless, only ∼25,000

have been described to date3. Based on molecular studies nematodes are grouped into

five major taxonomic groups (Figure 1.1)4. Nematodes inhabit a wide range of ecolog-

ical niches. As free-living species, as well as parasites of plants and animals including

humans, they occupy freshwater, terrestrial, and marine environments5. Blaxter et al.

(1998) suggested that parasitism evolved at least seven times independently. Early

reports of parasitic nematodes date back to mummies in Egypt6.

Nematode adults can be found as either females, males or self-fertilizing hermaphrodites,

depending on the species. Soil nematodes are normally very small (0.3 to 3 mm long),

whereas parasites of insects and mammals can be many centimeters long. Placentonema

gigantissima, the largest known nematode, lives in the placenta of sperm whales, has

a body volume of ∼174 liters, and is up to 8-9 meters in length6. Despite inhabiting

diverse ecological niches, the basic life style of nematodes is conserved and typically

involves four larval molts7.

1.2.1 Caenorhabditis elegans

Over the last decades, the free-living non-parasitic nematode C. elegans has been estab-

lished as a key model system for research on neurobiology, embryogenesis, and gonadal

development13,14. In the late 1970’s and early 1980’s, the cell lineage of every single

somatic cell was mapped15. Caenorhabditis elegans is easy to maintain in the labo-

ratory with a food supply of Escherichia coli (E. coli); self-fertilization is the typical

mode of reproduction, and a complete life cycle spans three days (20◦C)16. In 1998,

C. elegans became the first metazoan to have its genome fully sequenced17; the com-

pletely assembled genome is 100 megabases (Mb) in size and contains an estimated

2



1.2. THE ANIMAL MODELS

Other

Taxonomic groups

S. ratti (52.6 Mb)
Meloidogyne hapla (53.5 Mb)

Ascaris suum (273 Mb)

Brugia malayi (88 Mb)

Genome in assembly
(VP)   Haemonchus contortus (53 Mb)

(AOP)  
Strongylida 
Diplogasterida 
Rhabditida (BV, IP, EPN)  C. elegans (100 Mb),

C. briggsae (104 Mb) 

Heterorhabditis bacteriophora (111 Mb)*
C. remanei (140 Mb), C. brenneri (150 Mb),
C. japonica (83 Mb)

Genome sequenced

Trichinella spi

P. pacificus (142 Mb)V : Rhabditina

IV : Tylenchina

III : Spirurina

I : Dorylaima

I : Enopla
VP: Vertebrate parasite

Trophic ecology

AOP: Algivore-omnivore-predator
BV: Bacterivore

FV: Fungivore
PP: Phytoparasite
EPN: Entomopathogen
IP: Invertebrate parasite

Strongyloidida (VP) 
Tylenchida (PP, IP)
Aphelenchida (PP, FV, IP)   
Cephalobina(BV, EPN)

Ascaridida (VP)
Rhigonematida (IP)
Spirurida (VP)
Oxyurida (VP)

Chromadorida (BV, AOP)

Triplonchida (PP)
Enoplida (BV, AOP)

Mononchida (BV, AOP)
Mermithida (IP)
Dorylaimida (PP)
Trichocephalida (VP)

S. stercoralis XX

I

Figure 1.1: Major taxonomic groups of the phylum Nematoda
Overview of nematode phylogeny and the major taxonomic groups. Roman numerals indicate
the clade according to Blaxter et al. (1998). The column ‘Genome sequenced’ lists all nematode
species with published genome sequence whereas ongoing genome projects are listed in the
column ‘Genome in assembly’. The numbers in brackets indicate the genome sizes in megabases
(Mb)8–11. Asterisk (*) denotes that Heterorhabditis form a genus of its own. Figure adapted
and modified from Sommer and Streit (2011) and Blaxter (1998).

20,060 protein-coding genes18.

Caenorhabditis elegans is an excellent model to study developmental responses to envi-

ronmental changes. Under favorable conditions, development consists of embryogenesis

followed by four larval stages (L1-L4) (Figure 1.2A)16. If embryos hatch in the absence

of food, newly hatched L1 larvae enter L1 diapause and are able to survive in this state

for several weeks19. If conditions sensed during L2 development are unfavorable, such

as starvation and crowding, worms enter an alternative third larval stage, the dauer

stage20. Dauer larvae are developmentally arrested, nonfeeding, stress-resistant, long-

lived, and prevail in nature21. Dauer larvae are adapted morphologically and physio-

logically to remain in the environment without feeding for up to four to eight times the

normal 2-week lifespan22. By transportation through insects or other invertebrates,

dauer larvae can search for new food sources. The association of C. elegans dauer

larvae with insects or other invertebrates for dispersal is not specific. Non-specific host

association for transportation is called phoresy23. Recovery from dauer is initiated once

environmental conditions become favorable, particularly a high food to pheromone ra-

tio and low temperature19. The dauer stage is considered to be non-aging because

3



CHAPTER 1. INTRODUCTION

the duration of dauer stage does not affect post-dauer lifespan22. Strikingly, all life

histories, whether continuous or interrupted, involve an identical pattern and sequence

of cell division and cell fates15.

BA Free-living

L1

L2

dauer

egg

L4

adult
free-living

egg

L3

Parasitic

Host association

adult
parasitic
female

egg

egg
L4adult

free-living

L3

L2

L1

L2

L1

L3

L4

L1

L2

infective L3

L4

Figure 1.2: Life cycle of free-living and parasitic nematodes
(A) Under conditions that are favorable for reproduction, free-living larvae, such as Caenorhab-
ditis elegans, develop through four larval stages. Under unfavorable environments L2 larvae
enter dauer diapause. (B) Infective larvae of parasites, such as Strongyloides ratti, develop
either directly or after a facultative sexual free-living adult generation.

The molecular mechanisms underlying dauer developmental transitions have been at

least partially defined. As discussed above, entry and exit from dauer stage are devel-

opmental responses to specific chemosensory cues that inform the larva whether there

is an abundant food supply to support reproduction. The nuclear receptor DAF-12

plays a critical role in the decision to enter dauer. Under optimal conditions DAF-12

is bound by the steroid hormone dafachronic acid (DA) resulting in nondauer develop-

ment24. Under unfavorable conditions DA concentration is low and DAF-12 is bound

by DIN-1 which specifies the dauer fate25. Other signaling pathways involved in dauer

formation are the insulin/IGF and the TGF-β pathways21. Mutating components of

these signaling pathways, i.e. dauer formation genes, results in dauer-constitutive (Daf-

c) or dauer-defective (Daf-d) phenotypes. Daf-c mutants form dauer under normal

conditions and Daf-d mutants fail to enter dauer under harsh conditions26.

4



1.2. THE ANIMAL MODELS

1.2.2 Pristionchus pacificus

Pristionchus pacificus (P. pacificus) is a nematode that has been established as a

satellite model system to C. elegans for the study of evolutionary developmental bi-

ology27. Pristionchus pacificus has an assembled genome size of 142 Mb containing

24,231 protein-coding genes11. According to Blaxter and colleagues, who distinguish

five major nematodes clades, both P. pacificus and C. elegans belong to the clade

V nematodes (Figure 1.1)4. Based on nucleotide divergence, these two species were

estimated to share a common ancestor 280-430 million years ago, and thus represent

distantly related species of the same phylum28. P. pacificus lives in species-specific

association with the oriental beetle Exomala orientalis. The self-fertilizing P. pacificus

can be easily grown under laboratory conditions with E. coli as food source, where

it can achieve a short generation time of 4 days (20◦C). Similar to C. elegans under

favorable conditions, P. pacificus develops through four larval stages (L1-L4) to the

reproductive adult (Figure 1.2A). In conditions of starvation or crowding, P. pacificus

enter the developmentally arrested, nonfeeding, and long-lived dauer stage. Dauer lar-

vae actively invade the beetle and remain arrested until the death of the beetle. Upon

the beetles death, P. pacificus dauer larvae resume development by feeding on bacteria,

fungi, and other nematodes that grow on the insects carcass29. This species-specific

association with a host, waiting for its death, and feeding on the microbes developing

on the carcass, is called necromeny. It has been argued that phoretic (C. elegans)

and necromenic (P. pacificus) associations serve as important pre-adaptations for the

evolution of parasitism23,30–33.

1.2.3 Relationship with Parasitic Nematodes

Nematode parasitism is a worldwide health problem with over 1 billion people being

infected34. Due to their wide range of host targets ranging from plants to animals,

including humans, parasitic nematodes are of importance to human and veterinary

medicine, as well as agriculture35. However, the molecular mechanisms controlling

the infection with parasites is poorly understood. Working with parasitic nematodes is

usually complicated due to their more complex life cycles in comparison with C. elegans

and P. pacificus, and only a few parasitic species can be cultured in the laboratory. One

such example is the animal parasite Strongyloides ratti (S. ratti), whose life cycle has

two phases: a parasitic phase and a free-living phase (Figure 1.2B). Parasitic adults

live in the mucosa of the small intestine of rats. These are females that reproduce

5



CHAPTER 1. INTRODUCTION

by parthenogenesis, giving rise to both parasitic and free-living progeny that undergo

two types of development: the so-called homogonic (direct) and heterogonic (indirect)

modes of development. In homogonic development, after two larval stages (L1 and

L2) the female offspring develop into infective L3 larvae (iL3), which infect a new host

by skin penetration. The iL3 stage is developmentally arrested and will only develop

further if it encounters a host. In heterogonic development, larvae develop through L1-

L4 and become sexually reproducing free-living adults. All of the progeny of free-living

adults develop into female iL3s. All males arise as free-living offspring of parasitic

adults and pass through heterogonic development36.

Dauer larvae of free-living nematodes like C. elegans and P. pacificus share morpholog-

ical, behavioral and physiological traits with infective larvae of true parasitic species;

dauer and infective larvae are the third larval stage, both have a slender appearance,

a constricted esophagus, a closed mouth, and show host seeking-behavior like nicta-

tion37–39. Moreover, the dauer and infective larvae fate is determined by a conserved

endocrine signaling mechanism. Notably, the DA/DAF-12 module which is required

for dauer formation in C. elegans, is conserved in the necromenic nematode P. pacifi-

cus and the parasitic nematode Strongyloides papillosus (S. papillosus)33. Ogawa and

colleagues showed that ∆7-DA strongly suppresses dauer formation in P. pacificus.

Furthermore, the authors demonstrated that in the presence of ∆7-DA, the progeny of

parasitic females of S. papillosus developed into free-living animals and that the forma-

tion of iL3s was completely inhibited. A different study observed similar results in the

human parasite Strongyloides stercoralis and in the hookworm Ancylostoma caninum 40.

Several lines of evidence suggest that post-transcriptional regulatory mechanisms dom-

inate the transition from dauer back into the reproductive life cycle. Intriguingly, RNA

polymerase II transcription appears to be reduced in dauer larvae relative to other

stages based on run-on transcription assays with isolated nuclei41. Moreover, the pro-

cess of dauer exit is impaired by translational repression with cycloheximide but not by

the inhibition of mRNA synthesis with either amanitin or actinomycin D42,43, suggest-

ing that mRNA synthesis is not necessary for dauer recovery44. Taken together, these

results suggest that transcripts might be accumulated before dauer diapause or during

dauer entry and that their activity is controlled during dauer and exit from dauer by

post-transcriptional regulation.
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1.3 Post-transcriptional Regulation of Gene Expression

The central dogma of molecular biology first formulated by Francis Crick in 1958 states

that genetic information encoded in deoxyribonucleic acid (DNA) is transcribed to

produce ribonucleic acid (RNA), which simply acts as a messenger molecule harboring

the instructions for the translation of proteins which are ultimately responsible for

cell phenotype45,46. Consequently, gene expression was thought to be regulated in a

unidirectional way. It became clear that this view was too simplistic. To maintain

proper cell functions, it is essential that all of the molecular steps necessary for the

production of protein from DNA are highly regulated in a precise spatial and temporal

manner.

In eukaryotes, gene expression is tightly regulated at the level of transcription by (i)

transcription factors, proteins that bind to the DNA near transcription start sites and

activate or inhibit the transcription of genes47, and (ii) chromatin state, by epigenetic

modifications that control the accessibility and thus the readability of genes through

methylation and acetylation of histones48. Following transcription, messenger RNAs

(mRNAs), are not directly translated into proteins because mRNA processing, localiza-

tion, stability, and translation are regulated post-transcriptionally49. These regulatory

processes are controlled and mediated by RNA-binding proteins (RBPs) and small (or

short) non-coding RNAs (small ncRNAs) that form dynamic multicomponent ribonu-

cleoprotein complexes (RNPs) that generally bind to functional sequences located in

the untranslated regions (UTRs) of target mRNAs50,51.

In 2001, the completion of the human genome project revealed that less than 2% of the

human genome encodes information for protein-coding genes52. The rest of the genome

was long termed as junk DNA without any functionality53. However, high-resolution

transcriptomic studies revealed that the majority of the genome is transcribed into RNA

without being processed into protein54,55. Instead these RNA transcripts constitute a

large family generally termed non-coding RNAs (ncRNAs). Ribosomal RNAs (rRNAs)

and transfer RNAs (tRNAs) are examples of two well-known classes of ncRNAs. It

has been suggested that the majority of ncRNAs are functional due to the fact that

the percentage of ncRNAs transcribed in the genome is proportional to the complexity

of the organism56. Indeed, a recent study of the ENCODE (Encyclopedia of DNA

Elements) project assigned biochemical functions to 80% of the genome outside of

protein-coding regions57.
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The large family of ncRNA transcripts consists of various different classes which can

be distinguished by their function and molecular similarities, such as the length of a

molecule, as in long ncRNAs (lncRNAs; defined as being longer than 200 nt) and small

ncRNAs58,59. In addition, regulatory small ncRNAs can be divided into three major

groups: (i) endogenous miRNAs, (ii) PIWI-interacting RNAs (piRNAs), and endoge-

nous short interfering RNAs (endo-siRNAs). miRNAs generally silence host gene ex-

pression, pi-RNAs silence transposable elements in animal germ cells, and endo-siRNAs

can be involved in host defense through viral RNA silencing58. In the following, I will

emphasize miRNA genes, a key post-transcriptional regulator of almost all biological

processes investigated60.

1.3.1 microRNA Genes

miRNAs constitute a large family of ∼22 nt endogenous, small ncRNA molecules that

downregulate the expression of protein-coding target genes at the post-transcriptional

level61. The first miRNA, lin-4, was found in 1993. Initially, the authors identified

a small RNA, lin-4, in the worm C. elegans that negatively regulates the production

of the heterochronic gene LIN-14 by binding partially complementary to the 3’ UTR

of LIN-1462,63. LIN-14 encodes a protein that controls the devision timing of specific

cells in C. elegans during postembryonic development. In 1981, Chalfie and colleagues

showed that mutations in lin-4 disrupt the temporal regulation of larval development,

causing cell-devision patterns specific to the first larval stage to reiterate in later de-

velopmental stages. These studies demonstrated that the miRNA lin-4, is essential for

a correct transition between developmental stages. Seven years later, in 2000, Ruvkun

and colleagues discovered a second miRNA, let-7, again in C. elegans 65. In contrast to

lin-4, let-7 was found to be highly conserved across the bilaterian phylogeny66. Since

then, new miRNAs have been identified by small-RNA-cloning strategies in animal67–69

and plant species70,71. More recently, thousands of miRNA genes have been discovered

by experimental approaches, computational predictions, or combined strategies across

the animal and plant kingdoms72–74 and all published miRNA sequences and associated

annotations have been catalogued in a public accessible repository called miRBase 75.

Increasing evidence suggest that miRNAs are not only key regulators of organismal

development, but influence almost all biological processes investigated, including cel-

lular differentiation, metabolism, and viral infection60. Consequently, dysregulation of

miRNA function are observed in human pathologies such as cancer76,77.
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In animals, canonical miRNAs are typically transcribed by RNAPII, either through an

independent promoter or as part of a host gene embedded within an intron of a protein-

coding gene, as capped and polyadenylated primary miRNA (pri-miRNA) transcripts

(Figure 1.3). Pri-miRNAs are often several kilobases (Kb) long and contain one or more

stem-loop structures that house the functional ∼22 nt miRNA78,79. Subsequently, pri-

miRNAs are cropped by the RNase III enzyme Drosha, which works in a complex

with DGRC8 (in worms and flies also known as Pasha), generating a ∼65 nt precursor

miRNA (pre-miRNA)80,81. In vertebrates and flies, pre-miRNAs (also called hairpins)

are then exported from the nucleus into the cytoplasm by Exportin-5 (Exp5), a nuclear

export protein82–84. Interestingly, in nematodes, a homolog of Exp5 is lacking and

the cellular location of miRNA processing events is still unknown85. Once in the

cytoplasm, pre-miRNAs are cleaved by Dicer (DCR-1 in worms and flies), another

RNase III enzyme, into a ∼22 nt double-stranded RNA (dsRNA) with a characteristic

2-nt single-stranded 3’ overhang on both ends.86–89.

Apart from the canonical miRNA biogenesis pathway, alternative maturation strategies

have been suggested recently (Figure 1.3). A distinct class of miRNAs located within

short introns bypass Drosha cleavage and instead use the spliceosomal machinery to

generate pre-miRNAs. These miRNAs, referred to as mirtrons, have been identified in

flies, nematodes, and mammals90–94. Mirtrons are excised, debranched, and refolded by

a lariat-debranching enzyme to form a hairpin structure that resembles a pre-miRNA

which can be fed into the miRNA pathway. In addition, several mirtrons have been

discovered in flies that are generated with extended 3’ tails which need to be excised

by the exosome before Dicer processing95.

Following Dicer cleavage, one strand (or arm) of the RNA duplex, typically known

as guide or miRNA mature (miRNA), is incorporated into the RNA-induced silencing

complex (RISC) forming miRISC (miRNA-induced silencing complex), whereas the

other strand, known as passenger or miRNA star (miRNA* ), is degraded. Studies

indicate that the relative thermodynamic stability of the two ends of the RNA du-

plex determines which strand is loaded into RISC96,97. However, evidence suggests

that miRNA sequences can be produced from both strands of a precursor at similar

frequencies and that both strands might even be biologically functional98–104. Interest-

ingly, the dominant strand produced from a precursor can vary in a cell-context and

tissue-dependent fashion or between orthologous miRNAs105–110.

To regulate target mRNAs, miRNAs bind primarily to 3’ UTRs, inducing mRNA degra-

dation and/or translational repression through multiple mechanisms111,112. miRNAs
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‘

DGCR8/ 

Figure 1.3: miRNA biogenesis pathway
Canonical animal miRNAs are transcribed by RNA polymerase II (RNAPII) as capped and
polyadenylated primary miRNA (pri-miRNA) transcripts that are subsequently cleaved by the
Drosha-complex releasing a ∼65 nt precursor miRNA (pre-miRNA). In an alternative pathway,
conventional mirtrons and 3’ tailed mirtrons are derived from small introns that are spliced,
debranched and refolded to form a pre-miRNA. As the name suggests, 3’ tailed mirtrons have
tails at their 3’ end that need to be trimmed by an exosome before further processing. Pre-
miRNAs are then exported to the cytoplasm by Exportin-5 (Exp5), where they are processed
by the Dicer-complex generating a ∼22 nt RNA duplex containing the guide and passenger
strand of a miRNA. Figure adapted from Czech and Hannon (2011).

recognize their targets by partial complementarity and interactions involving the seed

region, oftentimes nucleotide 2-8 of the miRNA, although other valid interactions modes

for biological relevant miRNA/mRNA pairs exist113. Identifying miRNA target genes

and their regulatory sequences is an outstanding problem in the miRNA research field,

since apparent flexibility in miRNA-targeting rules suggest that other factors mediate
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functional target interactions in vivo rather than just paring capacity. Despite the com-

plex nature of this problem, multiple complementary approaches were implemented to

tackle this problem114. For example, it is now possible to identify endogenous miRNA

target sites by biochemical methods like CLIP-seq, HITS-CLIP, or PAR-CLIP, where

sequences that are bound by specific RNA-binding proteins are isolated and then iden-

tified using high-throughput sequencing. Since Argonaute family proteins (Ago) form

the core of miRISC, crosslinking and immunoprecipitation (CLIP) of Ago has been

used to identify miRISC-binding sites on a genome-wide scale115–118.

Because a single miRNA can target multiple mRNAs at the same time, miRNAs can

potentially coordinate rapid changes in gene expression in response to environmental,

developmental and physiological cues113,119. Several recent studies provide evidence

that miRNA genes are involved in the regulation of lifespan as well as L1 and dauer

diapause120–126. A recent study identified 17 microRNAs whose expression profiles

are altered by dauer life history in comparison with continuous development125. More

specifically, it has recently been shown that miRNAs play critical roles in the survival

and recovery from starvation-induced L1 diapause124, and that a feedback loop in-

volving DAF-12 and let-7 family miRNA members coordinate cell fate decisions with

starvation-induced dauer arrest121,122,126.

In summary, miRNA genes have emerged as key regulators in diverse biological path-

ways and pathologies, including organismal development, cellular differentiation, and

metabolism60. Hence, determining the miRNAome and their target genes is of great

importance and will help us to understand the functional content of genomes and regu-

latory networks involved. To date, major efforts have been made to profile and discover

novel miRNA genes in eukaryotes by experimental approaches, computational predic-

tions, or combined strategies; the latest miRBase75 release (v21, June 2014) contains

28,645 precursor sequences from 223 different species∗. The recently developed next-

generation sequencing technologies are very promising methods for miRNA profiling

and discovery.

1.4 Next-Generation Sequencing

Determining the order of nucleotides in DNA or RNA sequences is known as sequencing.

The goal of the Human Genome Project (HGP), which was officially founded in 1990,

∗http://www.mirbase.org; accessed June 2014

11



CHAPTER 1. INTRODUCTION

was to sequence the entire human DNA. After 10 years of hard work, a draft version

of the human genome was announced in 2000 and published in February 2001127,128.

The final completion of the human genome was announced in April 2003129. The se-

quencing approach used >20,000 large bacterial artificial chromosome (BAC) clones

each containing a ∼100 Kb fragment of the human genome. Determined by physical

mapping, these fragments provided an overlapping set (tiling path) through each hu-

man chromosome127. BAC-based sequencing is a complicated and complex approach

involving many experimental steps that are time consuming and costly. Since the com-

pletion of the HGP, genome sequencing has moved away from BAC-based approaches

toward whole-genome sequencing (WGS)130. Using WGS approaches, genomes can be

sequenced more rapidly and are easier to read, but highly polymorphic or repetitive

regions are difficult to assemble and remain fragmented after assembly. However, all

BAC-based and WGS approaches rely on the same type of capillary sequencing instru-

ments based on Sanger or di-deoxy terminator strategy (Figure 1.4A)131.

In 2005, the first so-called next-generation sequencing (NGS) technologies (or 2nd gen-

eration sequencer) became commercially available132. NGS approaches are able to

readout DNA or RNA sequences in a massively parallel manner at low cost per base.

NGS has revolutionized diverse genomics applications, including de novo genome se-

quencing and re-sequencing, single nucleotide polymorphism (SNP) detection, tran-

scriptome analysis including small non-coding RNAs, and chromatin immunoprecipita-

tion133. Three NGS technologies are commonly used for massively parallel sequencing:

Roche/454 pyrosequencing∗, Illumina/Solexa sequencing by synthesis†, and Applied

Biosystems (ABI) SOLiDTM sequencing by ligation‡. All 2nd generation sequencers

are based on a template amplification phase before sequencing and can now produce

hundreds of millions of short stretches of sequence, also called reads, of typically 35-400

base pairs (bp) in length (Sanger-based technologies produce reads up to 800 bp)130,134.

Recently, so-called single-molecule sequencers (or 3rd generation sequencers), which

avoid the amplification step, were introduced: the Helicos HeliscopeTM § and Pacific

Biosciences SMRTTM ¶ instruments135. However, highly repetitive and other genome-

wide regions remain difficult to sequence. No current human genome is fully complete,

fully accurate or certain to contain all rearrangements or haplotype information136.

∗http://www.454.com; accessed April 2014
†http://www.illumina.com; accessed April 2014
‡https://www.lifetechnologies.com; accessed April 2014
§http://www.helicosbio.com; website now defunct
¶http://www.pacificbiosciences.com; accessed April 2014
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Despite the fact that all NGS platforms differ in their sequencing biochemistry, each

workflow follows a similar cyclic-array sequencing strategy, in which a dense array of

DNA features is sequenced by iterative cycles of enzymatic interrogation combined with

imaging-based data detection (Figure 1.4B)137,138. Nevertheless, all technologies are

quite divers in their features and overall performance (Table 1.1).

