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Abstract: A good deal of molecular dynamics simulations aims at predicting and
quantifying rare events, such as the folding of a protein or a phase transition. Simulating
rare events is often prohibitive, especially if the equations of motion are high-dimensional,
as is the case in molecular dynamics. Various algorithms have been proposed for efficiently
computing mean first passage times, transition rates or reaction pathways. This article
surveys and discusses recent developments in the field of rare event simulation and outlines
a new approach that combines ideas from optimal control and statistical mechanics. The
optimal control approach described in detail resembles the use of Jarzynski’s equality for
free energy calculations, but with an optimized protocol that speeds up the sampling, while
(theoretically) giving variance-free estimators of the rare events statistics. We illustrate the
new approach with two numerical examples and discuss its relation to existing methods.

Keywords: rare events; molecular dynamics; optimal pathways; stochastic control; dynamic
programming; change of measure; cumulant generating function

1. Introduction

Rare but important transition events between long-lived states are a key feature of many systems
arising in physics, chemistry, biology, etc. Molecular dynamics (MD) simulations allow for analysis



Entropy 2014, 16 351

and understanding of the dynamical behavior of molecular systems. However, realistic simulations for
interesting (large) molecular systems in solution on timescales beyond microseconds are still infeasible
even on the most powerful general purpose computers. This significantly limits the MD-based analysis
of many biological equilibrium processes, because they often are associated with rare events. These rare
events require prohibitively long simulations because the average waiting time between the events is
orders of magnitude longer than the timescale of the transition characterizing the event itself. Therefore,
the straightforward approach to such a problem via direct numerical simulation of the system until a
reasonable number of events has been observed is impractically excessive for most interesting systems.
As a consequence, rare event simulation and estimation are among the most challenging topics in
molecular dynamics.

In this article, we consider typical rare events in molecular dynamics for which conformation changes
or protein folding may serve as examples. They can be described in the following abstract way: The
molecular system under consideration has the ability to go from a reactant state given by a set A in its
state space (e.g., an initial conformation) to a product state described by another set B (e.g., the target
conformation). Dynamical transitions from A to B are rare. The general situation we will address is
as follows:

• The system is (meta)stable, with the sets A and B being two of its metastable sets in the sense that
if the system is put there, it will remain there for a long time; transitions between A and B are
rare events.
• The setsA andB are separated by an unknown and, in general, rough or diffusive energy landscape

(that will be denoted by V ).

In addition, we will assume that the system under consideration is in equilibrium with respect to the
stationary Gibbs-Boltzmann density

µ(x) =
1

Z
exp(−βV (x)) . (1)

We are interested in characterizing the transitions leading from A into B, that is, we are interested in the
statistical properties of the ensemble of reactive trajectories that go directly from A to B (i.e., start in A
without returning toA before going toB). In other words, we are interested in all trajectories comprising
the actual transition. We would like to:

• know which parts of state space such reactive trajectories visit most likely, i.e., where in state space
do we find transition pathways or transition channels through which most of the probability current
generated by reactive trajectories flows and
• characterize the rare event statistically, i.e., compute the transition rate, the free energy barrier, the

mean first passage time or even more elaborated statistical quantities.

The molecular dynamics literature on rare event simulations is rich. Since the 1930s, transition state
theory (TST) [1,2] and extensions thereof based on the reactive flux formalism have provided the main
theoretical framework for the description of transition events. TST can, however, at best deliver rates
and does not allow one to characterize transition channels. It is based on partitioning the state space
into two sets with a dividing surface in between, leaving set A on one side and the target set B on the
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other, and the theory only tells how this surface is crossed during the reaction. Often, it is difficult to
choose a suitable dividing surface, and a bad choice will lead to a very poor estimate of the rate. The
TST estimate is then extremely difficult to correct, especially if the rare event is of the diffusive type,
where many different reaction channels co-exist. Therefore, many techniques have been proposed that
try to go beyond TST.

These different strategies approach the problem by sampling the ensemble of reactive trajectories or
by directly searching for the transition channels of the system. Most notable among these techniques
are (1) Transition Path Sampling (TPS) [3]; (2) the so-called String Methods [4], or optimal path
approaches [5–7] and variants thereof; (3) techniques that follow the progress of the transition through
interfaces, like Forward-Flux Simulation (FFS) [8], Transition Interface Sampling (TIS) [9] or the
Milestoning techniques [10,11]; and (4) methods that drive the molecular system by external forces with
the aim of making the required transition more frequent while still allowing one to compute the exact
rare event statistics for the unforced system, e.g., based on Jarzynski’s and Crook’s identity [12,13].
All of these methods consider the problem in continuous state space, i.e., through reactive trajectories or
transition channels in the original state space of the molecular system. They all face substantial problems,
e.g., if the ensemble of reactive trajectories and/or transition channels of the system under consideration
are too complicated (multi-modal, irregular, essentially high dimensional) or they suffer from too large
variance of the underlying statistical estimators. We should moreover stress that each of these methods
has its specific scope of application; some methods are mainly useful for computing transition rates,
whereas others can be used to compute transition pathways or free energy differences.

Our aim is (A) to review some of these methods based on a joint theoretical basis and (B) to outline
a new approach to the estimation of rare event statistics based on a combination of ideas from optimal
control and statistical mechanics. In principle, this approach allows for a variance-free estimation of rare
event statistics in combination with much reduced simulation time. The rest of the article is organized as
follows: We start with a precise characterization of reactive trajectories, transition channels and related
quantities in the framework of Transition Path Theory (TPT) in Section 2. Then, in Sections 3 and 4,
we discuss the methods from classes (1)–(3) and characterize their potential problems in more detail.
In Section 5, we consider methods of type (4) as an introduction to the presentation of the new optimal
control approach that is outlined in detail in Sections 6 and 7, including some numerical experiments.

Alternative, inherently discrete methods, like Markov State Modeling, that discretize the state space
appropriately and try to compute transition channels and rates a posteriori based on the resulting discrete
model of the dynamics will not be discussed herein and are considered in the article [14] in a way related
to the presentation at hand. We should further mention that not all rare event problems in molecular
dynamics are related to sampling the underlying Gibbs–Boltzmann statistics, e.g., nucleation events
under shear [15] or genuine nonequilibrium systems without a stationary probability distribution [16].

2. Reactive Trajectories, Transition Rates and Transition Channels

Since our results are rather general, it is useful to set the stage somewhat abstractly. To this end, we
borrow some notation from [17] and consider a system whose state space is Rn and denote by Xt the
current state of the system at time t. For example, Xt may be the set of instantaneous positions and



Entropy 2014, 16 353

momenta of the atoms of a molecular system. We assume that the system is ergodic with respect to a
probability (equilibrium) distribution µ and that we can generate an infinitely long equilibrium trajectory
{Xt}t∈R where, for technical reasons, we let the trajectory start at time t = −∞. The trajectory will go
infinitely many times from A to B and each time the reaction happens. This reaction involves reactive
trajectories that can be defined as follows: Given the trajectory {X(t)}t∈R, we say that its reactive pieces
are the segments during which Xt is neither in A or B, came out of A last and will go to B next. To
formalize things, let

t+AB(t) = smallest s ≥ t such that X(s) ∈ A ∪B,
t−AB(t) = largest s ≤ t such that X(s) ∈ A ∪B .

