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Abstract

The isomorphism SU(4) ' O(6) is used to construct the form factors of the O(6)
Gross-Neveu model as bound state form factors of the SU(4) chiral Gross-Neveu
model. This technique is generalized and is then applied to use the O(6) as the
starting point of the nesting procedure to obtain the O(N) form factors for general
even N .
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1 Introduction

In the last decades integrable quantum field theories in 1+1 dimensions have been investi-
gated very intensively. One of the pioneers was Petr Kulish: An infinite set of conservation
laws for the sine-Gordon and the massive Thirring model was derived by Kulish and Nis-
simov in [1] (see also [2]). In [3], P. Kulish has shown that these conservation laws imply
the factorization of the S-matrix. He also made a seminal contribution in the algebraic
formulation of the nested Bethe ansatz: in [4] Kulish and Reshetikhin constructed the
nested version of the algebraic Bethe ansatz for a GL(N) invariant model. The “off-shell”
version of this nested algebraic Bethe ansatz was later developed in [5] to solve matrix
difference equations. This technique was applied in [6, 7, 8] to construct form factors for
the SU(N) chiral Gross-Neveu model.

In a previous paper [9] we constructed the O(N) nested Bethe ansatz, which needs
deeper investigations. We introduced an intertwiner, which connects two different S-
matrices in the nesting procedure S(θ,N) and S(θ,N − 2). Then we applied this tech-
nique in [10] and [11] to the O(N) nonlinear σ-model and the O(N) Gross-Neveu model
with even N , respectively. In the present article we will consider the form factors of
the O(6) Gross-Neveu model which will be the starting model for the nesting procedure
for the O(N) Gross-Neveu model. The O(4) Gross-Neveu-Model will be considered in
forthcoming papers.

Our results are related to the N = 4 supersymmetric Yang-Mills (SYM) theory. It
is known that the O(6) or SU(4) Bethe ansatz structure is connected to the N = 4
SYM theory, which, in turn, is equivalent by the AdS/CFT conjecture to the super-string
theory on the product space AdS5 × S5. This equivalence means that there is a one-
to-one correspondence between all aspects of the theories including the global symmetry
observables and the field content with correlation functions. In the N = 4 SYM theory
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there is an automorphism symmetry group of the supersymmetry algebra known as R-
symmetry, which causes the supercharges to change by a phase rotation. Thus for the
N = 4 SYM theory the R-symmetry group is SU(4) ' O(6). This group is part of the full
group of symmetry of the theory known as superconformal group and is given by S(2, 2 | 4)
which also includes the conformal subgroup SO(2, 4) and Poincare supersymmetry [12, 13].
Therefore all integrable structures associated with SU(4) ' O(6) group are interesting
tools for this big AdS/CFT correspondence conjecture.
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Figure 1: The isomorphism 0(6) ' SU(4) in terms of the Dynkin diagrams

In [14] was shown that the isomorphism O(6) ' SU(4), cf. Fig. 1, leads to an identity
between the O(6) Gross-Neveu model and the SU(4) chiral Gross-Neveu model. The
four right-handed (left-handed) O(6) kinks correspond to the four fundamental SU(4)
particles (antiparticles). The six fundamental O(6) particles correspond to the six SU(4)
bound states. In [14] the isomorphism was shown for the S-matrices. In this article we
demonstrate the isomorphism for the form factors.

In [10] and [11] we constructed form factors for the O(N) σ-model and the O(N)
Gross-Neveu model (for N even), respectively. For these constructions we used the nested
Bethe ansatz, which means that for the level N one needs the results from level N − 2,
etc. In [10] we used the isomorphism O(4) ' SU(2) × SU(2) as the starting point of
the nesting procedure for the O(N) σ-model. The SU(N) form factors were constructed
in [15, 6, 7, 8, 16]. The results of the present article, which rely on the isomorphism
O(6) ' SU(4) may serve as the starting point of the nesting procedure for the O(N)
Gross-Neveu model.

The article is organized as follows. In Section 2 we recall some results on the needed
S-matrices, in particular the bound state procedure. In Section 3 we recall results on the
SU(4) and O(6) form factors. We show that the form factors for O(6) vector particles
are to be identified with SU(4) bound state form factors. In Section 4 we apply these
results to some examples. In Section 5 we generalize the results to the so called ‘modified
form factors’. We prove that they can be used to start the nested ‘off-shell’ Bethe ansatz
to solve the O(N) form factor equations. The appendix provides the more complicated
proofs of the results we have obtained and further explicit calculations.
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2 S-matrix

2.1 The SU(4) S-matrix

The S-matrix of the SU(4) chiral Gross-Neveu model for the scattering of two fundamental
particles (transforming as the SU(4) vector representation) is given by [17, 18, 19, 14, 6]

SSU(4)(θ) = bSU(4)(θ) 1 + cSU(4)(θ) P (1)

or in terms of the components

(
SSU(4)

)DC
AB

(θ) = bSU(4)(θ) δCAδ
D
B + cSU(4)(θ) δDA δ

C
B =

�
�
��

@
@
@@

A B

CD

θ1 θ2

with the rapidity difference of the particles θ = θ12 = θ1−θ2. The two S-matrix eigenvalues
are S

SU(4)
± = bSU(4) ± cSU(4) with(

S
SU(4)
+ , S

SU(4)
−

)
=

(
θ − 1

2
iπ

θ + 1
2
iπ
, 1

)
S
SU(4)
− . (2)

Unitarity can be written as

S
SU(4)
+,− (−θ)SSU(4)

+,− (θ) = 1 .

The highest weight amplitude

aSU(4)(θ) = S
SU(4)
+ (θ) = −

Γ
(
1− 1

2
θ
iπ

)
Γ
(

3
4

+ 1
2
θ
iπ

)
Γ
(
1 + 1

2
θ
iπ

)
Γ
(

3
4
− 1

2
θ
iπ

) (3)

is essential for the Bethe ansatz which will be used to construct the form factors. In order
to simplify the formulae we extract the factor aSU(4)(θ) from the S-matrix and define

S̃SU(4)(θ) = SSU(4)(θ)/aSU(4)(θ) = b̃SU(4)(θ)1 + c̃SU(4)(θ)P (4)

with

b̃SU(4)(θ) =
θ

θ − 1
2
iπ
, c̃SU(4)(θ) =

−1
2
iπ

θ − 1
2
iπ
.

