
1 
 

Charge of a quasiparticle in a superconductor 

 

Yuval Ronen†1, Yonatan Cohen†1, Jung-Hyun Kang1, Arbel Haim1, Maria-Theresa 

Rieder1,2, Moty Heiblum#1, Diana Mahalu1 and Hadas Shtrikman1 

1Braun Center for Submicron Research, Department of Condensed Matter Physics, 

Weizmann Institute of Science, Rehovot 76100, Israel 

2Dahlem Center for Complex Quantum Systems, Freie University, Berlin 14195, 

Germany 

† Equal contributions 

#Corresponding Author (moty.heiblum@weizmann.ac.il) 

 

Abstract   

Non-linear charge transport in SIS Josephson junctions has a unique signature 

in the shuttled charge quantum between the two superconductors. In the zero-

bias limit Cooper pairs, each with twice the electron charge, carry the Josephson 

current. An applied bias SDV  leads to multiple Andreev reflections (MAR), which 

in the limit of weak tunneling probability should lead to integer multiples of the 

electron charge ne  traversing the junction, with n  integer larger than 2 / SDeV  

and   the superconducting order parameter. Exceptionally, just above the gap 

eVSD2, with Andreev reflections suppressed, one would expect the current to 

be carried by partitioned quasiparticles; each with energy dependent charge, 

being a superposition of an electron and a hole. Employing shot noise 

measurements in an SIS junction induced in an InAs nanowire (with noise 

proportional to the partitioned charge), we first observed quantization of the 

partitioned charge 
* /q e e n  , with n=1- 4; thus reaffirming the validity of our 

charge interpretation. Concentrating next on the bias region ~ 2SDeV  , we 

found a reproducible and clear dip in the extracted charge to q ~ 0.6 , which, 

after excluding other possibilities, we attribute to the partitioned quasiparticle 

charge. Such dip is supported by numerical simulations of our SIS structure.  
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Excitations in superconductors (Bogoliubov quasiparticles) can be described 

according to the BCS theory (Bardeen–Cooper-Schrieffer) [1], as an energy 

dependent superposition of an electron with amplitude u(), and a hole with amplitude 

v(); where the energy  is measured relative to the Fermi energy [2]. Evidently, the 

expectation value of the charge operator (applied to the quasiparticle wave-function), 

which we address as the quasiparticle charge e*=q()e, is smaller than the charge of an 

electron, 
2 2

( ) ( ) ( )q u      [3]. Solving the Bogoliubov-de Gennes equations one 

finds that 
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, with the expected 

charge evolving with energy according to 
2 2
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  - vanishing altogether at 

the superconductor gap edges [3]. Note, however, that the quasiparticle wave-function 

is not an eigen-function of the charge operator [3, 4]. Properties of quasiparticles, 

such as the excitation spectra [5], lifetime [6-10], trapping [11], and capturing by 

Andreev bound states [12, 13], had already been studied extensively; however, studies 

of their charge is lagging. In the following we present sensitive Shot noise 

measurements in a Josephson junction, resulting in a clear observation of the 

quasiparticle charge being smaller than e, q(eVSD~2)<1, and evolving with energy, 

as expected from the BCS theory. 

 

In order to observe the BCS quasiparticles in transport we study a Superconductor-

Insulator-Superconductor (SIS) Josephson junction in the non-linear regime. The 

overlap between the wave functions of the quasiparticles in the source and in the drain 

is expected to result in a tunneling current of their effective charge. This is in contrast 

with systems which are incoherent [14, 15] or with an isolated superconducting 

island, where charge conservation leads to traversal of multiples of e – Coulomb 

charge [16]. As current transport in the non-linear regime results from 'multiple 

Andreev reflections' (MAR), it is prudent to make our measurements credible by first 

measuring the charge in this familiar regime. 
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In short, the MAR process, described schematically in Fig. 1, carries a signature of the 

shuttled charge between the two SCs, being a consequence of n traversals through the 

junction (as electron-like and hole-like quasiparticles), with n an integer larger than 

2/eVSD. A low transmission probability t (via tunneling through a barrier) in the bias 

range 2 2 1SD/ n eV / ( n )      assures dominance of the lowest order MAR 

process (higher orders are suppressed as tn); with the charge evolving in nearly integer 

multiples of the electron charge. While there is already a substantial body of 

theoretical [3, 17-23] and experimental [24-29] studies of the MAR process, charge 

determination without adjustable parameters is still missing.  An important work by 

Cron et al. [27] indeed showed a staircase-like behavior of the charge using ‘metallic 

break-junctions’; however, limited sensitivity and the presence of numerous 

conductance channels, some of which with relatively high transmission probabilities, 

did not allow exact charge quantization. Our shot noise measurements, performed on 

a quasi-1D Josephson junction (single mode nanowire) allowed clear observation of 

charge quantization without adjustable parameters. To count a few advantages: (i) The 

transmission of the SIS junction could be accurately controlled using a back-gate; (ii) 

This, along with our high sensitivity in noise measurement, enabled us to pinch the 

junction strongly (thus suppressing higher MAR orders); and (iii) With the Fermi 

level located near the 1D channel van Hove singularity, a rather monoenergetic 

distribution could be injected (supplementary section: S7). 

