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Abstract. This paper describes an approach to derive prob-
abilistic predictions of local winter storm damage occur-
rences from a global medium-range ensemble prediction sys-
tem (EPS). Predictions of storm damage occurrences are sub-
ject to large uncertainty due to meteorological forecast un-
certainty (typically addressed by means of ensemble predic-
tions) and uncertainties in modelling weather impacts. The
latter uncertainty arises from the fact that local vulnerabili-
ties are not known in sufficient detail to allow for a determin-
istic prediction of damages, even if the forecasted gust wind
speed contains no uncertainty. Thus, to estimate the damage
model uncertainty, a statistical model based on logistic re-
gression analysis is employed, relating meteorological anal-
yses to historical damage records. A quantification of the two
individual contributions (meteorological and damage model
uncertainty) to the total forecast uncertainty is achieved by
neglecting individual uncertainty sources and analysing re-
sulting predictions. Results show an increase in forecast skill
measured by means of a reduced Brier score if both meteo-
rological and damage model uncertainties are taken into ac-
count. It is demonstrated that skilful predictions on district
level (dividing the area of Germany into 439 administrative
districts) are possible on lead times of several days. Skill is
increased through the application of a proper ensemble cali-
bration method, extending the range of lead times for which
skilful damage predictions can be made.

1 Introduction

Severe weather events, and in particular severe winter storm
events, cause a major share of economic losses due to natu-
ral disasters in Europe and in Germany (Munich Re; 2007,
2012, 2013) and regularly cause a number of human fatali-
ties. To prevent human fatalities and reduce property losses
caused by natural disasters, national and regional civil pro-
tection agencies need to be supported by effective weather
warning systems. Within the Sendai Framework For Disas-
ter Risk Reduction (UNISDR, 2015), it has been stated that
for an effective disaster risk reduction an understanding of
natural risks and their impacts is needed. This includes all
aspects of disasters, such as vulnerability, capacity and expo-
sure. With such understanding, and if possible, the ability to
model the impacts of severe weather events, improved warn-
ing systems could be designed, supporting decision-making
processes for civil protection agencies.

The modelling of winter storm damages in Germany has
been carried out in a number of recent studies, including both
deterministic approaches (Klawa and Ulbrich, 2003; Heneka
and Ruck, 2008; Donat et al., 2011) as well as probabilistic
approaches (Heneka and Hofherr, 2010; Prahl et al., 2012).
These storm damage models provide means to translate ob-
served or modelled gust wind speeds into local damage or
loss ratios (i.e. losses normalized with the local sum of in-
sured values). Depending on data availability, these models
include a regionally specific parameter estimation to describe
differences in local vulnerabilities resulting from local dif-
ferences in building characteristics (compare e.g. Donat et
al., 2011), for example. Rather than aiming at a quantita-
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tive model for predictions of loss ratios, here we employ a
simple logistic regression model, aiming at the prediction
of exceedance probabilities for defined loss thresholds. This
model is similar to the first modelling step of the damage
model described in Prahl et al. (2012).

In giving an estimate of the inherent uncertainty in the re-
lationship between the maximum wind gust and damage, the
statistical model uncertainties arising in the damage mod-
elling step can be quantified. The second major source of
uncertainty in storm impact predictions arises from mete-
orological forecast uncertainties. The latter uncertainty is
commonly addressed by means of ensemble prediction sys-
tems (Palmer, 2000; Leutbecher and Palmer, 2008; Slingo
and Palmer, 2011), which is why we base our study on the
medium range ensemble prediction system operationally run
at the European Centre for Medium-Range Weather Fore-
casts (ECMWF; Palmer et al., 2007).

Our approach thus allows us to address and quantita-
tively compare the two main uncertainties arising in the mod-
elling chain: meteorological forecast uncertainty and damage
model uncertainty. In particular, we study the effect of ne-
glecting uncertainty information, as is commonly done when
interpreting the ensemble mean of a forecast ensemble or ap-
plying a simple deterministic damage model neglecting the
respective uncertainty.

The aim of this paper is to demonstrate the benefit of a
fully probabilistic approach when predicting storm damages,
which can form the basis for the design of risk-based warning
tools. We furthermore aim at demonstrating the benefit (in
terms of forecast skill) of an explicit and full treatment of the
involved uncertainties within the modelling chain.

We structured the paper as follows. Section 2 describes the
utilized data sources. The methodology, particularly the full
modelling chain, is described in Sect. 3, including the ver-
ification methodology applied. Verification results are pre-
sented in Sect. 4, followed by discussion and conclusion in
Sect. 5.

2 Data

2.1 Insurance loss data

Insurance data on losses to residential buildings were pro-
vided by the German insurance association, Gesamtverband
der Deutschen Versicherungswirtschaft e.V. (GDV). These
comprise of daily data on administrative district level, with
areas ranging from about 40 km2 for urban municipalities
(“Kreisfreie Städte”) to about 3000 km2 for rural districts
(“Landkreise”). In contrast to pointwise measurements from
meteorological stations, the available insurance data repre-
sent records with an area-wide coverage of windstorm and
thunderstorm losses making it most valuable for various
weather impact studies. The data however contain some lim-
itations and uncertainties that need to be kept in mind. Un-

