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Abstract

We calculate the multipoint Green’s functions in 1+1 dimensional integrable quantum field theories.
We use the crossing formula for general models and calculate the 3 and 4 point functions taking in to
account only the lower nontrivial intermediate states contributions. Then we apply the general results to the
examples of the scaling Z; Ising model, sinh-Gordon model and Z3 scaling Potts model. We demonstrate
this calculations explicitly. The results can be applied to physical phenomena as for example to the Raman
scattering.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A complete set of dynamical correlation functions contains the entire information about a
given system. Unfortunately, in practice only few such functions can be measured by available
experimental techniques. Usually experiments, such as neutron scattering measurements, probe
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two point functions. However, there are exceptions and there are several experimental techniques
such as resonance Raman and resonance X-ray scattering which measure four-point functions or
even something more complicated [1-4]. These higher order correlation functions carry infor-
mation about the nonlinear dynamics which is especially important and interesting in strongly
correlated models. It is also an interesting theoretical problem since such models usually require
some special non-perturbative approaches. The latter fact brings us to (1+1)-dimensional models
where such approaches are available.

The problem becomes especially interesting for massive quantum field theories where almost
nothing is known about multipoint correlation functions. Meanwhile, as will be demonstrated in
this paper, it is possible to calculate them by using the results for matrix elements or form factors
of various operators. In the present paper we will obtain three- and four-point functions for mas-
sive integrable models in (1+1)-dimensions. For a low particle intermediate state approximation
we apply the general results to three models. We calculate correlation functions of the order pa-
rameter fields for the off-critical Z, Ising model and the Z3 Potts model perturbed by the thermal
operator and for the fundamental field in the sinh-Gordon model. The models are chosen in a se-
quence of increasing complexity: the Ising model is equivalent to the model of non-interacting
massive Majorana fermions with a trivial S-matrix, the sinh-Gordon model is very similar to the
Ising one, but has the simplest possible nontrivial S-matrix (a diagonal one without poles), and
the Z3 model takes the complexity one step further having a diagonal S-matrix with one pole on
the physical sheet corresponding to a bound state of the fundamental particles. In this article we
will explore the crossing formula [5,6] in order to start calculation of the multipoint Green’s func-
tions or Wightman functions in 1+1 dimensional integrable quantum field theories. By means of
the form factor program multi-point functions have been discussed previously. In [7] four-point
Green’s functions were investigated for the scaling Z, Ising model, the XY-model and the O (3)
nonlinear sigma-model. In [8] the three-point function for the Z3 Potts model was constructed.

It is well known that the n-particle form factor of the local field ¢ (x)

(019 (0)[61, ...0A)

is an analytic function of the variables 01, .., 8,. More general form factors as
(015 ey On@(0)6n41s -ees Optkc)

already are not functions but distributions or generalized functions [5,6,9]. In fact the crossing
formula is defining the generalized form factors in the language of simple form factors. For
example, in the case of the 3-particle form factor we have'

(0119(0)|02, 03) = (0lp(0)|0) +im — i€, 62, 03)
+ 80,0, {01 (0)|03) + 89,05 (019 (0)|62) S (623)

The e-prescription and the §-functions make the left hand side a distribution. In more complicated
cases we can define the generalized form factors as explained in [5,9]. In this article we will
consider 3 and 4 point Green’s functions. Using this definition we will evaluate the multipoint
correlators or Green’s functions defined as time order products of operators:

(OIT @1 (x1)@2(x2)...90n (x,,)]0)

We will transform these correlators into sums of products of matrix elements inserting between
the fields the identity

I See (A.1).
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and then using the crossing formula we will step by step calculate the Wightman and Green’s
functions.

The results can be applied to physical phenomena as for example to Raman scattering and
nonlinear susceptibility [10].

2. Green’s functions

Below in this Section we will do our calculations in the most general form valid for all in-
tegrable models. In the next sections we will apply the results to several concrete examples.
We will concentrate on the most difficult case of the four-point function, the calculations of the
three-point one are comparatively straightforward.