The S-matrix eigenvalue S
SU(4)
− (θ) has a pole at θ = 1

2
iπ which means that there exist

a bound state of 2 fundamental particles, which transforms as an SU(4) anti-symmetric
tensor. This have to be identified with a fundamental particle of the O(6) model (see
below). The bound states of 3 fundamental particles (ABC) (with 1 ≤ A < B < C ≤ 4) is
to be identified with an anti-particle of a fundamental particle D : (ABC) = D̄ [20, 19, 6].
The charge conjugation matrix is

C(ABC)D = εABCD (5)

where εABCD is total anti-symmetric and ε1234 = 1.
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2.2 The O(6) S-matrix

The O(6) Gross-Neveu S-matrix for the scattering of two fundamental particles (trans-
forming as the O(6) vector representation) can be written as [21]

SO(6)(θ) = bO(6)(θ)1 + cO(6)(θ)P + dO(6)(θ)K , (6)

or in terms of the components as

(
SO(6)

)δγ
αβ

(θ) = bO(6)(θ)δγαδ
δ
β + cO(6)(θ)δδαδ

γ
β + dO(6)(θ)CδγCαβ =

�
�
��

@
@

@@

α β

γδ

θ1 θ2

with the “charge conjugation matrices”

Cαβ = δαβ̄ and Cαβ = δαβ̄ (7)

in the complex basis (see [11]). The three S-matrix eigenvalues are S
O(6)
± = bO(6) ± cO(6)

and S
O(6)
0 = bO(6) + cO(6) + 6dO(6) with(

S
O(6)
0 , S

O(6)
+ , S

O(6)
−

)
=

(
θ + iπ

θ − iπ
,
θ − 1

2
iπ

θ + 1
2
iπ
, 1

)
S
O(6)
− . (8)

Unitarity reads as
S
O(6)
0,+,−(−θ)SO(6)

0,+,−(θ) = 1 .

The highest weight amplitude is [21]

aO(6)(θ) = S
O(6)
+ (θ) =

Γ
(
1− 1

2πi
θ
)

Γ
(

1
2

+ 1
2πi
θ
)

Γ
(
1 + 1

2πi
θ
)

Γ
(

1
2
− 1

2πi
θ
) Γ
(

3
4

+ 1
2πi
θ
)

Γ
(

1
4
− 1

2πi
θ
)

Γ
(

3
4
− 1

2πi
θ
)

Γ
(

1
4

+ 1
2πi
θ
) .

For later convenience we introduce again

S̃O(6)(θ) = SO(6)(θ)/aO(6)(θ) = b̃O(6)(θ)1 + c̃O(6)(θ)P + d̃O(6)(θ)K (9)

with

b̃O(6)(θ) =
θ

θ − 1
2
iπ
, c̃O(6)(θ) =

−1
2
iπ

θ − 1
2
iπ
, d̃O(6)(θ) =

θ

θ − 1
2
iπ

−1
2
iπ

iπ − θ
.

Remark 1 Note, that the amplitudes b̃ and c̃ are the same for SU(4) and O(6).
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2.3 Bound state S-matrix

The S-matrix eigenvalue S
SU(4)
− (θ) of (2) has a pole at θ = 1

2
iπ which means that two

fundamental particles A and B form an anti-symmetric tensor bound state (AB). The
S-matrix for the scattering of these bound states with fundamental particles is given by
[22, 14]

S
C′(R′S′)
(RS)C (θ(12)3)Γ

(RS)
AB = Γ

(R′S′)
A′B′ S

C′A′

AC′′ (θ13)SC
′′B′

BC (θ23)
∣∣∣
θ12= 1

2
iπ

(10)

�
�

@
@
@

��
(RS)

(R′S′)

A
B

C′

C
• =

��

@
@
@
@
��
�

�
�
�

(R′S′)A′

A
B′

B

C′

C′′
C

•

where θ(12) = 1
2

(θ1 + θ2) is the bound state rapidity and θ12/i = π/2 the bound state

fusion angle. The bound state fusion intertwiner Γ
(AB)
DE is defined by

i Res
θ= 1

2
iπ
SB

′A′

AB (θ) =
∑
R<S

ΓB
′A′

(RS)Γ
(RS)
AB = ���••

A B

(RS)

B′ A′

. (11)

With a convenient choice of an undetermined phase factor one has

Γ
(RS)
AB = iΓ(3

4
) (2/π)1/4 (δRAδSB − δSAδRB) . (12)

Applying formula (10) twice we get the S-matrix for the scattering of two bound states.
For example we obtain

bSU(4)bSU(4)bSU(4)bSU(4) + bSU(4)cSU(4)bSU(4)bSU(4) − bSU(4)cSU(4)bSU(4)cSU(4) = −bO(6) (θ)

where the arguments on the left hand side are to be taken as θ+ 1
2
iπ, θ, θ, θ− 1

2
iπ. There

are similar formulas for the other amplitudes. The result is the S-matrix for the O(6)
Gross-Neveu model up to a sign1 (see [14]).

We have the map Mα
(RS) from the anti-symmetric tensor SU(4) bound states to the

O(6) vector states (in the complex basis) (see [14, 6, 11])

SU(4) bound states
(RS) ∈ {(12) , (13) , (14) , (23) , (24) , (34)}

}
↔
{

O(6) vector states
α ∈ {1, 2, 3, 3̄, 2̄, 1̄} , (13)

which means that the no-zero matrix elements are

M1
(12) = M2

(13) = M3
(14) = M 3̄

(23) = M 2̄
(24) = M 1̄

(34) = 1 .

1This is because the fundamental Gross-Neveu particles are fermions (see [14]).
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3 Form factors

The matrix element of a local operator O(x) for a state of n particles of kind αi with
rapidities θi

〈 0 | O(x) | θ1, . . . , θn 〉inα = e−ix(p1+···+pn)FOα (θ) , θ1 > θ2 > · · · > θn (14)

defines the generalized form factor FO1...n(θ), which is a co-vector valued function with
components FOα (θ).

Form factor equations: The co-vector valued function FO1...n(θ) is meromorphic in all
variables θ1, . . . , θn and satisfies the following relations [23, 24]:

(i) The Watson’s equations describe the symmetry property under the permutation of
both, the variables θi, θj and the spaces i, j = i+ 1 at the same time

FO...ij...(. . . , θi, θj, . . . ) = FO...ji...(. . . , θj, θi, . . . )Sij(θij) (15)

for all possible arrangements of the θ’s.

(ii) The crossing relation implies a periodicity property under the cyclic permutation of
the rapidity variables and spaces

out,1̄〈 p1 | O(0) | p2, . . . , pn 〉in,conn.
2...n

= FO1...n(θ1 + iπ, θ2, . . . , θn)σO1 C1̄1 = FO2...n1(θ2, . . . , θn, θ1 − iπ)C11̄ (16)

where σOα takes into account the statistics of the particle α with respect to O.2 The
charge conjugation matrix C1̄1 will be discussed below.

(iii) There are poles determined by one-particle states in each sub-channel given by a
subset of particles of the state in (14). In particular the function FOα (θ) has a pole
at θ12 = iπ such that

Res
θ12=iπ

FO1...n(θ1, . . . , θn) = 2iC12 F
O
3...n(θ3, . . . , θn)

(
1− σO2 S2n . . . S23

)
. (17)

(iv) If there are also bound states in the model the function FOα (θ) has additional poles.
If for instance the particles 1 and 2 form a bound state (12), there is a pole at
θ12 = iη such that

Res
θ12=iη

FO12...n(θ1, θ2, . . . , θn) = FO(12)...n(θ(12), . . . , θn)
√

2Γ
(12)
12 (18)

where the bound state intertwiner Γ
(12)
12 is here given by (12) and the values of

θ1, θ2, θ(12) are given in general in [22, 14, 25].