Then, the trajectory {X(t)}t≥0 is reactive for all t ∈ R where R ⊂ [0,∞) is defined by the requirements

Xt 6∈ A ∪B, Xt+AB(t) ∈ B and Xt−AB(t) ∈ A

and the ensemble of reactive trajectories is given by the set

R = {Xt : t ∈ R}

where each specific continuous piece of trajectory going directly from A to B in the ensemble belongs
to a specific interval [t1, t2] ⊂ R.

Given the ensemble of reactive trajectories, we want to characterize it statistically by answering the
following questions:

(Q1) What is the probability of observing a trajectory at x 6∈ (A ∪B) at time t, conditional on t ∈ R?
(Q2) What is the probability current of reactive trajectories? This probability current is the vector field

jAB(x) with the property that given any separating surface S between A and B (i.e., the boundary
of a region that contains A but not B), the surface integral of jAB over S gives the probability flux
of reactive trajectories between A and B across S.

(Q3) What is the transition rate of the reaction, i.e., what is the mean frequency kAB of transitions from
A to B?

(Q4) Where are the main transition channels used by most of the reactive trajectories?

Question (Q1) can be answered easily, at least theoretically: The probability density to observe any
trajectory (reactive or not) at point x is µ(x). Let q(x) be the so-called committor function, that is the
probability that the trajectory starting from x reaches firstB rather thanA. If the dynamics are reversible,
then the probability that a trajectory we observe at state x is reactive is q(x)(1 − q(x)), where the first
factor appears since the trajectory must go to B rather than A next, and the second factor appears since
it needs to come from A rather than B last. Now, the Markov property of the dynamics implies that the
probability density to observe a reactive trajectory at point x is

µAB(x) ∝ q(x)(1− q(x))µ(x) ,

which is the probability of observing any trajectory in x times the probability that it will be reactive (the
proportionality symbol ∝ is used to indicate identity up to normalization).
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2.1. Transition Path Theory (TPT)

In order to give answers to the other questions, we will exploit the framework of transition path
theory (TPT), which has been developed in [17–20] in the context of diffusions and has been generalized
to discrete state spaces in [21,22]. In order to review the key results of TPT, let us consider diffusive
molecular dynamics in an energy landscape V : Rn → R:

dXt = −∇V (Xt)dt+
√

2ε dBt , X0 = x . (2)

Here, Bt denotes standard n-dimensional Brownian motion, and ε > 0 is the temperature of the system.
Under mild conditions on the energy landscape function V , we have ergodicity with respect to the
stationary distribution µ(x) = Z−1 exp(−βV (x)) with β = 1/ε. The dynamics are reversible with
respect to this distribution, i.e., the detailed balance condition holds. We assume throughout that the
temperature is small relative to the largest energy barriers, i.e., ε � ∆Vmax. As a consequence, the
relaxation of the dynamics towards equilibrium is dominated by the rare transitions over the largest
energy barriers.

For these kind of dynamics, Questions (Q2) and (Q3) have surprisingly simple answers: The reactive
probability current is given by

jAB(x) = εµ(x)∇q(x)

where ∇q denotes the gradient of the committor function q. Based on this, the transition rate can be
computed by the total reactive current across an arbitrary separating surface S:

kAB =

∫
S

nS(x)jAB(x)dσS(x)

where nS denotes the unit normal vector on S pointing towardsB and σS the associated surface element.
The rate can also be expressed by

kAB = ε

∫
(A∪B)c

(∇q(x))2µ(x)dx

where (A ∪ B)c denotes the entire state space excluding A and B. Given the reactive current, we can
even answer Question (Q4): The transition channels of the reaction A→ B are the regions of (A ∪ B)c

in which the streamlines of the reactive current, i.e., the solutions of

d

dt
xAB(t) = jAB

(
xAB(t)

)
, xAB(0) ∈ A

are exceptionally dense.
Figure 1 illustrates these quantities for the case of a 2D three well potential with two main wells (the

bottoms of which we take as A and B in the following) and a less significant third well. The three main
saddle points separating the wells are such that the two saddle points between the main wells and the third
well are lower in energy than the saddle point between the main wells, such that in the zero temperature
limit, we expect that almost all reactive trajectories take the route through the third well across the two
lower saddle points. We observe that the committor functions for low and higher temperatures exhibit
smooth isocommittor lines separating the sets A and B, as expected. The transition channels computed
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from the associated reactive current also show what one should expect: For a lower temperature, the
channel through the third well and across the two lower saddle points is dominant, while for a higher
temperature, the direct transition from A to B across the higher saddle point is preferred.

Figure 1. (Top left panel) Three-well energy landscape V as described in the text. (Top
right panel) Typical reactive trajectory in the three-well landscape. (Middle left panel)
Committor functions qAB for diffusion molecular dynamics with relatively high temperature
ε = 0.6 for the setsA (main well, right-hand side) andB (main well, left-hand side). (Middle
right panel) Committor qAB for the low temperature case ε = 0.15. (Bottom left panel)
Transition channels for ε = 0.6. (Bottom right panel) Transition channels for ε = 0.15. For
details of the computations underlying the pictures, see [22].

These considerations can be generalized to a wide range of different kinds of dynamics in continuous
state spaces, including, e.g., full Langevin dynamics, see [17–20].

This example illustrates that TPT in principle allows us to quantify all aspects of the transition
behavior underlying a rare event. We can compute transition rates exactly and even characterize
the transition mechanisms if we can compute the committor function. Deeper insight using the



Entropy 2014, 16 356

Feynman–Kac formula yields that the committor function can be computed as the solution of a linear
boundary value problem, which for diffusive molecular dynamics reads

LqAB = 0 in (A ∪B)c, qAB = 0 in A, qAB = 1 in B

where the generator L has the following form

L = ε∆−∇V (x) · ∇ (3)

where ∆ =
∑

i ∂
2/∂x2

i denotes the Laplace operator. This equation allows the computation of qAB
in relatively low-dimensional spaces, where the discretization of L is possible based on finite element
methods or comparable techniques. In realistic biomolecular state spaces, this is infeasible because of
the curse of dimensionality. Therefore, TPT gives a complete theoretical background for rare event
simulation, but its application in high dimensional situations is still problematic. As a remedy, a discrete
version of TPT has been developed [21,22], which can be used in combination with Markov State
Modeling; see [23].