 

Our SIS Josephson junction was induced in a back-gate controlled, single channel 

nanowire (NW). The structure, shown in Fig. 2, was fabricated by depositing two 

Ti/Al (5nm/120nm) superconducting electrodes, 210nm apart, onto a bare ~50nm 

thick InAs NW, baring a pure wurtzite structure, grown by the gold assisted vapor-

liquid-solid (VLS) MBE process. The Si:P+ substrate, covered by SiO2 (150nm thick), 

served as a back-gate (BG), allowing control of the number of conducting channels in 

the NW (S2). While the central part of the NW could be fully depleted, the segments 

intimately covered by the Ti/Al superconducting electrodes are flooded with carriers 

and are barely affected by the back-gate voltage. The density therefore decreases 

smoothly towards the depleted region in the very center of the junction, so that the 

actual tunnel barrier is much narrower than 200nm. On the other hand, the induced SC 
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coherence length is expected to be much larger than 200nm - assuring coherence of 

electron-hole quasiparticles along the junction [30]. 

 

Since the probability of each single-path MAR process is t, and the probability for n 

paths scales as nt t  , a sufficiently small t is necessary to single out the most 

probable (lowest n) MAR process. This evidently leads to a minute shot noise signal, 

requiring sensitive electronics and weak background noise. A ‘cold’ (~1K), low noise, 

homemade preamplifier was employed, with a sensitivity limit better than ~10-

30A2/Hz at ~600kHz. Interested in the current dependent ‘excess noise’ (with spectral 

density
i
excS ), the non-shot noise components should be recognized and subtracted. 

The latter are composed of a thermal (Johnson-Nyquist) component, 4kBTr [31,32], 

the preamplifier’s current noise 
i
ampS  (current fluctuations driven back to our device), 

and its voltage noise ampS ; while the ubiquitous 1/f noise (due to multiple sources) is 

negligible at our measurement frequency (S4). Altogether S(0) is given by: 

                  2 2(0) 0 4 (0)i i

exc B amp ampS S r k Tr S r S       ,  (1) 

where kBT is the thermal energy and r is the total resistance of the SNS junction and 

the load resistance, namely, Rsample+5Ω in parallel with RL (see Fig. 2). Hence, the 

‘zero frequency excess noise’ for a stochastically partitioned single quantum channel 

at sufficiently low temperature (our kBT~2eV while eVSD=50-300eV) [33-36] is: 

    0 2 1
exc

S e I t *
  ,   (2) 

with e*=qe, I the net DC current, and *

Q

G
t

qg
 , where 

22
Q

e
g

h
  is the quantum 

conductance of a spin degenerate channel in the normal part of the wire (S6). Hence, 

the charge (in units of the electron charge, e) is: 

    
 
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2 2
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q
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    .   (3) 

Two comments regarding Eq.3 are due here: (i) Using the differential conductance G 

for calculating the transmission probability at energies near eVSD is justified since 

most of the current is carried by quasiparticles emitted in a narrow energy window; 

much narrower than  due to the van Hove singularity of the density of states in the 

1D NW (see more in the discussion part); and (ii) When the transmission is small so 
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that G/gq~0, one resorts to the familiar Schottky (Poissonian) expression of a classical 

shot noise [37]. 

 

While details of the measurement setup and the algorithm used in determining the true 

excess noise and the extracted charge are provided in the S3 and S4; a short 

description is due here. As seen in Fig. 2, conductance and noise were measured in the 

same configuration at an electron temperature of ~25mK. The differential 

conductance was measured by applying 1µV at 600kHz in addition to a variable DC 

bias, while noise was measured with an applied DC bias only. A load resistor of either 

RL=1kOhm or RL=20kOhm, shunted by a resonant LC circuit (with a center frequency 

of 600kHz), terminated the circuit to ground. The signal was amplified by a cascade 

of ‘cold’ and ‘warm’ amplifiers, and measured by a spectrum analyzer with an 

appropriate bandwidth. The smaller RL was used when the sample’s resistance was 

relatively small, thus restraining fluctuations in the background noise on the bare 

sample fluctuating conductance. It is important to note that the use of a ‘voltage 

source’ for VSD (rather than a ‘current source’) allowed access to quiescent regions of 

negative differential conductance, which otherwise would have been inaccessible 

(being within hysteretic loops in the I-VSD characteristics). 

 

We start with RL=1kOhm and junction conductance tuned by the back-gate to a partly 

transmitted single channel in the bare part of the NW. Four MAR conductance peaks 

were observed at VSD=2Δ/en=300V/n (note that the induced gap in the InAs NW is 

nearly that of the Al superconductor). The static I-VSD characteristic, required for the 

determination of the energy dependent charge, was obtained by integrating the 

differential conductance (Fig. 3b). After a careful subtraction of the background noise, 

(S4), we extracted the charge as shown in Fig. 3c. Clear steps are seen at values of 

q=n, with 1 n 4 . Higher charge values (for n> 4) are averaged out mostly due to the 

successively narrowing MAR region as ~1/n2 and possibly some inelastic scattering 

events. It should be stressed out here that while the conductance (and thus the 

deduced t*) and the total noise fluctuate violently, the extracted charge evolves 

smoothly between each of the quantized charge values – reassuring the process of 

charge extraction. 
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We performed numerical simulations of the conductance and the excess noise at 

various junction transmission coefficients and energies, with a Fano factor defined as 