certainties in daily losses arise from the fact that the ex-
act time of loss occurrence is indistinct in some cases, es-
pecially if an event has occurred at night. Furthermore, the
area representativeness implies a dependence of losses on
the local building stocks, which needs to be taken into ac-
count. To gain data comparable amongst districts it is thus
necessary to consider relative values, i.e. losses standard-
ized by the total amount of insured values (insured sum),
in the specific district. Commonly used by insurers is the
term loss ratio which denotes the loss (in EUR) divided
by the insured sum (in thousand EUR), which is thus speci-
fied in ‰ (=EUR 1/EUR 1000). Besides ensuring spatial ho-
mogenization, the consideration of relative losses removes
temporal inhomogeneities resulting from the growth of val-
ues or inflation, for example. On the district level, the GDV
recorded losses on residential buildings arising from storm
and hail events (covered by the “Verbundene Wohngebäude
Versicherung”, VGV) for the period 1997–2011. Here we
consider the winter half year only (October through March).
For these months, damages are almost exclusively caused by
windstorms. However, in a few cases damages are due to hail,
which might take place in the vicinity of a storm’s cold front
(e.g. hail was observed in the case of Kyrill; compare Fink
et al., 2009). Since these hail-induced damages cannot be
systematically separated in our analysis, another uncertainty
that needs to be reflected in the (probabilistic) relationship
between local wind gusts and resulting damages is posed.

2.2 COSMO-EU analyses

For training of the probabilistic storm damage model, analy-
ses from the operational assimilation cycle for the COSMO-
EU model (Schulz and Schättler, 2014) are employed. As
a specific configuration of the non-hydrostatic COSMO-
Model (Rockel et al., 2008; Doms, 2011), COSMO-EU is
operationally run at German Weather Service (DWD) cov-
ering the European domain in a resolution of 7 km, us-
ing 40 vertical levels with the lowest level 10 m above
the ground. Forecasts are operationally initialized every 6 h
(00:00, 06:00, 12:00 and 18:00 UTC) and performed for up
to 78 h. The COSMO-EU assimilation scheme (based on a
nudging methodology) is performed every 3 h (00:00, 03:00,
06:00, . . . , 21:00 UTC) and analysis files are written every
hour. Here we use hourly 10 m wind gusts, which are ex-
tracted for each hour from the latest available analysis run.
These are finally used to calculate daily maximum 10 m wind
gusts. The COSMO-EU analyses are available for the pe-
riod 2006–2011.

2.3 ECMWF-EPS forecasts

ECMWF has operationally run its Ensemble Prediction
System (EPS) since 1992 (Molteni et al., 1996). This
system is based on the same numerical weather predic-
tion (NWP) model that is used for the deterministic weather
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forecast, the Integrated Forecasting System (IFS). How-
ever, in ensemble prediction mode it is employed with a
coarser vertical and horizontal resolution. The latter has
been successively increased from an initial resolution of
TL63 (∼ 200 km) to TL159 (∼ 120 km; changed in De-
cember 1996), TL255 (∼ 80 km; November 2000), TL399
(∼ 50 km; February 2006) and finally to the current reso-
lution of TL639 (∼ 32 km; since January 2010). To gener-
ate the ensemble the method of singular vectors (Palmer et
al., 1998; Leutbecher and Palmer, 2008) is used to perturb
the initial conditions. Initially 32 ensemble members were
produced. In December 1996 this number was increased to
50 members. One additional control forecast is calculated us-
ing the same (unperturbed) initial conditions as the determin-
istic run, but employing the coarser resolution of the EPS.
Additionally, stochastic perturbations of the model physics
were introduced in October 1998 (Buizza et al., 1999; Palmer
et al., 2009).

For the current study we use the 6-hourly output of in-
stantaneous 10 m wind speed of the 50 perturbed ensemble
members operationally produced between November 2000
and January 2010 (in TL255 and TL399 resolution) as input
for a statistical downscaling. Each forecast is integrated over
15 days, but the horizontal resolution is reduced after forecast
day 10. We thus confine all further processing and analyses
to the first 10 forecast days of constant resolution throughout
the respective integration.

According to the data availability, the different modelling
steps described in the following chapter are performed for
different time periods. The statistical downscaling (compare
Sect. 3.1) is developed on the basis of a set of 181 simulations
for individual storm events during the period 1959–2010.
The ensemble post-processing (compare Sect. 3.2) is per-
formed for the years 2006–2009, for which both COSMO-
EU analyses and ECMWF-forecasts are available. The train-
ing of the probabilistic damage model (compare Sect. 3.3) is
performed for the years 2006–2011, for which both damage
data and COSMO-EU analyses are available. Assessment of
forecast skill is done for the period 2001–2009, for which
ECMWF-forecasts and damage data are available.

3 Methodology

3.1 Statistical downscaling of the ECMWF-EPS

Within the COSMO-EU domain, the global ECMWF-EPS
forecasts were statistically downscaled to the fine COSMO-
EU resolution of approx. 7 km, following the approach devel-
oped by Kruschke (2015). The basic concept of this down-
scaling procedure is a multiple linear regression approach
quantifying the relationship of fine-scale surface gusts to the
coarse scale (instantaneous) surface winds given by the re-
spective ECMWF-EPS forecast. For each COSMO-EU grid-
box (436 905 in total) an individual statistical model, i.e. a