2.2. Transition Path Sampling (TPS)

TPS has been developed in order to sample from the probability distribution of reactive trajectories
in so-called “path space”, which means nothing else than the space of all discrete or continuous paths
starting in A and ending up in B equipped with the probability distribution generated by the dynamics
through the ensemble of associated reactive trajectories. Let PT denote the path measure on the space
of discrete or continuous trajectories {Xt}0≤t≤T of length T . The path measure of reactive trajectories
then is

PAB
T ({Xt}0≤t≤T ) =

1

ZAB
1A(X0)PT ({Xt}0≤t≤T )1B(XT ) (4)

where 1A denotes the indicator function of set A (that is, 1A(x) = 0 if x 6∈ A and = 1 otherwise).
TPS is a Metropolis Monte-Carlo (MC) method for sampling PAB

T ({Xt}0≤t≤T )) that uses explicit
information regarding the path measure PT , such as Equation (5), with MC moves that are based on a
perturbation of a precomputed reactive trajectory [3,24]. It delivers an ensemble of reactive trajectories
of length T that (under the assumption of convergence of the MC scheme) is representative for PAB

T

and thus allows one to compute respective expectation values, like the probability to observe a reactive
trajectory or the reactive current. However, its potential drawbacks are obvious: (1) A typical reactive
trajectory is very long and rather uninformative (cf. Figure 1), i.e., the computational effort of generating
an entire ensemble of long reactive trajectories can be prohibitive; (2) convergence of the MC scheme
in the infinite dimensional path space can be very poor; and (3) the limitation to a pre-defined trajectory
length T can lead to biased statistics of the TPS ensemble. Advanced TPS schemes try to remedy these
drawbacks by combining the original TPS idea with interface methods [9]. Even though TPS can be
used no matter whether the underlying dynamics is deterministic or stochastic, the algorithm is usually
used in connection with deterministic Hamiltonian dynamics [3].
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3. Finding Transition Channels

Whenever a transition channel exists, one can try to approximate the center curve of the transition
channel instead of sampling the ensemble of reactive trajectories. If the center curve (also: principal
curve) is a rather smooth object, then such a method would not suffer from the extensive length of reactive
trajectories. Several such methods have been introduced; they differ with respect to the definition of the
transition channel and the corresponding center or principal curve.

3.1. Action-Based Methods

Rather than sampling the probability distribution of reactive pathways, such as Equation (4), one can
try to obtain a representative or dominant pathway, e.g., by computing the pathway that has maximum
probability under PT . For the case of diffusive molecular dynamics, the path measure PT has a
probability density relative to a (fictitious) uniform measure on the space of all continuous paths in
Rn of length T that are generated by Brownian motion; the relative density reads

`(ϕ) = exp

(
− 1

2ε
Iε(ϕ)

)
where Iε is the Onsager–Machlup action

Iε(ϕ) =

∫ T

0

{
1

2
|ϕ̇(s)|2 +

1

2
|∇V (ϕ(s))|2 − ε∆V (ϕ(s))

}
dt . (5)

More precisely, `(ϕ) is the limiting ratio between the probability that the solution of Equation (2) remains
in a small tubular neighborhood of a smooth path ϕ(·) and the probability that

√
2εBt remains in a small

neighborhood of the initial value x = ϕ(0), as the size of the neighborhoods go to zero [25].
The fact that the Euler discretization of the path density `, with Iε interpreted in the sense of Itô

integrals, corresponds to the probability density of the Euler-discretized reaction path with respect
to Lebesgue measure has led to the idea that by minimizing the Onsager–Machlup action over all
continuous paths ϕ : [0, T ] → Rn going from A to B, one can find the dominant reactive path
ϕ∗ = argminϕ I

ε(ϕ) in the sense of a maximum likelihood estimator. The hope is that this path,
often also called the optimal path or most probable path, on the one hand, contains information on
the transition mechanism and, on the other hand, is much smoother and easier to interpret than a typical
reactive trajectory. Note, however, that the actual probability that the solution of Equation (2) remains in
a small neighborhood of a given path ϕ(·) is exponentially small in the size of the neighborhood.

In [7], a comparison between the Onsager–Machlup action and its zero temperature limit has
been given using gradient descent methods, raising issues regarding the correct interpretation of the
minimizers of Iε (that need not exist) as most probable paths. In [5], the dominant reaction pathway
method has been outlined, which uses a simplified version of the Onsager–Machlup functional that
leads to a computationally simpler optimization problem and is applicable to large-scale problems,
e.g., protein folding [6]. However, even if the globally dominant pathways can be computed, such
that the optimization does not get stuck in local minima, and even if we ignore the issues regarding the
correct interpretation of minimizers, the resulting pathways in general do not allow one to gain statistical
information on the transition (like rates, currents, mean first passage times).
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Another action-based method that has been introduced in [26] is the MaxFlux method, which seeks
the path that carries the highest reactive flux among all reactive trajectories of a certain length. The idea
is to compute the path of least resistance by minimizing the functional

L(ϕ) =

∫ T

0

exp
(
ε−1V (ϕ(s))

)
ds .

Several algorithmic approaches for the minimization of the resistance functional L have been proposed,
e.g., a path-based method [27], discretization of the corresponding Euler–Lagrange equation based
on a mean-field approximation of it [28] or a Hamilton–Jacobi-based approach using the method of
characteristics [29]. Minimizing L for different values of T then yields a collection of paths, each of
which carries a certain percentage of the total reactive flux. The method is useful if the temperature is
small, so that the reactive flux concentrates around a sufficiently small number of reactive pathways.

3.2. String Method and Variants

There are several other methods that entirely avoid the computation of reactive trajectories, but try to
reconstruct the less complex transition channels or pathways instead, analyzing the energy landscape of
the system. One group of such techniques, like the Zero Temperature String method [4], the Geometric
Minimum Action method [30] or the Nudged Elastic Band method [31], concentrate on the computation
of the minimal energy path (MEP), i.e., the path of lowest potential energy between (a point in) A
and (a point in) B. Under diffusive molecular dynamics and for vanishing temperature, the MEP is
the path that transitions take with probability one [32]. It turns out that the MEP in this case is the
minimizer of the Onsager–Machlup action (5) in the limit ε → 0. For non-zero temperature and a
rugged energy landscape, the MEP will in general be not very informative and must be replaced by a
finite-temperature transition channel. This is done by the finite-temperature string (FTS) method [33]
based on the following considerations: Firstly, the isocommittor surfaces Γα, α ∈ [0, 1], of the committor
q are taken as natural interfaces that separateA fromB. Secondly, each Γα is weighted with the stationary
distribution µ to find reactive trajectories crossing it at a certain point x ∈ Γα,

ρα(x) =
1

Zα
q(x)(1− q(x))µ(x), Zα =

∫
Γα

q(x)(1− q(x))µ(x)dσα(x)