The Green’s functions are time ordered n-point functions, written as a sum over all permuta-
tions of the fields ¢; and variables x;

7o (X) = (01 T@1 (1) . (i) 0) = 3 O@x®) wey () (1)
TEeS,

where wyy(x) = (0]@r1(xz1) ... @n(xz,)|0) is the Wightman function and O(xt) =
Oty —tr72) ... O(tz(1—1) — tzn)- The Fourier transform is the Green’s function in momentum
space

T, =Y | dxe™ 1 O@x) (0]¢r1(xx1) ... Grn(xza)l0) )
TES,
= (27)* 8@ (ki) Ey (k) 3)

where we have used translation invariance and split off the energy momentum §-function defining
E (k). The full Green’s function may be decomposed into the connected ones

fy= Y k). Tk,

kyU---Uk, =k

2.1. The Green’s functions in low particle approximation

Inserting sets of intermediate states |p"/)) = | p(j )., p,(/j )} in (1) we obtain (see Ap-
pendix B)
2y ZZH,/ / (@x1 @1y (p M [p ") p" D g (0)
TSy W e
pM pb

x 25 (kg = Z D)) s (ke 0 )) @
—i _i
X DY
Sk, +Zw(~“ —ie Yk + Yo —ie kD, + Vo) —ie
i 2

with fp(.f> =fp§.f> f m, f f2n2w’ m2+(p1) , nl=T]n1, n(})u_l—[n(n, and

N J
nl(cj) = the number of particles of type k in the state | ﬁ ). For explicit calculation it is convenient

to take the limit kl.1 — 0, then the §-functions in (4) simplify to
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278 (3 (")) 278 (0 (o)) -

2.1.1. S-matrix and form factors
For integrable quantum field theories the n-particle S-matrix factorizes into n(n — 1) /2 two-
particle ones

SW @1, 0)=]]50;)),
<j
where the product on the right hand side has to be taken in a specific order (see e.g. [11]). The
numbers 6;; are the rapidity differences 6;; = 6; — 6;, which are related to the momenta of the
particles by p = m (cosh6, sinh8). To simplify the calculations we will consider only theories
with diagonal scattering and only one type of particles. The generalization to more types of

particles is straightforward and will be used for the Z3-model.
The form factors of a local bosonic field ¢(x) are the matrix elements

F?@) = (01p(0)[61,...,60). (&)
They satisfy the form factor equations (i)—(v) (see e.g. [12]). As a generalization we write
F0'50)= (0, ....00190)61,....6,)
which is related to (5) by crossing. In particular (see Appendix A)
F?(01:62,03) = F¥ (01,0, —im_,03 —imy) + 89y, + 805 (6)
F?(62,03;04) = F?(03 + imy, 00 +im—, 04) + 80,, + Sos, (7

with imy =imw +ie and 6y, = 47w (01 — 62). The form factors F'¥ (@) are meromorphic functions
whereas the F?(9’; 0) are distributions.

2.1.2. Examples

The 2-point function Let ¢(x) be a scalar chargeless bosonic field with the normalization
(O] (x)|p) = 1. The 2-point Wightman function in the 1-particle intermediate state approxi-
mation is

d
wl(xl—X2)=/—2 D 010G 1 p)(pleG) |0) =i Ak (x1 — x2)
72w

and the 2-point Green’s function in this approximation is
(1 —x2) = O] —x)w! (v —x2) + O(F —xD)w' (x2 —x1) =iAF (x1 — x2)
or in momentum space
=1 _ 25(2) 5 ) — I
T (k1 ko) = 2m)" 8 (k1 +k2) B(D), E(K) = 5—F—.
ki —m* +ie

The 3-point function We consider é(p(k) for n = 3. For the detailed calculations see Ap-
pendix C.1. Let ¢ = (¢, ¢, €) with (0[€|0, 62) = F€ (61, 62). We calculate éwe (k) in the limit
ki1 — 0. For the various permutations in (3) we obtain:

a) For the permutation 7 = 123 we use the intermediate states approximation
(Olpl61) (6119162, 63) (63, 62|€]0) then
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E12 (ki ko, k3) = — 1 " fd@ﬂzim ®)
Spe T2 B2 B3 64nm4—k?+m—ie a)k2+2a)—ie

x FP(im,0, —0)F< (=0 +im, 0 +im)

b) For the permutation 7 = 321 we use the intermediate states approximation
(Ol€161, 62) (02, 011¢163) (031¢10) then

(R p— el e "
€(ﬂ(ﬂ 3, K2, K] 647‘[m4k(1)+m—l€ a)_kg)+2a)_l€

x F(0, —0)F?(—0 +im,0 +in,0)

c) For the permutation 7 = 132 we use three intermediate states approximations
1) (0]¢|61)(01]€]62) (021¢10):

ks k) = N F€(in,0) (10)
(p(p k0+m—lek0+m—le
ii) (0]@|61)(O11€162, 03, 04) (04, 63, 62|9]0):
~ 1 m m 2m
=13
E13 (k1 ks, ko) = — /de— 1
pep (k1 K3 k2) 64rm* —k) +m —ie k) 42w +m —ie an

x F€(0, —0)F¥(—0 +in,0 +im,in)
iil) (0] @ [61,02,03) (63,02,01| € |64) (04| @|0):