regression equation, is established. This is done by objec-
tively choosing skilful predictors from a given set of potential
predictors. Essentially, these potential predictors are the EPS
surface-wind components and wind magnitudes scaled by
the respective climatological 98th percentile (to achieve ho-
mogenisation with respect to orographic effects) and subse-
quently interpolated (first-order conservative) to the coarser
of the analysed EPS resolutions, that is TL159. More specif-
ically, for each individual COSMO-EU grid box the scaled
and interpolated instantaneous 6-hourly surface wind com-
ponents and magnitudes at EPS grid boxes within a radius
of 300 km (calculated between respective COSMO-EU and
EPS grid box centres), as well as the squared values of these
parameters, are used to predict 6-hourly (temporal window
centred over timestep of instantaneous predictors) maximum
10 m wind gusts at the respective COSMO-EU grid box.
Scaling and interpolation are done to reduce inhomogeneities
potentially originating from employing two different genera-
tions of the EPS. The objective selection of skilful predictors
is done by applying a stepwise linear regression algorithm
with forward selection and backward elimination. Starting
with an empty statistical model – during the forward selec-
tion – all potential predictors are tested whether they pro-
vide significant benefit (p < 5 % according to f test regard-
ing residual sum of squares) to the model. The best predictor
is chosen to enter the model. Subsequently, all remaining pre-
dictors are tested equivalently whether they can significantly
improve the model. This is done repeatedly until no more
predictors yield significant additional value for the statistical
model. Finally, the backward elimination conversely checks
whether predictors can be removed again without signifi-
cantly decreasing the statistical model’s quality (p < 10 %).

The training of this statistical downscaling procedure and
its evaluation (by three-fold cross-validation and several
MSE-related metrics) is based on dynamical regionalization
of 181 European winter storm episodes that was done by
employing the numerical weather prediction model chain
(global model GME and regional model COSMO-EU) of the
German Weather Service (DWD). A comprehensive descrip-
tion of this statistical downscaling approach, as well as its
development and evaluation is given by Kruschke (2015).
This includes testing various other combinations of poten-
tial predictors and demonstrating that this approach outper-
forms (measured with respect to the mean squared error
of wind gusts) a similar approach described by Haas and
Pinto (2012), which is also based on multiple linear regres-
sions. Kruschke (2015) additionally provided an effective
quantification of uncertainties of the statistically modelled
gusts. However, these uncertainty estimates are not used in
the course of the current study.

3.2 Ensemble post processing

The benefits from using ensemble prediction systems instead
of single deterministic forecasts is the possibility to estimate
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the forecast uncertainty, which can differ for each meteo-
rological situation. In practice, ensembles often systemati-
cally under- or overestimate this uncertainty, which is re-
ferred to as an under- or overdispersion. At the ECMWF,
the method of singular vectors is used to generate a set of
initial conditions that are used to calculate several members
of a forecast ensemble with the intention to produce an op-
timal spread. It should be noted, that the ECMWF-EPS has
been constructed so that its spread is optimized for medium-
range forecasts, thus for forecasts of 3–5 days. Despite of
such sophisticated techniques for the perturbations, ensemble
forecasts still often tend to be under-dispersive. This means,
that the spread of the ensemble members (the members be-
ing discrete random draws of the forecasted probability den-
sity function) may be too small and it may not reflect the
full uncertainty inherent to the forecast. “Calibrating” the en-
semble spread, which is part of sophisticated post-processing
techniques, can thus help address such underdispersion of
ensemble forecasts (see Bröcker and Smith, 2008). Several
methods exist to calibrate a forecast ensemble, partly de-
pending on the ensemble type (single-model, multi-model or
lagged-averaged-forecasts). An overview of calibration tech-
niques for medium-range forecasts can be found in Gneit-
ing (2014). For this study, we apply the approach of Bröcker
and Smith (2008). This method states a so-called ensemble
dressing approach, whose purpose is to estimate the prob-
ability density function (PDF) of the ensemble, and can be
used to adjust the spread. The chosen method has the ad-
vantage that it can represent different methods of ensemble
dressing depending on the selected parameter set. It trans-
forms the discrete members (50 in our case) to a continuous
distribution function by combing kernel functions for each
individual member. The ECMWF-EPS is a single-model en-
semble and all of the members are indistinguishable. For this
reason, all members are dressed by using the same Gaussian
kernel. However, ensemble post processing is performed for
each grid cell separately. Aside from depending on the spe-
cific forecast situation, the actual size of the Gaussian kernel
is thus determined individually for each grid cell. The dress-
ing is done using an affine ensemble transformed version of
the original data (Bröcker and Smith, 2008). While the dress-
ing is used to transform the discrete members to a distribu-
tion function, the affine transformation is used to eliminate
biases from the raw forecasts. Parameters for the transforma-
tion as well as for the Gaussian kernel are estimated using the
minimization of the continuously ranked probability score
(CRPS; compare Gneiting and Raftery, 2007). The CRPS is a
measure that describes the performance of an ensemble in its
entity by comparing the forecast and observation cumulative
distribution functions (CDFs).

In general, the aim of the method is the estimation of the
entire PDF of forecasts, based on the 50 ensemble members.
However, in our case, we are interested in deriving a cor-
rected 50-member forecast ensemble, which is representative
of this full PDF. This can simply be accomplished by ran-

domly sampling the 50 members from the calibrated PDF.
However, the calibration should not be interpreted for these
individual members, since the method is designed to cali-
brate the ensemble properties (such as ensemble bias and dis-
persion) rather than the individual members’ properties.