2The statistics factor σO1 is determined by the space-like commutation rule of the operator O and the
field which creates the particle 1.
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(v) Naturally, since we are dealing with relativistic quantum field theories we finally
have

FO1...n(θ1 + µ, . . . , θn + µ) = esµ FO1...n(θ1, . . . , θn) (19)

if the local operator transforms under Lorentz transformations as O → esµO where
s is the “spin” of O.

For the SU(4) S-matrix (1) the bound state pole is at θ = 1
2
iπ, i.e. η = 1

2
π.

The general form factor formula: We write the general form factor FO1...n(θ) for n
fundamental particles following [23] as

FOα (θ) = KOα (θ)
∏

1≤i<j≤n

F (θij) (20)

where F (θ) is the minimal form factor function (see below). The K-function KO1...n(θ) is
given in terms of a nested ‘off-shell’ Bethe ansatz (see e.g. [10, 6])3

KOα (θ) =

∫
C(1)θ

dz1 · · ·
∫
C(m)
θ

dzm h(θ, z)pO(θ, z) Ψ̃α(θ, z) (21)

written as a multiple contour integral. The scalar function h(θ, z) depends only on the
S-matrix and not on the specific operator O(x)

h(θ, z) =
n∏
i=1

m∏
j=1

φ̃(θi − zj)
∏

1≤i<j≤m

τ(zi − zj) (22)

τ(z) =
1

φ̃(−z)φ̃(z)
. (23)

The dependence on the specific operator O(x) is encoded in the scalar p-function4 pO(θ, z)
which is in general a simple function of eθi and ezj . The function φ̃(θ) and the integration
contours Cθ depend on the model and are given below.

3.1 SU(4) form factors

Minimal form factor: Let S (θ) be an S-matrix eigenvalue. The solution of Watson’s
and the crossing equations (i) and (ii) for two particles

F (θ) = S (θ)F (−θ)
F (iπ + θ) = F (iπ − θ) (24)

3A more general form of the nested Bethe ansatz where the p-function depends on all level z-variables
is discussed in Section 3.1 of [6].

4How the statistics factors enter the periodicity rules for the p-functions is presented in Section 3.1 of
[6].
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with no poles in the physical strip 0 ≤ Im θ ≤ π and at most a simple zero at θ = 0
is the minimal form factor [23]. For the construction of the ‘off-shell’ Bethe ansatz the
minimal form factor for the highest weight eigenvalue of the SU(4) S-matrix aSU(4)(θ) of
(3) is essential. The unique solution (up to a constant factor) is

F SU(4) (θ) =
G
(

1
2
θ
iπ

)
G
(
1− 1

2
θ
iπ

)
G
(

3
4

+ 1
2
θ
iπ

)
G
(

7
4
− 1

2
θ
iπ

) (25)

where G (z) is Barnes G-function, which satisfies (see e.g. [26])

G (1 + z) = Γ (z)G (z) .

The n-particle form factor for SU(4) is given by (21) and the function φ̃(θ) in (22)
and (23) is (see [6])

φ̃(θ) = Γ
(

3
4

+ 1
2πi
θ
)

Γ
(
− 1

2πi
θ
)
. (26)

The integration contour in (21) for SU(4) is depicted in Fig. 2

• θn − 2iπ

b θn − 1
2
iπ

• θn
����-
• θn + 3

2
iπ

. . .

• θ2 − 2iπ

b θn − 1
2
iπ

• θ2
����-
• θ2 + 3

2
iπ

• θ1 − 2iπ

b θ1 − 1
2
iπ

• θ1
����-
• θ1 + 3

2
iπ

- ��

Figure 2: The integration contour for SU(4)

Nesting: The Bethe state in (21) for SU(4) is written as

Ψ̃A(θ, z) = K
(1)
B (z) Φ̃B

A(θ, z) (27)

where A = (A1, . . . , An) with 1 ≤ Ai ≤ 4 and summation over all B = (B1, . . . , Bm) with
2 ≤ Bi ≤ 4 is assumed. The basic Bethe ansatz co-vectors (in the algebraic formulation)

Φ̃B
1...n ∈ (V 1...n)

†
are defined as [6]

Φ̃B
1...n(θ, z) = Ω1...nC̃

Bm
1...n(θ, zm) · · · C̃B1

1...n(θ, z1)

Φ̃B
A(θ, z) =

�
&
B1 Bm

A1 An

1 1

1

1
θ1 θnz1

zm
. . .

... ,
2 ≤ Bi ≤ 4
1 ≤ Ai ≤ 4 .

(28)
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The nested Bethe ansatz is obtained by writing for K
(1)
B (z) of (27) an ansatz as (21) and

so on: for K
(1)
B (z(1)) we have an SU(3) and for K

(2)
C (z(2)) an SU(2) Bethe ansatz, which is

well known. The number m = n1 in (28) is the number of “weight flip”operators. These
numbers for the various levels of the nested Bethe ansatz satisfy [6]

(n− n1, n1 − n2, n2 − n3, n3) = wO + L(1, 1, 1, 1) (29)

where wO is the weight vector of the operator O and L = 0, 1, 2, . . . .

3.2 O(6) form factors

Minimal form factors: The solutions of Watson’s and the crossing equations (i)
and (ii) for two particles (24) with no poles in the physical strip 0 ≤ Im θ ≤ π and at
most a simple zero at θ = 0 are the minimal form factors [23]

(
F
O(6)
0 , F

O(6)
+ , F

O(6)
−

)min

=

(
2 tanh 1

2
(iπ − θ)

iπ − θ
,
Γ
(

5
4
− 1

2πi
θ
)

Γ
(

1
4

+ 1
2πi
θ
)

Γ2
(

3
4

)
cosh 1

2
(iπ − θ)

, 1

)
F
O(6) min
− .

(30)

They belong to the S-matrix eigenvalues S
O(6)
0 and S

O(6)
± of (8). The full 2-particle form

factors are

F
O(6)
+,−,0 (θ) =

1

sinh 1
2
(θ − 1

2
iπ) sinh 1

2
(θ + 1

2
iπ)

F
O(6) min
+,−,0 (θ) . (31)

They are non-minimal solutions of (24) having a pole at θ = 1
2
iπ (see (5.10) and (2.16)

of [23]). For the construction of the ‘off-shell’ Bethe ansatz the minimal solution of the
form factor equation (24) for the highest weight eigenvalue of the O(N) S-matrix5

FO(6) (θ) = −aO(6)(θ)FO(6) (−θ) (32)

is essential. The unique solution (up to a constant factor) is

FO(6) (θ) = c cosh 1
2

(iπ − θ) FO(6) min
+ (θ) (33)

=
G
(

1
2
θ
iπ

)
G
(
1− 1

2
θ
iπ

)
G
(

1
2

+ 1
2
θ
iπ

)
G
(

3
2
− 1

2
θ
iπ

)G (1
4

+ 1
2
θ
iπ

)
G
(

5
4
− 1

2
θ
iπ

)
G
(

3
4

+ 1
2
θ
iπ

)
G
(

7
4
− 1

2
θ
iπ

) .
The function φ̃(θ) in (22) is the same as (26) for SU(4) and the integration contours in
(21) can be found in [11].