The idea of the FTS method is that the ensemble of reactive trajectories can be characterized by this
distribution on the isocommittor surfaces. Third, one assumes that for each α, the probability density ρα
is peaked in just one point ϕ(α) and that the curve ϕ = ϕ(α), α ∈ [0, 1] defined by the sequence of these
points forms the center of the (single) transition channel. More precisely, one defines ϕ(α) = 〈x〉Γα
where the average is taken according to ρα along the respective isocommittor surface Γα. Fourth, it
is assumed that the covariance Cα = 〈(x − ϕ(α)) ⊗ (x − ϕ(α))〉Γα , which defines the width of the
transition channel, is small, which implies that the isocommittor surfaces can be locally approximated
by hyperplanes Pα. The computation of the FTS string ϕ then is done by approximating it via
ϕ(α) = 〈x〉Pα , where the average is computed by running constrained dynamics on Pα while iteratively
refining the hyperplanes Pα; see [34] for details. Later extensions [35] remove the restrictions resulting
from the hyperplanes by using Voronoi tessellations instead.
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The FTS method allows one to compute single transition channels in rugged energy landscapes as
long as these are not too extended and rugged. Compared to methods that sample the ensemble of
reactive trajectories, it has the significant advantage that the string, that is, the principal curve inside the
transition channel, is rather smooth and short, as compared to the typical reactive trajectories. The FTS
further allows one to compute the free energy profile F = F (α) along the string,

F (α) = −β−1 log

∫
Pα

µ(x)dσα(x)

that characterizes the transition rates associated with the transition channel (at least in the limits of the
approximations invoked by the FTS).

4. Computing Transition Rates

The computation of transition rates can be performed without computing the dominant transition
channels or similar objects. There is a list of rather general techniques, with Forward Flux Sampling
(FFS) [8], Transition Interface Sampling (TIS) [9] and Milestoning [10] as examples, that approximate
transition rates by exploring how the transition progresses from one to the next interface that separates
A from B.

4.1. Forward Flux Sampling (FFS)

The first step of FFS is the choice of a finite sequence of interfaces Ik, k = 1, . . . , N , in state space
between A and B = IN . The transition rate kAB comes as the product of two factors: (1) the probability
current JA of all trajectories leaving A and hitting I1; and (2) the probability

P(B|I1) =
N−1∏
j=1

P(Ik+1|Ik)

that a trajectory that leaves I1 makes it toB before it returns toA; here, P(Ik+1|Ik) denotes the probability
that a trajectory starting in Ik makes it to Ik+1 before it returns to A. FFS first performs a brute-force
simulation starting in A, which yields an ensemble of points at the first interface I1, yielding an estimate
for the flux JA (the number of trajectories hitting I1 per unit of time). Second, a point from this ensemble
on I1 is selected at random and used to start a trajectory, which is followed until it either hits the next
interface I2 or returns toA; this gives P(I2|I1). This procedure then is iterated from interface to interface.
Finally, the rate kAB = JA · P(B|I1) is computed. Variants of this algorithm are described in [36,37],
for example.

FFS has been demonstrated to be quite general in approximating the flux of reactive trajectories
through a given set of interfaces; it can be applied to equilibrium, as well as nonequilibrium systems,
and its implementation is easy (see [16,38]). The interfaces used in FFS are, in principle, arbitrary.
However, the efficiency of the sampling of the reactive hitting probabilities P(Ik+1|Ik) crucially depends
on the choice of the interfaces. In practice, the efficiency of FFS will drop dramatically if one does not
use appropriate surfaces, and totally misleading rates may result from this. Ideally, one would like to
choose these surfaces, so that the computational gain offered by FFS in optimized, but in practice, this
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is not a trivial task; see [39]. The same is true for TIS that couples TPS with progressing from interface
to interface.

4.2. Milestoning

Milestoning [10] is similar to FFS in so far as it also uses a set of interfaces Ik, k = 1, . . . , N that
separate A and B = IN . In contrast to FFS and TIS, the fundamental quantities in Milestoning are
the hitting time distributions K±i (τ), i = 1, . . . , N − 1, where K±i (τ) is the probability that a trajectory
starting at t = 0 at interface Ii hits Ii±1 before time τ . Trajectories that make it to milestone Ii must come
from milestones Ii±1 and vice versa. In the original algorithm, these distributions are approximated as
follows [10]: For each milestone Ii, one first samples the distribution µ constrained to Ii. Based on the
resulting sample, we start a trajectory from each point, which is terminated when it reaches one of its two
neighboring milestones Ii±1. The hitting times are recorded and collected into two distributions K±i (τ).

These local kinetics are then compiled into the global kinetics of the process: For each i, one defines
Pi(t) as the probability that the process is found between Ii−1 and Ii+1 at time t and that the last milestone
hit was Ii. Milestoning is based on a (non-Markovian) construction of Pi(t) from the K±i (τ). Its
efficiency comes from two sources: (1) It does not require the computation of long reactive trajectories
but only short ones between milestones (which therefore should be ‘close enough’); (2) It is easily
parallelizable. Its disadvantage is the dependence on the milestones that have to be chosen in advance:
It can be shown that Milestoning with perfect sampling allows one to compute exact transition rates or
mean first passage times if the interfaces are given by the isocommittor surfaces (which in general are not
known in advance) [40]; if the interfaces are chosen inappropriately, the results can be rather misleading.

5. Nonequilibrium Forcing and Jarzynski’s Identity

The computation of reliable rare event statistics suffers from the enormous lengths of reactive
trajectories. One obvious way to overcome this obstacle is to force the system to exhibit the transition
of interest on shorter timescales. Therefore, can we drive the molecular system to make the required
transition more frequently but still compute the exact rare event statistics for the unforced system?

As was shown by Jarzynski and others, nonequilibrium forcing can in fact be used to obtain
equilibrium rare event statistics. The advantage seems to be that the external force can speed up the
sampling of the rare events by biasing the equilibrium distribution towards a distribution under which
the rare event is no longer rare. We will shortly review Jarzynski’s identity before discussing the matter
in more detail.