3.3 Probabilistic storm loss model

In the last step, the forecasts of near-surface maximum gusts
are translated into probabilistic estimates for the exceedance
of specified loss ratio thresholds (“damage occurrences”).
Due to insufficient information about meteorological condi-
tions on sub-grid scales (e.g. turbulent gusts induced through
localized orographic features), as well as lack of knowl-
edge on individual building characteristics, it is impossible
to model damage occurrences on individual entity level in
a deterministic manner. Instead, a statistical relation, valid
for the total stock of buildings within a district, is derived,
which shall enable the specification of probability estimates
to express these uncertainties. To do so, logistic regression
analysis is performed for each district. Damage occurrences,
defined as the exceedance of loss ratio above a certain thresh-
old, are derived from the observed loss ratio time series. The
resulting time series are then related to daily maxima of near-
surface wind gusts from the COSMO-EU analyses to train
the logistic regression curve. For each district, wind gusts at
the closest grid point from the centre of the district are used.

3.4 Probabilistic forecasts of damage occurrences

To be able to investigate the influence of the individual un-
certainty sources (meteorological forecast uncertainty and
damage modelling uncertainty) different probability fore-
casts are set up. Specifically, four different setups result from
(i) treating no uncertainty resulting in deterministic fore-
casts, (ii) treating only meteorological forecast uncertain-
ties, (iii) treating only damage-modelling uncertainty and iv)
treating both uncertainty sources.

The derivation of probability forecasts for damage occur-
rences is straightforward in the case of individual (single)
member forecasts, which is done simply by applying the
logistic regression function (described in Sect. 3.3) to cal-
culate a probability estimate for the given forecasted wind
gust. Similarly, the logistic regression function can be ap-
plied to the ensemble mean. Resulting probability estimates
include damage-modelling uncertainty, while neglecting me-
teorological uncertainties (setup iii). Additionally, meteoro-
logical forecast uncertainty information is taken into account
by applying the transfer function to each ensemble member.
Assuming the members to be equally likely, probability fore-
casts can then be calculated as the ensemble mean of the
damage-occurrence probabilities derived for the individual
ensemble member forecasts (setup iv). Similar to neglecting
meteorological forecast uncertainties, the statistical uncer-
tainty from the damage-modelling step can be neglected by
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assuming a stepwise function instead of the logistic regres-
sion curve (compare Fig. 1, top panel). This is done by as-
suming a probability of one in case the forecasted gust wind
speed exceeds a critical threshold and a probability of zero
otherwise. Though not restricted to this choice, we choose
this critical threshold to correspond to the gust wind speed
for which the probability from the logistic regression analy-
sis is 0.5. No treatment of uncertainty is accomplished when
applying this “deterministic” damage occurrence function to
the ensemble mean forecast (setup i). Finally, probability
forecasts can be generated by applying the “deterministic”
damage occurrence function to individual ensemble member
forecasts. Probability estimates are then again calculated by
averaging over the resulting individual member probability
(setup ii). Since this is either one or zero in the deterministic
case, this is similar to the fraction of members exceeding the
critical threshold for the gust wind speed.

3.5 Verification methodology

The statistically downscaled wind gust ensemble forecasts
are investigated on grid-point basis by means of Talagrand di-
agrams (see e.g. Jolliffe and Stephenson, 2003; Wilks, 2011).
A Talagrand (or rank) histogram can be used to illustrate
model biases as well as an under- or overdispersion of the
ensemble. To construct the Talagrand diagram, the ensemble
members are ordered according to their rank for each time
step and for each grid cell in ascending order. The frequency
of observations falling in between these ranked ensemble
members is counted. In a perfect ensemble, each rank would
be equally populated, meaning that each ensemble member
is equally likely. An asymmetry shows a bias, as too often
the ranks of the weakest or the strongest members are pop-
ulated. If the Talagrand diagram has a u-shape, the ensem-
ble is under-dispersive. This means that the observations are
often outside the range spanned by the ensemble. In other
words, the ensemble does not cover the entire range of un-
certainty. In the opposite case of an over-dispersive ensem-
ble, intermediate ranks of the Talagrand diagram would be
overpopulated. This means that observations often lie close
to the ensemble median, indicating an overestimation of the
involved uncertainty.

Forecast quality of derived daily probability estimates for
damages on district level are assessed by means of the Brier
score (Wilks, 2011), which is the mean quadratic error of the
probability forecast

BS=
1
Nt

∑
t

(ft − ot )
2, (1)

where ft is the forecasted probability at time t and ot is the
observation, being either one if an event has occurred or zero
otherwise. Forecast skill is evaluated with respect to a refer-
ence forecast, leading to the Brier skill score

Figure 1. Illustration of the methodology to derive probabilistic
impact prediction from ensemble-forecasted gust wind speed. Top
panel: probabilistic storm damage function – logistic regression
curve – relating the forecasted gust wind speed to a probability of
damage occurrence. The dashed line indicates the deterministic ver-
sion of such a damage function being zero below the critical thresh-
old for gust winds and one above it respectively. Bottom panel: il-
lustration of gust winds forecasted by a 10-member ensemble in
solid lines. Dashed line indicates the ensemble mean.

BSS= 1−
BS

BSref
, (2)

with BSref being the Brier score of the reference forecast. In
the course of this study we use the climatological forecast,
i.e. the climatological event frequency as reference. Sepa-
rately for each district, Brier scores and Brier skill scores
are evaluated. To summarize the verification statistics, Brier
score and Brier skill score are evaluated additionally based
on all forecast times and all Nd districts.

BStot =
1

Nd

1
Nt

∑
d

∑
t

(
ft,d − ot,d

)2
, (3)

where ft,d is the forecasted probability at time t in district d

and ot,d is the corresponding observation. It should be noted
that districts are equally weighted in Eq. (3), disregarding
differences in size. It might be argued, that this leads to an
overweighting of small districts, e.g. urban municipalities.
However, in our study we omitted such weighting since typ-
ically the sum of insured values is higher in these urban mu-
nicipalities, justifying such higher weighting.