3.3 Bound state form factors

The statistics factor of two fundamental particles in the chiral SU(N) Gross-Neveu model
[20, 19, 6] is σ = exp (2πis), where s = 1

2

(
1− 1

N

)
is the spin. For SU(4) this means that

5The minus sign in (32) is due to fermionic statistics of the fundamental particles (see also eq. 4.12
of [27]).



3 FORM FACTORS 11

the spin is s = 3
8
, and the statistics factor is σ = exp

(
3
4
πi
)
. In particular, the bound

states of two fundamental SU(4) particles are fermions because σ4 = −1.
An n′ = n/2-particle form factor for O(6) is calculated from an n-particle one of SU(4)

using the bound state formula (iv) of (18)

FO(6)
α (ω)ΓαA = 2−n/4 Res

θ12= 1
2
iπ
. . . Res

θn−1n= 1
2
iπ
F
SU(4)
A (θ) (34)

where ΓαA = Γα1
A1A2

. . .Γ
αn′
An−1An

is the total intertwiner and ωi = 1
2

(θ2i−1 + θ2i) are the
bound state rapidities.

Lemma 2 The bound state form factors defined by (34) satisfy the form factor equations
(i) - (v) of (15) - (18). The K-functions defined by (20) and (34) satisfy, in particular

1.

KO(6)
α (ω)ΓαA = 2−n/4

∏
1≤i<j≤n′

1

φ̃(−ωij)φ̃(−ωij + 1
2
iπ)

Res
θ12= 1

2
iπ
. . . Res

θn−1n= 1
2
iπ
K
SU(4)
A (θ)

(35)

2. the form factor equation (iii) in the form (see [11])

Res
ω12=iπ

K
O(6)
1...n′(ω) =

2i

FO(6)(iπ)
C12

n′∏
i=3

φ̃(ωi1 + 1
2
iπ)φ̃(ωi2)K

O(6)
3...n′(ω̌) (1− S2n′ . . . S23)

(36)
with ω̌ = ω3, . . . ωn′.

Proof. In Appendix E of [25] was proved that in general bound state form factors
satisfy the form factor equations. We use the variables u, o with θ = 1

2
iπu, ω = 1

2
iπo.

1. Equation (34) implies for the K-functions (35) because from (25) and (33) we derive

F SU(4)
(
ω + 1

2
iπ
) (
F SU(4) (ω)

)2
F SU(4)

(
ω − 1

2
iπ
)

FO(6) (ω)
=

1

φ̃(−ω)φ̃(−ω + 1
2
iπ)

. (37)

2. This follows from the general proof of (iii) in [25] and (35). One can also prove it

directly from (iii) for F
SU(4)
A (θ), eq. (35) and (up to a const.)∏

3≤i<j≤n′
φ̃(−ωij)φ̃(−ωij + 1

2
iπ)∏

1≤i<j≤n′
φ̃(−ωij)φ̃(−ωij + 1

2
iπ)

n∏
i=5

4∏
j=2

φ̃(θij) =
n′∏
i=3

φ̃(ωi1 + 1
2
iπ)φ̃(ωi2)

for θ2i−1 = ωi + 1
4
iπ, θ2i = ωi − 1

4
iπ and ω12 = iπ.
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This lemma implies the following

Corollary 3 In [14] we demonstrated that the isomorphism O(6) ' SU(4), leads to an
equivalence between the O(6) Gross-Neveu model and the SU(4) chiral Gross-Neveu model
for the S-matrices. The results of this section show, that this is also true for the form
factors.

4 Examples of operators

We use the results of [6] and [11].

4.1 The current Jµ(x)

The SU(4) form factor: The SU(4) Noether current Jµ
AB̄

(x) transforms as the adjoint
representation with weight vector wJ = (2, 1, 1, 0). Because the Bethe ansatz yields
highest weight states we consider the highest weight component

Jµ
14̄

(x) = εµν∂νJ(x) ,

where the anti-particle 4̄ is defined by (5) and J(x) is the pseudo potential with the
p-function in (21) (see subsection 4.3 of [6])

pJ(θ, z) = e
1
2

(∑
θi−

∑
z
(1)
i −

∑
z
(3)
i

)
/
∑

eθi . (38)

The n-particle current form factor for SU(4) is given by (20) and the nested ‘off-shell’
Bethe ansatz (21) with the p-function (38). The numbers of “weight flip” operators in
the various levels of the nested Bethe ansatz are given by (29) as n = 4 + 4L, n1 =
2 + 3L, n2 = 1 + 2L, n3 = L. In particular we consider L = 0, i.e. n = 4, n1 = 2, n2 = 1
and n3 = 0. The Bethe state in (21) is then

ΨA(θ, z) = K
(1)
B (z)ΦB

A(θ, z)

K
(1)
B (z) =

∫
dy

2∏
j=1

φ̃(zj − y)Ψ
(1)
B (z, y) (39)

Ψ
(1)
B (z, y) = δ2

B1
δ3
B2
b̃(z1 − y)c̃(z2 − y) + δ3

B1
δ2
B2
c̃(z1 − y)

(see also Fig. 3). Below we use this formula to calculate the bound state form factor.

The O(6) form factor: The O(6) Noether current transforms as an antisymmetric
O(N) tensor with weights wJ = (1, 1, 0). The bound state formula (34) applied to (20,21)
with the p-function (38) yields the O(6) current form factor for n/2 particles. In particular
we consider the case n = 4.
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Proposition 4 The bound state formula (34) for n = 4 and (20, 21) with the p-function
(38) yield the two particle O(6) form factor of the pseudo-potential Jαβ(x) and the current
Jαβµ (x) = εµν∂

νJαβ(x)

FO(6),Jαβ

α1α2
(θ1, θ2) = im

(
δαα1

δβα2
− δβα1

δαα2

) 1

cosh 1
2
θ12

F
O(6)
− (θ) (40)

FO(6),Jαβµ
α1α2

(θ1, θ2) = i
(
δαα1

δβα2
− δβα1

δαα2

)
v̄(θ1)γµu(θ2)F

O(6)
− (θ) (41)

which agrees with the results of [11].

Proof. We have n = 4, n1 = 2, n2 = 1 and n3 = 0. For convenience we use here
the variables u, v, w with θ = iπ 1

2
u, z = iπ 1

2
v, y = iπ 1

2
w and calculate (always up to

constants)

Res
u12=1

Res
u34=1

K
SU(4),J
A (u) = Res

u12=1
Res
u34=1

∫
Cu
dvh (u, v) pJ(u, v)ΨA(u, v) (42)

= Res
u12=1

Res
u34=1

Res
v1=u2

Res
v2=u4

h (u, v) pJ(u, v)ΨA(u, v)

because the residues are obtained by pinchings at v1 = u2, v2 = u4 which imply that the
S-matrices S(u2 − v1) and S(u4 − v2) are replaced by the permutation operator (see Fig.
3). Using Yang-Baxter relations and the formula for the fusion intertwiner (11) we obtain

�
�&

&
�

&
�

u1 u2 u3 u4

v1 = u2

v2 = u4

w

2 2

2

3

1

1

1 1 1 1

Figure 3: The Bethe state ΨA(u, v) in (42) for v1 = u2, v2 = u4.