F=Sexc(0)/2eI (S1). The results shown in Fig. 3d, contrary to the experimental results 

in Fig. 3c, predict integer charge plateaus at much lower transmission probabilities 

t~0.05. We attribute this difference to the sharp density of states profile resulting from 

the position of the Fermi level near the van Hove singularity of the 1D nanowire 

alluded above [38] (supplementary section: S7), which suppresses higher orders MAR 

- thus allowing charge quantization at relative high transmissions. The vicinity of the 

Fermi level to the bottom of the conduction band was not taken into account in the 

theoretical model (S1 and S8). Consequently, the normalized excess noise 

 1exc excS S t * */ , plotted as a function of the current in Fig. 3e, reveals straight 

lines with quantized slopes, all crossing the origin, confirming that in each relevant 

bias regime quasiparticles indeed emerge within a narrow energy window. 

 

 

The robust quantized plateaus of the extracted charge (in two different NWs) paved 

the way to the determination of the traversing charge near the superconductor gap 

edge. Singling out the n=1 process (having t*=t), very close to eVSD=2 requires 

strong suppression of the n=2 process (t*=t2); thus further increasing the barrier in the 

bare part of the NW, as evident by the weaker MAR processes in Fig. 4a and higher 

junction resistances (now RL=20kOhm). A few I-VSD characteristics, obtained by 

integrating the differential conductance for several back-gate voltages, are plotted in 

Fig. 4b. The extracted traversing charge as a function of bias is shown in Fig. 4c for a 

few values of the transmission coefficient; with a clear dip in the charge appearing 

near eVSD=2 for lower transmissions. In Fig. 4d we plot the lowest charge measured 

at each transmission probability t – observing a minimum of q~0.6 at t~0.05. As the 

barrier is increased even further (t<0.01), the extracted charge increased towards e.  

The numerical calculations results for the Fano factor, F=Sexc(0)/2eI, around

2~
SD

eV   are shown in Fig. 4e & 4f for various transmissions. The theoretical 

calculation also resulted in a dip which emerges as the transmission is lowered 

similarly to our experimental data. The discrepancy in the values of the transmission, 

in which the dip appears, can once again be attributed to the sharper profile of the 
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density of states. Another difference from the theoretical calculation that should be 

noted is the decrease in the apparent charge from 2e at eVSD<2. We relate this 

decrease to unavoidable processes of charge e transport which are of order t (not t2); 

such as quasiparticles excited by noise or temperature, and sub-gap current originating 

due to the soft induced gap. 

In order to further test the validity of the dip in the extracted charge, we fabricated 

and tested a Normal-I-S (NIS) junction. Here too, a conductance peak develops at the 

gap’s edge (this time at eVSD=); however, the charge evolves monotonically from e 

to 2e, without any sign of a dip (Fig. 5a). This result is backed by our numerical 

simulations (Fig. 5b), while in S9 we give a more intuitive physical picture that 

reflects why charge partition should not be observed in NIS junction. 

 

Our assertion of observing the quasiparticle charge near the gap’s edge requires a 

discussion. One may consider three possible models of single quasiparticles transport 

near eVSD=2: (i) The electric field may rip off each quasiparticle to its electron and 

hole components, thus accelerating only one component (say, electrons) towards the 

drain; leading to current noise of partitioned charges of e and a Fano factor of 1 at 

t<<1. This might play a role in an SNS junction, but less likely in our SIS tunneling 

junction. (ii) In an SIS junction, the electric field across the insulating barrier (I) 

realigns full quasiparticle states in the source (S) with empty quasiparticle states in the 

drain (S), making tunneling events possible. One possibility is that each tunneling 

event collapses in the drain to an electron with probability u2 or to a hole with 

probability v2. In this case the expected charge fluctuations for t<<1 lead to a Fano 

factor F=(u2-v2)-1>1 [3, 4] (see S7); (iii) Alternatively, each tunneling event is that of 

a coherent superposition of an electron and a hole, leading to a Fano factor F=(u2-

v2)<1 at t<<1 (S7). Thus measuring a charge which is smaller than e confirms the 

third scenario. 

 

If fractionally charged quasiparticles indeed tunnel through the SIS junction, why 

does the extracted charge climb back to e when the tunneling probability is extremely 

small? Specifically, an opaque barrier is expected to allow only tunneling of electrons, 

as both sides of the barrier should be quantized in units of the electronic charge due to 

charge neutrality (recall the similar findings in the FQHE [39, 40]). 
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In summary, employing sensitive, low frequency, shot noise measurements [41, 42, 

43], we observed an evolution of energy dependent tunneling of quasiparticle charge 

in a SIS Josephson junction induced in a ‘one-dimensional’ InAs nanowire. The 

charge evolved as e*=ne away from the superconducting gap’s edge, with n=1 for 

eVSD>2 and n=2-4 for eVSD<2 - in agreement with our understanding of multiple 

Andreev reflections (MAR). Moreover, at the gap’s edge, eVSD~2, with MAR 

processes strongly suppressed, the charge as inferred from the Fano factor was found 

to dip below the electron charge e*<e; agreeing with the expectation value of the 

Bugoliubov quasiparticles being smaller than e. While such suppression of the Fano 

factor was observed by numerical simulations (Refs. 18 & 19 and here), the relation to 

the quasiparticle charge was so far never discussed. We suggest that this correlation 

between the suppressed shot noise and the quasiparticle charge in SIS junctions 

should be further investigated theoretically beyond the simplified theoretical picture. 