Confidence intervals on derived Brier scores are calcu-
lated by means of a bootstrap method, randomly generating
10 000 BStot values. This sampling is accomplished by ran-
domly drawing Nd ·Nt times from the original set of indi-
vidual contributions (ft,d − ot,d)2 to the total Brier score in
Eq. (3). Confidence intervals on BStot are then calculated as
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Figure 2. Left panel: Talagrand diagram of statistically downscaled EPS forecasts, lead time 1 day (red), 5 days (green) and 9 days (blue)
from January 2006 to January 2010. Right panel: Talagrand diagram of statistically downscaled and post-processed EPS forecasts, lead
times 1, 5 and 9, from January 2006 to January 2010.

the 5 and 95 % quantiles of the 10 000 randomly generated
BStot values. Differences in the Brier skill score are consid-
ered significant if the derived 90 % confidence intervals are
exceeded.

To assess the reliability of probabilistic forecasts, reliabil-
ity diagrams – relating forecasted probabilities to observed
event frequencies – are employed. In case of a perfectly re-
liable forecast, an event should be expected in X % of the
situations in which the forecast was X %. Of course, devia-
tions from this behaviour can occur, e.g. in case of an over-
or under-forecasting the observed relative event frequencies
are systematically lower or higher than forecasted. Details on
reliability diagrams can be found in Wilks (2011).

To address “false alarms” and “missed events” in the
case of probabilistic forecasts, ROC (relative operating char-
acteristics) curves are considered. In case of the deter-
ministic forecasts (no uncertainty treatment), the hit rate
H = 100 % · hits/(hits+misses) as well as the false alarm
rate FAR= 100 % · false alarms/(false alarms+ correct re-
jects) can be directly calculated from the contingency table.
In case of probability forecasts, a threshold needs to be cho-
sen to translate them into a deterministic forecast to be able
to calculate FAR and H . This threshold can be freely cho-
sen and strongly influences FAR and H . Naturally, trying to
reduce the FAR will also reduce H and vice versa. The opti-
mal choice for the probability threshold (and resulting FAR
and H ) is user specific and can be determined through an
assessment of the economic value, taking into account the
user’s cost/loss ratio (Mylne, 2002). Insight into this relation
can be gained by assessing the ROC curves, which relate the
false alarm rate (FAR) to the hit rate (H ), depending on the
probability threshold chosen. See Wilks (2011) for details on
ROC curves.

4 Results

4.1 Verification of severe wind-gust predictions based
on statistically downscaled EPS

In a first step, the statistically downscaled ensemble forecasts
were verified against the COSMO analyses by means of the
rank histogram statistics described in Sect. 3.5. The resulting
Talagrand diagrams for forecast lead times of 1, 3 and 9 days
(red, green and blue respectively) are shown in Fig. 2 (left
panel). First note that there is an asymmetry to the right-hand
side. For 1 day forecast lead time it is found that in nearly
40 % of the cases, the observation is equal to or above the
largest value of the ensemble. At first sight, such frequency
bias appears to be rather critical. However, the absolute bias
of the downscaled ensemble forecasts’ (not shown) range is
only between 0.1 and 0.5 m s−1, depending on the grid box
considered. Furthermore, the conditional bias of the ensem-
ble forecasts (not shown) revealed that this underestimation
is larger for weak gusts (< 5 m s−1). Still, the application of
this dataset for storm-damage modelling would lead to an
underestimation of the estimated storm damage probabili-
ties. The second thing to note in Fig. 2 (left panel) is the
underdispersion demonstrated by the u-shape. As described
in Sect. 3.5, this indicates an underestimation of the uncer-
tainty on forecasted wind gusts. With increasing forecast lead
time, both u-shape as well as the asymmetry in the Talagrand
diagram decreases (Fig. 2, left panel). This means that both
underdispersion and frequency bias decrease with increas-
ing forecast lead time, which might relate to the fact that the
ECMWF-EPS system, as mentioned previously, is primarily
designed for forecasts in the medium range. Thus, the en-
semble spread is assumed to be optimized for lead times of
several days. For shorter lead times however this might not
be the case.

To correct both bias and underdispersion, the ensemble
post-processing technique after Bröcker and Smith (2008)
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Figure 3. Observed occurrences and forecasted probabilities for loss ratios exceeding 0.0001 ‰ for 31 October 2006 (winter storm “Britta”).
(a) Observation. (b) Deterministic forecast disregarding both uncertainty sources. (c) Only considering the meteorological uncertainty.
(d) Only considering the damage-modelling uncertainty. (e) Considering both uncertainties. (f) Considering both uncertainties based on
the dressed ensemble (©GeoBasis-DE/BKG 2008).

was applied to the data. The Talagrand diagrams for the post-
processed forecast (Fig. 2, right panel) shows nearly equally
populated ranks. Slightly higher populations are found for
the lowest and highest ranks. In case of forecast lead time
of one day (red), the lowest and highest rank are populated
with a frequency of about 0.05, which is roughly twice the
frequency found for the intermediate ranks. In only 4 % of
all forecasts, the observation falls below the lowest value and
above the highest of the ensemble forecast members. Thus,
the underdispersion is largely removed by post processing.
For increasing lead time the remaining underdispersion fur-
ther declines. Also, the Talagrand histograms for the post-
processed ensemble (Fig. 2, right panel) show no consider-
able asymmetry, indicating that the bias found for the down-
scaled forecasts is removed.