Res
u12=1

Res
u34=1

K
SU(4),J
A (u) = φ̃(u14)φ̃(u32)K

(1)
B (u24)b̃(u14)pJ (u, u2, u4)

(
ΓB11
α ΓαA1A2

ΓB21
β ΓβA3A4

)
.

With (39) we have (again up to constants)

K
(1)
32 (v) =

∫
Cv
dwΓ(−1

4
(v1 − w))Γ(−1

4
+ 1

4
(v1 − w))Γ(−1

4
(v2 − w))Γ(3

4
+ 1

4
(v2 − w))

= Γ
(

3
4
− 1

4
v12

)
Γ
(
−1

4
+ 1

4
v12

)
where φ̃(v1 − w)c̃(v1 − w) ∝ Γ(−1

4
(v1 − w))Γ(−1

4
+ 1

4
(v1 − w)) and the Gauss formula

2F1(a, b; c; 1) =
∞∑
n=0

1

n!

Γ (a+ n)

Γ (a)

Γ (b+ n)

Γ (b)

Γ (c)

Γ (c+ n)
=

Γ (c) Γ (c− a− b)
Γ (c− a) Γ (c− b)

(43)
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have been used. Similarly, we calculate K
(1)
23 (v) and get K

(1)
23 (v) = −K(1)

32 (v). Finally
using (38)

Res
u12=1

Res
u34=1

K
SU(4),J
A (u) = KJ(o)

(
Γ

(12)
A1A2

Γ
(13)
A3A4

− Γ
(13)
A1A2

Γ
(12)
A3A4

)
KJ(o) = φ̃(u14)φ̃(u32)Γ

(
3
4
− 1

4
u24

)
Γ
(
−1

4
+ 1

4
u24

)
b̃(u14)pJ (u, u2, u4)

=
1

sin 1
2
πo

(
Γ
(

3
4
− 1

4
o
)

Γ
(
−1

4
+ 1

4
o
))2

with o = u(12)(34) = u13 = u24 = u14− 1
2

= u23 + 1
2
. The result (40) follows then from (37),

(30) and (31).

4.2 The iso-scalar operator O
The SU(4) n-particle form factor for the iso-scalar operator O(x) with weights wO =
(0, 0, 0, 0) is given by (20) and the nested ‘off-shell’ Bethe ansatz (21). The numbers of
“weight flip” operators in the various levels of the nested Bethe ansatz are given by (29)
as n = 4 + 4L, n1 = 3 + 3L, n2 = 2 + 2L, n3 = 1 + L. We propose for the iso-scalar
operator O(x) the p-function

pO
(
θ, z
)

= e
1
2

∑
θi−

∑
z
(1)
i +

∑
z
(3)
i − 1. (44)

With this p-function in (21) the form factor equations (i) - (v) of (15) - (18) hold with
statistics factor σO1 = −1 and spin sO = 0. The bound state formula (34) applied to (20)
and (21) with the p-function (44) yields the O(6) form factor of the operator ψ̄ψ(x) for
n/2 particles. In particular we consider the case L = 0, i.e n = 4, n1 = 3, n2 = 2 and
n3 = 1.

Proposition 5 The bound state formula (34) applied to (20) and (21) with the p-function
(44) yields the two particle O(6) form factors of ψ̄ψ

F ψ̄ψ
α1α2

(θ) = 〈 0 | ψ̄ψ(0) | p1, p2 〉inα1α2
= Cα1α2 v̄(θ1)u(θ2)F0(θ12) (45)

which means for the energy momentum operator6 T µν

F Tµν

α1α2
(θ) = 〈 0 |T µν(0) | p1, p2 〉inα1α2

= Cα1α2 v̄(θ1)γµu(θ2) 1
2
(pν1 − pν2)F0(θ12)

with F0(θ) given by (30) and (31) which agrees with the results of [11].

Proof. The more general proof in Appendix A implies for ν = 1/2

Res
θ12= 1

2
iπ

Res
θ34= 1

2
iπ
F
SU(4),O
1234 (θ1, . . . , θ4) = const.

Γ
(

3
4
− 1

2
ω
iπ

)
Γ
(
−1

4
+ 1

2
ω
iπ

)
Γ
(

3
2
− 1

2
ω
iπ

)
Γ
(

1
2

+ 1
2
ω
iπ

) FO(6) (ω) .

with ω = θ(12) − θ(34). Together with (30) and (31) the claim (45) follows.

6This follows from ∂µT
µν = 0 and Tµ

µ = mψ̄ψ.
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4.3 The O(6) Gross-Neveu field ψ(x)

The SU(4) form factor: We follow [6] and define the SU(4) operator OAB =
[
ψA, ψB

]
where ψA(x) is the fundamental field of the chiral SU(4)-Gross-Neveu model. It has the
weight vector wO = (1, 1, 0, 0). We write the highest weight component [ψ1, ψ2] as O and
propose the p-function (see subsection 4.2 of [6])

pO
(±)

(θ, z) =
(
pψ

(±)

(θ, z)
)2

= e±(
∑m
i=1 zi−

3
4

∑n
i=1 θi) (46)

belonging to the ± spinor components. The form factors are again given by (20) and (21).
The numbers of “weight flip” operators in the various levels of the nested Bethe ansatz
are given by (29) as n = 2 + 4L, n1 = 1 + 3L, n2 = 2L, n3 = L.

The O(6) form factor: The fundamental O(6) field ψα is fermionic and transforms as
the vector representation with weight vector wψ = (1, 0, 0) [11]. It is given in terms of
OAB by (12) and (13)

ψα = Mα
(RS)Γ

(RS)
AB

[
ψA, ψB

]
.

The bound state formula (34) applied to (20) and (21) with the p-function (46) yields
the O(6) form factor for n/2 particles. In particular we consider the case L = 0, i.e.
n = 2, m = 1

Res
θ12=iπ2/3

K
SU(4),O(±)

A (θ) = Res
θ12=iπ2/3

∫
Cθ
dz φ̃ (θ1 − z) φ̃ (θ2 − z) e

±
(
z−3

4
(θ1+θ2)

)
Ψ̃A(θ, z)

= φ̃ (θ12) e
±
(
θ2−

3
4

(θ1+θ2)
)

Res
θ12=iπ2/3

S̃21
A1A2

(θ12)

where pinching at z = θ2 was used. Therefore the O(6) one particle form factor of the
field is with θ = 1

2
(θ1 + θ2) (up to const.)

F
O(6),ψ(±)

1 (θ) = e∓
1
2
θ = u(±)(θ)

as expected.