Moreover, similar measurements should be applied to less ubiquitous 

superconductors, such as topological p-wave superconductors or high-Tc 

superconductors, to investigate the nature of their quasiparticle excitations. 
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Figure Captions 

 

Figure 1.  Multiple Andreev Reflection (MAR). Illustrations of the leading 

processes contributing to the current as function of bias. In general, for 
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13 
 

by an empty circle. (a) When the bias is larger than the energy gap,  2SDeV , the 

leading process is a single-path tunneling of single quasiparticles from the full states 

(left) to the empty states (right). This current is proportional to the transmission 

coefficient t. Higher order MAR process (dashed box), being responsible for 

tunneling of Cooper pairs, is suppressed as t2. (b) For  SDeV2 , the main charge 

contributing to the current is 2e with probability t2. (c) For 
3

2
 SDeV , the main 

charge contributing to the current is 3e with probability t3. 

 

Figure 2.  Scanning electron micrograph of the device and the circuit scheme. 

InAs NW contacted by two superconducting Al electrodes. Conductance 

measurement: Sourcing by AC+DC, VAC=0.1V at ~600kHz, with AC output on RL. 

Noise measurement: Sourcing by DC and measuring voltage fluctuations on RL at a 

bandwidth of 10kHz. 

 

Figure 3.  Shuttled charges in the MAR process. (a) Differential conductance (in 

units of 
h

e2

) as a function of applied bias, SDV , normalized by / e , where 

150 eV    is the superconducting order parameter. The signature of the MAR 

processes is manifested by a series of peaks in bias corresponding to 
2SDeV

n



. (b) 

The I-V characteristics as obtained by integrating the differential conductance. Inset: 

A zoom of the small current range. (c) The shuttled charge q determined from Eq. (3) 

plotted as a function of SD
eV / . The pronounced staircase demonstrates the 

quantization of charge involved in the MAR processes. (d) Numerical simulations of 

the Fano factor, F=Sexc/2eI, as function of SD
eV /  for different values of the 

normal-region transmission t=0.4, 0.2, 0.1, 0.05 (the transmission at SD
2eV   ), 

according to S1. (e) The normalized excess noise (after dividing the excess noise by 

(1-t*)), as a function of the current. Note that the local slope at every MAR region 

equals the global slope (red dashed curves; see also text and Eq. 3), suggesting a 

dominant contribution of a single process to the current and the noise near the energy 

corresponding to the bias. This in turn also suggests that most of the current originates 
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from a small energy range around the Fermi energy justifying the use of the 

differential conductance for extracting the transmission. 

 

Figure 4.  Evolution of the quasiparticles charge near the edge of the gap. (a) 

Differential conductance (in units of 
h

e2

) as a function of SD
eV /  for decreasing 

normal-region transmission t=0.23,0.15,0.1 (red, purple and blue respectively). As the 

transmission decreases (from blue to red) the conductance due to higher order 

processes diminishes with nt dependence. (b) The I-V curve obtained by integrating 

the differential conductance. (c) The charge determined from Eq. (3) plotted as a 

function of SD
eV / . As the transmission decreases, the value of the observed 

minima in the charge at the transition between n=1 and n=2 dips. (d) The measured 

charge q is plotted as a function of the normal-region transmission t. (e) Results of 

numerical calculations showing F=Sexc/2eI as function of e SD
V / for low normal-

region transmissions t=0.2, 0.1, 0.05, 0.02, 0.01. (f) Evolution of the minimum value 

of F (Fmin) as a function of transmission. 

 

Figure 5.  Charge measurements in a Superconductor-Normal junction. (a) The 

charge determined from Eq. (3) as a function of SD
eV /   at normal-region 

transmission t=0.01. The charge q increases from 1 to 2 as eVSD crosses  (b) 

Numerical simulations of the Fano factor, F=Sexc/2eI, as a function of SD
eV /   at 

normal-region transmission t=0.01. 
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Methods and Supplementary Information  

In this Supplementary Section we add details that could not find room in the main 

text. We placed a brief review of the theoretical background as well as the simulation. 

In addition, a few details of the NWs growth process followed by the fabrication 

process are provided, as well as more details on the conductance and noise 

measurements. 

 

S1 – Theoretical model  

Scattering theory of multiple Andreev reflections 

Following [1, 2], we here outline the calculation of the current and current noise 

through a SNS-Josephson junction in the formalism of multiple Andreev reflections. 

Where electrons in the normal part are Andreev reflected from the superconducting 

leads. The normal region contains a barrier whose transmission amplitude squared is t. 