5.1. Jarzynski’s Identity

Jarzynski’s and Crook’s formulae [12,13] relate the equilibrium Helmholtz free energy to the
nonequilibrium work exerted under external forcing: Given a system with energy landscape V (x), the
total Helmholtz free energy can be defined as

F = −β−1 logZ with Z =

∫
exp(−βV (x))dx .
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Jarzynski’s equality [12] then relates the free energy difference ∆F = −β−1 log(Z1/Z0) between two
equilibrium states of a system given by an unperturbed energy V0 and its perturbation V1 with the work
W applied to the system under the perturbation: Suppose we set Vξ = (1 − ξ)V0 + ξV1 with ξ ∈ [0, 1],
and assume we set a protocol that describes how the system evolves from ξ = 0 to ξ = 1. If, initially, the
system is distributed according to exp(−βV0), then, by the second law of thermodynamics, it follows that
E(W ) ≥ ∆F whereW is the total work applied to the system and E denotes the average overall possible
realizations of the transition from ξ = 0 to ξ = 1; equality is attained if the transition is infinitely slow
(i.e., adiabatic). Jarzynski’s identity now asserts that the free energy is always equal to the exponential
average of the nonequilibrium work,

∆F = −β−1 logE
[

exp(−βW )
]

arbitrarily far away from the adiabatic regime. Many generalizations exist: In [13], a generalized version
of this fluctuation theorem, the so-called Crook’s formula, for stochastic, microscopically reversible
dynamics, is derived. In [41,42], it is shown how one can compute conditional free energy profiles along
a reaction coordinate for the unperturbed system, rather than total free energy differences between a
perturbed and unperturbed system.

Algorithmic application prohibitive.Despite the fact that Jarzynski’s and Crook’s formulae are used in
molecular dynamics applications [43], their algorithmic usability is limited by the fact that the likelihood
ratio between equilibrium and nonequilibrium trajectories is highly degenerate, and the overwhelming
majority of nonequilibrium forcings generate trajectories that have almost zero weight with respect to
the equilibrium distribution that is relevant for the rare event. This leads to the fact that most rare
event sampling algorithms based on Jarzynski’s identity have prohibitively large variance. Recent
developments have reduced this problem by sampling just the reversible work processes based on
Crook’s formula, but could not fully remove the problem of large variance [44]; see also [45]. Because
of this, we will approach the problem of variance reduction subsequently.

5.2. Cumulant Generating Functions

In order to demonstrate how to improve approaches based on the idea of driving molecular systems
to make rare events frequent, we first have to introduce some concepts and notation from statistical
mechanics: Let W be a random variable that depends on the sample paths of (Xt)t≥0, i.e., on molecular
dynamics trajectories of the system under investigation. Further, let P be the underlying probability
measure on the space of continuous trajectories as introduced in Section 2.2 (but without the restriction
to a given length T ). We define the cumulant generating function (CGF) of W by

γ(σ) = −σ−1 logE[exp(−σW )] (6)

where σ is a non-zero scalar parameter and E[f ] =
∫
f dP denotes the expectation value with respect

to P . Note that the CGF is basically the free energy at inverse temperature β as in Jarzynski’s formula,
but here, it is considered as a function of the independent parameter σ. (Definition (6) differs from the
standard CGF only by the prefactor σ−1 in front.) Taylor expanding the CGF about σ = 0, we observe
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that γ(σ) ≈ E[W ]− σ
2
E[(W −E[W ])2]; hence, for sufficiently small σ, the variance is decoupled from

the mean. Moreover, it follows by Jensen’s inequality that

γ(σ) ≤ E[W ]

where equality is achieved if and only if W is almost surely constant, in accordance with the second law
of thermodynamics. (This is the case, e.g., when W is the work associated with an adiabatic transition
between thermodynamic equilibrium states.)

Optimal reweighting.
The CGF admits a variational characterization in terms of relative entropies. To this end, let Q be

another probability measure, so that P is absolutely continuous with respect to Q, i.e., the likelihood
ratio dP/dQ exists and is Q-integrable. Then, using Jensen’s inequality again,

−σ−1 log

∫
e−σW dP = −σ−1 log

∫
e−σW+log( dP

dQ
) dQ

≤
∫ {

W + σ−1 log

(
dQ

dP

)}
dQ ,

which, noting that the logarithmic term is the relative entropy (or Kullback–Leibler divergence) between
Q and P , can be recast as

γ(σ) ≤
∫
W dQ+H(Q‖P ) (7)

where

H(Q‖P ) = σ−1

∫
log

(
dQ

dP

)
dQ , (8)

and we declare that H(Q‖P ) = ∞ if Q does not have a density with respect to P . Again, it follows
from the strict convexity of the exponential function that equality is achieved if and only if the new
random variable

Z = W + σ−1 log

(
dQ

dP

)
is Q-almost surely constant. This gives us the following variational characterization of the cumulant
generating function that is due to [46]: Variational formula for the cumulant generating function.

Let W be bounded from above, with E[exp(−σW )] <∞. Then

γ(σ) = inf
Q�P

{∫
W dQ+H(Q‖P )

}
(9)

where the infimum runs over all probability measures Q that have a density with respect to P . Moreover,
the minimizer Q∗ exists and is given by

dQ∗ = eγ(σ)−σW dP .
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6. Optimal Driving from Control Theory

When Xt denotes stochastic dynamics, such as Equation (2), the above variational formula admits a
nice interpretation in terms of an optimal control problem with a quadratic cost. To reveal it, we first
need some technical assumptions.

(A1) We define Q = [0, T ) × O where T ∈ [0,∞] and O ⊂ Rn is a bounded open set with smooth
boundary ∂O. Further, let τ <∞ be the stopping time

τ = inf{t > t0 : (t,Xt) /∈ Q} ,

i.e., τ is the stopping time that either t = T or Xt leaves the set O, whichever comes first.
(A2) The random variable W is of the form

W =
1

ε

∫ τ

0

f(Xt) dt+
1

ε
g(Xτ )

for some continuous and nonnegative functions f, g : Rn → R, which are bounded from above and
at most polynomially growing in x (compare Jarzynski’s formula).

(A3) The potential V : Rn → R in Equation (2) is smooth, bounded below and satisfies the usual local
Lipschitz and growth conditions.

We consider the conditioned version of the moment generating function (which is just the exponential of
the cumulant generating function):

ψσ(x, t) = E[exp(−σW )|Xt = x] . (10)

By the Feynman–Kac theorem, ψσ solves the linear boundary value problem(
A− σ

ε
f
)
ψσ = 0

ψσ|E+ = exp
(
−σ
ε
g
) (11)

where E+ is the terminal set of the augmented process (t,Xt), precisely E+ = ([0, T )× ∂O) ∪
({T} ×O), and

A =
∂

∂t
+ L

is the backward evolution operator associated with Xt, with the shorthand

L = ε∆−∇V · ∇

introduced in Equation (3). Assumptions (A1)–(A3) guarantee that Equation (11) has a unique smooth
solution ψσ for all σ > 0. Moreover, the stopping time τ is almost surely finite, which implies that

0 < c ≤ ψσ ≤ 1

for some constant c ∈ (0, 1).
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Log transformation of the cumulant generating function.In order to arrive at the optimal control
version of the variational formula (9), we introduce the logarithmic transformation of ψσ as

vσ(x, t) = − ε
σ

logψσ(x, t) ,

which is analogous to the CGF γ, except for the leading factor ε and the dependence on the initial
condition x. As we will show below, vσ is related to an optimal control problem. To see this, remember
that ψσ is bounded away from zero and note that

− ε
σ
ψ−1
σ Aψσ = Avσ − σ|∇vσ|2 ,

which implies that Equation (11) is equivalent to

Avσ − σ|∇vσ|2 + f = 0

vσ|E+ = g .