Table 1.1: Comparison of Sanger and next-sequencing platforms
All NGS platforms support single- and paired-end sequencing. Since NGS technologies are
advancing rapidly, technical specifications and pricing are in flux. This table was adapted and
modified from Liu et al. (2012) and Jessri and Farah (2014).

Sanger 3730x Roche 454 GS
FLX+

Illumina HiSeqTM

2500
SOLiDTM 5500XL

Library
preparation

In vitro cloning,
picking, and

growth

Emulsion PCR Bridge amplification Emulsion PCR

Sequencing
principle

Dideoxy chain
termination

Polymerase-based
pyrosequencing

Polymerase-based
sequencing by

synthesis

Ligase-based
sequencing and

two-base encoding

Read length∗ 400 ∼ 900 700 36/50/100 50/75+35

Max output 1.9 ∼ 84 Kb 0.7 Gb 600 Gb 180 Gb

Run time 20 min ∼ 3 h 23 h 11 days; 27 h (rapid
run)

7 days to 4 weeks

Machine cost $95,000 $500,000 $690,000
(HiSeq 2000)

$495,000 (SOLiD 4)

Advantage High quality;
long read length

Long read length;
short run time

High throughput;
cost-effectiveness

High throughput;
accuracy; inherent

error correction
through two-base

encoding

Disadvantage High cost; low
throughput

High cost; high error
rate in homopolymer

repeats; low
throughput; long

hand-on time

Short read length Short read length;
long run time;

complexity of library
preparation

∗ measured in nucleotides

In the following, I will focus on the two NGS technologies (Illumina/Solexa and ABI

SOLiD) that were applied in my research.
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A

Electrophoresis
(1 read/capillary)
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3'-… GACTAGATACGAGCGTGA…-5'     (template)
5'-... CTGAT (primer)
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…CTGATCTA
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DNA fragmentationDNA fragmentation

Figure 1.4: Workflow of Sanger versus next-generation sequencing
(A) In high-throughput shotgun de novo Sanger sequencing, randomly fragmented genomic DNA is
cloned into a plasmid vector and then used to transform bacteria (e.g. E. coli). A single bacteria colony
is picked and the plasmid DNA isolated, for each sequencing reaction. Each cycle sequencing reaction, in
which cycles of template denaturation, primer annealing, and primer extension are performed, generates
a ladder of fluorescently labeled dideoxynucleotides (ddNTPs). The sequence is determined by high-
resolution electrophoretic separation in capillary-based polymer gel in one sequencing run. A detector
generating a four-channel emission spectrum is passed by the fluorescently labeled fragments of discrete
sizes to capture the sequencing trace. (B) In next-generation sequencing methods, an array of millions
of immobilized colonies (or polonies) amplified by polymerase chain reaction (PCR) is generated as a
result of treatment of fragmented genomic DNA after being ligated to common adapters. Each polony
contains many copies of a single library fragment. A contiguous sequencing read is built for all array
features in parallel in cyclic reactions by imaging-based detection of fluorescence labels. Figure adapted
from Shendure and Ji (2008).
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1.4.1 Illumina/Solexa System

Generally speaking, methods included in NGS technologies can be grouped into library

preparation, sequencing, imaging, and data analysis134. Although the general cyclic-

array sequencing strategy of different NGS technologies is conceptually similar (Figure

1.4B), important differences exist. Characteristics of the Illumina/Solexa system, which

became commercially available in 2006 as the Genome Analyzer (GA), include the

usage of bridge amplification for library preparation and a DNA polymerase-dependent

sequencing by synthesis strategy (Figure 1.5A and B)134.

Sample preparation
DNA (5 µg) 

Template
dNTPs
and
polymerase

Cluster
growth 

100-200 million molecular clusters

Bridge amplification

Bridge amplification
One DNA molecule per cluster

A B
Reversible terminators

A

G
C T

A

F

Incorporate
all four
nucleotides,
each label
with a
different dye

Repeat cycles

TGC

TGC

TGC
G CA

TGC

G CA
TGC

G CA
TGC

F

F

F F

FF
F

F F F F F F

F

F F
F

FF

F

Cleave dye
and terminating
groups, wash

Wash, four-
color imaging

A

G
C

T

C

G

A

T
CATCGTTop:

Bottom: CCCCCC

C
Four-color imaging

Figure 1.5: Illumina/Solexa sequencing system
(A) DNA template fragments are amplified through a process called bridge amplification. In
this context, template fragments hybridize to complementary adapters on the slide with one end
and bend to encounter a complementary second-end adapter. Immobilized template fragments
are then amplified by a DNA polymerase to form clusters. (B) The four-color cyclic reversible
termination method is used as sequencing strategy. Following bridge amplification, reversible
terminators of all four nucleotides, each label carrying a different dye, are added simultaneously.
During each cycle, one nucleotide at a time is incorporated by a DNA polymerase to all frag-
ments on the slide. Following imaging, a cleavage step removes fluorescent dyes and regenerates
the 3’-OH group. (C) Sequencing data from two amplified fragments are highlighted in the
four-color images. Figure adapted and modified from Metzker (2010).
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Following random fragmentation of input DNA to be sequenced, adapter sequences

containing universal priming sites are ligated to the ends of the fragment templates.

DNA templates flanked with adapters are then size fractionated to create the final

template library. To be able to perform and detect billions of sequencing reactions

simultaneously, the size fractionated library is clonally amplified and immobilized on a

glass slide (flow cell), which is decorated by adapter sequences complementary to the

library adapters. Clonal amplified clusters of identical library fragments are produced

through a process called bridge amplification 142. After the library is washed over the

slide, DNA fragments hybridize to complementary adapters on the slide with one end

and bend to encounter a complementary second-end adapter (Figure 1.5A). A DNA

polymerase can now amplify the fragments to create a cluster of millions of copies of

a single fragment at the same physical location. As a result, 100-200 million spatially

separated template clusters are generated to which a universal sequencing primer can

bind to initiate the sequencing process134. In addition to this single-end sequencing

approach, all NGS technologies support paired-end sequencing, where sequence data

from both ends of each template fragment is produced143. A single flow cell of the

Illumina/Solexa machine consists of eight independent lanes each containing several

million clusters. Therefore, eight independent samples can be sequenced in parallel

during a single sequencing run138. Moreover, when using unique barcode sequences in

a so called multiplexed sequencing run, it is possible to sequence up to 96 independent

samples (12 samples per lane)∗.

As sequencing strategy, the Illumina/Solexa system adopts a cyclic-array sequencing

by synthesis approach, in which reversible terminators of all four nucleotides are added

simultaneously for incorporation by a modified DNA polymerase (Figure 1.5B)144. Dur-

ing each cycle, just one fluorescent modified nucleotide carrying a unique base dye is

added complementary to all immobilized fragments on the flow cell. The DNA synthesis

is terminated due to a chemical block of the 3’-OH group of incorporated nucleotides.

After each round of incorporation of reversible terminators, unincorporated nucleotides

are washed away. Subsequently, an imaging system scans the flow cell stimulating in-

dividual dyes to emit light in specific wave lengths, which is detected by a sensitive

camera (Figure 1.5C). Following imaging, a cleavage step regenerates the 3’-OH groups

and removes the fluorescent dyes, such that the next cycle of reversible terminator in-

corporation can start. This process is repeated for a specific number of cycles as preset

by user-defined instrument settings (up to 100x resulting in a read length of 100 nt;

∗http://www.illumina.com/technology/multiplexing sequencing assay.ilmn; accessed April 15,
2014
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Table 1.1)134,138.

Each Illumina/Solexa system is distributed with software that generates primary read-

able data. This software includes a base calling algorithm that converts image-based

signals into nucleotides and assigns quality values to each read. Poor-quality reads

are directly removed by a quality checking step of the provided software130. However,

depending on the experimental design and the genomic application, additional bioin-

formatics preprocessing steps are necessary for optimal results of downstream analysis

(e.g. barcode detection after multiplexed sequencing runs or adapter removal in small

RNA sequencing experiments). Detailed information about bioinformatics preprocess-

ing steps involved in NGS analysis with emphasis on small RNA sequencing data is

given in Materials & Methods 2.3.1.

Overall, the Illumina/Solexa platform is the most widely applied NGS approach and has

the highest data output (Table 1.1)134. However, due to imperfect polymerase activ-

ity, the most common error type are substitutions and the accuracy decreases towards

the 3’ end of a read134,145. Illumina/Solexa machines produce at least 1 sequencing

error every 200 bases (error percentage 0.5%)143. Moreover, Nakamura et al. (2011)

suggested that together with possible biases during library construction and amplifi-

cation, sequence-specific errors in sequencing are responsible for substantial coverage

variations in read mapping when longer reads are produced. Despite these limitations,

the Illumina/Solexa system is one of the most powerful technologies for DNA or RNA

analyses including miRNA studies93,106,146 and has been successfully applied within the

modENCODE project147.

1.4.2 ABI SOLiDTM System

The Applied Biosystems SOLiD (Support Oligonucleotide Ligation Detection) platform

is based on the strategy described in Shendure et al. (2005) and on work by McKer-

nan et al. (2006) at Agencourt Personal Genomics (Beverly, MA, USA) (acquired by

Applied Biosystems (Foster City, CA, USA) in 2006). The SOLiD platform utilizes an

entirely different approach for library amplification and sequencing compared to the

Illumina/Solexa system. Instead of bridge amplification, ABI SOLiD applies a method

called emulsion PCR (Figure 1.6A). Sequencing is accomplished by ligation using a

DNA ligase150 and two-base encoded probes (Figure 1.6B and C)134.

As already mentioned, the preparation of a sequencing library is conceptually similar
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in all NGS systems. Hence, to prepare the library for SOLiD sequencing, input DNA is

fragmented, adapter ligated, size fractionated, and finally amplified by emulsion PCR.

In this process, each DNA library fragment, after being single stranded, is captured on a

magnetic bead. Each DNA-bead complex (millions of beads) is encapsulated in a single

droplet, which is a mixture of an oil-aqueous emulsion containing primer, dNTPs, and

polymerase. All fragments are then clonally amplified in parallel by PCR to thousands

of copies each. As a result, all droplets contain one bead covered with copies of a single

fragment. Following amplification, 100-200 million beads (each bearing amplification

products) are chemically cross-linked to a glass slide to initiate the sequencing reaction

(Figure 1.6A)134. SOLiD uses two slides per run, which can be partitioned into four

or eight segments. Therefore, up to 16 individual samples can be sequenced in parallel

during a single SOLiD run. Just as the Illumina/Solexa technology, SOLiD supports

multiplexed sequencing with up to 96 unique barcodes for each of the segments, result-

ing in a multiplexing capacity of maximal 1,563 (96× 16) individual samples per run∗.

This is much higher than the multiplexing capacity of Illumina/Solexa sequencers (up

to 96 samples). In addition to single-end sequencing, SOLiD sequencers also support

paired-end sequencing.

The sequencing methodology of SOLiD is based on sequential ligation with fluorescently

labeled octamers (Figure 1.6B)151. In the first step, a universal sequencing primer

complementary to the adapter sequence is hybridized to the template fragment. Each

cycle of sequencing involves the ligation of one out of four different fluorescently labeled

octamers to the sequencing primer. These oligonucleotide octamers are structured

such that the identity of the first and second di-base is correlated with the identity of

the fluorescent label attached at the end of the octamer. After ligation, non-ligated

octamers are washed away and a fluorescence imaging system detects the identity of

the ligated octamer and thus determines base 1 and 2 of the template sequence152.

Next, the fluorescent label is cleaved from the octamer after the fifth base and the

cycle of octamer ligation is repeated. Progressive rounds of octamer ligation enable the

sequencing of every five bases, i.e. base 6 and 7, followed by 11 and 12, and so on. After

completing a series of ligation cycles, the extended primer is denatured and the system

is reset with another primer complementary to the n − 1 position (one base shift) for

the second round of ligation (i.e., 4 and 5, 9 and 10, 14 and 15, and so on). After three

more rounds of primer reset the entire sequence of the template fragment is determined

in color space134.

∗http://www.appliedbiosystems.com; accessed April 15, 2014
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A unique and powerful characteristic of SOLiD is the use of two-base encoding, i.e. each

base of the template is interrogated twice (two independent ligation reactions by two

different primers) (Figure 1.6C). Two-base encoding enables an improved accuracy in

miscall detection and thus the discrimination of measurement errors from SNPs134,138.

However, it has been speculated that AT-rich and GC-rich regions are underrepresented

in SOLiD data due to amplification biases during library preparation153.

Like Illumina machines, SOLiD platforms are distributed with software that produces

readable data in color space and assigns quality values to each read. The fact that

SOLiD produces sequencing reads in color space rather than letter space (Illumina/Solexa

and Roche/454) has some disadvantages: (i) direct translation of color space into letter

space is not advisable due to the nature of the di-base dependent sequencing strat-

egy (e.g. assuming that a single color was miscalled, all consecutive colors would be

translated to incorrect nucleotide identities due to a ‘frame shifted’ translation), (ii) a

reference template (e.g. genome or transcriptome) has to be available in order to deter-

mine sequencing reads in letter space, and (iii) limited availability of software solutions

for downstream analysis (e.g. adapter removal or read mapping), since not all solutions

support sequencing reads in color space. Nevertheless, the SOLiD system is a powerful

technology that produces a large amount of sequencing data with high accuracy (Table

1.1). SOLiD has been successfully applied in various genomic applications including

microRNA studies109,146,154–157.

1.4.3 Small RNA Sequencing

All NGS technologies explained above need DNA as input material. Therefore, in or-

der to sequence the transcriptome of organisms using NGS technologies, template RNA

molecules need to be first reverse transcribed into cDNA. cDNA can then be used as

input material for high-throughput RNA sequencing (RNA-seq), enabling researchers

to discover, profile, and quantify RNA transcripts in a high-throughput manner158.

Moreover, the high importance of miRNAs as gene regulators for a wide range of func-

tionalities in a cell, lead to the development of small RNA high-throughput sequencing

(small RNA-seq), a special protocol for deep sequencing of small non-coding RNAs159.

Because different classes of small non-coding RNAs exist (e.g. miRNAs, piRNAs, or

siRNAs), specific small RNA-seq protocols have to be applied.

In miRNA sequencing, input RNA is isolated and sized fractionated using a gel. Only

gel bands containing short RNA molecules (18-30 nt) are used as input for library
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construction. By doing this, longer RNA molecules like pre-miRNAs, tRNAs, rRNAs,

etc. are discarded and mature miRNAs are filtered in the gel bands because of their

short length (∼22 nt). To distinguish miRNAs from other small non-coding RNAs (e.g.

piRNAs or siRNAs), most frequently used protocols require the small RNA molecules

to have a 5’ monophosphate and a 3’ hydroxyl group, which are characteristic termini

for Dicer products. To identify small RNAs with other terminal structures, such as

piRNAs or siRNAs, alternative methods must be applied58. Following adapter ligation,

library products, because of their short nature, do not require fragmentation compared

to genome or mRNA sequencing and can be sequenced in a single read by any NGS

technology. Note that mature miRNAs are shorter than the sequenced read due to a

minimum read length of 36 nt (Table 1.1; older SOLiD platforms produced reads with

35 nt). Hence, traces of adapter sequence variable in length may be contained within

the 3’ end of a sequenced read and need to removed computationally in downstream

bioinformatics analysis (see Materials & Methods 2.3.1.3 for details).
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Figure 1.6: ABI SOLiD sequencing system
(A) DNA template fragments are amplified by emulsion PCR. In this process, a reaction mix-
ture consisting of an oil-aqueous emulsion containing primer, dNTPs, and polymerase is created
to encapsulate DNA-bead complexes in a single droplet. Within these droplets, PCR ampli-
fication is performed to clonally amplify all template fragments in parallel to thousands of
copies each. Following amplification, beads are chemically cross-linked to a glass slide. (B)
The four-color sequencing by ligation method is used as sequencing strategy. First, a universal
sequencing primer is hybridized to the template fragment and a library of 1,2-probes (fluores-
cently labeled octamers) are added, which selectively hybridize and ligate to complementary
positions. Following imaging, ligated probes are chemically cleaved after the fifth base and the
cycle of probe ligation is repeated. After completing 10 ligation cycles, the extended primer is
stripped and the system is reset for a second round of ligation with another primer complemen-
tary to the n − 1 position (one base shift). To determine the entire sequence of the template
fragment in a string of colors, three more ligation rounds are performed. (C) In the two-base
encoding scheme, four di-bases are associated with one color and each base of the template is
interrogated twice. Figure adapted and modified from Metzker (2010).
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Chapter 2

Materials and Methods

The bioinformatics side has become the ‘bottleneck’ of all high-throughput based bio-

logical studies. A major problem is the handling and analysis of large-scale data sets

produced by these experiments. In the following, I will first describe the experimental

techniques and strategies applied to address the question whether miRNA genes im-

pact developmental arrest and longterm survival in dauer and dauer-like stages, such

as the infective stage of parasites (Section 2.1). I will then introduce the experimental

data sets profiled (Section 2.2) and finally present the computational workflow and

bioinformatics approaches developed and applied to analyze these data sets (Section

2.3).

2.1 Small RNA Sequencing

To address the role of miRNAs in the dauer/infective larvae fate, known and novel

miRNA genes in C. elegans, P. pacificus, and S. ratti were profiled using a multiplat-

form sequencing approach (Figure 2.1). These experimental data sets were generated

in the group of Dr. Christoph Dieterich (Bioinformatics in Quantitative Biology) at

BIMSB which is part of the MDC. The total RNA of the parasite samples (S. ratti)

were kindly provided by our collaborator PD. Norbert W. Brattig from the Bernhard

Nocht Institute for Tropical Medicine in Hamburg. All next-generation sequencing was

performed in the group of Dr. Wei Chen (Scientific Genomics Platform) at BIMSB.
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Figure 2.1: Experimental setup of microRNA gene profiling
Multiplatform small RNA deep sequencing was performed on mixed and dauer stage samples
of C. elegans and P. pacificus. Illumina small RNA profiling was carried out on mixed and
infective stages of S. ratti.

2.1.1 Nematode Strains and Culture

We used wild-type strains of three distinct species in all of our experiments. Caenorhab-

ditis elegans and Pristionchus pacificus were grown on NGM plates with a lawn of E.

coli strain OP50160. The S. ratti animals were maintained using Wistar rats by serial

passage as previously described161,162. Approval was obtained from the Animal Pro-

tection Board of the City of Hamburg. The strains used in this study are as follows:

N2, RS2333 (formerly known as PS312), and S. ratti Basel (Swiss Tropical Institute;

provided by Dr. G. Pluschke).

For mixed-stage cultures of C. elegans and P. pacificus (Table 2.1; Data sets 1, 2, 5,

and 6) 10 to 15 early adults were spotted on NGM plates, allowed to grow at 22◦C

for 5 days, and washed off with M9 for RNA extractions. Non-dauer (mixed-stage)

and dauer samples for both species (Table 2.1; Data sets 3, 4, 7, and 8) were obtained

from liquid cultures grown at 22◦C starting with synchronized L1 larvae. Synchronized

L1 larvae were sampled as follows: Gravid adult worms were treated with bleach to

collect embryos163. Embryos were incubated in M9 buffer overnight at 22◦C to hatch

without food, causing the larvae to arrest at the L1 stage. To obtain non-dauer stages

in liquid culture, we suspended 100 synchronized L1 larvae in 500 ml S-medium and
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added 26nM (25S) ∆7-dafachronic acid on day four to prevent dauer formation. We

added 0.5g OP50 per 100 ml worm culture on day 1, 4, and 7 as food source. Non-dauer

mixed-stages were then purified on day 8 or 9 and used for RNA extraction. Dauer

liquid culture was obtained from 10000 synchronized L1 larvae suspended in 500 ml

S-medium. On day 1, 5, and 8 of culture, 0.5g OP50 per 100 ml worm culture was

added. Dauer larvae were purified from liquid cultures on day 11 and 12. The culture

was centrifuged to obtain a worm pellet. The dauer larvae were then collected and used

for RNA extraction.

To isolate iL3s of S. ratti, we collected fecal pellets on days 6-16 after subcutaneous

infection of male Wistar rats with 1800-2500 iL3s. Charcoal coprocultures were es-

tablished, incubated at 26◦C and assessed for vitality and sterility before further pro-

cessing164,165. After 5-7 days incubation time, the Baermann method was used for the

recovery of iL3s. Free-living stages were prepared in a similar way by reducing the

incubation time to 24hrs.

2.1.2 Total RNA Isolation and Small RNA Library Generation

Total RNA was obtained from worm pellets using standard Trizol protocols. Qual-

ity and quantity of extracted product was assessed using Nanodrop and Bioanalyzer

according to the manufactures protocol.

Libraries for deep sequencing were prepared from total RNA according to the manu-

facturer’s protocol (SREK [small RNA Expression Kit]), Applied Biosystems, Forster

City, CA, USA (sequencing), Illumina v1.5 protocol for small RNA sequencing, and

the NEXTflex small RNA sequencing kit (Bioo Scientific; multiplexed libraries)].

2.2 Data Sets

2.2.1 Small RNA Sequencing Data

In total, we sequenced 10 small RNA samples using a multiplatform sequencing ap-

proach (Illumina GA II / HiSeq and ABI SOLiD). Detailed information on the exper-

imental setup and the number of sequencing reads obtained is tabulated in Table 2.1.

These data sets have been deposited in NCBI’s Gene Expression Omnibus166 and are
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accessible through GEO Series accession number GSE41402∗.

Table 2.1: Deep sequencing small RNA data sets profiled in nematodes
Ten deep sequencing data sets derived from C. elegans, P. pacificus, and S. ratti.

Data set Species Sample type Platform Read length1 #Raw reads

1 C. elegans mixed-stage Illumina GA II 36 20,557,719
2 C. elegans mixed-stage SOLiD 35 21,307,436
3 C. elegans mixed-stage2 Illumina HiSeq 51 10,290,812
4 C. elegans dauer2 Illumina HiSeq 51 10,349,552
5 P. pacificus mixed-stage Illumina GA II 36 27,208,332
6 P. pacificus mixed-stage SOLiD 35 25,717,306
7 P. pacificus mixed-stage2 Illumina HiSeq 51 11,347,692
8 P. pacificus dauer2 Illumina HiSeq 51 10,382,820
9 S. ratti mixed-stage Illumina GA II 36 27,540,069
10 S. ratti infective L3 Illumina GA II 36 32,021,930

1 measured in nucleotides
2 libraries were multiplexed and sequenced on the same lane

2.2.2 Publicly Available Data

The genome of C. elegans and the 3’ UTR, 5’ UTR, exon, and intron coordinates

were retrieved from WormBase† release WS20418. The S. ratti genome v1 was down-

loaded from the Wellcome Trust Sanger Institute‡. For P. pacificus, I used our in-house

genome. The 3’ UTR, 5’ UTR, exon, and intron coordinates for P. pacificus were in-

ferred from in-house deep sequencing mRNA transcriptome data.

Known miRNA genes from C. elegans (223 sequences) and P. pacificus (124 sequences)

were downloaded from the miRBase75 database§ (v18). 21U-RNA sequence annotations

for C. elegans were retrieved from previous studies167,168. The 21U-RNA sequence in-

formation for P. pacificus was obtained from de Wit et al. (2009). I inferred the

21U-RNA coordinates by mapping the sequences to the respective genomes. Other

non-coding RNA annotations, including rRNAs, tRNAs, snoRNAs, snRNAs, sbRNAs,

as well as repetitive sequence and splice leader information, were obtained from an

∗http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41402
†http://www.wormbase.org
‡http://www.sanger.ac.uk
§http://www.mirbase.org
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unpublished study (Peter F. Stadler - pers. comm.). Strongyloides ratti rRNA se-

quences were downloaded from the National Center for Biotechnology Information∗.

The Rfam169 database (v11), including the Rfam sequences and covariance models,

was downloaded from the Wellcome Trust Sanger Institute†.

Quantitative reverse transcription PCR (qRT-PCR) expression data of 107 miRNA

genes from C. elegans were obtained from Karp et al. (2011). miRNA expression level

changes calculated as −∆∆CT values measured from dauer versus L2m (late L2 - mid

L3 stage) samples were taken from the same publication.