It is assumed that the length of the normal region is much smaller than the 

superconducting coherence length, and that the Fermi energy in the normal region is 

much larger than the superconducting gap . As a simplified setup we consider a 

short one-dimensional normal metal piece connected to one-dimensional semi-infinite 

superconducting leads.  
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A voltage biased Josephson junction exhibits a phase divergence that increases 

linearly in time as 2( t ) eVt  . This poses a periodically time-dependent problem 

which may be treated using Floquet theory expanding the eigenstates of the system in 

the quasi-energies neV2 . A physical interpretation of these energies is in general 

not straightforward. However, in our specific case they are just the energies of the 

electrons/holes in the junction after multiple Andreev reflections. For instance, 

consider a voltage bias eV  and an electron injected into the junction at energy 

  from the left lead- in equilibrium with a chemical potential . After 

propagating through the junction this electron is Andreev reflected around the 

equilibrium potential of the right lead, eV , and returns as a hole with an energy

eV2 . Here, it is again Andreev reflected into an electron with energy eV2 . 

This process repeats until the particle has gained enough energy to overcome the 

superconducting gap and can be absorbed into the continuum of quasi-particle 

excitations in one of the leads. 

Following the picture of multiple Andreev reflections, we can set up the wave-

functions of the electronic state in the junction at the boundaries to the two leads,
1

x , 

2
x  respectively. With the quasi-energies measured with respect to the chemical 

potential of the left lead, the wave-function for a quasi-particle incident on the 

junction from the left lead is  

 

 

1 1

2 2

22 0

1

2

22 1

2

2 1

2

2

i neV tn n n, nikx ikx

n n n nF

i neV tn n nikx ikx

n n n nF

a A BJ( )
( x ,t ) e e e

A a Bv

C a DJ( )
( x ,t ) e e e

a C Dv


 




  

 

     
       

     

    
       

     





 

Where we chose a spinor in the basis  †c ,c
   normalized to flux. The quasi-particle 

enters the junctions as an electron with probability    
2

1J a    , with the 

Andreev reflection amplitude    2 2a i /         if     and 

    2 2a sgn /          if    . 
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The tunneling barrier in the normal part of the junction with transmission 1t   is 

implemented by a scattering matrix connecting the amplitudes of the left and the right 

side in a recursive fashion 

2 0 2

2 1 1 2 1

   and    
n n n n, n n n*

n n n n n n

B a A A a B
S S

C a D D a C  

       
        

       
 

* *

r d
S

d r d / d

 
  

 
 

with 
2

d t . 

The current       
2

†

x

ie
Î t t t h.c.

m
 




      may be evaluated at, say, the left 

boundary using the fact that each lead individually is in equilibrium. The electronic 

states are constructed from the Bogoliubov quasiparticle operators ̂  in the 

superconducting lead as       *

, ,
ˆ ˆt u t sgn u t       



     . We are using a 

joint index i,    to indicate the origin and energy of the incident electron ( i l ,r  

for the left and right lead). The wave-function    u t / t   is the respective 

electron/hole amplitudes obtained from solving the recursive relations denoted above.  

Our main interest in this work is the low-frequency current-noise, which is given by 

the zero Fourier component of the time averaged, symmetrized current correlation: 

         ˆ ˆ ˆ ˆS V d I t I t I t I t           

where      ˆ ˆ ˆI t I t I t   , and the upper bar stands for time averaging (see [1, 2] 

for the explicit expressions). To comply with the experimentally measured quantity 

 exc
S V , one subtracts from  S V  the noise at zero voltage  0S V  . For the 

experimentally-relevant temperatures and voltages this contribution is negligible. 
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Details on the numerical calculations 

The solution to the recurrence relations described above is found using the method of 

continued fractions, following [3, 4]. First, the amplitudes 
n n nA ,C ,D  are eliminated 

yielding a recursive equation for the 
nB  of the general form 

1 1 1 0n n n n n n nc B d B c B       

Introducing a new variable 
1

n
n

n

B
X

B 

  for 0n   and
1

n
n

n

B
X

B 

  for 0n  , for a 

sufficiently large eVn /2max  . The physical reasoning of this ansatz is that an 

electron impinging a lead above the gap is absorbed with a probability approaching 1 

rapidly for high energies. Hence, the amplitudes of states in the junction at high 

enough energies - corresponding to 
maxn n - are negligible. Following this procedure 

one can find all coefficients 
nB  except for

0B , which is then obtained directly from 

Eq. (5) as 

 
1

0 0 1 0 1 1B c X d c X


     

 

Additional simulations 

Noise in a NIS junction: 

We here calculate the current and current noise in a junction of a normal metal (N) 

and a superconductor (S) with a tunneling barrier in the middle to model the 

insulating region (see Fig. S1). Transport through this kind of systems has been 

studied abundantly in the literature and we here adapt the formalism of Refs. [5, 6] to 

calculate the noise using the scattering matrix, particularly the reflection matrix with 

electron-hole grading 

 
   
   

ee eh

he hh

r r
r

r r

  
   

  
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of excitations at energy ε (of either an electron or a hole) approaching the junction 

from the normal metal. The tunneling barrier is described by a normal scattering 

matrix for electrons 

IS
'

  
  

  
 

with the transmission 
2

t   and * *' /      assumed to be energy independent, 

and the corresponding matrix for holes is then just *

IS . The N-S interface is described 

by the Andreev-reflection amplitude  a   given by 

 
  2 2

2 2

1 sgn ,
a

i ,

        
  

        

. 