4.2 Prediction skill of storm-loss occurrences

The four different settings (as described in Sect. 3.4) are
used to forecast storm damage occurrences from the statis-
tically downscaled EPS forecasts. As an illustrative example,
resulting forecasts on district level are visualized in Fig. 3
for 31 October 2006 (winter storm “Britta”). In about half
of all 439 districts, the observed loss ratio within individual
districts exceeded the threshold 0.0001 ‰. For a lead time
of 1 day (forecasts initialized on 12:00 UTC of the previ-
ous day) the deterministic setup (no uncertainty treatment)
forecasts such exceedance in considerably fewer districts.
With a treatment of meteorological uncertainty only, non-
zero probabilities are derived in a number of districts, for
which the deterministic model does not forecast a threshold

exceedance. However, large areas which had been affected
by damages feature only probabilities below 10 %. The treat-
ment of the uncertainty on damage occurrences in the case of
winter storm “Britta” yields a rather different picture. Now
probabilities of 20 % or higher are derived for most northern
regions that recorded damages. Particularly considering the
dressed ensemble forecasts, forecasts applying a treatment
of both uncertainties feature probabilities higher than 40 %
on most regions affected, while probabilities of 10–20 % are
featured in southern regions where only a few individual dis-
tricts recorded damages.

Considering longer lead times, it shows that treating both
uncertainties (particularly by means of the dressed ensem-
ble) seems to be advantageous compared to the methods dis-
regarding uncertainty information. In this example, consid-
ering both uncertainty sources even 9 days in advance yields
probabilities of 10–20 % in most of the areas affected, while
neglecting the uncertainty information does not yield any sig-
nal with respect to damage occurrences.

Of course, the quality of probabilistic forecasts cannot be
judged by means of single forecasts or single storm situa-
tions. Instead, a systematic evaluation of forecast quality is
performed by means of Brier score and Brier skill score,
which are objective measures for the quality of probabilistic
forecasts. By means of reliability diagrams, further insight is
gained into the calibration characteristics of the probabilistic
forecasts. Additionally, ROC curves are considered to sys-
tematically evaluate the potential forecast quality in terms
of “false alarms” or “misses”. Verification of damage occur-
rence forecasts is performed for exceedances of a low thresh-
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Figure 4. Reliability diagrams (left panel) and ROC curves (right panel) for the forecasts (2006–2009) with lead time 3 days for the high loss
threshold (0.001 ‰). The climatological event frequency is indicated as a dashed horizontal/vertical black line in the reliability diagram (left
panel). Forecasts considering only the meteorological (damage model) uncertainty are shown in green (yellow). Forecasts with treatment of
both uncertainty sources using the undressed (dressed) ensemble are shown in blue (red).

old (loss ratio > 0.0001 ‰) as well as a high threshold (loss
ratio > 0.001 ‰). Climatological occurrence frequencies for
events defined in this way range from 9 to 45 days per winter
half year for the former, and 1 to 11 days per winter half year
for the latter depending on the district considered. When av-
eraged over all districts, climatological event frequencies are
about 20.9 days per winter half year (11.5 % of days) for the
low threshold and 3.5 days (2 %) for the high threshold. It
should be noted, that the events exceeding the high threshold
are a subset of the events exceeding the low threshold. How-
ever, for readability we call the former set of events “low-
impact events”, since in terms of occurrence frequency the
low-impact events strongly dominate (by a factor of about 6).

By means of the reliability diagrams (exemplarily shown
for high impact events in Fig. 4, left panel) it can be found
that considering the uncertainties inherent to the forecasts
improves the reliability of probabilistic forecasts signifi-
cantly. In the case of the deterministic forecasts (black cir-
cles) they show that in about 3 % of all cases for which the
forecasts reads “no event” a loss event has actually been ob-
served. Similarly, in about 97 % of the cases for which an
event is forecasted a loss event actually occurred. Consider-
ing the probabilistic forecasts, it is found that if forecasted
probabilities are low (< 5 %), very few events are observed.
Using the forecasts treating both uncertainties and using the
dressed ensemble results in an observed relative frequency of
only 0.4 % (which is a considerable improvement compared
to 3 % in the case of the deterministic forecast “no event”).
The diagrams show that in general an under-forecasting oc-
curs for the probabilistic forecasts. Over a broad range of
probabilities the observed relative frequency of events is
found to be considerably higher than forecasted. As an ex-
ample, one might consider all cases in which the forecast
probability reads 30 %. According to the reliability diagram,
in 40–60 % of these cases (depending on which uncertainties

are treated) an event had been observed. The diagrams fur-
thermore show that this under-forecasting is successively re-
duced (and thus the reliability increased) by explicitly treat-
ing the different uncertainty sources. Particularly for inter-
mediate forecast probabilities, the distance of the reliability
diagram to the diagonal (representing perfectly reliable fore-
casts) is reduced and is lowest if both uncertainty sources are
treated. In addition, it can clearly be found, that the reliability
is further increased when using the dressed ensemble instead
of the raw ensemble forecasts.