Equivalently,

min
α∈Rn
{Avσ + α · ∇vσ +

1

4σ
|α|2 + f} = 0

vσ|E+ = g
(12)

where we have used that

−σ|y|2 = min
α∈Rn

{
α · y +

1

4σ
|α|2
}
.

(For the general framework of change-of-measure techniques and Girsanov transformations and their
relation to logarithmic transformations, we refer to ([47] (Section VI.3)).)

Optimal control problem. Equation (12) is a Hamilton–Jacobi–Bellman (HJB) equation and is
recognized as the dynamic programming equation of the following optimal control problem: minimize

J(u) = E

[∫ τ

0

{
f(Xt) +

1

4σ
|ut|2

}
dt+ g(Xτ )

]
(13)

over a suitable space of admissible control functions u : [0,∞)→ Rn and subject to the dynamics

dXt = (ut −∇V (Xt)) dt+
√

2εdWt . (14)

Form of optimal control. In more detail, one can show (e.g., see ([47] (Section IV.2))) that assumptions
(A1)–(A3) above imply that Equation (12) has a classical solution (i.e., twice differentiable in x,
differentiable in t and continuous at the boundaries). Moreover, vσ satisfies

vσ(x, t) = E

[∫ τ

t

{
f(Xs) +

1

4σ
|u∗s|2

}
ds+ g(Xτ )

∣∣∣∣Xt = x

]
(15)

where u∗ is the unique minimizer of J(u) that is given by the Markovian feedback law

u∗t = α∗(Xt, t) ,

with

α∗ = argmin
α∈Rn

{
α · ∇vσ +

1

4σ
|α|2
}
.
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The function vσ is called the value function or optimal-cost-to-go for the optimal control problems
(13) and (14). Specifically, vσ(x, t) measures the minimum cost needed to drive the system to the
terminal state when started at x at time t. We briefly mention the two most relevant special cases of
(13) and (14).

6.1. Case I: The Exit Problem

We want to consider the limit T →∞. To this end, call τO = inf{t > 0: Xt /∈ O} the first exit time
of the set O ⊂ Rn. The stopping time τ = min{T, τO} then converges to τO, i.e.,

min{T, τO} → τO .

As a consequence (using monotone convergence), vσ converges to the value function of an optimal
control problem with cost functional

J∞(u) = E

[∫ τO

0

{
f(Xt) +

1

4σ
|ut|2

}
dt+ g(XτO)

]
. (16)

It can be shown that the value function

vσ(x, t) = E

[∫ τO

t

{
f(Xs) +

1

4σ
|u∗s|2

}
ds+ g(Xτ )

∣∣∣∣Xt = x

]
with u∗ = argmin J∞(u) is independent of the initial time t; hence, we can drop the dependence on t
and redefine vσ(x) := vσ(x, t). The value function now solves the boundary value HJB equation

min
α∈Rn
{Lvσ + α · ∇vσ +

1

4σ
|α|2 + f} = 0

vσ|∂O = g .
(17)

6.2. Case II: Finite Time Horizon Optimal Control

If we keep T <∞ fixed while letting O grow, such that diam(O)→∞, where diam(O) = sup{r >
0: Br(x) ⊂ O, x ∈ O} is understood as the maximum radius r > 0 that an open ball Br(·) contained in
O can have, it follows that

min{T, τO} → T .

In this case, vσ converges to the value function with a finite time horizon and cost functional

JT (u) = E

[∫ T

0

{
f(Xt) +

1

4σ
|ut|2

}
dt+ g(XT )

]
. (18)

Now, vσ is again a function on Rn × [0, T ] and given by

vσ(x, t) = E

[∫ T

t

{
f(Xs) +

1

4σ
|u∗s|2

}
ds+ g(Xτ )

∣∣∣∣Xt = x

]
,

with u∗ being the minimizer of JT (u). The value function solves the backward evolution HJB equation

min
α∈Rn
{Avσ + α · ∇vσ +

1

4σ
|α|2 + f} = 0

vσ(x, T ) = g(x) ,
(19)

with a terminal condition at time t = T .
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6.3. Optimal Control Potential and Optimally Controlled Dynamics

The optimal control u∗ that minimizes the functional in Equation (13) is again of gradient form and
given by

u∗t = −2σ∇vσ(Xt, t)

as can be readily checked by minimizing the corresponding expression in Equation (12) over α. Given
vσ, the optimally controlled dynamics reads

dXt = −∇U(Xt, t)dt+
√

2εdWt , (20)

with the optimal control potential

U(x, t) = V (x) + 2σvσ(x, t) . (21)

In the case when T →∞ (Case I, above), the biasing potential is independent of t.

Remarks. Some remarks are in order.

(a) Monte-Carlo estimators of the conditional CGF

γ(σ;x) = −σ−1 logE[exp(−σW )|X0 = x]

that are based on the optimally controlled dynamics have zero variance. This is so because
the optimal control minimizes the variational expression in Equation (9), but at the minimum,
the random variable inside the expectation must be almost surely constant (as a consequence
of Jensen’s inequality and the strict convexity of the exponential function). Hence, we have a
zero-variance estimator of the conditional CGF.

(b) The reader may now wonder as to whether it is possible to extract single moments from the CGF
(e.g., mean first passage times). In general, this question is not straightforward to answer. One of
the difficulties is that extracting moments from the CGF requires one to take derivatives at σ = 0,
but small values of σ imply strong penalization, which renders the control inactive and, thus, makes
the approach inefficient. Another difficulty is that reweighting the controlled trajectories back to
the original (equilibrium) path measure can increase the variance of a rare event estimator, as
compared to the corresponding estimator based on the uncontrolled dynamics. As yet, the efficient
calculation of moments from the CGF by either extrapolation methods or reweighing is an open
question and currently a field of active research (see, e.g., [48,49]).

(c) Jarzynski’s identity relates equilibrium free energies to averages that are taken over an ensemble
of trajectories generated by controlled dynamics, and the reader may wonder whether the above
zero-variance property can be used in connection with free energy computations à la Jarzynski
(cf. [45]). Indeed, we can interpret the CGF as the free energy of the nonequilibrium work

Wξ =

∫ T

0

f(Xt, ξt) dt

where f is the nonequilibrium force exerted on the system under driving it with some prescribed
protocol ξ : [0, T ] → R; in this case, the dynamics Xt depend on ξt, as well, and writing down
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the HJB equation according to Equation (19) is straightforward. However, even if we can solve
Equation (19), we do not get zero-variance estimators for the free energy

F (ξT )− F (ξ0) = −β−1 logE[exp(−βWξ)] .