2.3 Bioinformatics Methods

As described in the previous section, my study is based on high-throughput deep se-

quencing data sets. A major problem arising in next-generation sequencing is the

handling and analysis of generated large-scale data. To analyze these data sets, I de-

veloped a bioinformatics workflow, which consists of six distinct computational analysis

steps (Figure 2.2). This workflow includes the analysis of small RNA deep sequencing

data and reports known and novel miRNA genes, performs comparative investigations

of miRNAs, and infers miRNA gene homologies. A number of bioinformatics meth-

ods and strategies were used and implemented to analyze these data sets and derive

hypotheses about potential post-transcriptional regulators (miRNAs) conserved be-

tween free-living and parasitic nematodes. In the following, I will describe the different

computational steps applied in more detail. If not mentioned otherwise, all compu-

tational analyses have been performed using available Bioconductor170 packages or

custom scripts implemented in Perl or R171.

2.3.1 Preprocessing of Small RNA Sequencing Data

Next-generation sequencers produce millions of short sequences or reads (∼35-50 nt in

length for small RNA profiling) in a short amount of time at low costs. The challenge

is to analyze these high-throughput short reads in a systematic way. Typically, the

bioinformatic problem starts with preprocessing of sequenced reads prior to mapping to

a reference. Depending on the experimental design the preprocessing steps may include

∗http://www.ncbi.nlm.nih.gov
†ftp://ftp.sanger.ac.uk/pub/databases/Rfam
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Figure 2.2: Bioinformatics analysis workflow for small RNA-seq data
The analysis workflow for small RNA-seq data developed in this study consists of six dis-
tinct computational steps: (i) preprocessing (quality filtering, barcode detection, and adapter
removal), (ii) mapping to reference genome, (iii) identification of known and novel miRNA
genes, (iv) measuring relative expression changes of miRNAs between samples, (v) inference of
miRNA gene families and phylogeny, and (vi) visualization of differentially expressed miRNAs
depending on inferred phylogenetic relationships.

quality filtering, barcode detection, and adapter sequence removal. In the following, I

will discuss these different steps in detail.

2.3.1.1 Quality Filtering

Each NGS platform is distributed with software that converts image-based signals into

nucleotides and assigns quality values to every read. This quality score Q is provided in

phred format and can be used in three ways: (i) to asses the quality of sequences, (ii) for

recognition and removal of low-quality sequences (end clipping), and (iii) determination

of accurate consensus sequences. The phred format was developed during the Human
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Genome Project172,173 and is given by

Q = −10 · log10 P

where P is the probability that a given nucleotide was called incorrectly. In Sanger

sequencing, phred scores range from 0 to 93 using ASCII characters 33−126 in fastq files

(Phred+33). Illumina uses its own Illumina-specific Phred+64 offset and depending

on the platform employed, phred scores range from -5 to 40 using ASCII characters

59−104 or from 0 to 40 using ASCII 64−104. However, since the release of CASAVA

v1.8 (software package distributed by Illumina), they moved away from their Illumina-

specific offset and adopted the Sanger transformation, i.e. Phred+33. SOLiD quality

values, which are assigned to each color, range from 0 to 45 using ASCII 64−109. It has

to be mentioned that the exact relationship between phred scores and SOLiD quality

values is unclear174.

Several error sources can appear during next-generation sequencing and subsequent

downstream analyses: (i) library preparation, (ii) sequencing process (insertions, dele-

tions or mismatches), and (iii) bioinformatic processing (base calling and mapping to a

reference). Therefore, bioinformatic postfiltering of low-quality reads (and if necessary

read error correction) is an important step to reduce possible read based alignment

errors in the mapping process.

2.3.1.2 Barcode Detection

With the increasing throughput of NGS machines, especially for organisms with a

small genome size such as yeasts175, worms17 and flies176, the number of sequenced

and mapped reads is often higher than required for the experiment. Since the be-

ginning of Sanger sequencing, multiplexed DNA sequencing (i.e. a method to analyze

multiple biological samples at the same time) has been in use to reduce the sequenc-

ing costs per sample177. This strategy has been successfully adopted to Roche’s 454

platforms, Illumina GA II or HiSeq, and ABI’s SOLiD for different applications178–186.

With the usage of barcodes, it is possible to sequence multiple samples in a single lane.

In this context, a unique barcode identifier, typically 6 nt in length, is assigned to each

sample. Barcodes can be introduced during PCR amplification of libraries, which are

then sequenced separately, or by ligation of adapter sequences, which include barcodes.

Studies comparing miRNA expression profiles obtained by these two methods show that
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the quality of PCR-based barcoding is reproducible, whereas ligation-based barcoding

introduces biases187,188. However, in both cases of barcode introduction before subse-

quent downstream analyses, a bioinformatic processing step is required that reliably

detects barcode sequences and assigns reads to their corresponding biological sample.

Since barcode sequences are subject to false base calls resulting in mismatches or indels

(depending on the technologies error model), it is crucial for a barcode detection tool

to allow for errors in order to determine the actual barcode sequence for a correct

assignment of reads. Thus, it is important that barcode detection tools are capable of

dealing with vast amount of data in reasonable time and are flexible in their detection

mode, i.e. PCR- or adapter-based barcoding, while being able to allow for false base

calls. Moreover, when distinct sequencing platforms are in use that produce reads

in letter and color space, it is preferable that tools cope with reads obtained by all

platforms.

A number of programs are available that detect barcode sequences, e.g. Illumina’s

CASAVA software package (v1.8.2) includes a demultiplexing functionality of dual-

indexed libraries (Illumina’s PCR-based barcoding)∗ or Novobarcode which detects

barcodes in Illumina indexed reads or within the 5’ or 3’ end of reads in letter space†.

However, none of these programs includes all of the functionalities that were required

for my tasks. Since we already implemented the Flexible Adapter Remover (FAR),

a tool that detects strings in sequences by computing overlap alignments based on

the Needleman-Wunsch algorithm189 in letter and color space for the purpose of se-

quence adapter removal, we extended FAR’s functionality and added a barcode detec-

tion feature. This tool is now known as the Flexible Barcode and Adapter Remover

(FLEXBAR)1. I will explain FLEXBAR’s barcode functionality and the underlying

algorithm in Chapter 3.

2.3.1.3 Adapter Removal

Large amount of short sequence reads are produced in a massive parallelized strategy.

All of the currently employed NGS technologies introduce sequence tags necessary for

sample library preparation, which are ligated to the target sequence. Depending on the

sequencing application and experimental setup, these artificially introduced sequence

tags may overlap with the sequenced region and should be removed prior to subsequent

∗http://support.illumina.com/sequencing/sequencing software/casava.ilmn
†http://www.novocraft.com
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downstream analyses. Importantly, in case of miRNA profiling, in which the biological

signal is ∼22 nt in length, and the minimum read length of NGS platforms is 35-50 nt,

all short reads contain adapter sequences or tags (partial sequence or entire). Hence,

for optimal results in subsequent mapping procedures, these adapter sequences need to

be detected and removed from short reads.

Several software solutions are available that detect and remove adapter sequences

mostly in letter space. However, due to inherent error profiles of different sequencing

technologies (sequencing errors generally increase towards the 3’ end), perfect matching

approaches between short reads and target sequences are insufficient. Thus, our goal

was to implement a fast and flexible tool that detects and removes adapter sequences

in reads from different next-generation sequencing technologies, i.e. in letter and color

space. To accomplish this task, we originally implemented the Flexible Adapter Re-

mover. FAR has now been extended and integrated into the Flexible Barcode and

Adapter Remover. A detailed description of FLEXBAR’s program features includ-

ing adapter detection and removal functionality, and its evaluation compared to other

sophisticated NGS data preprocessing tools is given in Chapter 3.

FLEXBAR detects and removes adapter sequences within reads by overlap sequence

alignment based on the Needleman-Wunsch algorithm189. An overlap (or semi-global)

alignment uses the same recurrence relations as a global alignment but does not penalize

gaps at the end of the alignment. Adapter sequences can either be detected anywhere

within a given read or specifically at the left- or right-end of a read (for details of

different trim-end modes see Chapter 3). To detect these sequence tags in color space

reads, the adapter sequence (in letter space) is first internally translated into color

space (Figure 2.3A) and then aligned to each read (Figure 2.3B; RIGHT trim-end mode

example). Due to the two-base encoding strategy of SOLiD, an additional character

will be removed from the trimmed read.

FLEXBAR is applicable for a wide range of biological applications, such as detection of

adapter sequences in small RNA-seq data or detection of splice-leaders in operons1. In

general, it is possible to detect any kind of sequence anywhere in a given read sequence.

An example of FLEXBAR’s adapter removal application will be given in Chapter 3.

With FLEXBAR at hand, successful detection of barcodes and/or removal of adapters

in sequencing reads produce less mapping artefacts.
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T21010123230101111213022330201030313------
                        ||||||||||||      
------------------------330201030313112312

Read:

Adapter:

2330201030313------
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 330201030313112312

T2101012323010111121302Trimmed Read:

B

A
Input Adapter: CGCCTTGGCCGTACAGCAG

330201030313112312T2

 conversion to color space

Figure 2.3: Processing strategy of adapter recognition and removal in color space
(A) In general, adapter sequences are processed in letter space. If adapters have to be detected
and removed in color space, FLEXBAR converts the letter space adapter automatically in
color space prior to the subsequent alignment process. Moreover, the first two characters of
the transformed color space adapter are removed before aligning due to the double encoding
strategy of color space reads. (B) Overlap alignments are calculated using the Needleman-
Wunsch algorithm189 (here RIGHT trim-end mode). After adapter detection and removal in
color space, an additional character - the right most character of the trimmed read - will be
removed (RIGHT trim-end mode). Note: The trimmed read aligns perfectly with the reverse
complement of cel-miR-34-5p in color space.

2.3.2 Mapping of Short Sequencing Reads to a Reference

After the initial preprocessing of short reads, most NGS analysis protocols continue

with the crucial step of mapping reads the original sequences, i.e. the reference174. In

most settings, the genome sequence of the species the reads have been generated from

(if available), serves as the reference. However, any given sequence database can serve

as a reference, e.g. transcriptome annotations can be used as a reference when mapping

mRNA-seq for RNA splice identification190.

The process of finding the most credible source within a reference for the observed

sequencing read, given the knowledge of which species the sequence has come from, is

the classical sequence alignment problem in bioinformatics. Determining the optimal

alignment (or multiple) in the mapping step is complicated by various factors, including

sequencing errors, short read length, genetic variation in the population, non-uniform
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confidence in base calling, low reading accuracy in homopolymer stretches of identical

nucleotides, and the huge amount of reads to be mapped, which requires for the al-

gorithm to be optimized in speed and memory usage133,174,191. Traditional methods

such as pure Smith-Waterman dynamic programming192, BLAST193 or BLAT194 are

not designed to map the huge amount of data as produced by NGS. Depending on

the availability of computation power and random-access memory (RAM), these algo-

rithms may map the reads in a few days190. However, large and expensive computer

grid engines are not accessible to everyone and more efficient algorithms are needed.

To date, a large ever growing number of programs have been implemented to overcome

these challenges. Table 2.2 gives an overview of selected software solutions that are

available to solve the problem of short-read alignment.

Table 2.2: Overview of selected short read mapping tools
This table was adapted and modified from Bao et al. (2011).

Program Website Open source Quality score
involved

Mapping strategy

Eland195 None No Yes Hash the reads
Maq196 http://maq.sourceforge.net Yes Yes Hash the reads
SHRiMP2197 http://compbio.cs.toronto.edu/

shrimp/
Yes Yes Hash the reference

NovoAlign http://www.novocraft.com No Yes Hash the reference
Bowtie198 http://bowtie.cbcb.umd.edu Yes Yes BWT-based, index

the reference
Bowtie2199 http://bowtie-

bio.sourceforge.net/bowtie2
Yes Yes BWT-based, index

the reference
BWA200 http://bio-

bwa.sourceforge.net/
bwa.shtml

Yes Yes BWT-based, index
the reference

SOAP2201 http://soap.genomics.org.cn/ Yes Yes BWT-based, index
the reference

Most short-read alignment programs combine a two step procedure, i.e. a heuristic

filtration technique followed by a verification step. In the filtration step a small set of

most likely candidate regions that contain possible mapping locations are identified. In

the verification step, once the smaller subset of most likely candidate regions has been

determined, more accurate but slower alignment algorithms (e.g. Smith-Waterman)

are applied on the limited subset. Although a large number of programs for short-read

alignment exist, only a few fundamental concepts are implemented in the filtration

step. These methods cover (i) hash table-based implementations, in which the hash
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may be created using either the set of reads or the reference, and (ii) Burrows-Wheeler

transformation202 (BWT)-based methods, which facilitate rapid searching with low-

memory usage by creating an efficient index of the reference (column ‘Mapping strategy’

in Table 2.2). BWT-based implementations typically use the full-text minute-space

(FM) index data structure, which has been referred to as a compressed suffix array203.

If designed into the alignment program, both of the above concepts can be applied to

letter (Illumina, 454) and color space (SOLiD) reads. Regardless of the implemented

approach in each program, there is a general tradeoff between sensitivity and speed204.

In this study, the Bowtie (v0.12.5) and SHRiMP (v2.1.1) aligners were utilized. Bowtie,

which indexes the reference using BWT, was applied for the identification of novel

miRNA genes as part of the miRDeep2 pipeline (Section 2.3.3.2). For the quantifica-

tion of miRNA expression levels and subsequent differential expression analysis, map-

ping results produced by the SHRiMP2 aligner were used (local alignment mode with

parameters ‘−h 80% −−strata −o 20 −−max-alignments 20’ and default otherwise).

SHRiMP2, which uses a hash table-based strategy that indexes the reads, was specifi-

cally designed to map reads in color space, whereas Bowtie was originally implemented

for letter space reads. Both short-read aligner provide a high accuracy with more then

79% correctly identified genuine matches, when evaluated on simulated Illumina single

end data (15 million reads with 76bp length). While Bowtie utilized the least amount

of RAM, SHRiMP2 performed best in terms of correctly mappable reads (around 96%),

but at the expense of time and memory. The evaluation analysis using real data was

generally consistent with the results from simulated data133.

2.3.3 Identification of microRNA Genes from Small RNA-Seq Data

Next-Generation Sequencing has revolutionized diverse genomics applications includ-

ing miRNA analysis. Advantages of NGS platforms compared to Sanger-based cloning

methods or microarrays are a quantitative readout, which allows for digital gene ex-

pression (DGE) profiling, and at the same time the possibility to detect previously

unknown miRNA genes or other genomic features at high speed and sensitivity and

reduced costs130. Because of that, small RNA-seq (or microRNA-seq) has become the

standard method for the analysis and discovery of miRNA genes.
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2.3.3.1 Quantification of microRNA Expression Levels

After preprocessing and subsequent mapping of small RNA reads to the reference

genome, the genomic mapping information of each read is used for the annotation

of known and novel miRNAs and other small ncRNAs. miRNA and small ncRNA

annotations can be downloaded from the miRBase∗, Rfam† or UCSC‡ databases.

An important summary statistic for the quantification of miRNAs is the read count,

i.e. the number of reads (or tags) assigned to a specific miRNA. Thus, if the genomic

mapping coordinates of a read overlap with known genomic annotations from miRNAs

(mature or precursor sequence) in the correct orientation (e.g. at least 80% of the

read), the read is assumed to be a sequencing product of this particular miRNA; the

corresponding read count is increased by one. Reads that mapped multiple times to

the reference genome are assigned to each loci of a miRNA.

Read counts have been found to be a good linear approximation for the abundance

of target transcripts205. However, due to sequence-specific biases arising from small

RNA library preparation and sequencing technology, only relative quantification studies

of miRNA expression levels are reliable188,206,207. Absolute quantification of miRNA

expression levels is not possible208.

2.3.3.2 Identification of Novel microRNA Genes

Originally, the experimental detection of novel miRNA genes involved the process of

cloning followed by Sanger sequencing, which is an expensive and time-consuming pro-

cedure209. Additionally, miRNAs that are expressed in low copy numbers are difficult

to detect. Small RNA-seq is a promising method for the detection of unknown miRNA

genes at high speed and reduced costs. Small RNA-seq is particularly suited for the

detection of low-abundance miRNAs, due to the high sequencing throughput.

To identify novel miRNA genes computationally, two types of miRNA prediction tools

exist. One class of tools do not need experimental data. These tools rely on conservation

information and specific miRNA characteristics. Since, conservation based tools depend

on homology, only orthologous or paralogous miRNAs can be detected. Species-specific

or previously not detected miRNA genes families will be missed. The other class of

∗http://www.mirbase.org
†ftp://ftp.sanger.ac.uk/pub/databases/Rfam
‡http://genome.ucsc.edu
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tools are based on small RNA-seq data. These tools use the small RNA-seq read

pattern information for the prediction of novel miRNAs. The advantage of RNA-seq

based tools is that they rely on experimental data and facilitate the identification of

species-specific or unknown miRNA gene families. With the rapid development and

improvement of NGS methods, computational strategies that employ small RNA-seq

read patterns appear to be the most promising tools. In the following, I will focus on

small RNA-seq based methods and their strategies for novel miRNA identification.

The first tools that were developed for the detection of miRNAs in small RNA-seq

data, i.e. miRDeep210 and mireap∗, were published in 2008. Since then, many soft-

ware tools have been developed, due to the successful application of small RNA-seq

for miRNA identification even at low abundance in many areas. Recently, two studies

were published that compared and evaluated software tools for miRNA identification in

NGS data211,212. Eight software tools (miRDeep210, miRanalyzer213, miRExpress214,

miRTRAP215, DSAP216, mirTools217, MIReNA218, miRNAkey219, and mireap∗) were

evaluated by Li et al. (2012) and three (miRDeep v1210 and v2220, miRanalyzer213,

and DSAP216) by Williamson et al. (2013). Both studies conclude that in general

the best suitable software tool should be selected based on their specific input and

output requirements, e.g. investigated species, availability and accuracy of reference

genomes, available computational resources and time, or user friendliness. Neverthe-

less, Williamson and colleagues believe that miRDeep is the best solution for novel

miRNA candidates212 and Li and colleagues specifically recommend MiReNA, mireap,

miRDeep, and miRanalyzer for novel miRNA prediction in C. elegans 211.

In this study, I applied miRDeep2 for the prediction of novel miRNA candidates, be-

cause it is easy to use and especially applicable for nematode species. In the following,

I will present the general idea of miRDeep2.

The miRDeep2 program is a stand-alone application that predicts miRNAs from NGS

data employing the characteristics of Dicer processing using Bayesian probabilities.

The pipeline starts by mapping the reads to a reference genome. Then, consecutive

reads that occur in close proximity are clustered and the region of potential precursor

sequences is extended by 90 nt. Following the characteristics of Dicer processing, the

algorithm assumes if a read originated from a miRNA, then it must either be a portion

of the 5’ arm, 3’ arm, or loop sequence (Figure 2.4). Moreover, miRDeep2 assumes

that the mature sequence (miRNA arm loaded into RISC) is more abundant in a cell

∗http://sourceforge.net/projects/mireap; accessed November 5, 2013
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than the other arm (in miRDeep2 termed as star sequence) or loop sequence and there-

fore is most abundant in the NGS data file. A probabilistic score for each potential

miRNA is calculated based on the relative positions of reads within a predicted pre-

cursor and their frequencies (mature to star ratio), the thermodynamic stability of the

secondary structure, the evidence of a 2-nt 3’ overhang, and the conservation of the

assumed miRNA in related species (if available). miRDeep2 incorporates Bowtie198 for

the mapping process, RNAfold221 for the secondary structure prediction, and Rand-

fold222 for the estimation of the thermodynamic stability of the secondary structure.

As input, miRDeep2 accommodates data produced by the Illumina and Roche 454 ma-

chine. miRDeep2 does not support the processing of color space data generated by the

SOLiD machine.

sequencing reads
dicer cleavage

deep sequencing

miRNA
precursor

5’ arm

3’ arm loop

3´5´

3´ 5´

Figure 2.4: miRDeep2 prediction strategy
Following the characteristics of Dicer processing, each RNA product of a cleaved pre-miRNA
(5’ arm, 3’ arm, or loop sequence) has a certain probability of being sequenced. Based on
this assumption, sequenced reads from miRNAs will map to corresponding predicted precursor
structures according to the three characteristic Dicer products. Since the functional miRNA
(arm loaded into RISC) is assumed to be more abundant in a cell, it is sequenced more frequently
than the other arm or loop sequence. Hence, statistics of read positions and read frequencies
within a precursor signature are highly characteristic for miRNAs and are scored by miRDeep2.
Figure adapted and modified from Friedländer et al. (2008).

In this study, a multiplatform NGS (Illumina and SOLiD) approach was applied to

detect miRNA genes in different nematode species. Novel miRNA genes from Illumina

data were identified using the miRDeep2 pipeline with default parameters and Illumina

reads that matched with at least 18 nt to the genome were retained. In order to predict

novel miRNA genes from color space data (SOLiD), I modified the miRDeep2 pipeline
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and utilized the color space functionality of the Bowtie198 read mapper (v0.12.5; option

−C). SOLiD reads with at least 16 nt color space matches were retained. Due to the

SOLiD color space two-base encoding strategy (for details see Introduction 1.4.2), the

first and last nucleotide of mapped color space reads can not be correctly converted into

letter space. Therefore, after the mapping process I added the first and last nucleotide

to the letter space converted SOLiD read based on the reference genome sequence.

Subsequently, read mappings from Illumina and SOLiD data were processed by the

miRDeep2 core algorithm. To exclude false positive candidate miRNA loci, the initial

list of all candidates (miRDeep2 score with signal-to-noise ratio ≥ 10 (except data set

6: signal-to-noise ratio = 9.4) were filtered against a database of other small non-coding

RNAs, including rRNAs, tRNAs, snoRNAs, snRNAs, 21U-RNAs, sbRNAs, as well as

repeats. Due to the absence of small ncRNA annotations in S. ratti, the initial miRNA

candidate list was filtered against ribosomal RNAs and compared to the Rfam

database223 (v11). The remaining set of candidate miRNAs were manually inspected

and curated to yield the final set of novel miRNA loci.

2.3.4 Differential Expression Analysis

Beyond the discovery of new species of miRNAs, a common goal in NGS analysis partic-

ularly in digital gene expression studies (DGE) is to quantitatively compare expression

profiles between different biological samples224,225. In order to do so, miRNA count

data need to be normalized prior to the identification of differentially expressed genes

through statistical testing.

2.3.4.1 Normalizing microRNA Sequencing Data

Although NGS is the method of choice to profile miRNA genes these days, it is still er-

ror prone and systematic variations and biases are introduced during the experimental

process. Sources of biases in microRNA-seq could be introduced by (i) the quality of the

RNA sample, (ii) degenerated RNA and/or contamination with ribosomal RNA during

the library preparation, (iii) sequence-specific ligation of adapter or barcode sequences

to RNA, (iv) sequence-specific variations in enzyme efficiency, (v) reverse transcription,

and (vi) PCR amplification226. Thus, when measuring relative expression changes of

miRNAs between experiments, it is critical to consider these systematic variations.

Furthermore, different total read counts are generated in different microRNA-seq li-
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braries. Hence, it is essential to normalize microRNA-seq libraries before comparing

the abundances of miRNAs between them227.

The goal in normalization is to estimate systematic variations in different microRNA-

seq experiments through the distinction between true biological signal and random

noise. Oftentimes, simple total read count normalization is applied to remove differ-

ences in sequencing depth between libraries. More sophisticated normalization methods

are desirable, since there is a great range of sources for systematic variations and biases.

Moreover, previous studies have shown that the normalization method, rather than the

differential expression (DE) model, largely determines the outcome of DE in RNA-seq

studies227–229. Therefore, choosing the optimal normalization method is critical for DE.