The reflection amplitudes  eer   and  her   are found from an infinite series 

expansion considering all possible paths through which an incident electron is 

reflected as an electron or as a hole respectively. Taking the distance between the 

normal barrier and the S-N interface to zero, one obtains 

             
 

 

         
 

 
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2
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1

1

*
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a

a
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a

  
                    

  

 
              
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Defining    
2

ee eeR r    and    
2

he heR r   , the current and current noise at zero 

temperature are then obtained by [2] 
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We calculated the ratio 2S / eI  which does not show a dip around eV    even 

though the current shows a peak from enhanced tunneling into the superconductor due 

to a singularity in the density of states. 

 

S2 - MBE Growth and sample fabrication 

MBE Growth of InAs NWs.  The high-quality InAs NWs used in this study were 

grown by the Au-assisted, vapor-liquid-solid (VLS) method, in a high purity 

molecular beam epitaxy (MBE) system [7]. The epi-ready (111)B InAs substrate, 

glued onto a lapped silicon (Si) wafer, was initially heated in an ‘introduction 

chamber’ to 180OC for water desorption, followed by degassing at 350OC and a 

subsequent oxide blow-off with no intentional arsenic overpressure (in a dedicated 

treatment chamber attached to the MBE system). A thin layer of Au (less than 1nm 

thick) was subsequently evaporated in the same chamber. Following transfer to the 

growth chamber, the substrate temperature was ramped up to ~550OC for ripening the 

Au layer into droplets with a rather uniform size and density distribution [7]. 

Lowering the growth temperature (to ~400OC), InAs growth was initiated with an 

As4/In flux ratio of ~100, with resultant InAs NWs nucleating at the Au droplets and 

growing to a length of ~4-5μm with a diameter of 50-60nm. The NWs grow along the 

<0001> direction and have a pure Wurtzite structure mostly without any stacking 

faults (as verified by TEM imaging). 

Device fabrication.  The sample was fabricated on a thermally oxidized Si/SiO2 

substrate (Si:p+ doped and acts as a back gate). The NWs were detached from the 

growth surface by sonication, in ethanol and a droplet, later to dry, placed on a 

substrate with pre-arranged optical marks. Native oxide was removed and surface 

passivated with an ammonium polysulphide solution (NH4)2Sx=1:5, with the NWs 

immediately transferred into an evaporation chamber. Superconducting contacts, 

5/120nm Ti/Al thick, were evaporated by electron beam evaporation. 
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S3 – Detailed measurement setup 

Figure S3 provides a detailed schematic diagram of the measurement setup. The 

experiment was performed in a dilution refrigerator, with an electron temperature of 

~25mK, (inside the dashed region). The Josephson junction is voltage biased (with 

5Ohms resistance at the Source), allowing access of all quiescent points in the I-V 

characteristic. Two electrical relays were employed, one at the input (at 300K) and 

one at the output (at 25mK); allowing switching from low frequency measurement 

(mode 1) - using the lock in technic, to a higher frequency (mode 2) - using a function 

generator and a spectrum analyzer. The actual measurements were done in mode 2, 

while measurements in mode 1 were performed in order to calibrate the higher 

frequency measurement. 

 

Mode 1 – low frequency measurement 

A calibration line allows calibrating the 5Ohms resistor after cooling. Applying DC 

voltage plus an AC signal and measuring the two-terminal AC current, allows 

calculating the static and dynamic conductance. The current was amplified by an 

external current amplifier [8], with 107V/A conversion factor, followed by a DMM or 

a lock-in amplifier. The measured differential conductance was used to calibrate the 

higher frequency measurements. 

 

Mode 2 – higher frequency measurement 

While at DC the Drain is shorted through the coil L, the 600 kHz signal is divided 

between the junction resistance and RL. The external voltage amplifier, SA-220F5, has 

a gain of 200, while the home-made ‘cold’ voltage preamplifier has a gain ~5. Noise 

measurements were performed by replacing the function generator (needed for the 

conductance measurements) with a DC source, and increasing the bandwidth of the 

spectrum analyzer. In our setup we also have two kinds of low pass filters, LPF1 and 

LPF2 which differ by their cut-off frequency. LPF1 is placed both in RT and in base-

temperature has a cutoff frequency of 80MHz (mini-circuit BHP-100+). LPF2 is 

placed between them, also in base temperature and has a cut-off frequency of 2MHz.  
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S4 - Estimating the background noise 

The total voltage noise per unit frequency at the input of the ‘cold’ preamplifier:  

22 2 2 2 4       exc amp amp B
VS S r i r k Tr

Hz
     

  
 ,   (S1) 

where Sexc is the excess current noise per unit frequency, iamp and amp are the 

amplifier's current and voltage noises, respectively, T is the temperature and r is the 

resistance that the amplifier ‘sees’ at the resonance frequency (with a small frequency 

window): 

sample L

sample L

sample L

R R
r R R

R R
 


  , 

here Rsample is the differential resistance of the sample and RL is the frequency 

independent load resistance. Note, that the 1/ f contribution to the noise at f0=600kHz 

is negligible. This is justified both from our measurements at high magnetic field as 

explained in S6 as well as from previous noise measurements done in our system to 

accurately extract integer and fractional charges of excitations in various 2DEG 

systems. 