The reason for this is simple: Jarzynski’s formula requires that the initial conditions are chosen
from an equilibrium distribution, say, π0 the equilibrium distribution corresponding to the initial
value ξ0 of the protocol, but optimal controls are defined point-wise for each state (t,Xt) and

−β−1 log

∫
Rn

E[exp(−βWξ)|X0 = x] dπ0(x)

6= −β−1

∫
Rn

logE[exp(−βWξ)|X0 = x] dπ0(x) .

In other words:
F (ξT )− F (ξ0) 6=

∫
Rn
vβ(x, 0) dπ0(x) .

(d) A similar argument as the one underlying the derivation of the HJB equation from the linear
boundary value problem yields that Jarzynski’s formula can be interpreted as a two-player
zero-sum differential game (cf. [50]).

7. Characterize Rare Events by Optimally Controlled MD

Now, we illustrate how to use the results of the last section in practice. We will mainly consider the
case discussed in Section 6.1 regarding the statistical characterization of hitting a certain set.

7.1. First Passage Times

Roughly speaking, the CGF encodes information about the moments of any random variable W that
is a functional of the trajectories (Xt)t≥0. For example, for f = ε and T → ∞, we obtain the CGF of
the first exit time from O, i.e.,

−σ−1 logEx[exp(−στO)] = min
u

Eu
x

[
τO +

1

4σ

∫ τO

0

|ut|2 dt
]

where we have introduced the shorthand Ex[·] = E[·|X0 = x] to denote the conditional expectation when
starting at X0 = x and the superscript “u” to indicate that the expectation is understood with respect to
the controlled dynamics

dXt = (ut −∇V (Xt)) dt+
√

2εdWt

where E = E0 denotes expectation with respect to the unperturbed dynamics.

7.2. Committor Probabilities Revisited

It is not only possible to use the moment generating function to collect statistics about rare events in
terms of the cumulant generating function, but also to express the committor function directly in terms
of an optimal control problem (see Section 2.1 for the definition of the committor qAB between to sets A
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and B). To this end, let σ = 1, and suppose we divide ∂O into two sets B ⊂ ∂O and A = ∂O \ B (i.e.,
τO is the stopping time that is defined by hitting either A or B). Setting

f = 0 and g(x) = −ε log 1B(x)

reduces the moment generating function (10) to

ψ1(x) = Ex[1B(XτO)]

or, in more familiar terms,

ψ1(x) = P[XτO ∈ B ∧ XτO /∈ A|X0 = x] = qAB(x) .

According to Equation (16) the corresponding optimal control problem has the cost functional

J(u) = E

[
1

4

∫ τO

0

|us|2 ds− ε log 1B(XτO)

]
,

which amounts to a control problem with zero terminal cost when ending up inB and an infinite terminal
cost for hitting A. Therefore, the HJB equation for v = v1 has a singular boundary value at A; it reads

min
α∈Rn
{Lv + α · ∇v +

1

4
|α|2} = 0

v|A =∞ , v|B = 0 .

Setting v(x) = −ε log qAB(x) yields the equality

− log qAB(x) = min
u

Eu
x

[
1

4ε

∫ τO

0

|us|2ds− log 1B(XτO)

]
.

In this case, the optimally controlled dynamics (20) is of the form

dXt = −∇UAB(Xt)dt+
√

2εdWt ,

with optimal control potential
UAB(x) = V (x)− 2ε log qAB(x) .

Remarks. Some remarks on the committor equation follow:

(a) The logarithmic singularity of the value function at “reactant state”A has the effect that the control
will try to avoid running back into A, for there is an infinite penalty on hitting A. In other words,
by controlling the system, we condition it on hitting the “product state” B at time t = τO.
Conditioning a diffusion (or general Markov) process on an exit state has a strong connection
with Doob’s h-transform, which can be considered a change-of-measure transformation of the
underlying path measure that forces the diffusion to hit the exit state with probability one [51].

(b) The optimally controlled dynamics has a stationary distribution with a density proportional to

exp(−βUAB(x)) = q2
AB(x) exp(−βV (x))

where we used β = 1/ε.
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7.3. Algorithmic Realization

For the exit problem (“Case I”, above), one can find an efficient algorithm for computing the
conditional CGF γ(σ;x) or, equivalently, the value function vσ(x) in [52]. The idea of the algorithm
is to exploit that, according to Equations (20) and (21), the optimal control is of gradient form. The
latter implies that the value function can be represented as a minimization of the cost functional over
time-homogeneous candidate functions C for the optimal bias potential, in other words,

vσ(x) = min
C

Ex

[∫ τO

0

{
f(Xt) +

1

4σ
|∇Ct|2

}
dt+ g(XτO)

]
(22)

where the expectation E is understood with respect to the path measure generated by

dXt = − (∇C(Xt) +∇V (Xt)) dt+
√

2εdWt .

Once the optimal C has been computed, both value function and CGF can be recovered by setting

vσ(x) = −C(x)

2σ
and γ(σ;x) = −C(x)

2εσ
.

The algorithm that finds the optimal C works by iteratively minimizing the cost functional for
potentials C from a finite-dimensional ansatz space, i.e.,

C(x) =
M∑
j=1

ajϕj(x) ,

with appropriately chosen ansatz functions ϕj . The iterative minimization is then carried out on the
M -dimensional coefficient space of the a1, . . . , aM . With this algorithm, we are able to compute the
optimal control potential for the exit problem in the two interesting cases: first passage times and
committor probabilities (as outlined in Sections 7.1 and 7.2).

Remarks. Let us briefly comment on some aspects of the gradient descent algorithm.

(a) The minimization algorithm for the value function belongs to the class of
expectation-maximization algorithms (although, here, we carry out a minimization rather
than a maximization), in that each minimization step is followed by a function evaluation that
involves computing an expectation. In connection with rare events sampling and molecular
dynamics problems, a close relative is the adaptive biasing force (ABF) method for computing
free energy profiles, the latter being intimately linked with cumulant generating functions or value
functions (cf. Section 5). In ABF methods (or its variants, such as metadynamics or Wang–Landau
dynamics), the gradient of the free energy is estimated on the fly, running a molecular dynamics
simulation, and then added as a biasing force to accelerate the sampling in the direction of the
relevant coordinates [53,54]. The biasing force eventually converges to the derivative of the free
energy, which is the optimal bias for passing over the relevant energy barriers that are responsible
for the rare events [55].
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(b) The number of basis functions needed depends mainly on the roughness of the value function,
but is independent of the system dimension. For systems with clear time scale separation, it has
been moreover shown [56] that the optimal control is independent of the fast variables; hence,
we expect that the algorithm can be efficient, even for large-scale systems, provided that some
information about the relevant collective variables and a reasonable initial guess are available. Yet,
the question remains: How many basis functions are needed to approximate the optimal control up
to a given accuracy? Controlling the error in the value function and the resulting optimal control
is particularly important, as a wrong (e.g., suboptimal) bias potential may lead to Monte-Carlo
estimators that may have a larger variance than the vanilla rare event estimator, as has been
pointed out in [57,58]. The first results in this direction have been obtained in [59], in which
error bounds for the CGF for suboptimal controls have been derived, and [60], which discusses the
approximation error of the Galerkin approximation of the corresponding HJB equations; see
also [61]for a related discussion regarding so-called log-efficient estimators for rare events.