5 O(6) ' SU(4) as a start of level iteration for O(N)

5.1 The modified n-particle K-function for O(6)

The O(N) Gross-Neveu form factors are given by the ‘off-shell’ nested Bethe ansatz [11].
Therefore we need the higher level O(N − 2k) Bethe ansatz for k = 1, . . . , N/2− 3. The
last one is of O(6) type. For this discussion it is convenient to introduce the variables
u, v with θ = iπνku, z = iπνkv with νk = 2/(N − 2k − 2). For the O(N − 2k) S-matrix
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S(k)(u) we write

S̃(k)(u) = S(k)/S
(k)
+ = b̃(u)1 + c̃(u)P + d̃k(u)K (47)

b̃(u) =
u

u− 1
, c̃(u) =

−1

u− 1
, d̃k(u) =

u

u− 1

1

u− 1/νk
.

and define the higher level K-functions

K(k)
α (u) = Ñ (k)

mk

∫
C(1)u

dv1 · · ·
∫
C(mk)u

dvmk h(u, v)p(k)(u, v) Ψ̃(k)
α (u, v) (48)

Ψ̃(k)
α (u, v) = K

(k+1)

β̊
(v)
(
Φ̃(k)

)β̊
α
(u, v)

with u = u1, . . . , unk , v = v1, . . . , vmk and mk = nk+1. The basic Bethe ansatz co-vectors(
Φ̃(k)

)β̊
α
(u, v) are defined analogously to (28). The function h(u, v) is given by (22) and

(23) where φ̃ (θ) is replaced by

φ̃ν (θ) = Γ
(
1− 1

2
ν + 1

2πi
θ
)

Γ
(
− 1

2πi
θ
)
, ν = ν0 = 2/(N − 2)

The higher level K-functions K
(k)
α (u) for k > 0 satisfy the equations

(i)(k)

K
(k)
...ij...(. . . , ui, uj, . . . ) = K

(k)
...ji...(. . . , uj, ui, . . . ) S̃

(k)
ij (uij) (49)

(ii)(k)

K
(k)
1...nk

(u1 + 2/ν, u2, . . . , unk)σ
O
1 C1̄1 = K

(k)
2...nk1(u2, . . . , unk , u1)C11̄ (50)

(iii)(k)

Res
u12=1/νk

K
(k)
1...nk

(u1, . . . , unk) =

nk∏
i=3

φ̃ν(ui1 + 1)φ̃ν(ui2)C12K
(k)
3...nk

(u3, . . . , unk) . (51)

The normal form factor equations (i) - (iii) for O(N − 2k) are similar to these higher
level equations. There are, however, two differences:

1. The shift in (ii)(k) is the one of O(N) but not that of O(N − 2k).

2. There is only one term on the right hand side in (iii)(k).

In particular for k = N/2 − 3 = 1/ν − 2 we have νk = 1
2

and K
(k)
α (u) = K

O(6),ν
α (u) is

of O(N − 2k) = O(6) type, which means in particular that the S-matrix and the Bethe

state are the ones of O(6). We call K
O(6),ν
α a modified O(6) K-function.
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• un + 2/ν − 1

• un − 4/ν

• un − 2/ν

d un − 1
• unl-

. . .

• u2 + 2/ν − 1

• u2 − 4/ν

• u2 − 2/ν

d u2 − 1
• u2
l-

• u1 + 2/ν − 1

• u1 − 4/ν

• u1 − 2/ν

d u1 − 1
• u1
l-

- ��

Figure 4: The integration contour Cu,ν in (52). The bullets refer to poles of the integrand

resulting from φ̃(ui−vj) and the small open circles refer to poles originating from b̃(ui−vj)
and c̃(ui − vj).

5.2 The modified n-particle K-function for SU(4)

Replacing in (21) and (26)

φ̃ (θ)→ φ̃ν (θ) = Γ
(
1− 1

2
ν + 1

2πi
θ
)

Γ
(
− 1

2πi
θ
)

we obtain the modified n-particle K-function for SU(4) which satisfies the form
factor equation (ii) (see (16)) not for the shift θ1 → θ1 + 2πi but for θ1 → θ1 + iπ/ν and
in (iii) (see (17)) the second term on the right hand side is missing. Again we use for
convenience the variables u and v with θ = iπνu, z = iπνv, then the K-function (the
integration contour is shown in figure 4)

K
SU(4),ν
A (u, ν) =

∫
Cu,ν

dv
n∏
i=1

m∏
j=1

φ̃ν(ui − vj)
∏
i<j

τν(vij)p(u, v)Ψ̃A(u, v) (52)

satisfies for ν < 1
2

not the form factor equations (ii) and (iii) of (15) - (19) but the modified
ones

(ii)ν
K
SU(4),ν
1...n (u1 + 2/ν, u2, . . . , un)σO1 C1̄1 = K

SU(4),ν
2...n1 (u2, . . . , un, u1)C11̄ (53)

(iii)ν

Res
u34=1

Res
u23=1

Res
u12=1

K
SU(4),ν
1...n (u) =

n∏
i=5

4∏
j=2

φ̃ν(uij) ε1234K
SU(4),ν
5...n (ǔ) (54)

with ǔ = u5, . . . , un.

The proofs of these equations are quite analogous to the ones in [6] for the normal
SU(N) K-functions for N = 4.
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5.3 n′= n/2 bound states of SU(4) particles:

We apply the bound state formula (iv) to an n-particle modified K-function of SU(4) and
define correspondingly to (35) for ν = 2/(N − 2) an n′ = n/2-particle O(6) K-function

KO(6),ν
α (o)ΓαA =

∏
1≤i<j≤n′

1

φ̃ν(−oij)φ̃ν(−oij + 1)
Res
u12=1

. . . Res
un−1n=1

K
SU(4),ν
A (u) (55)

with oi = 1
2

(u2i−1 + u2i) and the intertwiner ΓαA = Γα1
A1A2

. . .Γ
αn′
An−1An

. Correspondingly to
lemma 2 we prove

Lemma 6 The K-function defined by (55) satisfies the modified form factor equations

(i)ν
K
O(6),ν
...ij... (. . . oi, oj . . . ) = K

O(6),ν
...ji... (. . . oj, oi . . . )S̃

O(6)(oij)

(ii)ν
K
O(6),ν
12...n′ (o1 + 2/ν, o2, . . . , on′)C

1̄1 = K
O(6),ν
2...n′1 (o2, . . . , on′ , o1)C11̄

(iii)ν

Res
o12=2

K
O(6),ν
1...n′ (o) =

n′∏
i=3

φ̃ν(oi1 + 1)φ̃ν(oi2)C12K
O(6),ν
3...n′ (ǒ)

with ǒ = o3, . . . on′.

Proof. We follow here the proof of Proposition 7 in [25]. For (i)ν and (ii)ν the proofs
are again obvious. To prove (iii)ν one follows Appendix E of [25] taking into account that
also in (54) there is only one term on the right hand side.

Corollary 7 The K-function defined by (55) satisfies the higher level equations (i)(k) -
(iv)(k) or (4.13) - (4.16) of [11] for k = N/2 − 3, i.e. νk = 1/2. Therefore it serves as
a starting of the nesting for the construction of an O(N)-Gross-Neveu form factor for
arbitrary even N > 6.