So far, a lot of effort has been invested for the development of normalizing methods

for mRNA-seq data sets and one could expect that these normalizing methods could

be adapted for microRNA-seq normalization. However, this is questionable because

the total number of mRNA transcripts in a sample is magnitudes larger than the total

number of miRNA molecules227. To answer this question Garmire and Subramaniam

(2012) systematically evaluated seven commonly used normalization methods applied

to high-throughput data for their applicability to microRNA-seq data, which can be

grouped into two categories: (i) the ones that apply linear scaling or (ii) the ones

that do not. The linear scaling methods that were investigated are scaling normaliza-

tion, global normalization, Lowess normalization, and the Trimmed Mean of M-values

(TMM), whereas the other category includes quantile normalization, variance stabi-

lization (VSN), and the invariant method (INV)227. In oder to estimate systematic

variations, each method makes different assumptions about true biological differences

and random noise. Comparing these methods on several levels through multiple inde-

pendent data sets revealed that Lowess and quantile normalization are best suited for

the normalization of microRNA-seq data, while TMM, which is commonly applied for

mRNA-seq normalization, performed worst227.

The goal of quantile normalization (QN) is to make read count distributions across

miRNA samples equal230. The same goal can be achieved with quantile-based scaling

as applied by Schulte et al. (2010). The authors applied linear transformations using

a scaling factor based on quantile-quantile (qq) plots (qq-scale normalization). The

advantage is that qq-scale normalization is a linear transformation, whereas QN is

nonscaling. Moreover, qq-scale normalization is an intuitive, data driven, and robust

approach, since the scaling factor is calculated by the median of absolute differences of

corresponding quantile values. An artifact in QN is that a gene whose expression value
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is always high but not equal will have a low variance, due to the fact that QN shrinks

differences for high values over proportionally. High abundance miRNAs (oftentimes

high-count genes, i.e. a few genes whose read counts contribute to a large proportion

of the total read count in a sample) are typically observed in miRNA DGE studies231.

Therefore, applying QN to such data could be problematic and may remove expression

variances of high-count miRNAs.

To remove potential biases in miRNA expression across developmentally arrested and

non-arrested samples, I normalized raw read counts of each data set using reference-

based qq-scale normalization154. All data sets were normalized by linear transforma-

tions using scaling factors. The scaling factors were computed based on the median of

differences of corresponding quantile values of non-arrested (chosen as the reference)

and arrested samples. The distribution of count values ≥ 5 in the paired data sets were

compared in logarithmic space. In order to avoid problems associated with zero values,

a pseudo count of one was added to read counts prior to normalization.

The MA-plot, a plot of log-intensity ratios (M -values) versus log-intensity averages

(A-values) originally introduced for microarray gene expression data232, is widely used

to illustrate the dependency on intensities in high-throughput data. The MA-plot and

specifically the median of the M -values gives an idea of how good a normalization proce-

dure worked, i.e. a considerable deviation of the center of the distribution of M -values

from zero indicates that additional normalization is needed227. Note that drawing

definitive conclusions from such a qualitative comparison concerning the performance

of the normalization methods is typically not possible. However, exploratory analyses

generally help to shed light on the characteristics of the data and the impact of the

normalization process on the data distribution.

In my study, the comparison of MA-plots from raw data (without normalization; left

plot) and normalized data using reference-based qq-scale normalization (right plot) of

detectable miRNAs in P. pacificus non-arrested vs. arrested samples (data set 7 and

8; Table 2.1) suggested that the normalization procedure worked satisfying (Figure 2.5;

raw data with a median of −0.596; normalized data with a median of −0.009). Note

that in this study no biological replicates were sequenced.
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Figure 2.5: MA-plots of P. pacificus miRNA data before and after normalization
MA-plots show the distribution of miRNAs detectable in P. pacificus non-arrested vs. arrested
samples in comparison before (raw data) and after normalization using reference-based qq-scale
transformation (data set 7 and 8; Table 2.1). The horizontal red lines denote the mean of
the M -values, which computed from the raw data deviates considerably from zero (median of
−0.596), whereas the median of the normalized data is close to zero (median of −0.009).

2.3.4.2 Defining Differential Expression

After the normalization process of DGE data, the biological question whether a given

miRNA gene is differentially expressed can be restated as a statistical problem of hy-

pothesis testing: the simultaneous test for each miRNA whether the observed differ-

ence in read counts is significantly greater than what would be expected due to random

variation under the null hypothesis of no association between the expression levels and

experimental conditions (e.g. developmentally arrested and non-arrested worms)232.

Hence, in order to determine miRNAs that differ significantly in their expression levels

between different experimental conditions, a test statistic for each gene has to be com-

puted. Moreover, the resulting p-value needs to be adjusted for multiple hypothesis

testing, since several hundred miRNA genes may be tested simultaneously.

Numerous test statistics have been applied to model the problem of DE detection,

e.g. χ2/Fisher’s exact test, binomial test, and Poisson tests227–229,231,233,234. In the

χ2/Fisher’s exact test, each miRNA is associated with a 2×2 contingency table that

include read counts of specific miRNAs from the reference library versus the condition

of interest, as well as the sum of the read counts of all other miRNAs expressed. The

χ2 test is applied if all read counts are larger than 5. Otherwise the Fisher’s exact test

is used. A miRNA is called differentially expressed when the observed read counts are
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greater or less than the expected read counts with a false discovery rate (FDR) of less

than 5% in order to adjust for multiple hypothesis testing227. In the binomial test it is

assumed that each miRNA is independently distributed from each other and appears

either in the reference or the condition of interest and follows a binomial distribution

with an expected probability p = 0.5 and n = n1 +n2, where n is the total number read

counts in both libraries, n1 the total number of read counts in the reference library, and

n2 the total number of read counts in the other library (condition of interest). As in the

χ2/Fisher’s exact test, a miRNA is called differentially expressed when the observed

read counts are greater or less than the expected read counts with a FDR <0.05. The

Poisson test is done in a similar way than the binomial test227.

In this study, I applied a simple two-sample comparison, since replicates were not

profiled. For this, an exact two-sided binomial test was computed for each miRNA

using the R function binomTest() from the Bioconductor package edgeR235. This test is

closely related to Fisher’s exact test for 2×2 contingency tables, but with the difference

that for each miRNA it conditions on the total number of counts in the library, i.e.

all miRNAs expressed in the library. By doing so, the library size variability between

experiments is taken into account. The null hypothesis is that the expected read counts

of a miRNA are in the same proportions as the library sizes with the probability of the

reference library being

p1 =
n1

(n1 + n2)
,

where n1 is the total number of read counts in the reference library and n2 the total

number of read counts in the other library (condition of interest). In this approach the

read counts in each library as a proportion of the whole follow a binomial distribution.

The final set of differentially expressed miRNAs was defined by two criteria: i) absolute

log2 fold change >1 and ii) exact two-sided binomial test with a p-value cutoff that

corresponds to a FDR <0.05.

2.3.4.3 Correction for Multiple Hypothesis Testing

To define differentially expressed genes in high-throughput data as carried out in this

study, simultaneous performance of statistical tests for many genes (multiple hypoth-

esis testing) is involved. A correction of the p-value in multiple hypothesis testing is

required, because the false positive rate of individual tests accumulates and therefore

the chance of falsely calling differential expressed genes increases236.
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Classical methods control the family-wise error rate by adjusting each individual hy-

pothesis significance level to ensure a least overall significance level. The most familiar

method for multiple testing correction is the Bonferroni adjustment, which distributes

the overall significance threshold α evenly on all performed tests n by requiring an

overall significance level of at least α/n. However, this method is extremely stringent

and not always appropriate especially when applied to large-scale biological data where

the number of simultaneously performed tests can exceed many thousands237. In this

regard, the control of the FDR, which is the expected proportion of incorrectly iden-

tified genes among the list of significant genes, achieves better power. The procedure

for controlling the FDR, which was applied in this study, was introduced by Benjamini

and Hochberg (1995) for independent p-values.

To ensure that the expected FDR is controlled at a given δ the Benjamini-Hochberg

procedure works as follows238:

Consider testing m different hypothesis tests H1, H2, ...,Hm based on the corresponding

p-values P1, P2, ..., Pm. Let P(1) ≤ P(2) ≤ ... ≤ P(m) be the ordered p-values, and denote

by H(i) the null hypothesis corresponding to P(i). Find the largest index k ∈ i for which

P(i) ≤
i

m
δ.

Subsequently, reject all H(i) i = 1, 2, ..., k with p-values less than or equal to P(k).

2.3.5 Inference of microRNA Gene Families and Phylogeny

In this work, I investigated the evolution of miRNAs among free-living and parasitic

nematodes. Hence, the inference of miRNA gene families and phylogeny was very im-

portant. Gene families of various ncRNA classes defined by means of sequence similarity

are stored in the Rfam database169. A miRNA registry, which provides a resource for

discovered miRNAs, was originally created as part of Rfam. With the increase of data

on miRNAs, the miRNA registry was separated from Rfam and renamed to miRBase75.

The miRBase database provides a grouping of miRNA families of miRBase deposited

miRNAs based on conservation across precursors and manual curation using sequence

alignments. Therefore, it is not possible to recreate miRBase family classifications from

a set of rules (Sam Griffith-Jones - pers. comm.). However, novel miRNA sequences, as

discovered in this study, required the regrouping of known families and/or the definition
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of novel families. Therefore, I developed a strategy to infer miRNA gene families and

phylogeny and grouped all miRNA loci including novel genes discovered in this study

into families.

The inference of miRNA phylogeny can be divided into three steps: (i) grouping of

miRNA gene families, (ii) computing multiple sequence-structure alignments of these

families, and (iii) inference of phylogenetic trees using hierarchical clustering. In the

following, I will describe these steps in detail. Moreover, I will provide an evaluation

of the performance of this method in Section 4.5.

2.3.5.1 Grouping of microRNA Gene Families

It is common knowledge that miRNA genes usually belong to the same family if they

share the same seed sequence. The assumption is that these miRNAs have similar

targets and therefore similar functions, yet distinct spatial and temporal expression

profiles. However, this definition of miRNA families does not distinguish between

true homology and homoplasy. Thus, an in-depth phylogenetic analysis requires a

careful distinction between homology and homoplasy. A homoplasy trait is shared

by different taxa due to convergence, i.e. genes related by function show sequence

similarity due to the same function and not because of common descent. For lack

of widely accepted criteria to distinguish homology from homoplasy in miRNAs, I

developed a novel strategy that captures sequence identity of miRNAs based on a 6mer

miRNA target recognition site combined with supplemental pairing as presented by

Bartel (2009).

To this end, I computed all-against-all pairwise global end-gap free alignments of

miRNA 5’- and 3’-arms (first nucleotide was removed) using USEARCH239 (v6.0.307;

global alignment mode with parameters ‘−−allpairs global −idprefix 6 −−gapopen

2.0I/1.0E −−gapext 1.0I/0.5 −query cov 0.8 −target cov 0.8 −−fulldp −−id 0.65’).

Alignments were retained if they covered at least 80% of the target and query sequence

with a minimal sequence identity of 65%. Sequence identity within an alignment was

computed as the number of identical nucleotides divided by the number of columns

in the alignment. These values were selected based on well-known miRNA families

reported in the literature, e.g. let-7 family. Additionally, the two largest alignment

blocks had to cover 65% of the shorter sequence in each comparison. If that propor-

tion happened to be 40-65%, the alignment was retained if it included the same arm

for both, query and target sequence. The 40% threshold was chosen, because Bartel
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reported that a 6mer (position 2-7) target recognition site combined with 3’ supple-

mentary pairing of at least 3 nt (position 13-15) is usually sufficient for binding113.

Thus, if two alignment blocks exist that cover at least 9 out of 22 nucleotides (average

miRNA length), an estimated 40% (9/22) sequence identity has to be present in the

alignment. This value represents the lower bound necessary for target recognition. Be-

cause I wanted to avoid mistaking convergence for homology, I used a stringent miRNA

family definition and added a second criteria in case sequence identity was comparably

low (<65%): no occurrence of arm switching. In other words, assuming the query

includes a 5’ miRNA arm, the matching arm in the alignment has to originate from a

5’ arm as well. Finally, to group miRNAs into families, I searched for connected com-

ponents of an undirected graph, i.e. every pair of vertices is connected by a path, with

nodes representing miRNA arms. miRNA arms were connected by edges if they form

a valid alignment [see Figure 4.5 in Section 4.5 as graph example; R package igraph

(v0.6.2)240].

2.3.5.2 Multiple Sequence-structure Alignments of RNA

Just as a pairwise alignment captures the relationship between two sequences (DNA,

RNA, or proteins), a multiple sequence alignment (MSA) can show how sequences in

a family relate to each other. In MSA construction, the goal is to produce columns

of aligned residues (or nucleotides) that are structurally similar and related to each

other, i.e. diverged form a common ancestor. Usually, an MSA has to be inferred from

primary sequence alone considering structural and evolutionary conservation241.

Automated generation of MSA is tedious and subject of extensive research in com-

putational biology. Manually refined high quality alignments of proteins produced by

biologist continue to be superior than purely automated methods242. The issue of

automated methods is that the computation of an exact MSA is a nondeterministic

polynomial time complete problem (NP-complete) given any sensible biological crite-

rion and only feasible for unrealistically small data sets243. Thus, the computation

of MSA depends on approximate algorithms or heuristics which are not guaranteed

to give an optimal solution. The by far most widely implemented approach is the

progressive alignment technique244 which starts by pairwise alignment of the most

similar sequences progressing to the most distantly related following a guide tree 245.

The most frequently used software solutions for protein and DNA sequences are246

(i) ClustalW247, (ii) MUSCEL248, (iii) T-Coffee249, (iv) MAFFT250, (v) ProbCons251,
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and (vi) Kalign252.

The computation of MSA for RNA molecules is even more complex. Sequence simi-

larity among different RNA molecules is often remote within well-known families. In

1966, Madison et al. compared two yeast tRNA molecules (tyrosine and alanine) and

concluded that in spite of limited sequence similarity, very similar based-paired struc-

ture models can be constructed253. Moreover, it is thought that functional secondary

structures of RNA molecules are conserved in evolution254. Therefore, RNA alignment

algorithms cannot rely on sequence alignment techniques alone, and should incorporate

the information of a secondary structure model. Usually, this model has to be inferred

from primary sequence data. Also, RNA alignments are complicated by long-range

interactions due to base-pairing.

Multiple RNA sequence and structure-based alignments can be divided into two ma-

jor classes, probabilistic and non-probabilistic approaches. Probabilistic approaches

are based on stochastic context-free grammars (SCFG), the analogue to profile hid-

den Markov models (profile HMM). The quality of the computed multiple structural

alignment strongly depends on an initial multiple alignment which is required as in-

put (e.g. Cove255, Infernal256, and Pfold257). Non-probabilistic approaches, such as (i)

RNAforester258, (ii) MARNA259, and (iii) PMcomp/PMmulti260, require a known or

predicted input structure. Simultaneous folding and aligning of two RNA sequences of

length n was first introduced by Sankoff in 1985. However, this method is based on

a dynamic programming algorithm and is not practical in terms of CPU time O(n6)

or memory O(n4)261. Since then, several Sankoff-style derivates have been developed.

One efficient variant of these approaches is LocARNA (local alignment of RNA) and

the multiple version mLocARNA262. LocARNA uses base pair probabilities computed

by McCaskill’s partition function folding algorithm263 as structural input. mLocARNA

computes multiple structural alignments following a progressive alignment strategy.

In this study, the goal was to investigate miRNA gene families and their relationship

among distantly related nematodes. To visualize different miRNA families and derive

phylogenetic trees, I computed respective pairwise or multiple sequence and structure-

based alignments for each individual family with at least two precursors using mLo-

cARNA262 (v1.6.1). In miRNA target recognition, the seed sequence (here defined

as positions 2-8 of the miRNA arm) is of great importance and crucial for miRNA

regulation113. Therefore, mLocARNA was constrained to align each precursor at the

seed sequence, which was determined by the most conserved arm for each miRNA. The

resulting MSA were visualized using custom R scripts plus two R packages [R4RNA
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(v0.1.4)264 and Phangorn (v1.6.0)265] and the RNAalifold266 webserver∗.

2.3.5.3 Building Phylogenetic Trees

The Relationship of characters, i.e. any genetic, structural, or behavioral feature of a

species including miRNA genes, can usually be represented by a phylogenetic tree. This

tree can be inferred from observations upon existing organisms. In 1962, Zuckerkandl

and Pauling demonstrated that molecular sequences provide sets of characters that

carry large amounts of evolutionary information. Assuming that these sequences have

descended from some common ancestral gene in a common ancestral species, a likely

phylogeny of species or genes can be inferred given a set of molecular sequences from

different species in question.

A phylogenetic tree consists of branch nodes connected by edges. Terminal nodes

correspond to observed sequences and are called leaves. In this study, all trees were

assumed to be rooted and therefore binary, i.e. an edge that branches splits into two

daughter edges. The length of each edge of a tree is defined by some measure of distance

between sequences. True biological phylogeny has an ultimate ancestor of all sequences

called root. Some tree building algorithms provide information about the position of

the root and others, like parsimony and probabilistic models, are uninformative about

its location241.

For simplicity, I used a more intuitive tree building method that starts with a set of

distances dij between each pair i, j of sequences in a given data set. There are many

different ways to define distances. A distance function needs to fulfill the definition of

a metric d with the following properties268:

1. d(i, j) > 0 for i 6= j.

2. d(i, j) = 0 for i = j.

3. d(i, j) = d(j, i) ∀ i and j (symmetry).

4. d(i, k) ≤ d(i, j) + d(j, k) ∀ i, j, and k (triangle inequality).

Any set of distances satisfying all four metric properties will produce an additive tree.

Moreover, a tree can be ultrametric if d(i, k) ≤ max {d(i, j), d(j, k)} (∀ i, j, and k)

holds.
∗http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgi; accessed June 18, 2013
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In this study, I used the score of the pairwise sequence structure alignment computed

by LocaARNA for each individual miRNA family and transformed them into distances.

Thus, the distances correspond directly to LocARNA-scores. As successfully applied

in the LocARNA-based clustering approach262, the distance d(i, j) between a pair of

RNA sequences i and j were defined by

d(i, j) = max {0, q − score(i, j)},

where score(i, j) is the LocARNA-score of i and j, and q is the 99%-quantile of all

pairwise scores. The resulting N x N distance matrix, where N is the number of

sequences, can be used to derive a rooted tree T by hierarchical clustering.

To infer phylogenetic trees for each individual miRNA gene family, I applied the un-

weighted pair group method using arithmetic averages (UPGMA)269. Note that UP-

GMA produces ultrametric trees that assume a constant rate of evolution in which

edge lengths can be viewed as times measured by the molecular clock. This means that

at all points in the tree the divergence of sequences is assumed to occur at the same

constant rate. Hence, if the molecular clock property fails, the resulting tree may be

reconstructed incorrectly241. In this case, there are other algorithms like neighbour-

joining 270 that reconstruct the tree correctly. Nevertheless, UPGMA is a simple, fast,

and intuitive clustering method for reconstructing the topology of phylogenetic rela-

tionships. In the following, I will give an overview about different hierarchical clustering

methods.

Hierarchical Clustering

Agglomerative hierarchical clustering merges clusters iteratively using a bottom-up

approach. The basic procedure for clustering a set of N sequences given a N x N

distance matrix is as follows241:

1. Assign each sequence i to its own cluster Ci. The distances between two clusters

Ci and Cj will be the distances dij defined in the distance matrix. For each

sequence one leaf of tree T will be defined and placed at height zero.

2. Merge the most similar pair of clusters Ci and Cj into a new cluster Ck. Create

a node k of T with daughter nodes i and j at height dij/2.

3. Compute the distances dkl between Ck and all other cluster Cl.
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4. Add Ck to the current clusters and remove Ci and Cj . The number of total

clusters will be reduced by one.

5. Repeat steps 2-4. When only two clusters Ci and Cj remain, place the root at

height dij/2.

Distances between clusters can be calculated in different ways (step 3). Frequently used

techniques are single-linkage, complete-linkage, and average-linkage clustering271:

Single-linkage The distance dkl between two clusters Ck and Cl is equal to the

shortest distance from any sequence i of Ck and any sequence j of Cl:

dkl(Ck, Cl) = min
i∈Ck
j∈Cl

dij .

Complete-linkage The distance dkl between two clusters Ck and Cl is equal to the

largest distance from any sequence i of Ck and any sequence j of Cl:

dkl(Ck, Cl) = max
i∈Ck
j∈Cl

dij .

Average-linkage (UPGMA) The distance dkl between two clusters Ck and Cl is

equal to the average distance from any sequence i of Ck and any sequence j of Cl:

dkl(Ck, Cl) =
1

NCk
NCl

∑
i∈Ck

∑
j∈Cl

dij ,

where NCk
and NCl

denote the respective number of sequences in cluster Ck and Cl.

2.3.5.4 Performance Evaluation

To evaluate the performance of my miRNA homology assignment strategy, particularly

the functionality of two features has to be demonstrated: (i) correct grouping of miR-

NAs into families and (ii) correct ordering of the multiple sequence-structure alignment

of a known miRNA family.
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To test the functionality of the grouping of miRNAs into distinct families, I compiled a

set of well-known let-7 family miRNAs from miRBase (v20) as control data, combined

these with 50 randomly generated miRNAs based on the sequences in the control set,

and inferred families from this compiled data set according to Section 2.3.5.1. Initially, a

set of 52.000 random di-nucleotide shuffled miRNAs (1000 randomly generated miRNAs

for each of the 52 let-7 miRNA from eight animal clades) were generated using uShuffle∗

with the following parameters: ‘-n 1000 -k 2’ and default otherwise272. Fifty miRNAs

were then selected randomly. The eight animal clades human (hsa), chimpanzee (ptr),

mouse (mmu), rat (rno), fruit fly (dme), nematode (cel), planarian (sme), and sea

urchin (spu) were chosen (see miRBase database∗ for three-letter code information of

species).

Moreover, to demonstrate that this method produces well annotated multiple align-

ments reflecting a correct phylogenetic relationship, I computed a multiple sequence-

structure alignment on the same compiled data set as described in Section 2.3.5.2. The

results of the evaluation are presented in Section 4.5.

2.3.6 Single-Mutation Seed Network

To investigate the seed neighborhood of identified candidate regulators for potential

conservation of expression signatures, I inferred a single-mutation seed network from

all seed sequences of the miRNA sets in C. elegans, P. pacificus, and S. ratti. For this,

I built an undirected graph with nodes representing seeds using the R package igraph

(v0.6.2)240. Seed sequences that differ in a single nucleotide were connected by edges.

The network was visualized using Cytoscape 2.8.2273.

∗http://digital.cs.usu.edu/∼mjiang/ushuffle; downloaded August 7, 2013
∗http://www.mirbase.org
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FLEXBAR - Flexible Barcode

and Adapter Processing for

Next-Generation Sequencing

The Flexible Barcode and Adapter Remover (FLEXBAR) originated from the Flexible

Adapter Remover (FAR) and has been developed by Matthias Dodt in the bioinfor-

matics group of Christoph Dieterich. As part of this project, I developed the adapter

removal feature for SOLiD color space reads and focused on the application of small

RNA-seq in letter and color space. Additionally, I was involved in the design of FAR

and in the development of specific features of the subsequently added barcode detec-

tion function for demultiplexing. The final version of FLEXBAR (paper version) has

been extensively revised and enhanced by Johannes Röhr through the introduction of

novel and extended features, a cleanup in the source code, redesigned command-line

interface, and optimized parameter settings.

In this chapter I will present the general concept of FLEXBAR with an emphasis on

FLEXBAR’s color space adapter removal mode for the application of small RNA-seq.

Parts of this chapter have been published in 2012 in the special issue “Next-Generation

Sequencing Approaches in Biology” in the journal Biology 1.
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3.1 Background

Next-generation sequencing technologies, such as Illumina’s GA/HiSeq, Applied Biosys-

tems SOLiD and Roche 454, produce millions of short reads by massive parallel se-

quencing. All of these approaches introduce sequence tags that are typically ligated to

the pool of target sequences. Sequence tags can be located anywhere in a given short

sequencing read and often overlap with the sequenced region. These tags should be

removed prior to downstream read processing. Failure to do so can result in a large

amount of not mappable reads. Evidently, adapter sequences may confound any subse-

quent analysis step. A simple positional read trimming or quality-based read trimming

is usually not sufficient to rule out mis-assemblies or low mapping rates.