7.4. Numerical Examples

In our first example, we consider diffusive molecular dynamics as in Equation (2) with ε = 0.1 and
V being the five-well potential shown in Figure 2. We first compute the CGF of the first passage time as
discussed in Section 7.1, using the gradient descent algorithm described in Section 7.3 with 10 Gaussian
ansatz functions that are centered around the critical points of the potential energy function. The resulting
optimal control potential (21) after roughly 20 iterations of the gradient descent is displayed in Figure 2
for different values of σ. As the set O, we take the whole state space, except a small neighborhood of its
global minimum of V , so that its complement Oc is identical to the vicinity of the global minimum and
the exit time τO is the first passage time to Oc. Figure 2 shows that the optimal control potential alters
the original potential V significantly in the sense that for σ > 0, the set Oc is the bottom of the only well
of the potential, so that all trajectories starting somewhere else will quickly enter Oc.

This case is instructive: For the unperturbed original dynamics, the mean first passage time Ex(τO)

takes values of around 104 for x > −2. For the optimally controlled dynamics, the mean first passage
times into Oc are less than five for σ = 0.1, 0.5, 1.0, so that the estimation of Ex(τO) resulting from the
optimal control approach requires trajectories that are a factor of at least 103 shorter than the ones we
would have to use by direct numerical simulation of the unperturbed dynamics.

Figure 3 shows the optimal control potentials for computation of the committor qAB, as described in
Section 7.2. We observe that the optimal control potential exhibits a singularity at the boundary of the
basin of attraction of the set A. That is, it prevents the optimally controlled dynamics from entering the
basin of attraction of A and, thus, avoids the waste of computational effort by unproductive returns to A.

In our second example, we consider two-dimensional diffusive molecular dynamics as in Equation (2)
with the energy landscape V being the three-well potential shown in Figure 1. In Figure 4, the optimal
control potential for computing the committors qAB between the two main wells for two different
temperatures ε = 0.15 and ε = 0.6 are displayed. The numerical solution is based on a Galerkin
approximation of the log-transformed HJB equation, using precomputed committor functions as the
basis set; see [60] for details.
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Figure 2. Five-well potential (left) and associated optimal control potential for the first
passage time to the target set Oc given by a small interval around the main minimum x1

(right) for different values of σ (right). ε = 0.1; the gradient descent solution fully agrees
with the reference finite element solution (that is not shown) in the “eye-norm”.

Figure 3. Optimally-corrected potential for the case of J being the committor qAB for
B being the ±0.1-interval around the main minimum x1 of the potential. (Left panel)
A =]x3 − 0.1, x3 + 0.1[ the ±0.1 interval around the highest minimum x3. (Right panel)
A =]x2 − 0.1, x2 + 0.1[ the ±0.1 interval around the second lowest minimum x2.

As in our former experiment, we observe that the optimal control potential prevents the dynamics
from returning to A; in addition, it flattens the third well significantly, such that the optimally controlled
dynamics in any case quickly goes into B. For ε = 0.15, a TPS sampling of reactive trajectories between
the two main wells, precisely from A to B with A and B, as indicated in Figure 4, results in an average
length of 367 for reactive trajectories based on the original dynamics. For the optimally controlled
dynamics, we found an average length of 1.3.
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Figure 4. Optimally-corrected potential for the three-well potential shown in Figure 1 for
the committor qAB for the medium temperature ε = 0.6 case (left), the low temperature
ε = 0.15 case (right) and for the sets A (ellipse in main well, right-hand side) and B (ellipse
in main well, left-hand side). Note that the committor basis is not smooth at the boundaries
of the initial and target sets (see Figure 1 for comparison), which explains the roughness of
the control potential in the neighborhood of the sets A and B.

8. Conclusions

We have surveyed various techniques for the characterization and computation of rare events
occurring in molecular dynamics. Roughly, the approaches fall into two categories: (a) methods that
approach the problem by characterizing the ensemble of reactive trajectories between metastable states
or (b) path-based methods that target dominant transition channels or pathways by minimization of
suitable action functionals. Methods of the first type, e.g., Transition Path Theory, Transition Path
Sampling, Milestoning or variants thereof, are predominantly Monte-Carlo-type methods for generating
one very long or many short trajectories, from which the rare event statistics can then be estimated.
Methods that belong to the second category, e.g., MaxFlux, Nudged-Elastic Band or the String Method,
are basically optimization methods (sometimes combined with a Monte-Carlo scheme); here, the
objectives are few (single or multiple) smooth pathways that describe, e.g., a transition event. It is
clear that this classification is not completely unambiguous, in that action-based methods for computing
most probable pathways can be also used to sample an ensemble of reactive trajectories. Another
possible classification (with its own drawbacks) is along the lines of the biased-unbiased dichotomy that
distinguishes between methods that characterize rare events based on the original dynamics and methods
that bias the underlying equilibrium distribution towards a new probability distribution under which the
rare events are no longer rare. Typical representatives of the second class range from biasing force
methods, such as ABF or metadynamics, up to genuine nonequilibrium approaches based on Jarzynski’s
identity for computing free energy profiles. The problem often is that rare event estimators based on an
ensemble of nonequilibrium trajectories suffer from large variances, unless the bias is cleverly chosen.

We have described a strategy to find such a cleverly chosen perturbation, based on ideas from optimal
control. The idea rests on the fact that the cumulant generating function of a certain observable, e.g., the
first exit time from a metastable set, can be expressed as the solution to an optimal control problem, which
yields a zero variance estimator for the cumulant generating function. The control acting on the system
has essentially two effects: (1) Under the controlled dynamics, the rare events are no longer rare, as a
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consequence of which the simulations become much shorter; (2) The variance of the statistical estimators
is small (or even zero if the optimal control is known exactly). We should stress that, depending on the
type of observable, the approach only appears to be a nonequilibrium method, for the optimal control is
an exact gradient of a biasing potential; hence, the optimally perturbed system satisfies a detailed balance,
which is one criterion for thermodynamic equilibrium. Future research should address the question as
to whether the approach is competitive for realistic molecular systems, how to efficiently and robustly
extract information about specific moments rather than cumulant generating functions and how to extend
it to the more general observables or the calculation of free energy profiles.
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