To construct the form factors of the O(N) Gross-Neveu model for the operators
ψ̄ψ, Jαβµ and ψα with weight vectors w = (0, 0, . . . , 0) , (1, 0, . . . , 0) and (1, 1, 0, . . . , 0),
respectively, we need for the starting of the nested Bethe ansatz the modified O(6) one
for the iso-scalar with weight vectors w = (0, 0, 0). Therefore we generalize the construc-
tions of Subsection 4.2 from ν = 1/2 to general ν and prove

Lemma 8 The bound state formula (55) applied to the modified SU(4) K-function (52)
with the p-function (44)

p (u, v, w, x) = eiπν(
1
2

∑4L
i=1 ui−

∑3L
i=1 vi+

∑L
i=1 xi) − 1 (56)
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for L = 1, 2, . . . (see (29)) yields the modified O(6) K-function for the iso-scalar for
n′ = 2L particles. This means that for L = 1 the the bound state formula (55) yields the
modified O(6) two-particle K-function

Kα1α2(o1, o2) = Cα1α2

Γ
(
1− 1

2
ν − 1

2
νo12

)
Γ
(
−1

2
ν + 1

2
νo12

)
Γ
(
1 + ν − 1

2
νo12

)
Γ
(
ν + 1

2
νo12

) . (57)

This is the higher level K-function needed as the starting for the nested O(N) Bethe ansatz
(see [11]).

The proof of this lemma can be found in Appendix A. It follows the main result of
this article:

Corollary 9 For all O(N) Gross-Neveu form factors of operators O(x) with weights
wO = (w1, w2, 0, . . . , 0, 0) the start of the nesting is obtained by (52) with the p-function
(56) and the bound state formula (55).

Conclusions:

The form factors for the SU(N) chiral Gross-Neveu model were constructed in [15, 6, 7,
8, 16]. In [10] we used the isomorphism O(4) ' SU(2) × SU(2) as the starting point of
the nesting procedure to construct the O(N) σ-model form factors. Up to now we were
not able to do the analog for the O(N) Gross-Neveu model. However, the fundamental
particles of the O(6) Gross-Neveu model may by identified with the bound states of the
SU(4) chiral Gross-Neveu model [14]. Using this identification we showed in the present
article how to use the O(6) functions as the starting point of the nesting procedure to
construct the O(N) Gross-Neveu model form factors (for N even). In a forthcoming article
we will consider the O(4) Gross-Neveu model. Also the asymptotic behavior of the form
factors and the short distance behavior of the correlation functions will be investigated.
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Appendix

For simplicity the equations in the following are mostly written up to inessential constants.
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A Proof of Lemma 8

Proof. We have n = 4, n1 = 3, n2 = 2 and n3 = 1. For convenience we use again the
variables u, v, w, x, o with θ = iπνu, z(1) = iπνv, z(2) = iπνw, z(3) = iπνx, ω = iπνo.
We prove that (55) for n = 4 (with o1 = (u1 + u2)/2, o2 = (u3 + u4)/2)

KO(6),ν
α (o)ΓαA =

1

φ̃ν(−o12)φ̃ν(−o12 + 1)
Res
u12=1

Res
u34=1

K
SU(4),ν
A (u)

with the p-function (56) implies (57)

KO(6),ν
α1α2α

(o1, o2) = Cα1α2

Γ
(
1− 1

2
ν − 1

2
νo12

)
Γ
(
−1

2
ν + 1

2
νo12

)
Γ
(
1 + ν − 1

2
νo12

)
Γ
(
ν + 1

2
νo12

) .

We calculate the residues (first for p = 1) of the component with A = (1, 2, 3, 4) (using
pinching at v1 = u2 → u1 − 1, v2 = u4 → u3 − 1)

X = Res
u12=1

Res
u34=1

K
SU(4)
1234 (u) =

∫
Cu
dv3 Res

u12=1
Res
u34=1

Res
v1=u2

Res
v2=u4

h (u, v) Ψ1234(u, v) (A.1)

=

∫
Cu
dv3 Res

u12=1
Res
u34=1

Res
v1=u2

Res
v2=u4

h (u, v)K
(1)
B (v)ΦB

1234(u, v)

=

[
b̃ (u14)

∫
Cu
dv3hr (u, v)

(
K

(1)
234(v)−K(1)

243(v)
)
b̃ (u1 − v3) c̃ (u3 − v3)

]
v1=u2,v2=u4
u1=u2+1,u3=u4+1

with hr (u, v) = Res
v1=u2

Res
v2=u4

h (u, v). It was used that for v1 = u2 and v2 = u4 (see Fig. 5)
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Figure 5: The Bethe state ΨA(u, v) in (21) for an iso-scalar operator where A = (1, 2, 3, 4)
and v1 → u2, v2 → u4.

Res
u12=1

Res
u34=1

ΦB
1234(u, u2, u4) = δB1

2

(
δB2

3 δB3
4 − δB2

4 δB3
3

)
b̃ (u1 − u4) b̃ (u1 − v3) c̃ (u3 − v3)
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and therefore

K
(1)
B (u2, u4, v3) Res

u12=1
Res
u34=1

ΦB
1234(u, u2, u4, v3)

=
(
K

(1)
234(u2, u4, v3)−K(1)

243(u2, u4, v3)
)
b̃ (u1 − u4) b̃ (u1 − v3) c̃ (u3 − v3) ,

further with o = o12 = u24 = v12

X(o) = Res
u12=1

Res
u34=1

K
SU(4)
1234 (u)

=

∫
Cu
dv3

4∏
i=1

2∏
j=1

i,j 6=2,1;4,2

φ̃ν(ui − vj)τ(v12)
4∏
i=1

φ̃ν(ui − v3)τ(v13)τ(v23)

×
(
K

(1)
234(u2, u4, v3)−K(1)

243(u2, u4, v3)
)
b̃ (u1 − u4) b̃ (u1 − v3) c̃ (u3 − v3)

with v1 → u2, v2 → u4, u1 → u2 + 1, u3 → u4 + 1. We get X as

X(o) =
Γ
(
1− 1

2
ν (1 + o)

)
Γ
(

1
2
ν (o− 1)

)
sin 1

2
πνo

Y (o)

Y (o) =

∫
Cu
dv3c̃ (−u4 + v3)

(
K

(1)
234(u2, u4, v3)−K(1)

243(u2, u4, v3)
)

where it was used that for v1 = u2, v2 = u4, u1 = u2 + 1, u3 = u4 + 1

b̃ (u1 − u4)
φ̃ν(u1 − v1)φ̃ν(u1 − v2)φ̃ν(u2 − v2)φ̃ν(u3 − v1)φ̃ν(u3 − v2)φ̃ν(u4 − v1)

φ̃ν(v1 − v2)φ̃ν(−v1 + v2)

=
1

sin 1
2
νπ (u4 − u2)

Γ
(
1 + 1

2
ν (−u2 − 1 + u4)

)
Γ
(
−1

2
ν (u4 + 1− u2)

)
and

φ̃ν(u1 − v3)φ̃ν(u2 − v3)φ̃ν(u3 − v3)φ̃ν(u4 − v3)

φ̃ν(v1 − v3)φ̃ν(−v1 + v3)φ̃ν(v2 − v3)φ̃ν(−v2 + v3)

b̃ (u1 − v3) c̃ (u3 − v3)

c̃ (−u4 + v3)
= −1 .

Therefore we have

KO(6),ν
α (o) = Cα1α2

Γ
(
1− 1

2
ν (1 + o)

)
Γ
(

1
2
ν (o− 1)

)
φ̃ν(−o)φ̃ν(−o+ 1) sin 1

2
πνo

Y (o) = Cα1α2Y (o) .