Adapter sequence tags are inherently used in every sequencing platform to initiate se-

quencing or for other internal processing purposes (Figure 1.4B). Hence, short reads

from any sequencing platform may contain adapters or fragments of adapters. More-

over, recent increases in sequencing capacity facilitate pooling of samples (multiplexing)

in one sequencing reaction by the introduction of barcode sequences. Barcodes are used

to tag a particular origin in a complex mixture of short reads. Several read processing

scenarios emerge due to the use of adapter and barcode sequences. Our FLEXBAR

software unifies high-processing speed, versatile approaches to basic filtering, quality

trimming, barcode detection followed by demultiplexing, and adapter removal. It sup-

ports all current next-generation sequencing platforms, e.g. adapter sequences may be

removed in letter or color space. FLEXBAR is not limited in read length and may be

well suited for processing third-generation reads. In the following, I will discuss pro-

gram features, implementation and usage, and compare them to other state-of-the-art

software solutions.

3.2 Program Features

The rich feature set of FLEXBAR addresses many potential applications in single-end,

paired-end, and mate-pair sequencing. As discussed in Materials & Methods 2.3.1,

typical workflows involve a quality clipping step, demultiplexing, which potentially

includes barcode removal, followed by a separate adapter removal step. All of these

steps may be executed within one program call of FLEXBAR (Figure 3.1). The default

parameters are optimized to deliver high quality results (especially Illumina and SOLiD)
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for a large number of scenarios. However, customization of settings might improve

results for specific applications.

Sequencing reads, barcode
and adapter sequences

(1) Uncalled bases filter
(2) Trimming of reads
(3) Quality based trimming

(4) Barcode detection
and read separation

(5) Adapter detection
and removal

(6) Trimming to length
(7) Read length filter

Figure 3.1: FLEXBAR’s internal workflow
FLEXBAR takes sequencing reads, barcode and adapter sequences as input. All preprocessing
steps emphasized in Materials & Methods 2.3.1 can be performed in one program call. In total,
seven processing steps can be applied on the set of input sequences. These steps can be split into
four categories: (i) basic clipping and quality filtering, (ii) barcode recognition and processing,
(iii) adapter recognition and removal, and iv) output filtering.

FLEXBAR has been implemented in C++ using the Seqan library274. Multi-threading

has been implemented with the Intel Threading Building Blocks library (TBB)∗.

FLEXBAR detects target sequences by an overlap sequence alignment based on the

Needleman-Wunsch algorithm189. An overlap (or semi-global) alignment uses the same

recurrence relations as a global alignment but does not penalize gaps at both ends of

the alignment (Figure 3.2; see Materials & Methods 3.2.1 for detailed description of an

∗http://www.threadingbuildingblocks.org; accessed August 14, 2012
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overlap alignment).

FLEXBAR offers maximal flexibility in target sequence recognition considering base

substitutions, insertions and deletions. Moreover, the user is free to choose all align-

ment scoring parameters, the minimal overlap, and a threshold on sequence similarity.

Default parameters are preset and were chosen to work best for Illumina GA II/HiSeq

and AB SOLiD sequencing data. A simple perfect matching approach to expected se-

quence tags might not be adequate for sequencing platforms with elevated error rates.

Furthermore, reads encoded in letter as well as in color space can be processed.

FLEXBAR supports five trim-end modes for sequences, which cover most sequenc-

ing applications: (i) ANY (where), (ii) LEFT, (iii) RIGHT, (iv) LEFT TAIL or (v)

RIGHT TAIL trimming (Figure 3.3). These modes, which will be discussed in Section

3.2.2, can be independently combined for adapter and barcode sequence recognition in

single- or paired-end data. Moreover, barcode reads might be separated from the actual

single- or paired-end read set (as in Illumina TruSeqTM sequencing). In the following,

I will present the algorithm for an overlap alignment in detail.

3.2.1 Algorithmic Implementation

FLEXBAR uses the concept of an overlap alignment to detect target sequences, which

is essentially a type of global alignment without penalizing gaps at the end. To this

end, the first row and column of the dynamic programming matrix are initialized with

zeros, and the alignment score maximum is searched in the last row and column of the

alignment matrix. Hence, the dynamic programming matrix F indexed by i and j (one

for each sequence x and y) for an overlap alignment is constructed recursively, where

F (i, j) is the score of an optimal alignment between the segments x1..i up to xi and

y1..j up to yj . The matrix is initialized by F (i, 0) = 0 for i = 1, .., n and F (0, j) = 0

for j = 1, ..,m , where n and m are the lengths of sequence x and y, respectively. The

matrix is filled from top left to bottom right using the following recurrence relationship

F (i, j) = max

{
F (i−1,j−1)+s(xi,yj),

F (i−1,j)−d,
F (i,j−1)−d;

where d denotes the cost for inserting a gap. While the values F (i, j) are filled, pointers

in each cell back to the cell from which its F (i, j) was derived, has to be stored. To

derive the optimal overlap alignment, the maximal score Fmax is searched in the last row
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(i,m), i = 1, ..., n and the last column (n, j), j = 1, ...,m of F . To find the alignment

that leads to Fmax, the path that led to Fmax has to be found using the traceback

procedure; i.e. the alignment is build reverse, starting from the cell Fmax following the

pointers until the top row or column is reached (Figure 3.2)241. End gaps should be

added if applicable.

The algorithm takes O(nm) CPU time and O(nm) memory storage, where n and m are

the lengths of the sequences, respectively. Because n and m are generally comparable,

the algorithm is said to be O(n)2.

3.2.2 Trim-end Modes

The user can choose among five different trim-end modes depending on the experimental

setup (Figure 3.3). We will explain these trim-end modes based on a short read of

length n and an adapter sequence of length m. All trim-end modes are available

for barcode (option −−barcode-trim-end) and adapter (option −−adapter-trim-end)

sequence recognition. We assume that m < n holds.

1. ANY: The adapter sequence is searched anywhere within the given short read.

In case of an adapter match, the longer non-matching substring of the read is

retained.

2. LEFT: The matching adapter sequence is located in a prefix p[1..k] of the short

read with k ≤ n. The corresponding short read prefix including the adapter

sequence is removed.

3. RIGHT: The matching adapter sequence is located in a suffix s[(n−k)..n] of the

short read with k < n. The corresponding short read suffix including the adapter

sequence is removed.

4. LEFT TAIL: This is a special case of mode 2. We only consider the first m

bases or colors of the short read. The read is trimmed from the 5’ end.

5. RIGHT TAIL: This is a special case of mode 3. We only consider the last m

bases or colors of the short read. The read is trimmed from the 3’ end.

The default parameters of FLEXBAR are set such that the ANY mode is used for

barcode recognition and the RIGHT mode is used for adapter recognition.
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3.2.3 Quality Clipping and Read Filtering

Many sequencing platforms provide phred-scaled quality scores for individual base calls

(see Section 2.3.1.1 for details). FLEXBAR provides multiple options to filter reads

and target read quality:

−−max-uncalled: Sets a threshold on the allowed number of unidentified bases within

a given read. No uncalled bases are allowed as per default settings.

All reads that exceed this threshold are excluded from barcode and

adapter processing.

−−pre-trim-left: Allows trimming of a certain number of bases on the left end of short

reads. Disabled by default.

−−pre-trim-right: Equivalent to −−pre-trim-left. This option allows trimming of a

certain number of bases on the right end of short reads. Disabled by

default.

−−pre-trim-phred: Trims all read positions from right to left up to the first base or

color having a quality value larger or equal to the given quality

score cutoff. Disabled per default.

−−post-trim-length: Specifies the number of bases to which reads are truncated from 3’

end after all removal steps have been applied. This option is disabled

by default.

−−min-readlength: Defines the minimal read length (18 nt by default). All reads that are

equal or longer than the minimal read length are retained. All other

reads are discarded or written to a special output file if requested.

3.3 Program Usage

A typical use case starts by defining the set of input reads. As default the read format

is defined as fasta/q. If the read format is csfasta, the color space option −c has to be

specified: flexbar −t <STRING> −r <FILE> [−p <FILE>] [−c]

Example: flexbar −t processed −r single end F3.csfasta −c

Option −t defines the prefix for the output filenames. Option −c specifies the color

space read format csfasta. If a second read set is specified (option −p), paired-end
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reads are processed, and read pairings are maintained in the output. Barcode and/or

adapter sequences can be defined by the following options:

−a <FASTA FILE> or −as <STRING>

−b <FASTA FILE>

The option −as can be specified if only one adapter sequence needs to be detected.

Depending on the sequencing setup, barcode and adapter sequences can be located in

different or reside within the same read. For example, barcode reads in the Illumina

TruSeqTM system are represented by a second or third read set, which are sequenced

independently from the actual single- or paired-end reads. Barcode detection precedes

the adapter removal step in FLEXBAR. The user may specify the location of separate

barcode reads by setting the option −br. If this option is not set FLEXBAR assumes

that barcodes reside within the first read set (−r). Note that neither barcode detection

nor adapter removal is a mandatory step in FLEXBAR. The available trim-end modes

are selected by

−−adapter-trim-end <ANY | LEFT | LEFT TAIL | RIGHT | RIGHT TAIL>

and

−−barcode-trim-end <ANY | LEFT | LEFT TAIL | RIGHT | RIGHT TAIL>

(Default values are shown in bold characters.)

To optimize the barcode detection process for different experimental setups, the user

can adjust alignment parameters as desired. Furthermore, the option −−barcode-keep

determines if the barcode is removed or not from the assigned reads. Adapter removal

is effected in a similar manner yet controlled by an entirely different set of parameters,

the −−adapter-* options. We separated these parameters to allow use in a wide range

of applications, for specific contexts it is desirable to apply distinct stringencies through

parameter adjustments in the barcode and adapter detection process. For example, a

particular situation may require asking for a higher specificity in assigning barcodes and,

at the same time, require being more sensitive in adapter sequence recognition. Finally,

all FLEXBAR processing steps outlined in Figure 3.1 and command line parameters

including default settings are output in detail by calling the help page of the program

(option −−help).
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3.4 Program Validation

Numerous competing software solutions exist that emphasize barcode recognition and

adapter trimming of short sequencing reads. The comparison of a number of program

features in FLEXBAR and widely accepted (FASTX toolkit∗) and recently published

(CUTADAPT275, BTRIM276) programs reveals that FLEXBAR is the only software

with independent barcode and adapter processing, extensive verbose outputs (e.g. for

read alignments), preservation of read pairs in paired-end or mate-pair mode, and

separate barcode read support (e.g. Illumina TruSeqTM; Table 3.1). The only program

that is also capable of adapter sequence removal in color space is CUTADAPT.

Table 3.1: Comparison of FLEXBAR features with other software solutions

Feature FLEXBAR FASTX BTRIM CUTADAPT

Color space support Yes No No Yes
Simultaneous barcode & adapter processing Yes No No No
Preservation of read pairingsa Yes No No No
Graphical alignment outputb Yes No No No
Separate barcode readsc Yes No No No

a Read pairs are output in sync
b Log files with individual read alignments
c One or two read files (single- or paired-end) plus additional barcode read file (e.g. TrueSeqTM)

The performance of FLEXBAR was evaluated by using five typical applications: (i)

adapter removal from small RNA-seq data in letter space, (ii) processing of paired-

end RNA-seq read sets in letter space (2 x 100 nt), (iii) barcode detection of in silico

generated letter space barcode reads, (iv) simultaneous barcode and adapter recognition

for splice leader detection in color space data, and (v) adapter removal from small RNA-

seq data in color space [for benchmarks I-IV see Dodt et al. (2012)].

In the following, I demonstrate FLEXBAR’s adapter removal functionality for small

RNA-seq color space data, which was profiled during the microRNA study of free-

living and parasitic nematodes presented in Chapter 4. The results are compared to

CUTADAPT, the only program from our selected list of software solutions that can

handle color space reads.

∗http://hannonlab.cshl.edu/fastx toolkit; accessed July 25, 2012
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3.4.1 Adapter Removal from microRNA Short Reads in Color Space

Small RNA high-throughput sequencing is widely used to profile small ncRNAs, such as

miRNA genes (see Introduction 1.4.3 for details). In small RNA-seq applications, the

length of sequenced reads (∼35-50 nt) typically exceeds the length of small RNAs such

as miRNAs (∼22 nt); therefore, adapter fragments that are not part of the biological

molecule are oftentimes sequenced. Before reads are mapped to a reference genome,

these fragments need to be detected and removed.

In order to test FLEXBAR’s adapter removal functionality for color space reads and

its performance, I detected and removed adapter sequences from small RNA-seq color

space data and mapped the processed reads to the reference genome. As test data,

I used a subset (one-quarter of a flow cell) of the C. elegans data set 2 (Table 2.1),

which was profiled using the SREK Kit and ABI’s SOLiD with a read length of 35

nt. To detect and remove adapter sequences, reads were processed by FLEXBAR v2.4

and CUTADAPT v1.21. To evaluate the performance of both programs, I mapped the

processed reads (length ≥17 nt) to the C. elegans genome using the mapper SHRiMP2

v2.23197. For performance criteria, the number of uniquely mappable reads and the

number of bases contained in these uniquely mappable reads were used (Figure 3.4). As

a control, reads that were not processed by any adapter removal tool were also mapped

to the C. elegans genome using SHRiMP2 with the same mapping parameters (‘−o 10

−−max-alignments 10 −h 80%’ and default otherwise).

For this benchmark, a set of 5,525,403 color space reads corresponding to 1,247,661

unique sequences were processed by FLEXBAR and CUTADAPT using a single core

on a Dual Opteron 2356 (Quad-Core at 2.3 GHz) with 64 GB of memory. The following

command line options were used:

flexbar −a abiAdapter.fa −r solid0174 worms 1 F3.csfasta −c −t output −ae RIGHT −u 10

cutadapt −e 0.3 −m 17 −a CGCCTTGGCCGTACAGCAG solid0174 worms 1 F3.csfasta −o

output.csfasta

As expected, without a prior adapter detection and removal step only 3,903 reads cor-

responding to 136,033 bases could be mapped uniquely. The vast majority of reads

(5,496,183) did not map to the genome. Comparing the mapping results of reads

processed by FLEXBAR and CUTADAPT demonstrated that FLEXBAR performed

better than CUTADAPT with ∼67 Mb vs. ∼63 Mb uniquely mappable bases ( corre-

sponding to ∼2.91 Mb vs. ∼2.75 Mb uniquely mapped reads). Although these numbers
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do not differ much in this rather small data set, these differences may be much bigger

when larger data sets are processed. Moreover, assuming that the average length of a

miRNA is 22 nt, 4 million of uniquely mappable bases would correspond to an aver-

age of approximately 181,818 miRNA sequences, which may have been missed using

CUTADAPT. Thus, the detection and removal of adapter sequences is an essential

preprocessing step during the analysis of small RNA-seq data in color and letter space

[for letter space see benchmark I in Dodt et al. (2012)].

The required runtime and memory consumption is another important aspect when

evaluating the performance of software programs. To process these color space reads,

FLEXBAR needed approximately one-third (19 s) of the compute time used by CU-

TADAPT (51.99 s) on a single core. Since FLEXBAR can compute in parallel using

multiple threads, processing of larger data sets will be less problematic in runtime com-

pared CUTADAPT. On modern compute systems the observed memory consumption

is less of an issue with FLEXBAR using only ∼37 MB memory versus CUTADAPT

∼50 MB on a single core. Overall, these evaluations reveal that when processing small

RNA-seq SOLiD color space reads, FLEXBAR performs better than CUTADAPT and

will most likely outperform CUTADAPT when dealing with much larger data sets.

60



3.4. PROGRAM VALIDATION

-2 -8-3 -4 -3 -1-3

-4

-5

-2

-3

0

-1

-2

1

0

3

A Trim-end mode in ANY

-10

-2

-2

-2

-3 -6 6 -2-6 -4 -6

-11

-7

-3-4 -2-3 -7 -110 -2

-7 -4

-9

-6

-5

-3-4

-3-1

-6

-7 -5

9

-3

-8

0

-2 -4

7

1

-8 8

-3

-3

-6-1

0

-10

-3

-10

-5

-9

-1

-5 5 -3 -5-2 -3 -5-5

6 -2 -4 -4-4 -4 -4-3

-2

-3 -3 -3 -55 -3 -1-3

-2 -2 -4 0-2 -4 -24

0

-4

0

-4

-2

-2

-1 -3 -3 -1-1 1 1-13

-2 -2 0 00 0 0-20

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

1

-1

-1 1 1-1 -1-1-1-1-111-1

0 0 00 00000000

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

1

3

3

3

0

3

0

0

1

2

3

1 3 30 11020332

0

First column Read sequence in color space Last column

-2 -3

-7

-2

10

Ta
g 

  (
A

da
pt

er
 s

eq
ue

nc
e 

in
 c

ol
or

 s
pa

ce
)

First row

Last column

B

C
Right-end modes

Left-end modes

Alignment
2330201130313--
 |||||| |||||      
-33020103031311

0

-1

0

-2

-2

0

-2

0

-2

0

-2

-2

-2

0

-2

2

-1

-1

-1

-1

-3

-3

-1

-3

-1

-1

-3

Read:

Tag:

Figure 3.2: Sequence tag recognition with a dynamic programming matrix
(A) Example of dynamic programming matrix for trim-end mode ANY and corresponding
overlap alignment in color space, with arrows indicating traceback pointers (default scoring
parameters: match = 1, mismatch = −1, and gap = −7). Values on the optimal alignment
path are shown in bold. Gaps at either end of any sequence are not penalized. The top-scoring
alignment may start at any position in the read (first row; green area) or at any position in the
sequence tag (first column; green area). The traceback of an alignment starts at the maximal
score located at any position in the read (score maximum in last row; yellow area) or sequence
tag (score maximum in last column; yellow area). (B) Left-end modes are represented. An
alignment can start anywhere in the first row or column (green), but must end in the last row
(yellow). (C) Right-end modes are represented. In contrast to left-end modes, an alignment
must start in the first row (green) and end anywhere in the last row or column (yellow). Note
that the read length is truncated to the sequence tag length in LEFT TAIL and RIGHT TAIL
mode.
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Figure 3.3: Graphical representation of FLEXBAR’s sequence trim-end modes
The gray bar depicts the currently processed sequencing read (length n). The best alignment
of an adapter sequence (length m; shown in red) can be located anywhere in the demarcated
region (arrow + adapter region), which differs according to the selected trim-end mode (see
main text). The name of the trim-end mode refers to the part of the short read that is removed.
In the left modes, the 5’ end is trimmed; in right modes, the 3’ end, and otherwise the shorter
end is removed.

Non-uniquely mappable
Uniquely mappable

Not mappable

CUTADAPT

FLEXBAR

0 1 2 3 4 5
#Reads [million bases]

SHRiMP
only

66,993,391 bases

63,348,700 bases

Figure 3.4: Benchmark V - Comparison of FLEXBAR and CUTADAPT
Mapping statistics of untreated reads of control (SHRiMP only) compared to FLEXBAR’s and
CUTADAPT’s adapter removal functionality for color space reads. Significantly more reads
(measured as uniquely mappable bases) processed by FLEXBAR mapped to the C. elegans
genome (FLEXBAR: ∼67 Mb vs. CUTADAPT: ∼63 Mb).

62



Chapter 4

Conserved microRNAs are

Candidate Post-Transcriptional

Regulators of Developmental

Arrest in Free-Living and

Parasitic Nematodes

In this chapter I applied the bioinformatic approaches and computational strategies in-

troduced in the previous two Chapters to address the question of whether miRNA genes

impact developmental arrest and long-term survival in dauer and dauer-like stages, i.e.

the infective stage of parasites. In particular, I am interested to discover whether con-

served regulatory modules exist that would support the long-standing hypothesis that

dauer and infective larvae share a common origin.

Parts of this chapter are based on the publication Ahmed et al., which was published in

July 2013 in the journal Genome Biology and Evolution 2. As part of this collaborative

project, I designed and performed all computational experiments.
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4.1 Background

Nematodes inhabit a wide range of ecological niches encompassing free-living species

as well as obligate parasites of plants and animals. Intriguingly, the basic life cycle of

nematodes is well conserved across nematode clades and typically involves four larval

molts7. The free-living nematode C. elegans has become the reference model to study

developmental responses in the context of environmental changes and represents an

ideal organism to study short RNA biology277. Under unfavorable conditions, such as

starvation and crowding, C. elegans enter dauer diapause, a developmentally arrested,

stress-resistant, and long-lived stage20,21. Dauer larvae share many traits with infective

larvae of true parasites. Moreover, the dauer and infective larvae fate is determined by

a conserved endocrine signaling mechanism33,40. Accordingly, dauer larvae have been

suggested as an evolutionary precursor of infective larvae that facilitated the repeated

evolution of parasitism (a preadaptation)278.

I want to investigate what regulates these dauer and infective stages. In particular, I

am interested in the post-transcriptional regulation of the dauer/infective larval fate

and in the role of miRNAs in this context. Several lines of evidence suggest that post-

transcriptional regulatory mechanisms dominate the transition from dauer back into

the reproductive life cycle41–44. Moreover, recent studies demonstrate that miRNAs

are involved in the regulation of lifespan as well as L1 and dauer diapause120–126.

Here, I compare the small RNA complement and its expression changes in dauer/infective

vs. nondauer samples of three nematode species with three different life styles: the

free-living nematode Caenorhabditis elegans, the necromenic nematode Pristionchus

pacificus, and the true parasite Strongyloides ratti. Pristionchus pacificus dauer larvae

and no other larval stages have been observed on beetles yet do not harm their host.

Upon death of the host, dauer larvae resume development by feeding on the beetle’s

carcass29. Strongyloides ratti is a true parasite of the rat with a direct and an indi-

rect life cycle36. It is unlikely that a species evolves directly from a fully free-living

to a parasitic life style278. We hypothesized that S. ratti still maintains the ancestral

free-living life cycle along with the newly acquired parasitic life cycle.

In this study, I address the role of miRNAs in the dauer/infective larvae fate by com-

prehensive profiling of known and novel miRNA genes in C. elegans, P. pacificus, and

S. ratti. Small RNAs were sequenced using a multiplatform sequencing approach (ABI

SOLiD, Illumina GA II, and HiSeq). First, I developed a bioinformatics workflow that
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4.2. SEQUENCING OF MICRORNAS FROM THREE NEMATODES

identifies novel miRNAs from letter space (Illumina) and color space (SOLiD) data sets

to extend the miRNA gene sets in these species. Then, I inferred miRNA families by

sequence similarity followed by the identification of conserved candidate miRNA genes

of the dauer and infective larvae fate. Finally, I investigated seed changes of miRNAs

with emphasis on mir-34, a cross-species candidate regulator, using a single-mutation

seed network.

4.2 Sequencing of microRNAs from Three Nematodes

Small RNA deep sequencing libraries from dauer and mixed-stage samples of C. elegans

and P. pacificus and infective L3s and mixed-stage samples of S. ratti were generated

using a multiplatform approach (Figure 2.1). More than 196 million sequencing reads

for 10 small RNA libraries were obtained. As outlined in the bioinformatic methods

section, I implemented short read processing, mapping, and miRNA gene inference in a

custom bioinformatics pipeline (Figure 4.1; Materials & Methods 2.3). Before mapping

to the respective reference genomes, poor quality reads were filtered (if the quality of

each read was smaller than 10 in more than 10 positions) and corrected for read error

using SAET 2.2∗ (SOLiD reads only). Barcode sequences were detected (HiSeq lane)

and adapter sequences removed using FLEXBAR1. For subsequent analyses, reads

were collapsed to non-redundant data sets. Approximately 120 million small RNAs

(≥ 18nt) mapped to their respective genomes (Table 4.1).

Our multiplatform small RNA-seq approach highly enriches for miRNAs relative to

other types of small RNAs. For example, 88% of reads obtained by SOLiD sequencing

(data set 1; Table 4.1) and 79% of reads obtained by Illumina sequencing (data set 2;

Supplemental Table B.1) mapped to mature miRNAs in C. elegans (miRBase v18). In

total, 193 out of 223 (87%) previously annotated C. elegans miRNAs could be identified

(data set 1). In the remainder of reads, I detected sense and antisense hits to other

small non-coding RNAs, including 21U-RNAs (the so-called ‘pi-RNAs’ in C. elegans)

as well as protein-coding regions, 5’ UTRs, and 3’ UTRs (Supplemental Table B.1).

In P. pacificus, I detected 123 out of 124 previously annotated miRNA genes (99%) in

our small RNA data sets. No miRNA genes have been annotated for S. ratti so far.