(k1. ks, ko) = 1 m /d@m 2m
wﬂp R 647tm4k(2)—|—m—i6 w—k?+2w+m—ie

Finally we obtain
Eppe (k1, ka, k3) = ¢5(k1 ko, k3) + EEW(IQ ki, ko) + "Jalw(kl,k&kz)
+ Eph (ki k3 ko) + EJL, (k1 ks, ko) + (ki < ko) . (12)

The 4-point function We consider Ey (k) for n = 4. For the detailed calculations see again
Appendix B. Let ¢ = (¢, ¢, ¢, ¢). We use the intermediate states approximation

(0]@|61)(O11¢62, 03) (63, O2|¢0]|04) (64]¢|0) then the connected part yields for kl.l =0

B =g Y g (~ (R A) fom) +i€) (13

6 0 0
32mnprm(k)—k1+m—zek4+m—le
()—_]/de ! 1 1,(0,0, -0, 0)
s = cosh® coshg —x 27777 7

with
Ip(01,02,03,04) = F?(01; 02, 03) F¥ (02, 635 64)) = [1(0) + 1(0)

and
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L(©)=1F? 01,0, —imy, 03 —in_)F (03 +imy, 00 +im_,04)
+ SF9(01,0, —im_, 03 — im ) FY (03 +im_, 0) +im.., 04)
1(0) = % (80, (1 + S(023)) + 86,5 (14 S(023))) F¥ (03 + iy, 02+ i, 04)
+ 5 F9(01.0y —im_, 03 —imy) (86, (14 S(032)) + 84y, (1 + S(632)))
see (B.4).

3. Models
3.1. The scaling Z» Ising model

In the scaling limit this model may be described by an interacting Bose field 6,7 = Cm 186 (x),
where C is a numerical constant and m = h — J. The excitations are non-interacting Ma-
jorana fermions with the 2-particle S-matrix S(6) = —1. The field e(x) is defined by ¢* =
(m/J)2e(x) ~ Y (x), where ¥ is a free Majorana spinor field. The n-particle form factors
for the order parameter o (x) were proposed in [13,14] as

FZD @) = (0[a(0)]61, ...,60) = 2i)"T Htanh 16ij. (14)
i<j
3.1.1. The 3-point function
We investigate the Fourier transform of the Green’s function

Type (X) = (0|T @(x1)@(x2)€(x3)|0)

where ¢(x) is the order parameter o (x) and €(x) ~ &w(x). For a free Majorana spinor field
¥ (x) we have (up to a constant)

(01€(0)|61, 62) = sinh 3615 .

We apply the general results (8) — (12) and obtain (for details see Appendix C.1)
i m
32xm* —k +m —ie
1 1

1
n%? =—/d9—7F‘/’ i, 0, —F(—0 +im,0+i
) 20 cosh® cosh® — x iz V(=0 +im, 0 + i)

Eme (k1 ko, k3) = h7(—k3/(2m) + i€)

Similarly we get
i
32xm* kY +m —

821 (ks ko, k1) =

g2, - hE2 (k) (2m) + i€)

with (using (14))

o]

1 1 (cosh® + 1)?
h%%(x) = / do
+ ) cosh@ cosh6 — x cosh®
—0o0
2 2 1 (1 +x)? 14x

=————-nT— =7 —————arctanh

X x x? x24/x2 -1 NS

For the function h%%(x) see Fig. 1
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Fig. 1. Plot of Reh{2 (x) (black) and Im h_‘Z_2 (x) (red). (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

h(x) 20T
L5T
1.0 7

/0

0.5 7

-1

Fig. 2. Plot of Reh%?2 (x) (black) and Im nZ2 (x) (red). (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

With (11) we obtain

813 (ki ks, ko) =

hZ2(—k3/(2m) — & +i€)

Teey  32amt k) +m —ie
1 1 1
W22 (x) = z—ifde — mFG(@, —0)F¥ (=0 +im, 0 +im,im)
and
3L,k ks ko) = = P20/ 2m) — L +ie)
32mm* k) +m —ie
with

o0
ho —1)2 1
h%z(x)=/d9(cos —D
cosh” 0 coshf — x

—00
2 2 1 (x —1? 1+x
=——+4+-nm— —m —4————arctanh —.
x+x x2 x24/x2 -1 x2—1

For the function h%2(x) see Fig. 2
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Finally
Eppe (k1. ka k3) = Egn (k1 k2. k3) + B2}, ks, ki, ko) + EgL, (k1. k3, ko) (15)
+ Egiy (ki ks, k) + Eot, (ki k3, ko) + (ki < k2)

- e (—K/2m) + i)
T Ramt i —ie O

i m
- hy (kY2 j
2am* kY +m —ie +U5/@m) +ie)

—i m m
+m—k?+m—iek§+m—ie
i
- 32mm* k) fm —ie

h_(—k3/2m) =} + i)

i
- 32am* i+ m —

—h_(K)/@m) = +i€)+ (ki < ko).
i€
This result can be applied to nonlinear susceptibility [10].