The background noise, subtracted from the total noise, is: 

22 2 2 4       BG amp amp B
VS i r k Tr

Hz
    

  
 .   (S2) 

Since the differential resistance is strongly dependent on biasing voltage VSD, we first 

describe the procedure of determining the background noise. Since this noise 

(measured at zero bias) is laden with an emerging large Josephson current, it is 

quenched by applying a magnetic field stronger than Bc (B~200mT), where the 

superconductivity is quenched. The differential conductance and the background 

noise were then measured as a function of the back-gate voltage, and thus as function 

of r, in the relevant range (Fig. S4). The values of the amplifier’s noises obtained by 

fitting are in good agreements with the values we measure using other calibration 

methods. The electron temperature agrees well with that measured by other shot noise 

measurements. 
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S5 – The critical magnetic field 

In order to find the critical magnetic field, MAR conductance peaks are measured as a 

function of the magnetic field, with the spacing between the peaks directly 

proportional to the diminishing superconducting gap with magnetic field (Fig. S5). 

 

S6 – Number of conducting channels in the bare NW 

Under high enough magnetic field the quantum charge passing the junction is that of 

the electron. The expression for shot noise provided in the text is that of a singly 

occupied spin-degenerate conducting channel, 

)1(2 teISexc    and    
Qg

G
t =  , (S3) 

where G is the conductance and 
Qg  is the quantum of conductance 

h

e
gQ

2

2= . 

The differential conductance and the I-VSD characteristic were measured after 

quenching superconductivity (but not lifting spin degeneracy) at the working voltage 

of the back-gate corresponding to the actual experiment (Figs. S6a and S6b). The 

noise is then measured as a function of VSD (blue curve in Fig. S6c), and the 

background noise is subtracted (red curve in Fig. S6c), and the excess noise is plotted 

in Fig. S6d. The theoretical curve, calculated using Eq. S4, plotted in a black dashed 

line, seems to agree nicely with the data. In order to test this further, we also plot the 

expected excess noise assuming two spin-degenerate channels, namely, 

   )1(2)1(2 2211 teIteISexc    (S4) 

With I1 and I2 the current carried by each of the two channels, while t1 and t2 are the 

transmission of each of the two channels. If the total current, I, splits between the two 

channels in the following way 

   II 
1

 II )1(
2

  ,  (S5) 

then,  

   
Qg

G
αt =1           

Qg

G
t )-1(2   . (S6) 
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Therefore, since we know I and G, we can plot Sexc for a given α. In Fig. S6d we plot 

Sexc for α=0.5 0.4 0.3 0.2 0.1 and 0.0. Note that α=0, being the single channel case, 

indeed fit best the data. 

This measurement also allows us to show that the 1/f noise to the total noise is 

negligible. Since the 1/f noise is proportional to 
2I , any non-negligible contribution 

of it would cause noise dependency on the current to deviate from formula S4 and to 

become non-linear. Since our measurement in Fig 6d is linear and completely 

coincides with the above formula we conclude that the 1/f noise is negligible.    

 

S7 – Nature of tunneling quasiparticles 

Three possible models are suggested to account for the single quasiparticle tunneling 

taking place in the junction. We calculated the Fano-factor (F) for the models in order 

to see which one of them can account for the measured charge at the superconducting 

gap’s edge – being smaller than e at a low transmission. In each table, we express the 

probability of an event to take place P(x) and its charge (X): 

Model 1: Quasiparticles of charge e tunneling with probability t.  

 x P(x) 

0 (1-t) 

e t 
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Model 2: Quasiparticles of charge e* tunneling with probability t and collapse as an 

electron with a probability p or as a hole with probability q, with p+q=1. 

 x P(x) 

0 1-t 

e tp 
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Model 3: Quasiparticles of charge e* tunneling as a composite particle with 

probability t. 

 x P(x) 

0 (1-t) 

e* t 

 

 

22

2
1

1

1

*

*

t* *

e t

e t t

F e t e

 

  


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It is important to mention that the models above are considering only single 

quasiparticle tunneling across the junction neglecting higher order MAR 

contributions. When we lower the transmission we suppress the higher order MAR 

contributions and reveal a dip in the charge. This is clearly seen in our data as well as 

in the results of the theoretical model of S1. Once we suppressed these high order 

MAR contributions we observe a Fano factor which is smaller than e, which is only 

consistent with Model 3 above. In other words, the only way to observe a Fano factor 

that is lower than e is both to suppress enough the high order MAR (going to low 

transmissions) as well as having a tunneling of quasiparticles carrying a fractional 

charge. 

 

S8 – Induced superconductivity on a single band 

 

In this section we aim to support our claim in the manuscript for having a non-BCS 

density of state and specifically a sharper one in our 1D system. 

 

Observing figure 3a in the main text it is possible to see negative differential 

conductance, this effect which is more apparent as the transmission is decreased 

originates as we will show from the change in the usual BCS density of states.  