Based on the apparent quality of our data, I could exploit our high sequencing depth

to extend, refine, and define the miRNA gene complements of C. elegans, P. pacificus,

∗http://solidsoftwaretools.com/gf/project/saet; accessed December 2, 2009

65



CHAPTER 4. MICRORNA GENES IN NEMATODES

Illumina data
8 small RNA-seq samples

(data sets 1,3-5, 7-10) 

SOLiD data
2 small RNA-seq samples

(data sets 2 & 6)

42,614,872
reads

154,108,796
reads

21,894,359
reads

113,667,154
reads

Bowtie 0.12.5
- first and last base
  correction
- sequence extraction

C

A
G G C A G U G

U G G UU A
G C U GGU

U G C A
U

A U
U
U
C

U
UGACAACGGCUACC

UU5' CACUGCC
A

CC
C
3'

miRNA prediction
miRDeep2

Preprocessing - Quality filtering
- SAET
- Adapter removal
- Read collapsing

- Demultiplexing
- Adapter removal
- Read collapsing

134,042,802
reads

Post filtering
- remove rRNA, tRNA,
  21U-RNA, snRNA,
snoRNA, sbRNAs, repeats

20,375,648 reads
(not included

data sets 3 & 7)

Figure 4.1: Bioinformatic analysis workflow for 10 small RNA data sets
This workflow involves the following computational steps: read quality filtering, barcode detec-
tion, error correction, adapter removal, and mapping to target genome sequences. Reads with
less than 18nt were discarded from further analysis.

and S. ratti. Furthermore, I corrected or complemented sequence annotations for 5’ or

3’ arms of known miRNAs in both C. elegans and P. pacificus (a list of all miRNA

sequences including sequence corrections are tabulated in Supplemental Table B.2).

In conclusion, our multiplatform deep sequencing approach is comprehensive enough

to identify tissue and stage-specific miRNAs, such as lsy-6, a very rare miRNA, which

is only expressed in less than 10 cells279 and is hardly detected by qRT-PCR125.
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Table 4.1: Mapping statistics of 10 small RNA datasets
Mapping statistics of our 10 deep sequencing datasets derived from C. elegans, P. pacificus,
and S. ratti.

Data set Species #Raw reads #Preprocessed
reads†

#Reads mapped #Uniquely
mapped reads

1 C. elegans 20,557,719 17,887,281 16,891,4171 15,753,555
2 C. elegans 21,307,436 14,342,977 11,173,0181 10,646,919
3 C. elegans 10,290,812 9,505,958 8,687,4431 8,233,943
4 C. elegans 10,349,552 10,042,941 9,450,4421 9,055,836
5 P. pacificus 27,208,332 23,579,694 11,947,4712 10,510,454
6 P. pacificus 25,717,306 7,551,382 3,039,1552 2,597,439
7 P. pacificus 11,347,692 10,869,690 5,859,9882 5,057,498
8 P. pacificus 10,382,820 9,412,219 3,685,8762 3,462,898
9 S. ratti 27,540,069 24,244,264 22,721,2612 6,881,764
10 S. ratti 32,021,930 28,500,755 26,779,3922 18,837,813

Total 196,723,668 155,937,161 120,235,463 91,038,119

†Reads after filtering and adapter removal
1 at most 10 times
2 at most 20 times

4.3 Unbiased Identification of Novel microRNA Genes

The miRDeep2 program220 was applied to predict novel miRNA genes. This program

uses a probabilistic model to discriminate miRNA candidate loci consistent with the

expected processing of miRNA precursors by Dicer from other spurious candidate loci

(a detailed description is given in Materials & Methods 2.3.3.2). I used individual

small RNA data sets to predict miRNA genes for C. elegans, P. pacificus, and S. ratti

in developmentally arrested (data sets 4, 8, and 10) and mixed-stage (data sets 1, 2, 5,

6, and 9) samples as summarized in Figure 4.2. To predict novel miRNAs based on the

SOLiD data, I modified the miRDeep2 prediction pipeline (Figure 4.1; see Materials &

Methods 2.3.3.2 for details). In total, I identified 33 novel C. elegans miRNA candidates

(24 in mixed-stage, 8 in dauer, and 1 in both; Supplemental Table B.3.1), 230 novel

P. pacificus miRNAs (91 in mixed-stage, 26 in dauer, and 113 in both; Supplemental

Table B.3.2), and 106 miRNAs in S. ratti (18 in mixed-stage, 8 in iL3, and 80 in both;

Supplemental Table B.3.3).

These results augment and complement the set of annotated miRNAs in all three species

(Figure 4.3A). Despite that miRNAs have been extensively studied in C. elegans with

223 annotated to date (miRBase v18), I used our multiplatform approach to expand
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Figure 4.2: Identified miRNA genes by miRDeep2
Number of novel miRNAs predicted from small RNA sequencing data obtained from different
sequencing platforms in C. elegans, P. pacificus, and S. ratti. I did not perform miRNA pre-
diction on data set 3 and 7 (Table 4.1) because data set 1 and 5 represent the same samples
but with a read output twice as high. Note: The number of miRNA genes corresponds to their
occurrence in the respective genomes.

the set to 257 miRNA genes (one gene was duplicated on the genome). In contrast to

C. elegans, only 124 miRNAs were annotated in P. pacificus (miRBase v18) based on

a Roche 454 FLX sequencing run with a low sequencing depth of ∼160,000 reads108.

Because P. pacificus has a significantly larger genome size compared to C. elegans and

contains a higher number of protein-coding genes28, I speculated that the sequencing

depth to profile miRNAs was not sufficient to capture the full complement of miRNAs.

Indeed, our data nearly triples the set of empirically supported miRNAs in P. pacificus,

bringing the total to 362 (six genes occurred multiple times on the genome). Our data

provides the first miRNA gene set annotation in S. ratti, which is the first annotation

for any Strongyloides parasite. The size of the predicted miRNA gene complements

correlates well with the species genome sizes (Figure 4.3B). In addition, I was able to

resolve the 5’ or 3’ arms of known miRNA genes in C. elegans and P. pacificus that

have not been annotated so far (Supplemental Table B.2).

These observations and the fact that I found both arms of most miRNAs covered

by reads (up to 95% S. ratti), suggest that these candidates are bona fide miRNA

genes. However, to further validate novel miRNAs experimentally, northern blot, in

68



4.4. MOST MICRORNA GENES ARE NOT CONSERVED AMONG NEMATODES

Cel Ppc Str

both
dauer / iL3

mixed stage
known

# 
m

iR
N

A
s

0
50

10
0

15
0

20
0

25
0

30
0

35
0

novel

223

124

18

94

24

26

81

118

7

1

9

B

●

●

●

Cel

Ppc

Str

Genome size (Mb)

# 
m

iR
N

A
s

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

50 60 70 80 90 100 110 120 130 140 150

Expected miRNA gene content
r = 0.99

A

Figure 4.3: miRNA gene complement in C. elegans, P. pacificus, and S. ratti
(A) miRNA gene complement in all three species, including novel gene candidates. Note that
several genes occur multiple times on the genome. (B) Expected miRNA gene content in
relation to the genome size (Pearson’s correlation, r = 0.99). The S. ratti genome, which is half
the size of the C. elegans genome, contains roughly two times less miRNA genes. Additionally,
the P. pacificus genome contains 40% more miRNA genes than the C. elegans genome. This
is in accordance with the P. pacificus genome size, which is 50% larger than the C. elegans
genome. The genome size is estimated based on the respective genome assemblies.

situ hybridization, or qRT-PCR could be applied.

4.4 Most microRNA Genes Are Not Conserved among

Distantly Related Nematodes

Our deep miRNA profiling, the subsequent identification of novel miRNA candidates,

and the revision of previous miRNA annotations in C. elegans, P. pacificus, and S. ratti

provided the basis for a comprehensive phylogenetic investigation of miRNAs across

these three nematode species. Typically, gene phylogenies are derived from sequence

similarity (i.e. multiple sequence alignments) and a phylogenetic reconstruction method

(see Materials & Method 2.3.5 for detail). For miRNAs, the seed region (position 2-

8 from the 5’ end) is the major determinant of target specificity and is widely used
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to group miRNA genes into families280,281. However, the seed region is too small to

distinguish cases of homoplasy from cases of common decent. To pinpoint potential

cases of convergent evolution, I inferred miRNA families based on sequence similarity

of the full miRNA 5’ or 3’ arm and contrasted them with miRNA sets, which were

solely defined by seed identity.

Every precursor of a miRNA gene has the potential to generate two distinct regulatory

RNAs derived from opposite strands of the stem (Figure 2.4). It is widely assumed

that the more abundant sequence in small RNA sequencing data exclusively functions

to suppress target transcripts (miRNA mature product), whereas its counterpart, the

partially complementary sequence produced from the duplex stem, is non-functional

(miRNA star product)282. However, experiments in Drosophila melanogaster have

demonstrated that miRNA star species can be loaded into RISC and show regulatory

activity98–102. Moreover, the dominate miRNA sequence in orthologous miRNAs can

be processed from opposite arms as proposed in the arm-switching model in stud-

ies investigating miRNA evolution107–110. Since miRNA cloning involves amplification

steps, sequence-specific biases arising from small RNA library preparation and sequenc-

ing technology cannot be excluded188. Therefore, I re-annotated all miRNA arms as

‘5p’ or ‘3p’ for subsequent analyses283 and investigated 5p/3p read count ratios for C.

elegans and P. pacificus miRNAs profiled from mixed-stages by different sequencing

platforms (Supplemental Table B.4). Large variations in miRNA 5’ to 3’ arm read

count ratios across sequencing platforms were present.

Because of the above arguments, I initially derived miRNA conservation levels by all

1335 miRNA 5’ and 3’ arms (corresponding to 725 precursors) based on sequence sim-

ilarity of the full arm. Then I inferred gene families for free-living, necromenic and

parasitic nematodes based on the most conserved arm of each precursor. In short, I re-

tained the miRNA arm that belongs to the largest family or exhibited the highest seed

conservation in the phyla Nematoda, Arthropoda, Lophotrochozoa, and Vertebrata and

discarded the other arm (definition of miRNA age classes in Supplemental Methods).

By this method, 725 precursors were grouped into 399 different gene families (Figure

4.4A). This analysis indicates that 63 (24.5%) precursors in C. elegans, 88 (24.3%) in

P. pacificus, and 37 (34.9%) in S. ratti are conserved among all three species repre-

sented by 24 (6%) distinct families (Supplemental Table B.5). Moreover, 286 (39.4%)

precursors were conserved between at least two species. Evidently, miRNA families

could comprise of multiple precursor sequences. This analysis revealed that only a

small fraction of miRNA families represent approximately one-quarter of all precursors
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Figure 4.4: miRNA homology and seed conservation
(A) 725 precursors were stratified into 399 gene families by sequence similarity of the full
miRNA arm based on the most conserved arm. If both arms of a miRNA were annotated, the
arm contained in the largest group (inferred from all 1335 miRNA 5’ and 3’ arms) was consid-
ered. If group sizes were equal, the arm with the highest degree of conservation was considered
(definition of miRNA age classes in Supplemental Methods). In case of equal conservation level,
a miRNA arm was randomly chosen. (B) 725 precursors were stratified into 374 seed groups
by perfect seed sequence identity (position 2-8) considering seeds based on the most conserved
miRNA arm of a precursor. The miRNA arm was selected as explained above.

(188/725, 25.9%). Nevertheless, the majority of miRNA genes from three distantly

related nematodes are not conserved. This finding is consistent with a previous study

from de Wit et al. (2009). The authors presented the first experimental study on the

evolution of miRNA genes in C. elegans, C. briggsae, C. remanei, and P. pacificus and

concluded that the majority of miRNAs are conserved within the Caenorhabditis genus,

with the notable exception of P. pacificus miRNAs.

The seed sequence of a miRNA is the major determinant of target specificity and rep-

resents the functional entity of a miRNA. Seed sequences are short (7 nt) and identical

or almost identical seed sequences may have evolved through convergent evolution and

are not conserved by descent. To investigate the impact of convergent evolution on

miRNAs in our setting, I selected the most conserved arm of each miRNA as pre-

viously explained and classified these into 374 distinct groups based on perfect seed

sequence identity (Figure 4.4B). Twenty-nine seed sequences (29/374, 7.8%) were con-

served among all species representing 225 (31%) precursors. Thus, comparing the

results of both classification procedures, i.e. full miRNA arm identity vs. seed identity,
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revealed that five seed sequences are shared among all species exclusively using per-

fect seed similarity as classification criteria. These seed groups (1, 7, 12, 16, and 18)

correspond to the following C. elegans precursors: mir-34/-59/-228/-790/-791/-1820

(multiple alignments of precursors contained in seed groups are illustrated in Supple-

mental Figure B.1). Previous studies suggested that some of these genes are involved

in developmental timing, embryogenesis, gonad migration, adult viability, and DNA

damage response284,285. Interestingly, within all of these five seed groups the location

of the seed sequence alternates between 5’ and 3’. This suggests that some precursors

most likely acquired a shared set of possible gene targets through convergent evolution.

4.5 Evaluation of microRNA Homology Assignment

To evaluate the performance of my miRNA homology assignment strategy, I investi-

gated (i) the grouping of miRNAs into families using a test data set consisting of 52

miRNAs from the well-known let-7 family from eight distinct animal clades (miRBase

v20) and 50 randomly generated miRNAs; and (ii) the phylogenetic relationship of

the multiple sequence-structure alignment on the same test data. As animals clades,

human (hsa), chimpanzee (ptr), mouse (mmu), rat (rno), fruit fly (dme), nematode

(cel), planarian (sme), and sea urchin (spu) were chosen (see miRBase database∗ for

three-letter code information of species). Di-nucleotide shuffled miRNA sequences were

generated based on the let-7 family miRNAs using uShuffle272 (Materials & Methods

2.3.5.4).

Since every miRNA gene has the potential to produce two distinct regulatory RNAs

(Figure 2.4), I initially derived conservation levels for all 76 annotated miRNA 5’ and 3’

arms of the let-7 family members for the eight animal clades and hundred 5’ and 3’ arms

of the randomly generated precursor sequences. Then I selected the most conserved arm

of each precursor (90 arms in total) and grouped all sequences into families. Essentially,

all miRNAs that form a connected component in a graph, where miRNAs correspond

to vertices, were assigned to a gene family (Figure 4.5). Vertices were connected by

edges if the respective miRNAs were similar in sequence as defined by a valid pairwise

alignment (see Materials & Methods 2.3.5.1 for detail). This graph clearly demonstrates

that all let-7 family members built one connected component (vertices presented in red),

whereas all randomly generated miRNA sequences built singletons, i.e. vertices that are

∗http://www.mirbase.org
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not connected to any other vertex, and therefore gene families with only one member

(vertices presented in green). This indicates that my strategy of grouping miRNAs

into families distinguishes among true let-7 family members and random precursor

sequences because all precursors were classified into 51 distinct gene families.

50 random precursors

let-7 family members
8 animal clades

Figure 4.5: miRNA graph of 51 gene families
The most conserved arm of all miRNAs of the test data set were grouped into families as
visualized by a graph with 51 connected components, where miRNAs correspond to vertices.
Two miRNA vertices were connected by an edge if they were similar in sequence as defined by a
valid pairwise alignment. This method clearly distinguishes between true let-7 family members
(vertices shown in red) and random precursor sequences (singleton vertices shown in green) by
inferring 51 distinct miRNA families based on 90 miRNA arms.

To test the quality of computed multiple alignments and inferred phylogenetic relation-

ships, I used the same test data as before. However, for visualization of the alignment

and the phylogenetic tree, I selected five sequences from the randomly generated pre-

cursors, yet the results are comparable. The miRNA graph (Figure 4.5) illustrated that

miRNAs from the test data were evidently grouped into 51 distinct gene families with

all let-7 family members being classified into the same gene family. However, to get

an idea of the phylogenetic relationship of the let-7 family members and five randomly

generated precursors (random-mir-1, random-mir-2, etc.) for evaluation purposes of
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my strategy, I computed a multiple alignment and inferred the phylogenetic tree (see

Materials & Methods 2.3.5.2 and 2.3.5.3 for detail). The multiple alignment computed

by LocARNA262 clearly depicted and aligned the regulatory 5’ arm of the let-7 miR-

NAs indicated by a high consensus identity around the seed region and a high amount

of nucleotides marked in blue (seed underlined in red; Supplemental Figure A.1). More-

over, the 3’ arm, the arm that is usually not incorporated into RISC, displays a higher

sequence similarity than the loop region (sequence between 5’ and 3’ arm), although

generally less similarity than the 5’ arm. Overall, the multiple sequence-structure align-

ment looks good with precursor sequences of the let-7 family being aligned properly

with a high sequence similarity as visualized by a large amount of nucleotides marked

in blue and a generally high consensus identity in the precursor region. Notably, the

five randomly shuffled precursor sequences are less similar and thus more divergent to

all other let-7 miRNAs. This is also reflected in the computed phylogenetic tree using

UPGMA based on this MSA (Figure 4.6).

Overall, the phylogenetic tree illustrates that let-7 miRNAs with the same lettered

suffixes (e.g. rno-let-7e, mmu-let-7e, ptr-let-7e, and hsa-let-7e) are grouped together.

The miRBase naming convention states that lettered suffixes denote closely related

mature sequences∗. Thus, this tree indicates that let-7 miRNAs from distinct species

with the same lettered suffix are more closely related to each other than let-7 miRNAs

from the same species, but having distinct lettered suffixes. In addition, let-7 miRNAs

from vertebrates are usually grouped together. However, two mouse miRNAs mmu-

let-7j and mmu-let-7k are clustered in a group of planarian and fruit fly miRNAs

and random generated precursors, respectively. Both mouse miRNAs are not listed as

members of the let-7 family on miRBase. The MSA (Supplemental Figure A.1) clearly

illustrates that these sequence are more distinct from all other let-7 precursor sequences

indicated visually by a smaller amount of blue or light blue marked nucleotides.

In summary, grouping miRNAs into families and computing a multiple sequence align-

ment followed by the inference the phylogenetic relationships based on a test data set

consisting of the well-known let-7 family and randomly shuffled precursors sequences

suggest that my strategy of miRNA homology assignment is reliable and robust method.

However, the UPGMA method should only be employed for indicative purposes only

and not as an estimate for phylogenetic time rates, since a constant rate of evolution

can not be assumed.

∗http://mirbase.org/help/nomenclature.shtml; accessed September 20, 2013
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Figure 4.6: Phylogenetic tree of let-7 family miRNAs and shuffled precursors
This tree was derived from a multiple alignment (Supplemental Figure A.1) computed on a
test data set consisting of let-7 family miRNAs from eight animal clades and five randomly
generated precursor sequences. The tree was inferred using the UPGMA clustering method.

4.6 microRNA Expression Changes from Sequencing Data

Agree with Published qRT-PCR Results

With the updated miRNA gene set at hand, I performed a stage-wise comparison of

miRNA expression levels across species to identify miRNA genes that are not only

conserved in sequence but also in expression pattern. To this end, expression changes

of miRNAs in dauer/iL3 relative to mixed-stage samples in C. elegans, P. pacificus,

and S. ratti were measured (data sets 3, 4, and 7-10; Table 4.1). As a quality control,
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I directly compared this data to previously published miRNA expression changes in C.

elegans measured by qRT-PCR125.

To quantify miRNA expression changes, I normalized miRNA library read counts by

reference based qq normalization154, where mixed-stage libraries were selected as the

reference. Expression changes could be estimated for 177 (69%) miRNAs between

normalized dauer and mixed-stage read counts in C. elegans (Supplemental Table B.6).

As a result, 71 (40%) C. elegans miRNAs were detected that exhibited differences in

expression in the developmentally arrested stage compared with mixed-stage samples.

Most miRNAs were downregulated (53, or 30%), whereas 18 (10%) miRNAs showed a

relative increase in dauer expression (Table 4.2).
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Table 4.2: Significantly upregulated miRNAs in C. elegans dauer larvae (FDR < 0.05)
Seed conservation column displays IDs of miRNAs that share a common seed within the phyla Nematoda. If the seed is not conserved
in Nematoda miRNA IDs from the subsequent phyla are displayed (in the order of Nematoda, Arthropoda, Lochotrophozoa, and
Vertebrata). Note: miRNA family ID is assigned if a miRNA is conserved at least once within C. elegans, P. pacificus, or S. ratti.

Rank miRNA gene miRNA family
ID

Seed Seed conservation† Seed conservation
profile†

Log2 fold
changes

Observed function

1 miR-797 miRNA family 50 AUCACAG mir-2/-43/-250 + / + / + / - 4.44 Gonad migration285

2 miR-4809 miRNA family 37 UAAGUUC mir-1018/-4809/-4810 - / - / - / - 3.52 -
3 miR-2210 - GGCAGAU mir-72 + / - / - / + 3.34 -
4 miR-1824 - GGCAGUG mir-34 + / + / + / + 3.16 DNA damage response284

5 miR-4807 - UGAGUUC mir-983 - / + / - / - 2.76 -
6 miR-248 - UACACGU mir-248 + / - / - / - 2.75 -
7 novel-miR-V 24974 - GGCUCAA - - / - / - / - 2.19 -
8 novel-miR-I 285 - GCGGGAC - - / - / - / - 2.10 -
9 miR-247 miRNA family 26 GACUAGA mir-44/-61/-247/-279 + / + / + / - 1.94 Gonad migration285

10 miR-34 miRNA family 31 GGCAGUG mir-34/-1824/-2227/-
2239/-4933

+ / + / + / + 1.89 DNA damage response284

11 miR-1 miRNA family 4 GGAAUGU mir-1/-796 + / + / + / + 1.85 Synaptic transmission286

12 miR-1820 - UUUGAUU mir-315 + / + / + / + 1.59 -
13 miR-791 - UUGGCAC mir-791 + / + / + / + 1.56 -
14 miR-54 miRNA family 40 ACCCGUA mir-51/-52/-53/-54/-

55/-56/-2233/-2237/-
2271/-2274

+ / + / + / + 1.35 Embryogenesis, pharynx attachment,
developmental timing285,287,288

15 miR-254 - GCAAAUC mir-254 + / - / - / - 1.32 -
16 miR-71 miRNA family 30 AUCACUA mir-34/-71/-2953 + / - / - / + 1.26 Lifespan, AWC L/R neuron fate spec-

ification123,289,290

17 miR-84 miRNA family 1 GAGGUAG let-7,
mir-48/-241/-795

+ / + / + / + 1.23 Developmental timing, vulval cell fate
specification65,291–295

18 miR-794 miRNA family 1 GAGGUAA - - / + / - / - 1.14 -

†Nematoda/Arthropoda/Lophotrochozoa/Vertebrata





4.6. MICRORNA EXPRESSION ANALYSIS

Karp et al. monitored life history related expression level changes for 107 miRNAs

in C. elegans using qRT-PCR. For a direct comparison of our dauer vs. mixed-stage

expression change data with their dauer vs. L2m (late L2 - mid-L3) expression changes,

I discretized miRNA expression changes into three categories: (i) upregulated, (ii)

downregulated, and (iii) unaffected. This comparison was performed for 93 miRNA

genes. Thirteen miRNAs were not measured in the qRT-PCR experiment (L2m or

dauer), and miR-798 was not detected in our small RNA-seq data. Both methods

indicate a good agreement of expression change classes (Figure 4.7A; P = 1.1 × 10−5,

χ2 test). However, 34% of miRNAs were classified into different expression categories.

In particular, a few individual miRNAs were downregulated in dauer in our small RNA-

seq data but unaffected in the qRT-PCR data, including members of the co-transcribed

mir-35-41 cluster and mir-246, which are known to be specifically enriched in C. elegans

embryos67,285,296 (mir-41 was exclusively detected in our deep sequencing experiment).

Such discrepancies could be explained by the developmental specific expression of these

miRNAs, since I compared dauer with mixed-stages samples instead of L2m. Figure

4.7B depicts the small RNA-seq log2 ratios plotted against −∆∆CT values of the qRT-

PCR experiment from Karp et al. (2011). Only three miRNAs (mir-34/-71/-248 ) are

reported as upregulated in dauer relative to L2m. I observed the same expression

pattern for all of these genes in my C. elegans dauer to mixed-stage comparison. Four

genes, mir-230/-241/-788/-795, are consistently downregulated in both studies. Note

that all miRNAs in the upper left quadrant that appear to be upregulated in dauer in

the qRT-PCR experiment were classified as unaffected due to a non-significant t-test

or inability to reproduce results by Karp and colleagues125.