Considering the example of winter storm “Britta” pre-
sented in Fig. 3, it may be argued that by treating additional
uncertainty sources the probability estimates increase, which
may lead to an increase in false alarms. However an analysis
using ROC curves (exemplarily shown for high impact events
in Fig. 4, right panel) shows that this is not the case. They
show that using the probabilistic forecasts, the hit rate (H )
can be strongly increased with only slight increase in the
false alarm rate (FAR). Exemplarily, when considering the
deterministic forecasts for a lead time of 3 days, the hit rate
is 3.5 % (of all observed events, only 3.5 % are forecasted),
while the false alarm rate is 0.004 % (an event was fore-
casted in only 0.004 % of the cases for which no event was
observed) for the high threshold. By using the probabilistic
forecasts, a much higher hit rate of 80 % can be achieved
while keeping the false alarm rate below 10 %. In this way at
least 80 % of all events are correctly forecasted, which poses
a great improvement, particularly since dealing with severe
and damaging events.

Considering the Brier skill score (as described in Sect. 3.5)
with the climatology as a reference forecast it is confirmed,
that the deterministic forecasts of damage occurrences only
yield very low skill on the first forecast day (compare cir-
cles in Fig. 5). Considering meteorological uncertainties for
low-impact events (loss ratio > 0.0001 ‰), significant fore-
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Figure 5. Lead time dependent Brier skill score (BSS; employing climatology as the reference forecast) for events with a loss ratio exceeding
low threshold (0.0001 ‰) (left panel) and loss events with a loss ratio exceeding high threshold (0.001 ‰) (right panel) for the period 2006–
2009. Shown in black symbols are verification results for the four different set-ups, red triangles show verification results using the ensemble
dressing post processing method. 90 % confidence intervals from a bootstrapping method are shown as shaded areas.

cast skill is achieved for up to 6 days lead time (Fig. 5, left
panel). However, skill is strongly increased if the damage
model uncertainty, namely the statistical uncertainties within
the relation between gust wind speed and damage occurrence
probability, are treated. For a lead time of 1 day the Brier skill
score raises from about 0.1 to nearly 0.3. Treating the damage
model uncertainty yields skilful forecasts for the whole range
of lead times considered. For low-impact events it shows that
an explicit treatment of both uncertainties only yields small
additional value, indicating that uncertainty in this case is
dominated by the damage model uncertainty. Only for long
lead times, for which meteorological forecast uncertainties
naturally grow, is an additional advantage generated by the
explicit and full treatment of both uncertainty sources. For
lead times of 9 days this advance in forecast skill corresponds
to a gain of about 1 day in lead time.

The situation is different in case of high impact events
(loss ratio > 0.001 ‰). Even for a lead time of 1 day, treat-
ing both uncertainty sources yields a significant advantage
compared to the other methods. This can be understood by
considering that for the high impact situations (featuring se-
vere wind conditions) even on such short lead times consid-
erable meteorological uncertainty (on forecasted gust winds)
is present. The gain of forecast skill (by treating both un-
certainty sources) again increases with increased lead time.
This of course is due to growing meteorological forecast un-
certainty which is even larger in case of the high impact
events. Compared to the methods treating only individual un-
certainty sources, the full treatment of uncertainty leads to
an improvement of forecast skill corresponding to about 2–
3 days for lead times up to 9 days. Additionally, it is found
that the ensemble post processing method (as described in
Sect. 3.2) leads to an improvement in forecast skill. This im-
provement is found to be larger and statistically significant
for short lead times and particularly in the case of high im-

pact events. This is consistent with the finding that, on av-
erage both bias and underdispersion are larger at short lead
times. Particularly in the case of high impact events the cor-
rection of bias and underdispersion results in a gain in fore-
cast skill corresponding to about 1–2 days lead time.

The spatial stratification by districts shows that forecast
skill is not homogeneous over German districts (Fig. 6). In
general, higher skill is found in northern regions. It can be
assumed that this higher skill in northern regions is due to
an increasingly flat orography. Over complex terrain, pre-
dictability of wind gusts can generally be assumed to be
lower, which is thus consistent with the spatial differences
in respect to the predictability of damage occurrences. Ad-
ditionally the differences in skill might be influenced by the
fact that the frequency of events with loss ratios exceeding
the threshold is not constant throughout Germany. Since loss
events are more frequent in the northern regions, skill might
be larger in these regions. Furthermore, the spatial stratifi-
cation also shows that skilful forecasts throughout Germany
are only achieved through a treatment of the damage model
uncertainty (Fig. 6), even for the shortest lead time of 1 day.
Further improvement is achieved by full treatment of uncer-
tainty, which has been quantified in the previous paragraphs.

5 Summary, discussion and conclusions

A probabilistic approach to forecast local occurrences of
damages due to winter storms was presented. The approach
is based on a logistic regression analysis, relating daily max-
ima of near-surface gust wind speeds from meteorological
analysis data to damage occurrences for individual districts
within Germany, defined through the exceedance of the loss
ratio over a specified threshold. Due to unknown meteoro-
logical conditions on subgrid scales as well as unknown de-
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Figure 6. Brier skill score (employing climatology as reference forecast) for events with loss ratio exceeding low threshold (0.0001 ‰) in
the period 2006–2009 (©GeoBasis-DE/BKG 2008).