In figure S7 (a&b) we plot a measurement of the differential conductance as a 

function of the applied bias and the I-V curve. In figure S7 (c&d) we plot the 

theoretical predicted I-V curve and differential conductance based on the BCS density 

of state assuming a uniform transmission. The negative differential resistance which is 

clearly seen in the measurement and manifested in the experimental I-V curve as a 

peak in the current is not visible in the theoretical I-V, this suggests a different 

theoretical model should be given. 

 

The origin of this discrepancy is the assumption of a linear dispersion which usually 

one considers in calculating the DOS. In a 1D wire, which has a parabolic dispersion, 

as the Fermi level is lowered to the bottom of the conduction band this assumption 
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fails. Hence, the change in the DOS is more apparent as the fermi energy gets closer 

to the ‘Van-Hove singularity’.  

 

To show this we calculated the DOS and I-V curves as a function the fermi energy 

position. Figure 8(a, d and g) are the density of state for EF=5Δ, 2Δ and Δ 

respectively. In figure 8(b, e and h) we plot each DOS when the fermi energy is 

defined as zero energy. It is already clear that as the Fermi level is pushed towards the 

bottom of the band the DOS is modified. In Fig 8(c, f and i) we calculate the I-V 

curves and show that the modified DOS gives rise to a peak in the I-V curve, similar 

to the one we showed in fig S7b.  

In conclusion, the negative differential resistance which is seen in experiment as the 

device is pinched suggests a modification from the usual BCS density of state. 

 

 

S9 – Charge partition in SIN junction 

 

In the SIS junction, the overlap between filled states of quasiparticles’ wave-function 

and empty states (above the gap) in the two superconductors allows tunneling of 

quasiparticles with fractional charge. However, in the case of SIN, in the N side there 

are quasiparticles with charge e while in the S side there are quasiparticles with a 

smaller charge. Our physical picture suggests that tunneling of electrons, being of the 

higher charge is always dominant. In one polarity, the electrons that tunnel from N to 

S breaks to multiple quasiparticles; while in the opposite polarity, quasiparticles 

bunching to an electron (in N) takes place. This is similar to the known bunching in 

the 3/1=  fractional quantum hall states where 3 quasiparticles, each with charge 

e/3, tunnel together to form an electron. 

Moreover, and in general, tunneling between two different materials, with 

different quasiparticles in each side, the current fluctuations will correspond to the 

larger charge transfer. For example, when the bias is smaller than Δ, electrons from 

the N region "bunch" to form Cooper pairs and the measured charge (via shot noise) 

is 2e (via Andreev reflection). 
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Figure Captions: 

Figure S1. The Junction is modeled by a combination of a normal barrier and a 

perfect N-S interface. The calculation is done in the limit where the distance between 

the barrier and the N-S interface is zero. 

Figure S2. SEM image of InAs NWs grown on (111)B InAs (micrograph taken at 

45º). Note the uniformity of width and length of the NWs. 

Figure S3. Measurement setup. A scanning electron micrograph of the device (scale 

bar, 200nm) connected to a detailed illustrated circuit. 

Figure S4. Background noise measurements. (a) We start by measuring the 

differential conductance, Gsample, as a function of back gate voltage, Vg. The 

differential resistance is given by Rsample=1/Gsample and is shown in (b). Then we 

calculate the resistance that the amplifier sees at its input, Rparallel, by taking Rsample in 

parallel to RL and the result is shown in (c). (d) We then measure the background 

noise as a function of back gate voltage, Vg. This is done at magnetic field of 200mT 

to avoid effects related to superconductivity, and at zero bias to avoid any Shot noise. 

Combining the results allows us to plot the background noise as a function of Gsample 

as shown in (e), or as a function of Rparallel as shown in (f). In (f) we show the fit of the 

final result to a second order polynomial from which we obtain the coefficients of Eq. 

S2.      

Figure S5.  Critical magnetic field of the Al contacts. Differential conductance as a 

function of bias and magnetic field. 

Figure S6.  Noise measurements at high magnetic field. (a) Differential 

conductance vs. bias, VSD, at magnetic field of 200mT. (b) I-V curve obtained by 

integrating the differential conductance. (c) Total voltage noise (in blue) and 

background noise (red) as a function of bias. (d) Excess current noise per unit 

frequency as s function of DC current through the device is plotted in blue. 

Theoretical lines of the expected excess noise assuming two channels carrying the 

current are plotted in dashed lines. The expected excess noise should follow 

)1(2)1(2 2211 teIteISexc  , with II 
1

 and II )1(
2

  being the currents 

carried by each channel. Lines are plotted for α=0.5 0.4 0.3 0.2 0.1 and 0.0 (red to 
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black) where the α=0 case reduces to the single channel scenario. The experimental 

data, falling on the α=0 line, leads us to conclude a single occupied channel.    

Figure S7.  I-V curve of the experiment vs. BCS theory: (a & b) Measurement of 

the differential resistance and I-V curves in very low transmission. (c & d) 

Differential resistance and I-V curves expected from BCS theory assuming a constant 

transmission in energy. 

Figure S8.  Each raw show the density of state and the I-V curve for a certain position 

of the fermi energy (5Δ, 2Δ and Δ above the minimum of the conduction band). 
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Fig. S7
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Fig. S8
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