Whereas Karp et al. chose a targeted approach to measure expression changes of 107

selected miRNA genes, I was able to detect an unrestricted set of differentially expressed

miRNAs because an unbiased strategy was applied in this study. As a result, I detected

an additional set of 35 differentially expressed miRNAs that were not monitored in the

qRT-PCR experiment. Eight of those were upregulated in dauer, including mir-1820

and mir-1824, which seeds are identical to the highly conserved mir-315 and mir-34

family, respectively; 27 were downregulated, including lsy-6. Moreover, two of the novel

miRNA candidates (cel-mir-8193 and cel-mir-8200 ) were upregulated in dauer and

three novel miRNAs (cel-mir-8191, cel-mir-8208, and cel-mir-8190 ) downregulated.

Overall, this data is in good agreement with reported qRT-PCR fold changes from

Karp and colleagues. The observed discrepancies could be explained by: i) differences

in experimental design (dauer/mixed-stages and dauer/L2m), ii) differences in assay
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Figure 4.7: Small RNA-seq expression profiles in C. elegans agree with qRT-PCR
data
(A) Contingency table of expression fold changes of C. elegans dauer vs. mixed-stage obtained
by Illumina small RNA deep sequencing compared with qRT-PCR data of dauer vs. L2m
from Karp et al. (2011) classified according to three categories (upregulated, downregulated,
and unaffected). Expression fold changes of both data sets are significantly correlated (P =
1.1×10−5, χ2 test). (B) Quantitative comparison of expression fold changes obtained by small
RNA-seq and qRT-PCR experiments in C. elegans. Names of all miRNAs with a significant
expression change of at least 2-fold in both experiments are displayed. Significance of differential
miRNA levels in small RNA-seq data between mixed-stage and dauer/iL3 was determined by a
two-sided binomial test constrained on the total library sizes followed by correction for multiple
testing (FDR <0.05).

biases297,298, and iii) asynchronous sampling across experiments125.

4.7 Differential Expression Analysis Identifies Cross-Species

Candidate Regulators

To begin to understand if the set of deeply conserved miRNAs may control aspects of

developmental arrest in free-living and parasitic nematodes, I examined relative expres-

sion changes of developmentally arrested stages (dauer/iL3) to mixed-stage populations

in the necromenic nematode P. pacificus and the parasite S. ratti (Supplemental Ta-
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ble B.6). Significant changes in expression levels were observed for 40% (71/177) of

miRNA genes in C. elegans, 60% (198/331) in P. pacificus, and 35% (37/106) in S. ratti

(Figure 4.8). The majority of miRNAs that were differentially expressed in P. pacificus

and S. ratti demonstrated an increase in expression in developmentally arrested stages

(113/331 [34.1%] and 21/106 [19.8%], respectively). In contrast, most miRNAs in C.

elegans for which we observed expression changes were downregulated in C. elegans

dauer larvae (53/177, 29.9%) (18 miRNAs upregulated). Furthermore, one-quarter of

P. pacificus miRNAs and 15% of S. ratti miRNAs were detected to be downregulated.
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Figure 4.8: Proportion of expression changes between developmentally arrested
stages
Significant expression changes were observed for 40% of miRNAs in C. elegans, 60% in P. paci-
ficus, and 35% in S. ratti. Reads were normalized by reference based qq normalization154. Log2
fold changes were computed between mixed-stage and dauer/iL3 samples. All miRNA genes
with absolute fold change >1 and two-sided binomial test with p-value cutoff corresponding to
FDR <0.05 were defined as differentially expressed (log2 fold change >1: upregulated (↑) and
log2 fold change < −1: downregulated (↓) in dauer/iL3).

I wanted to address the long-standing hypothesis that dauer and infective larvae share

a common origin. Our data demonstrated that 190 (26%) miRNAs are shared among

C. elegans (64/257, 24.5%), P. pacificus (89/362, 24.6%), and S. ratti (37/106, 34.9%)

based on sequence similarity of the miRNA 5’ or 3’ arm, respectively. If dauer and

infective larvae have a common origin, I would expect to find conserved miRNAs in
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dauer and iL3 that show a coherent expression signature. I tested this hypothesis by

constructing seed-constrained multiple sequence alignments for each individual miRNA

family as defined by sequence identity (Supplemental Figure B.2). These alignments

were used to infer phylogenetic trees. To investigate expression signatures of miRNA

families and detect possible conserved expression signatures, I combined this phyloge-

netic information with the derived miRNA log2 expression fold changes (Supplemental

Figure B.3).

Overall, four miRNA gene families with homologs in all three species show a coherent

expression pattern (i.e. at least one family member from each species is differentially

expressed as the majority of family members): two families are upregulated (the mir-

1 and mir-71 families) and two families are downregulated (the mir-240 and mir-35

families; see Supplemental Table A.1).

In the following, I will focus on mir-71 and mir-34, two miRNA candidates that were

upregulated in our small RNA-seq data and also in the published qRT-PCR data. The

mir-71 family is conserved across all three species and shows a coherent expression

pattern whereas the mir-34 family could represent a case of convergent evolution in P.

pacificus.

The mir-71 family includes one S. ratti gene (mir-71 ) and two genes in C. elegans (mir-

71/-2953 ) and P. pacificus (mir-71/-71b) (Figure 4.9). Interestingly, the majority of

miRNA genes of the mir-71 family were increased in expression in dauer and iL3. This

conserved expression signature indicates the potential importance of mir-71 family

members for developmentally arrested stages in free-living and parasitic nematodes.

Investigating the mir-34 family revealed that this family contains one miRNA gene

from C. elegans (mir-34 ) and three S. ratti genes that are clustered on the genome

(located within 10Kb of distance on the same contig) demonstrating an expansion of

the mir-34 miRNA repertoire in S. ratti (Figure 4.10). Strikingly, I did not detect a

mir-34 precursor in P. pacificus, despite mir-34 being highly conserved from various

nematodes to vertebrates including humans (Figure 4.11). For the identified family

members, I observed a conserved expression signature: All mir-34 family miRNAs are

upregulated in dauer and iL3, suggesting that they may be important for developmental

arrest in free-living and parasitic nematodes. It is rather unlikely that mir-34 was not

profiled in our data in P. pacificus given the high sequencing depth. Therefore, I

conclude that mir-34 was lost in the lineage leading to P. pacificus.
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Figure 4.9: mir-71 family miRNAs as cross-species candidate regulators in developmental arrest
Multiple sequence alignment for miRNA family mir-71 computed by LocARNA262. The multiple alignment was constrained to align at the seed
sequence position of each individual miRNA. The seed (position 2-8) of miR-71 is marked with a red line. Arcs above the alignment represent
secondary structure information. Arc colors encode the fraction of canonical paired bases. Alignment colors are annotated according to their
agreement with the predicted secondary structure. Nucleotides that are base-paired according to the structure are colored in green and unpaired
bases in red. If mutations have occurred but basepairing potential is preserved, nucleotides are displayed in blue (dark blue for mutations in both
bases and light blue for single-sided mutations). Unpaired nucleotides are colored in black and gaps in grey. The heatmap represents miRNA gene
expression by color where heatmap rows are ordered by the inferred phylogeny from the alignment. Arrows next to the miRNA in the heatmap
plot denote significantly up- (↑) or downregulation (↓) in dauer/iL3.
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Figure 4.10: mir-34 family miRNAs as cross-species candidate regulators in developmental arrest
Multiple sequence alignment for miRNA family mir-34 was computed and visualized as described in Figure 4.9. As before, the heatmap
represents miRNA gene expression by color where heatmap rows are ordered by the inferred phylogeny from the alignment. Arrows next
to the miRNA in the heatmap plot denote significantly up- (↑) or downregulation (↓) in dauer/iL3.



4.8. EXPRESSION CONSERVATION OF MIR-34 SEED NEIGHBORS
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Figure 4.11: MSA of mir-34 family miRNAs from seven animal clades
The multiple alignment was computed by LocARNA262 and constrained to align at the seed
(defined as nucleotide position 2-8) of each individual miRNA. As animal clades, human (hsa),
chimpanzee (ptr), mouse (mmu), rat (rno), fruit fly (dme), nematode (cel, cbr, crm, cbn, bma,
asu), and sea urchin were chosen (spu) [see miRBase database† for three-letter code information
of species]. Nucleotides are colored based on a percentage identity threshold; i.e. nucleotides
that occur in a particular column more than 80% are colored in mid blue, more than 60% in
light blue, more than 40% in light grey, and white otherwise. The seed sequence is marked with
a red underline.

Interestingly, my seed conservation analysis detected two miRNA genes in P. pacificus

(mir-2239-1/-2 ) that give rise to miRNA arms with seed sequences identical to the

miR-34 seed ‘GGCAGUG’. Both miRNAs could potentially regulate similar target sets

(seed group 58; Supplemental Figure B.1). However, these miRNA genes did not show

an upregulation in dauer larvae (Supplemental Table B.5).

Moreover, I considered additional miRNA candidates in P. pacificus that could com-

pensate for the ‘loss’ of mir-34. For this, I identified likely candidates by collecting

miRNA genes whose seed sequence differs by one nucleotide from the miR-34 seed

‘GGCAGUG’ and examined their expression in dauer larvae.

4.8 P. pacificus miR-34 Seed Neighbors are Upregulated

in Dauer Larvae

To assign functional conservation by 7-nt seed sequence identity is a conservative strat-

egy. Bartel (2009) discusses different modes of canonical target recognition: 7mer-A1

sites, 7mer-m8 sites (our seed classification), and 8mer sites. Other miRNA genes might

exist that regulate similar target sets like mir-34 but have been missed by the stringent

seed classification method I have chosen. To overcome this problem, I examined seed
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changes of miRNA arms annotated in all three species. In order to do so in a system-

atic way, I generated a network in which nodes represent seed sequences. Nodes are

connected if the corresponding seed sequences differ by one nucleotide. The resulting

network consists of 742 nodes connected with 837 edges and 200 singletons (seeds not

connected to any other seed). It contains 71 connected components with a maximum

of 534 seeds (57%) in the largest component (Figure 4.12A and B).
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Figure 4.12: Properties of single-mutation seed network
(A) Distribution of component sizes with a maximum of 534 seeds being contained in the largest
component. Pie charts illustrate miRNA age distributions for singletons and largest component.
(B) Degree distribution of single-mutation network. It depicts to how many seeds a single seed
is connected. One seed ‘AUGACAG’ that originate from seven P. pacificus miRNAs was at
most connected to nine other seeds.

To identify substitutes for mir-34 with an identical expression pattern, I examined the

neighborhood of the mir-34 family in the seed network (Figure 4.13). Three out of

the four neighbors of the conserved miR-34 seed node (‘GGCAGUG’) originate from

P. pacificus miRNA genes. All of those genes were upregulated in dauer. One seed

neighbor (‘GCCAGUG’) that did not change its expression in developmental arrest

originated from a miRNA in S. ratti. However, none of the three identified P. pacifi-

cus seed neighbors bear any sequence resemblance to the mir-34 family. This finding

strengthens our hypothesis of mir-34 being lost in the lineage to P. pacificus. Three

miRNA genes with conserved expression yet distinct seed sequences could act compen-
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satory in the context of dauer development.

C. elegans
P. pacificus
S. ratti
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Expression analysis

miRNA occurrence
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Figure 4.13: Expression conservation of miR-34 seed neighbors
The neighborhood of miRNA seeds was analyzed regarding expression changes in dauer and
infective larvae. The neighborhood sub-network of the miR-34 seed reveals conserved upregula-
tion of all P. pacificus seed neighbors. Node color represents expression changes classified into
upregulated (blue), downregulated (red), and unaffected (light grey). Barplot next to a node
represents the number of times a miRNA seed was identified in a specific nematode. Note that
mir-4933 of C. elegans was not measured in our data and is represented in the light grey pie.
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Chapter 5

Discussion

In this work I present a systematic analysis of miRNA genes in free-living and parasitic

nematodes using a multiplatform sequencing approach (ABI SOLiD, Illumina GA II,

and HiSeq). The goal of this project was to analyze whether miRNA genes impact

developmental arrest and long-term survival in dauer and dauer-like stages, i.e. the

infective stage of parasites, and to address the long-standing hypothesis that dauer

and infective larvae share a common origin. This investigation was specifically focused

on determining whether shared ‘dauer-infective’ miRNA expression signatures exist.

To this end, I developed a bioinformatics workflow that involves the following six dis-

tinct computational steps: (i) preprocessing (quality filtering, barcode detection, and

adapter removal) of small RNA-seq data produced by NGS (Illumina and SOLiD), (ii)

mapping to a reference genome, (iii) identification of known and novel miRNA genes

in nematodes (C. elegans, P. pacificus, and S. ratti), (iv) identification of differentially

expressed miRNAs in developmentally arrested stages, (v) inference of miRNA gene

families and their phylogenetic relationships, and (vi) integration of observed phylo-

genetic relationships with expression level changes. This study identifies and extends

miRNA gene sets in C. elegans and P. pacificus and reports the first coherent data

on any Strongyloides parasite. The inference of miRNA families by sequence similarity

revealed that miRNA gene sets diverge rapidly in nematodes. However, a small core set

of conserved miRNA families exists, and some families even show conserved expression

patterns. The comparison of miRNAs expressed in dauer and infective stages yielded

candidate miRNAs that might serve as conserved post-transcriptional regulators of the

dauer and infective larvae fate, supporting the hypothesis that dauer formation and

parasitic life style share the same origin. Notably, the single-mutation seed network
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of all miRNAs revealed that convergent evolution of seed sequences has taken place.

This work constitutes a valuable resource to researchers studying miRNA evolution in

general and in particular, aspects in developmental arrested in nematodes.

In the first part of this work I presented the bioinformatics methods and the computa-

tional strategies that I applied in order to accomplish the computational steps outlined

above. Moreover, I was involved in the implementation of FLEXBAR, the flexible bar-

code and adapter removal tool, which I introduced in Chapter 3. As part of this project,

I developed the adapter removal feature for SOLiD color space data and focused on the

application of small RNA-seq in letter and color space. Additionally, I was involved in

the design of the original program FAR and in the development of specific features of

the subsequently added barcode detection function for demultiplexing.

5.1 FLEXBAR - Leading Solution in Barcode and Adapter

Processing

FLEXBAR is a versatile solution for three critical preprocessing steps in any next-

generation processing pipeline: (i) basic clipping and quality filtering, (ii) barcode

recognition and processing, and (iii) adapter recognition and removal. Importantly, all

of these steps can be performed in one program call and executed in parallel. FLEXBAR

covers a larger range of sequencing platform applications, formats, and features than

other tested solutions. Furthermore, it provides detailed output statistics and, if de-

sired, extensive verbose output, such as graphical output of read alignments.

FLEXBAR performed slightly better than FASTX, which is widely considered to be

the best of all (selected) competitors in removing adapters from an Illumina short read

data set (benchmark I), as measured by the number of uniquely mappable reads and

bases [for details on benchmark I-IV see Dodt et al. (2012)]. While consuming only

slightly more runtime on one processor core than FASTX, FLEXBAR scales favorably

when using multiple threads. As pinpointed by a paired-end RNA-seq example appli-

cation (benchmark II), FLEXBAR handles four processing steps in one program call

and requires almost 50% less runtime than FASTX. Of course, FLEXBAR preserves

read pairings in all output files. Note that these benchmarks were computed using

an older version of FLEXBAR (v2). The computation time of the current version 2.4

has been increased significantly due to an updated version of the Seqan library274.

In benchmark III, we demonstrated how faithfully our software recognizes barcodes
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and avoids false assignments. In addition, we could show that FLEXBAR is also use-

ful for unconventional applications, such as identifying trans-splicing events in a color

space transcriptome data set from C. elegans (benchmark IV). Finally, FLEXBAR is

the leading solution compared to CUTADAPT when removing adapter sequences from

SOLiD short color space reads (benchmark V; Figure 3.4).

In summary, FLEXBAR has been successfully applied in various genomics applications,

such as small RNA-seq2, PAR-CLIP299,300, and poly-A tail detection in 3’ UTR data

(benchmark II and unpublished data). Moreover, to make FLEXBAR accessible to a

wider community, e.g. biologists, it has been integrated into GALAXY301–303. With

FLEXBAR at hand preprocessing of small RNA-seq data investigated in this study

could be performed easily.

In the second part of my work I applied the bioinformatics workflow presented in the

first part to address the question whether miRNAs may impact developmental arrest

and long term survival in dauer and dauer-like stages. In particular, I was examining

whether shared ‘dauer-infective’ miRNA expression signatures exist that may support

the long-standing hypothesis that dauer and infective larvae share a common origin.

5.2 Comprehensive Bioinformatic Analysis Identifies Cross-

Species Candidate Regulators in Nematodes

In harsh conditions, such as low food supply and stress, many nematodes are able to

form dauer larvae, a developmentally arrested, stress-resistant, and long-lived state20,22.

Infective larvae of parasitic nematodes share many morphological, behavioral, and phys-

iological traits with dauer larvae of free-living nematodes37–39. Accordingly, dauer lar-

vae have been suggested as an evolutionary precursor of infective larvae that facilitated

the repeated evolution of parasitism (a pre-adaptation)278. We hypothesized that reg-

ulatory modules exist that play similar roles in regulating environmentally triggered

alternative life styles across distantly related species in the nematode phylum. Con-

sistent with this hypothesis, the results from this study demonstrate that conserved

‘dauer-infective’ miRNA expression signatures are present.

miRNA genes have been associated with signaling pathways that regulate the dauer

fate121,122,126 . However, a systematic assessment of the roles of miRNA genes as post-

transcriptional regulators in dauer fate decisions and their conservation in parasitic
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nematodes has been elusive. The miRNA gene discovery and expression profiling in

developmentally arrested stages of three representative species (C. elegans, P. pacificus,

and S. ratti) presented in this work reveal substantial regulation of miRNA genes in

developmental arrest in free-living and parasitic nematodes. Moreover, my analyses of

these data sets provide several implications:

First, my study of expression changes in C. elegans demonstrates that 71 miRNAs

exhibit expression differences in dauer compared to non-dauer stages. A subset of 18

miRNAs is significantly upregulated in this comparison (Table 4.2). As a quality con-

trol, I intersected this data with recently published qRT-PCR data125 (comparison of

dauer and L2 larvae) and identified miR-34/-71/-248 to be upregulated in both data

sets. So far, miR-34 and miR-71 have been assigned roles in longevity and stress re-

sponse120,123,124,284,289,304. Overall, the data profiled in this study is in good agreement

with reported qRT-PCR expression level changes from Karp and colleagues (2011).

However, several miRNAs were classified as downregulated in dauer in my DE analy-

sis but reported to be unaffected in the qRT-PCR experiments, e.g. members of the

co-transcribed mir-35-41 cluster and mir-246 (note that mir-41 was exclusively de-

tected in the small RNA-seq data). This discrepancy could be explained by differences

in experimental design (dauer/mixed-stages and dauer/L2m), since these miRNAs are

known to be specifically enriched in C. elegans embryos67,285. Furthermore, differences

in assay biases297,298 and asynchronous sampling across experiments125 could also ex-

plain observed variations. Nevertheless, by using an undirected sequencing approach I

was able to identify a number of differentially expressed miRNAs (8 up- and 27 down-

regulated in dauer) that were not reported in the qRT-PCR experiment.

Second, I presented the first profiling and comparison of miRNA genes in nematodes

from different life styles with emphasis on developmental arrested stages. Notably, we

were the first to profile miRNAs in any Strongyloides parasite. The reported miRNA

gene complements in C. elegans, P. pacificus, and S. ratti presented in this study are

likely to be complete due to the high recovery rate of known miRNA genes in C. elegans

(87%) and P. pacificus (99%) by our multiplatform sequencing strategy. Furthermore,

the size of predicted miRNA gene sets correlates well with the species genome sizes

(Figure 4.3B). Additionally, our NGS approach is comprehensive enough to identify

tissue and stage-specific miRNAs, such as lsy-6, a very rare miRNA, which is only

expressed in less than 10 cells279 and is hardly detected by qRT-PCR125. It is frequently

assumed that the mature miRNA (guide strand), the sequences that is loaded into

RISC, is more abundant in sequencing data than the star sequence (passenger strand).
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However, growing evidence suggests that both arms produced from a miRNA hairpin

may be biologically functional98–104 and that the dominate strand can vary in a cell-

context and tissue-dependent fashion or between orthologous miRNAs105–110. In line

with this, I observed miRNA sequences that are produced from both strands at similar

frequencies. Moreover, I noticed large variations in 5’ arm to 3’ arm read count ratios

depending on the sequencing platform employed (Supplemental Table B.4). In essence,

I see a strong platform dependency of read count patterns across miRNA arms and

therefore refrain from assigning mature and star sequences. Instead, I assigned names

of the form ppc-miR-71-5p and ppc-miR-71-3p for sequences derived from the 5’ and 3’

arm, respectively. Thus, I reannotated, extended, and defined all miRNAs following this

new nomenclature. This is in agreement with the revised naming guidelines described

in miRBase. Kozomara and Griffiths-Jones announced in their latest publication (2014)

that they recently started to replace the old nomenclature (i.e. ppc-miR-71/ppc-miR-

71*) with this new one75.

Finally, by examining sequence identity of miRNAs among free-living and parasitic ne-

matodes, I identified a small core set of 24 miRNA families that are conserved among

all three species. Importantly, despite rapid miRNA evolution in nematodes, homol-

ogous gene families with conserved ‘dauer-infective’ expression signatures are present.

In particular, I find two miRNA gene families with homologs in all three species that

demonstrate coherent upregulation and two families with coherent downregulation in

developmental arrest (Supplemental Table A.1). Consistent with qRT-PCR data, I de-

tected three miRNA genes (miR-34/-71/-248) to be upregulated in C. elegans dauer.

While I did not detect any miRNA in P. pacificus or S. ratti that is homologous to mir-

248, I found mir-34 to be conserved in S. ratti and mir-71 in both species. Although

mir-34 is not conserved in P. pacificus, the same seed sequence (‘GGCAGUG’; position

2-8) is found in two apparently non-conserved P. pacificus miRNAs: miR-2239-1 and

miR-2239-2. Both miRNAs are non-differential in the dauer fate. A careful inspection

of the single-mutation seed network uncovered expression conservation of all P. pacifi-

cus miR-34 seed neighbors (i.e. upregulation in the dauer fate), providing evidence for

convergent gene evolution (Figure 4.13).

This work is based on the development and application of bioinformatics methods to

analyze digital gene expression data which were profiled using a multiplatform NGS

approach. Thus, one of the challenges was to integrate data sets from Illumina and

SOLiD small RNA sequencing. While the Illumina system had been widely applied

in miRNA-profiling studies when I started this work, to my knowledge, only a few re-
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search groups employed the SOLiD system109,154. In line with this, software solutions

that could handle color space data were limited, e.g. software for data preprocessing,

mappers, or miRNA prediction tools. Notably, direct translation of color space into let-

ter space is error prone due to the characteristics of the di-base dependent sequencing

strategy134. Hence, I had to develop and implement strategies, e.g. the adapter re-

moval functionality of FLEXBAR, to solve the bioinformatics problems stated above.

Nevertheless, several studies that applied the SOLiD system for miRNA profiling have

been published recently146,155–157.

By integrating phylogenetic information with gene expression profiles of miRNAs, I

was able to identify conserved miRNA expression signatures between free-living nema-

todes and parasites. Here, the inference of miRNA gene families was a very important

analysis step. A couple of strategies to derive miRNA families exist: (i) the Rfam

database generates families of various ncRNA classes using covariance models169, (ii)

oftentimes miRNA conservation is defined simply based on seed similarity108,305,306,

which in result does not distinguish between homology and functional conservation

(i.e. convergence), and (iii) miRBase75, the main repository for miRNAs, provides gene

families of miRBase deposited miRNAs defined by conservation across precursors and

manual curation, which makes it impossible to recreate these families using a set of

rules (Sam Griffith-Jones - pers. comm.). Novel miRNAs, as discovered in this study,

required regrouping of known families and/or definition of novel families. Since, no

consistent rule exists of how to categorize miRNAs into families, I developed a novel

method for an automated inference of phylogenetic relationships among miRNAs. This

method is able to differentiate between homology and convergent evolution as demon-

strated and visualized with a single-mutation seed network of the mir-34 family (Figure

4.13). Note that an all-against-all blast193 approach on precursors as applied by Me-

unier et al. (2013) did not provide satisfying results, because C. elegans, P. pacificus,

and S. ratti are distantly related species. In fact, Caenorhabditis elegans and P. pacifi-

cus diverged 280-430 million years ago and S. ratti even belongs to a distinct nematode

class (Figure 1.1)4,28. Overall, my analysis of conserved miRNA expression signatures

provides interesting strategies of how to integrate expression profiles with phylogenetic

information.