tails on individual housing characteristics, it is impossible to
model damage occurrences on an individual building level
in a deterministic manner. Instead, only a statistical rela-
tion valid for a certain stock of buildings within a district
can be derived. The probability estimates for specific gust
wind speeds then reflect the damage model uncertainty aris-
ing from unknown details on unresolved spatial scales. An-
other uncertainty in the relation between gust wind and dam-
age probability arises from the fact that from a data point
of view, hail-induced damages cannot be distinguished from
wind-related damages in the dataset we use. According to
the provider of the dataset (GDV), winter months are domi-
nated by windstorm damages while summer is dominated by
hail-induced damages. However in rare cases of severe win-
ter storm events, hail damages may occur. For example, it is
known that damaging hail occurred during the frontal pas-
sage of storm Kyrill in 2007 (Fink et al., 2009). Taking into
account the occurrence of hail and resulting damages could
be done based on additional predictors such as the “convec-
tive available potential energy” (CAPE) and “convective in-
hibition” (CIN). Based on a logistic regression model with
multiple predictors, both the individual effect of hail but also
the contribution of hail in the case of winter storms could be
quantified. It can be assumed, that the probability of hail will
increase in case of the most severe winter storm events. Thus,
for high gust winds the damage probability forecasts (which
neglect the effects of hail) might be underestimated. Consid-
ering the reliability diagrams for the probabilistic forecasts
(exemplarily shown in Fig. 4, left panel) we do find such un-
derestimation of the probability forecasts. However, a more
in depth analysis is needed to clearly attribute this to effects
due to hail. This has not been the scope of this paper but we
plan to address this in further research.

When forecasting winter storm damages, further uncer-
tainty arises due to meteorological forecast uncertainties. In
this study, these uncertainties were addressed by applying the
storm damage model to the operational EPS system of the
ECMWF. Since the resolution of the ECMWF-EPS is too
coarse, a statistical downscaling was applied to obtain near-
surface wind gusts on the COSMO-EU grid (7 km).

In a first step, the statistically downscaled gust winds were
verified against meteorological analyses, indicating a bias of
the ensemble predictions towards lower gust wind speeds. In
addition, the ensemble predictions were found to be under-
dispersive, thus showing too little ensemble spread, which
indicates an underestimation of uncertainty by the ensem-
ble. By applying the probabilistic storm-damage model to
the ensemble forecasts the influence of the individual un-
certainty sources (meteorological forecast uncertainty and
damage-model uncertainty) has been investigated. Results
show that neglecting the statistical uncertainty arising within
the damage model leads to rather poor forecast skill. Par-
ticularly for low-impact events and for short lead times, the
damage model uncertainty is found to dominate the overall
uncertainty. This reflects the fact that meteorological fore-
cast uncertainties are smaller at short lead times and partic-
ularly in the case of low-impact (low wind) situations where
basically an ensemble mean forecast or even a single deter-
ministic forecast is sufficient to derive reasonable forecasts.

With longer lead times, meteorological forecast uncertain-
ties naturally play an increasing role. Particularly for high-
impact situations (due to severe wind gusts) it was shown that
meteorological forecast uncertainties cannot be neglected
without severe deficiency in skill. This means that an ex-
plicit treatment of both uncertainties leads to considerable
improvement in forecast skill. The reason for this can be
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found in the non-linearity of the relation between the me-
teorological parameter wind and resulting impact or impact
probability. Basically such nonlinear relation implies the ne-
cessity of weighing ensemble members in a more complex
fashion compared to simply calculating the ensemble mean
of gust wind speeds. This nonlinear weighing is taken into
account by the impact modelling step and subsequent en-
semble averaging for the forecast quantity of interest (in this
case impact probability). Thus, in such a situation an ex-
plicit treatment of uncertainty through the complete mod-
elling chain is highly beneficial.

For short lead times and low-impact situations the effect
from a treatment of both uncertainties is negligible. For large
lead times (up to 9 days) this effect corresponds to a gain of
one day in forecast lead time. For high-impact situations this
effect is even larger, corresponding to a gain of 2–3 days lead
time. Both bias and underdispersion of the ensemble fore-
casted gust wind speeds have been treated by applying an en-
semble post-processing method (ensemble dressing), which
is found to effectively compensate both shortcomings. Using
the ensemble dressed gust winds as the basis for the dam-
age occurrence forecasts shows additional forecast skill cor-
responding to a gain of 1–2 days lead time. This gain is par-
ticularly large at shorter lead times of a few days, for which a
greater bias as well as a larger underdispersion in forecasted
gusts has been found.

Overall, this study shows, that in the case of winter storm
damages, skilful predictions of storm loss occurrences on
lead times of several days can be made using the pre-
sented (fully probabilistic) framework to integrate meteoro-
logical forecast uncertainties and uncertainties resulting from
a downstream impact model. Such quantification of both po-
tential impacts of severe weather and their respective likeli-
hood forms the basis for developing risk-based warning sys-
tems. By quantifying impacts and their likelihood, which is
particularly relevant to recipients, the acceptance of weather
warnings might be strongly enhanced. As one of the first
national weather services, the UK Met Office has recently
moved on to a risk-based warning system (Neal et al., 2013).
The basis of such a warning system is formed by the risk
matrix, composed of the two dimensions impact and likeli-
hood. By quantification of both these dimensions, the pre-
sented framework can thus directly feed into such a warning
system.

6 Data availability

The data set on insured losses is property of the Gesamtver-
band der Deutschen Versicherungswirtschaft e.V. (GDV) and
is not available to the public. Inquiries concerning data usage
should be directed to GDV.

Information on the availability and accessibility of the op-
erational COSMO-EU analyses can be found in Schulz and

Schättler (2014). Inquiries about data usage should be di-
rected to Deutscher Wetterdienst.

Operational ECMWF forecast data are described in
Palmer et al. (2007) and are accessible for authorized users
via the ECMWF (ECMWF, 2016).

The statistically downscaled gust forecasts and resulting
damage probabilities, generated as part of this work, are in-
tellectual property of Freie Universität Berlin and are not
available to the public. Researchers interested in scientific
collaboration and data usage are asked to contact the authors.
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