Next we calculate

K
(1)
B (v) =

∫
Cv
dwh (v, w)K

(2)
C (w)Φ(1) C

B(v, w)

with (see Fig. 5)
Φ(1) C1C2

2B2B3
(v, w) = δC1

B2
δC2
B3

Φ1 + δC2
B2
δC1
B3

Φ2
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Φ2 = b̃ (v1 − w1) b̃ (v1 − w2) b̃ (v2 − w1) c̃ (v2 − w2) c̃ (v3 − w1)

Φ1 = b̃ (v1 − w1) b̃ (v1 − w2) c̃ (v2 − w1)

×
(
b̃ (v2 − w2) b̃ (v3 − w1) c̃ (v3 − w2) + c̃ (v2 − w2) c̃ (v3 − w1)

)
and

K
(2)
C (w) =

∫
Cw
dxφ̃ν(w1 − x)φ̃ν(w2 − x)

(
δ34
C b̃(w1 − x)c̃(w2 − x) + δ43

C c̃(w1 − x)
)

(A.2)

=
(
δ34
C − δ43

C

)
Γ
(
−1

2
ν + 1

2
νw12

)
Γ
(
1− 1

2
ν − 1

2
νw12

)
which follows from

1

2πi

(∫
Ca

+

∫
Cb

)
dzΓ(a− z)Γ(b− z)Γ (c+ z) Γ (d+ z)

= −Γ (c+ a) Γ (d+ a) Γ (c+ b) Γ (d+ b)

Γ (c+ d+ a+ b)
.

Therefore

K
(1)
2B2B3

(v) =

∫
Cv
dwh (v, w) Γ

(
−1

2
ν + 1

2
νw12

)
Γ
(
1− 1

2
ν − 1

2
νw12

)
×
(
δ3
B2
δ4
B3
− δ4

B2
δ3
B3

)
(Φ1 − Φ2)

because
(
δ34
C − δ43

C

) (
δC1
B2
δC2
B3

Φ1 + δC2
B2
δC1
B3

Φ2

)
=
(
δ3
B2
δ4
B3
− δ4

B2
δ3
B3

)
(Φ1 − Φ2) and

Φ1 − Φ2 =
b̃ (v1 − w1) b̃ (v1 − w2) c̃ (v2 − w1) c̃ (v2 − w2)

c̃ (w1 − w2)

c̃ (v3 − w1) c̃ (v3 − w2)

c̃ (v3 − v2)
.

Finally exchanging the integrations

Y (o) =

∫
Cu
dv3c̃ (−u4 + v3)

(
K

(1)
234(u2, u4, v3)−K(1)

243(u2, u4, v3)
)

=

∫
Cv
dwτν(w12)Γ

(
−1

2
ν + 1

2
νw
)

Γ
(
−1

2
νw
)

×

[
2∏
i=1

2∏
j=1

φ̃ν(vi − wj)
b̃ (v1 − w1) b̃ (v1 − w2) c̃ (v2 − w1) c̃ (v2 − w2)

c̃ (w1 − w2)

]
v1=u2,v2=u4

×
∫
Cw
dv3c̃ (−u4 + v3) φ̃ν(v3 − w1)φ̃ν(v3 − w2)

c̃ (v3 − w1) c̃ (v3 − w2)

c̃ (v3 − u4)

the v3-integration can be done as above in (A.2)∫
Cw
dv3φ̃ν(v3 − w1)φ̃ν(v3 − w2)c̃ (v3 − w1) c̃ (v3 − w2) = Γ(−1

2
ν + 1

2
νw12)Γ(−1

2
ν − 1

2
νw12)

(A.3)
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and therefore (for v1 = u2, v2 = u4, o = u2 − u4)

Y (o) =

∫
Cv
dw

(
2∏
i=1

2∏
j=1

φ̃ν(vi − wj)

)
× b̃ (v1 − w1) b̃ (v1 − w2) c̃ (v2 − w1) c̃ (v2 − w2) Ψ (w1 − w2)

with

Ψ (w) =
Γ
(
−1

2
ν + 1

2
νw
)

Γ
(
1− 1

2
ν − 1

2
νw
)

Γ
(
−1

2
ν + 1

2
νw
)

Γ
(
−1

2
ν − 1

2
νw
)

c̃ (w) φ̃ν(w)φ̃ν(−w)

=
1

π
w
(
sin 1

2
πνw

)
Γ
(
−1

2
ν + 1

2
νw
)

Γ
(
−1

2
ν − 1

2
νw
)
.

In (C.10) of [11] was shown that∫
Cv
dw

2∏
j=1

(
φ̃ν(v1 − wj)φ̃ν(v2 − wj)c̃ (v2 − wj)

)
ϕ (w12, k) = K(v12, k) (A.4)

with

ϕ (w, k) =
(1− w)K(w, k + 1)

φ̃ν(w)φ̃ν(−w) (w + 1/ν − k − 1)

K(u, k) =
Γ
(
1− 1

2
ν − 1

2
νu
)

Γ
(
−1

2
ν + 1

2
νu
)

Γ
(

3
2
− 1

2
νk − 1

2
νu
)

Γ
(

1
2
− 1

2
νk + 1

2
νu
) .

Note that for k = 1/ν − 2

Ψ (w) =
1

sin 1
2
πν (w − 1) sin 1

2
πν (w + 1)

ϕ (w, 1/ν − 2) .

Similarly to (A.4) we have here7

Y (o) =

∫
Cv
dw

2∏
j=1

(
φ̃ν(v1 − wj)b̃ (v1 − wj) φ̃ν(v2 − wj)c̃ (v2 − wj)

)
Ψ (w12)

=
K(o, k = 1/ν − 2)

sin 1
2
πν (o− 1) sin 1

2
πν (o+ 1)

= 2
K(o, k = 1/ν − 2)

cos πν − cosπνo
(A.5)

with o = o12 = u24 = v12. The arguments are as follows: The function Y (o) satisfies the

equations (24) with the S-matrix eigenvalue S̃
O(6)
0 of (8). Therefore the minimal solution is

Y min(o) = K(o, 1/ν − 2) sin 1
2
πν (o− 1) sin 1

2
πν (o+ 1). Pinching at w1 → v1 − 2/ν, w2 →

v2 and produces a double pole at o = 1, wich implies (A.5).

7This result was in addition checked with Mathematica.
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Now we consider the p-function (56) in (A.1), then (up to a constant)

Yp(o) = K(o, k = 1/ν − 2).

This result is obtained by applying to the equations which correspond to (A.2) and (A.3)
the formula

1

2πi

(∫
Ca

+

∫
Cb

)
dzΓ(a− z)Γ(b− z)Γ (c+ z) Γ (d+ z) f(z)

= Γ (1− c− d− a− b) Γ (c+ a) Γ (d+ a) Γ (c+ b) Γ (d+ b)

×
(
f(a)

sin π (c+ b) sinπ (d+ b)

π sinπ (a− b)
− f(b)

sin π (c+ a) sinπ (d+ a)

π sin π (a− b)

)
where Ca encloses the poles of Γ(a− z) and f(z + 1) = f(z) holds.
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