Our multiplatform deep sequencing approach is comprehensive enough to identify known

and novel miRNAs genes. It is rational to think that our data is reliable due to sev-

eral reasons. First, our data is in good agreement with qRT-PCR data. Second, our

approach demonstrates a high sensitivity in miRNA-profiling because tissue and stage-
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specific miRNAs like lsy-6 are identified, while being hardly detected in qRT-PCR

data125. In line with this, Knutsen et al. concluded that NGS platforms offer a higher

sensitivity than qRT-PCR, based on a comparative investigation of miRNA profiling

strategies in human breast cancer cell lines146. Finally, similar expression intensities

of all members of the co-transcribed mir-35-41 cluster indicate a high accuracy of our

data, because these miRNAs are controlled by one promoter67,296. Nevertheless, this

study lacks biological replication, which could significantly improve statistical detection

power of differentially expressed genes308. However, there is a trade-off between biolog-

ical replication and sequencing depth because experimental budget is usually limited.

Liu and colleagues demonstrate that beyond a certain sequencing depth the power to

detect DE genes is generally more improving by sampling additional biological repli-

cates than by deeper sequencing309. Thus, the authors conclude that in most scenarios

sampling additional biological replicates should be favored. Regardless, the results of

my DE analysis provide valid candidate regulators, such as mir-34 and mir-71. This

finding is consistent with results from Karp et al., who include biological replicates to

measured expression level changes using qRT-PCR125.

In this study I applied a simple two-sample comparison using binomial testing condi-

tioned on the library sizes because no biological replicates were sampled. However, it

has been argued that the library-to-library variability is not well captured by a bino-

mial or Poisson distribution, because the mean-variance relationship of these models

might not provide enough flexibility. A characteristic of the Poisson model is that the

mean and the variance are assumed to be equal. However, if the variance is greater

than the mean, overdispersion occurs310. Popular models that account for the problem

of overdispersion include the negative binomial (gamma-Poisson)311, beta-binomial312,

or two-stage Poisson models313. In particular, the negative binomial distribution is

used in the implementation of the R Bioconductor packages edgeR235 and DESeq314,

two frequently used methods in RNA-seq DGE studies that include replicates in their

statistical model.

Next-generation sequencing methods, as applied here, can only measure relative quan-

tification levels due to sequence-specific biases. Although it has been suggested that it

might be possible to measure absolute quantification through calibration using spike-

ins, i.e. a pool of concentration-defined input oligonucleotide standards188,315, a recent

review stated that NGS is not able to perform absolute quantification208. Single-

molecular sequencers (or 3rd generation sequencers) may potentially solve this prob-

lem in the future135. However, 3rd generation sequencers are currently very expensive
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in usage, provide higher error rates, are not widely accessible, and a single-molecule

real-time approach has yet to be demonstrated for miRNA profiling208.

5.3 Future Directions

Nematodes parasitism is a worldwide health problem with over 1 billion people being

infected. According to the World Health Organization (WHO) statistics∗, parasites

are the cause of more human death than anything else apart from HIV/AIDS and Tu-

berculosis34. As a result, nematode plant and animal parasites are of great medical

and economic importance35. However, the molecular mechanisms controlling the infec-

tions with parasites are poorly understood. Progress has been made and an increasing

number of draft genomes of numerous free-living and parasitic nematodes has been

published in recent years316. This is potentially due to the decreasing sequencing costs

and the wide availability of deep sequencing methods combined with the small genome

sizes of nematodes. Prospectively, the genome and transcriptome of many more species

will be sequenced in the future with manageable effort.

This work contributes to this effort and presents a comparative genome-wide investiga-

tion of the miRNA transcriptome in dauer and infective larvae of nematodes. Studying

the mechanisms that control nematode life cycles is an attractive approach to identify

new therapeutic targets. Here, I present cross-species candidate regulators that may be

important for developmental arrest and long-term survival in free-living and parasitic

nematodes. Although these miRNAs may need further experimental validation through

e.g. northern blot or in situ hybridization, they constitute interesting target genes for

potential genetic engineering in free-living nematodes and parasites. In particular, it

will be important to determine the target genes that are regulated by these miRNAs.

Over the years, a couple of methods have been developed to identify miRNA targets: (i)

small-scale genetic methods using a miRNA mutant strain , (ii) computational predic-

tion tools, and (iii) high-throughput biochemical approaches (e.g. PAR-CLIP)114,116.

While computational prediction of miRNA target genes is oftentimes not very specific

and identifies a large number of potential targets, experimental approaches are gener-

ally time-consuming and complicated (if even possible) to apply. However, the ability

to predict miRNA targets with high confidence is still a reminding challenge in the

field114. Nevertheless, to understand the regulatory mechanisms underlying develop-

∗http://www.who.int, accessed July, 2014
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mental arrest and long-term survival in dauer and dauer-like stages in detail, the entire

regulatory network has to be revealed in future studies, i.e. miRNA genes as well as

their targets and the regulatory feedback loops involved.

5.4 Concluding Remarks

Taken together, this thesis describes an extensive set of tools and strategies for the

analysis of post-transcriptional gene regulators in free-living and parasitic nematodes.

The goal of this project was to analyze whether miRNA genes impact developmental

arrest and long-term survival in dauer and dauer-like stages. In particular, I wanted to

address the long-standing hypothesis that dauer and infective larvae share a common

origin. The starting point of this work was the identification of miRNAs in high-

throughput small RNA sequencing data profiled by two distinct sequencing platforms.

In this context, I provided sophisticated bioinformatics solutions to analyze these small

RNA-seq data sets and to address the aforementioned questions computationally.

Although our data suggests that miRNA gene sets diverge rapidly in nematodes, my in-

depth assessment of miRNAs in free-living and parasitic nematodes reveals conserved

post-transcriptional regulators with similar expression signatures in dauer vs. non-

dauer fates. I highlighted the case of miR-34 and miR-71, two miRNAs that are both

important regulators of stress response and aging not only in worms, but also in flies and

mammals139,317–319. While the mir-71 family is a well-conserved post-transcriptional

regulator with coherent expression across all three species, the mir-34 family could

constitute a case of convergent gene evolution in P. pacificus. Herein, unrelated miRNA

precursors with identical or almost identical (off by one substitution) seed sequences

show similar expression patterns in the dauer fate as the reference family. This study

reports the first coherent data on any Strongyloides parasite and provides a valuable

resource to researchers studying miRNA genes and their evolution and specifically

aspects in developmental arrest in free-living and parasitic nematodes.
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E. coli Escherichia coli

P. pacificus Pristionchus pacificus

S. papillosus Strongyloides papillosus

S. ratti Strongyloides ratti

Ago Argonaute protein

BAC Bacterial Artificial Chromosome

BWT Burrows-Wheeler transformation

CLIP Crosslinking and immunoprecipitation

DA Steroid hormone dafachronic acid

DE Differential Expression

DGE Digital gene expression

DNA Deoxyribonucleic acid

Daf-c Dauer-constitutive phenotype

Daf-d Dauer-defective phenotype

Exp5 Exportin-5

FAR Flexible Adapter Remover

FDR False discovery rate

FLEXBAR Flexible Barcode and Adapter Remover
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ABBREVIATIONS

GA Genome Analyzer

HGP Human Genome Project
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LocARNA Local alignment of RNA

MSA Multiple sequence alignment
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NGS Next-Generation Sequencing
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RISC RNA-induced silencing complex
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RNA-seq High-throughput RNA sequencing
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SOLiD Support Oligonucleotide Ligation Detection
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pri-miRNA Primary miRNA

profile HMM Profile hidden Markov model

qRT-PCR Quantitative reverse transcription PCR

rRNA Ribosomal RNA

small RNA-seq Small RNA high-throughput sequencing

small ncRNA Small non-coding RNA

tRNA Transfer RNA
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Summary

The bioinformatics side has become the ‘bottleneck’ of all high-throughput based biolog-

ical studies. Next-generation sequencers (NGS) produce millions of sequences (reads)

in a short amount of time at low costs. A major problem is the handling and analysis of

these large-scale data sets in an efficient and systematic way. Bioinformatics methods

can be applied to analyze generated high-throughput sequencing data computationally

and therefore help to address biological questions.

This thesis approaches computational challenges and biological questions that arise

when investigating microRNA genes (miRNAs) in nematodes using NGS technologies

(ABI SOLiD, Illumina GA II, and HiSeq). On the one hand, bioinformatics methods

and computational strategies were identified and developed to analyze experimental

large-scale small RNA data. These data sets were generated in-house and by collabo-

rators as well as publicly available.

On the other hand, this work addresses the question whether miRNA genes impact de-

velopmental arrest and long-term survival in dauer larvae of two free-living nematodes

(Caenorhabditis elegans (C. elegans) and Pristionchus pacificus (P. pacificus)) and

the infective stage of parasites (Strongyloides ratti (S. ratti)). In particular, I address

the long-standing hypothesis that dauer and infective larvae share a common origin.

This investigation is specifically focused on determining whether these two larval stages

exhibit similar miRNA expression signatures.

In the first part of this study I developed a bioinformatics workflow that characterizes

the miRNA gene complement in C. elegans, P. pacificus, and S. ratti and investigates

their expression levels. Additionally, this workflow infers miRNA gene families and inte-

grates the observed phylogenetic relationships with measured expression level changes.

As part of this study, I was involved in the development of FLEXBAR (published 2012

in the special issue “Next-Generation Sequencing Approaches in Biology”, Biology 1),
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a program that I applied to preprocess our small RNA sequencing data.

FLEXBAR is a versatile solution for three critical preprocessing steps in any next-

generation processing pipeline: (i) basic clipping and quality filtering, (ii) barcode

recognition and processing, and (iii) adapter recognition and removal. Importantly, all

of these steps can be performed in one program call and executed in parallel. FLEXBAR

performs slightly better than FASTX, which is widely considered to be the best of

all (selected) competitors in removing adapters from an Illumina read (benchmark

I). Furthermore, FLEXBAR covers a large range of sequencing platform applications,

formats, and features and provides detailed output statistics, e.g. graphical output of

read alignments.

In the second part of this study I applied the bioinformatics workflow to address the

question whether miRNAs impact developmental arrest and long term survival in dauer

and infective larvae of nematodes (published 2013 in Genome Biology and Evolution 2).

This study identifies and extends the number of described miRNA genes to 257 for C.

elegans, tripled the known gene set for P. pacificus to 362 miRNAs, and reports the first

miRNAs in a Strongyloides parasite, i.e. 106 miRNAs in S. ratti. Although our data

suggests that miRNA gene sets diverged rapidly in nematodes, my in-depth assessment

of miRNAs in free-living and parasitic nematodes revealed conserved miRNA gene

families with similar expression signatures in dauer and infective larvae. This finding

suggests that common post-transcriptional regulatory mechanisms are at work and that

the same miRNA families play important roles in developmental arrest and long-term

survival in free-living and parasitic nematodes. Moreover, this result supports the

hypothesis that dauer and infective larvae share a common origin.

Taken together, this thesis describes an extensive set of bioinformatic tools and strate-

gies for the analysis of miRNA genes in free-living and parasitic nematodes and consti-

tutes a valuable resource to researchers studying miRNA evolution and in particular,

any aspects of developmental arrest. The starting point of this work was the iden-

tification of miRNAs in high-throughput small RNA sequencing data profiled by two

distinct sequencing platforms. In this context, I provided sophisticated bioinformatic

solutions to analyze small RNA sequencing data sets and to address the aforementioned

questions computationally.
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Zusammenfassung

Seit der Einführung und Etablierung von Next-Generation-Sequenzierern (NGS) hat

die Bioinformatik auf dem Gebiet der Genomforschung entscheidend an Bedeutung

gewonnen. Mit Hilfe von NGS werden Millionen von DNS-Fragmenten (Reads) in-

nerhalb kürzester Zeit mit sehr geringen Kosten ausgelesen. Das Handling, sowie

eine effiziente und systematische Auswertung dieser Hochdurchsatz-Daten, stellt jede

biologische Studie vor große Herausforderungen. Durch bioinformatische Methoden

wird es möglich gemacht, Hochdurchsatz-Sequenzierungsdaten computergestützt zu

analysieren und auszuwerten und somit biologischen Fragestellungen zugänglich zu

machen.

Diese Dissertation beschäftigt sich mit den bioinformatischen und biologischen Fragestel-

lungen, die sich bei der Untersuchung von microRNA Genen (miRNAs) in Nematoden

mit Hilfe von NGS-Technologien (ABI SOLiD, Illumina GA II, and HiSeq) ergeben.

Einerseits wurden moderne computergestützte Ansätze und Methoden aus der Bioin-

formatik und Statistik angewendet oder eigens entwickelt, um experimentell gener-

ierte Hochdurchsatz-Daten von kleinen RNA-Sequenzen auszuwerten. Diese wurden

innerhalb der Arbeitsgruppe und von Projektmitarbeitern gemessen oder öffentlich

zugänglichen Datensätzen entnommen.

Andererseits wurde der Einfluss von miRNAs auf den Entwicklungsstillstand in Ne-

matoden und auf das langfristige Überleben von Larven im Dauerstadium zweier frei

lebender Nematoden (Caenorhabditis elegans (C. elegans) und Pristionchus pacificus

(P. pacificus)) und Larven im infektiösen Stadium eines Parasiten (Strongyloides ratti

(S. ratti)) untersucht. Ziel war es die langjährige Hypothese zu überprüfen, dass Dauer-

larven und infektiöse Larven dieselbe Abstammung hätten. Im Speziellen wurde zu

diesem Zweck untersucht, ob diese beiden Larvenstadien ähnliche miRNA Expressions-

muster aufweisen.
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Im ersten Teil dieser Studie habe ich einen Ansatz für eine rechnergestützt systema-

tische Auswertung entwickelt, mit dessen Hilfe das miRNA Repertoire von C. ele-

gans, P. pacificus, und S. ratti bestimmt und ergänzt wurde und deren Expression

ausgewertet werden konnte. Außerdem wurden auf diese Weise miRNA-Genfamilien

hergeleitet und deren phylogenetische Abhängigkeiten mit den gemessenen Genexpres-

sionsveränderungen in Zusammenhang gebracht. Im Rahmen dieser Studie war ich an

der Entwicklung von FLEXBAR (veröffentlicht 2012 in einer Spezialausgabe von
”
Next-

Generation Sequencing Approaches in Biology”, Biology 1) beteiligt, ein Programm, das

ich zum Vorverarbeiten von unseren NGS-Datensätzen eingesetzt habe.

FLEXBAR ist ein vielseitiges Programm, das für drei wichtige Vorverarbeitungsschrit-

te in NGS-Experimenten angewandt werden kann: einfaches Kürzen von NGS-Reads

und Qualitätskontrolle, Barcodeerkennung und -verarbeitung, Adaptererkennung und

-entfernung. Eine wesentliche Eigenschaft von FLEXBAR ist es, all diese Verarbeitungs-

schritte in einem Programmaufruf und parallelisiert auszuführen. Die Benchmark-Tests

zeigen, dass FLEXBAR etwas bessere Ergebnisse liefert als FASTX, ein häufig angewen-

detes Programm zum Entfernen von Adaptersequenzen in Illumina-Reads (Benchmark-

Test I). Darüber hinaus kann FLEXBAR mit den verschiedensten Sequenziertechnologie-

Anwendungen, Dateiformaten und Eigenschaften umgehen und liefert zudem detail-

lierte Ausgabestatistiken wie beispielsweise eine grafische Ausgabe von Sequenzalign-

ments.

Im zweiten Teil dieser Studie wende ich die zuvor entwickelten bioinformatischen Me-

thoden und Strategien an, um meine biologischen Fragen hinsichtlich der Auswirkung

von miRNAs in Dauer und in infektiösen Larvenstadien von Nematoden zu unter-

suchen (veröffentlicht 2013 in Genome Biology and Evolution 2). Die Auswertung un-

serer Hochdurchsatz-Daten zeigt, dass die bereits bekannten miRNA Gensätze in C.

elegans und P. pacificus zuverlässig identifiziert und mit neuen zuvor unbekannten

Genen ergänzt werden konnten. Die Anzahl der bereits beschriebenen Gene von C. ele-

gans wurde auf insgesamt 257 miRNAs erhöht und diejenigen von P. pacificus auf 362

miRNAs verdreifacht. Außerdem konnten mit der Untersuchung von S. ratti erstmals

106 miRNAs eines Strongyloides Parasiten veröffentlicht werden. Obwohl unsere Daten

darauf hinweisen, dass miRNA Gene in Nematoden evolutiv schnell divergieren, konnte

meine tiefgehende Analyse von miRNAs in frei lebenden und parasitären Nematoden

konservierte miRNA-Genfamilien mit ähnlichen Expressionsmustern in Dauer und in

infektiösen Larven aufdecken. Dieses Ergebnis weist darauf hin, dass ähnliche post-

transkriptionelle regulatorische Mechanismen in Dauer und in infektiösen Larven wirken
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und dass dieselben Genfamilien für deren Entwicklungsstillstand und langfristiges Über-

leben eine wichtige Rolle spielen. Zudem stützt dieses Resultat die oben genannte Hy-

pothese, dass Dauerlarven und infektiöse Larven möglicherweise dieselbe Abstammung

haben.

Zusammenfassend liefert diese Dissertation eine umfangreiche Darstellung von bioin-

formatischen Analysewerkzeugen und Strategien für die Auswertung von miRNAs in

frei lebenden und parasitären Nematoden. Sie stellt somit eine wertvoll Quelle dar für

Forscher, die sich mit miRNA-Evolution und speziell mit allen Aspekten des Entwick-

lungsstillstandes beschäftigen. Der Ausgangspunkt dieser Arbeit war die Identifikation

von miRNAs in Hochdurchsatz-Sequenzierdaten, die mittels zwei verschiedenen NGS-

Technologien erzeugt wurden. In diesem Zusammenhang habe ich bioinformatische

Analysestrategien entwickelt, um die Sequenzierdaten von kleinen RNAs auszuwerten

und die bereits erwähnten biologischen Fragen rechnergestützt zu untersuchen.
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Appendix A - Supplemental

Material

Supplemental Material includes:

Supplemental Methods

Supplemental Figures A.1

Supplemental Tables A.1

Supplemental Methods

miRNA Age Classes

miRNA genes were grouped into five different age classes based on all miRNAs in

miRBase (v18) that were annotated as Nematoda, Arthropoda, Lochotrophozoa or

Vertebrata. For example, if a seed (position 2-8) of miRNA X perfectly matched a

seed from miRNA Y classified as Vertebrata, miRNA X would be defined as being

conserved in Vertebrata. Assuming this miRNA X is only conserved in Vertebrata,

the conservation signature ’- / - / - / +’ (Nematoda / Arthropoda / Lochotrophozoa

/ Vertebrata) would be assigned to miRNA X. miRNA age categories were defined as

follows: (i) Not conserved: ’- / - / - / -’; (ii) very young: ’+ / - / - / -’, ’- / + / - / -’;

(iii) young: ’+ / + / - / -’; (iv) middle: ’- / + / - / +’, ’+ / - / - / +’, ’- / + / + / -’,

’+ / - / + / -’, ’- / - / + / +’, ’- / - / + / -’, ’- / - / - / +’; (v) old: ’+ / + / + / -’, ’-

/ + / + / +’, ’+ / - / + / +’ , ’+ / + / - / +’, ’+ / + / + / +’.
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Figure A.1: MSA of let-7 family miRNAs from eight animal clades and five random generated precursors
The multiple alignment was computed by LocARNA262 and constrained to align at the seed (defined as nucleotide position 2-8) of each individual
miRNA. Nucleotides are colored based on a percentage identity threshold; i.e. nucleotides that occur in a particular column more than 80% are
colored in mid blue, more than 60% in light blue, more than 40% in light grey, and white otherwise. The seed sequence is marked with a red
underline.



Table A.1: Conserved miRNAs with coherent expression signature in developmentally arrested stages
Four gene families that contain miRNAs conserved among all three nematode species with coherent expression signature in develop-
mentally arrested stages (upregulation and downregulation). A miRNA family displays a coherent expression signature if at least one
family member from each species is differentially expressed as the majority of family members. The seed conservation column depicts
IDs of miRNAs that share a common seed within the Nematoda taxa. If the seed is not conserved in Nematoda the ID from the next
taxa is shown (in the order of Nematoda, Arthropoda, Lochotrophozoa, and Vertebrata). Note that relative expression changes of some
miRNAs of family 4 and 30 were not measured.

miRNA family
ID

Corresponding
seed

Seed conservation† Seed conservation
profile†

Up Down #Precursor Observed function

miRNA family 4 GGAAUGU mir-1/-796 + / + / + / + 4 0 6 Synaptic transmission286

miRNA family 30 AUCACUA mir-71 + / - / - / + 3 0 5 Lifespan, AWC L/R neuron fate spec-
ification123,289,290

miRNA family 32 CACCGGG mir-35-42/-2235/-
2240/-2251/-8232/-
8243/-8283/-8393

+ / + / + / + 0 32 36 Embryogenesis287

miRNA family 22 ACUGGCC mir-240 + / + / + / + 0 3 3 Defecation cycling, fertility285

†Nematoda/Arthropoda/Lophotrochozoa/Vertebrata





Appendix B - Supplemental CD

Table of Contents of CD

Supplemental Figures B.1 − B.3

Supplemental Tables B.1 − B.6

Figure Legends for Supplemental Figures

Figure B.1: Multiple sequence alignments for miRNAs grouped by perfect seed se-

quence similarity (position 2-8) computed by LocARNA262. These precursors corre-

spond to miRNA arms that were selected based on largest group size or degree of con-

servation, respectively. All alignments were constrained to align at the seed sequence

position of each miRNA.

Figure B.2: Multiple sequence alignments for miRNA families (at least two miRNA

genes) computed by LocARNA262. These precursors correspond to miRNA arms that

were selected based on largest group size or degree of conservation, respectively. All

alignments were constrained to align at the seed sequence position of each miRNA.

Figure B.3: Visualization of miRNA expression fold changes for individual miRNA

families that contained at least two precursor sequences. Heatmaps represent miRNA

gene expression by color, and heatmap rows are ordered by the inferred phylogeny from

multiple sequence alignments. The asterisk next to the miRNA in the heatmap plot

denotes significant up- or downregulation in dauer or iL3.
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APPENDIX B

Table Legends for Supplemental Tables

Table B.1: The two worksheets summarize the number of reads that mapped to

various genomic feature annotations of the small RNA deep sequencing libraries from

C. elegans and P. pacificus analyzed in this study.

Table B.2: Annotation of known miRNAs in C. elegans and P. pacificus. The first

worksheet tabulates all miRNAs in C. elegans (miRBase v18) including seed and conser-

vation information for both miRNA arms. The second worksheet includes the equivalent

information for P. pacificus.

Table B.3: Novel miRNA gene candidates in C. elegans, P. pacificus, and S. ratti.

Table B.4: The first worksheet tabulates miRNA read counts and ratios of C. elegans.

The second worksheet includes the equivalent information for P. pacificus. (Note: A

pseudocount of one was added to all miRNA arms.)

Table B.5: miRNA families that are conserved among all three nematode species.

These homology relationships were established based on all-against-all sequence simi-

larity searches using USEARCH239.

Table B.6: miRNA gene expression in C. elegans, P. pacificus, and S. ratti. The three

different worksheets present read counts of miRNAs detected at least five times in

both stages (mixed-stage/dauer or mixed-stage/iL3), including normalized read counts

(reference based quantile normalization), log2 fold expression changes, FDR, and dif-

ferential expression categories.

134



Curriculum Vitae

For reasons of data protection, the curriculum vitae is not
included in the online version.

135



CURRICULUM VITAE

For reasons of data protection, the curriculum vitae is not
included in the online version.

136



CURRICULUM VITAE

For reasons of data protection, the curriculum vitae is not
included in the online version.

137



CURRICULUM VITAE

For reasons of data protection, the curriculum vitae is not
included in the online version.

138
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