3.1.2. The 4-point function
We investigate the Fourier transform of the Green’s function

Tpppe (X) = (01T o (x 1)@ (x2)@(x3)@(x4)|0)

for the order parameter ¢(x) = o (x). From (13) for k; = (kl(.), 0) in momentum space the contri-

bution from /5 in (B.4) vanishes, because S(0) = —1 and we get
- i m m
Eolk) =——— 22( (k +k)+l€> 16
e® 32rmb Z —k0+m—iek2+m—ieg 2m \73 T4 (16)
perm(k)
1 1 1
72 z
=—— [ d)——1%2(0,6,-0,0
87w 4/ cosh® coshf — x ﬁ ( )
From (B.4) and (14) we obtain (see Appendix C.1) for the contribution of I;
172(0,6, —0,0) = 2tanh”6 coth* } (0 — i€) + (¢ > —e) 17)
and
2 /—
gzz(x): 16 _15_”_§_M_£_(x+1) (—x+ x2—l).
l—x 2x x x2 x3 =12

For the function g%?(x) see Fig. 3
This result can be applied to Raman scattering [10].

3.2. The sinh-Gordon model

The classical field equation” is

2 For details see Appendix C.2.
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Fig. 3. Plot of Re gZ2 (x) (black), Im gZ2 (x + i€) (red) for the scaling Ising model. (For interpretation of the references
to color in this figure, the reader is referred to the web version of this article.)

Do, x) + % sinh B (7, x) = 0. (18)

The sinh-Gordon S-matrix was derived in [11,15]3

oodt cosh(%—u)t 9
§ — =—exp| -2 | — ——————sinhr—
sinhf +isinmu t cosh%t T
0

56 (9) = sinh) —isinmp

where u is related to the coupling constant by
2
-
8 + p2
The sinh-Gordon minimal form factor is [16,17]

< dt cosh(%—u)t 0
FSG(B)zexp/ —1 cosht(l — —> .

tsinht cosh %t 1

O<pu 1.

0

3.2.1. The 4-point function
We consider the 4-point Green’s function

Tppee (X) = (0] To(x1)@(x2)@(x3)9(x4)| 0)
and calculate the function @2 (k) given by (13) (for details see Appendix C.2)

~SG —i " - s (= ( ] O)

56 oy _ (k0 4k

o O =55 2 K — ik b m—ic" (2’” Y
perm(k) 1 4

with g5¢ (x) = g9 (x) + g5% (x) and

3 The sinh-Gordon S-matrix is obtained from the sine-Gordon one by analytic continuation of the coupling constant:

B —iB.
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Fig. 4. Plot of Re gig G (x) (black) and Im ng(x) (red) for u = 0.3. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)

%) = —%/@ﬁ@c(ae, —6,0)d6
From (B.4) and (C.5) we obtain using IQZ2 as defined in (17)
157(0,6,—6,0)
=129F56(0,0 —iny, -0 —in ) F59 (=60 +in 0 +in_,0) + (€ > —¢)
= £%90)172(0.0,-0,0)
where”
(29)? sin® 7T

Fim ot et im)* Fo(20) Fo(~26)

560) =~

and Fo(0) = F5¢(9)/ (—i sinh %9) Therefore as in (16) we obtain

¥ coth* 19 tanh? 0 1 16 1
g0 =— / fSG(9)< 2 )de
—00

coshé coshd —x 621 —x

The functions ng (x) for . =0.3 and p = 0.5 are plotted in Fig. 4 and 5. The function ggG (x)
given by I (0) as defined in (B.4) follows from (B.7)

T Z% 1

8¢ (x):_325innu 1—x’ (19)
3.3. The Z3-model
The model we consider is the Zy-symmetric CFT perturbed by the thermal operator
S:S[ZN]+A/drdxe(f,x) (20)

4 As usual, in the context of the sine-Gordon model, the normalization of the field is given by (0@ 0)|p) =~2Z%
(see Appendix C.2).
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Fig. 5. Plot of Re gls G (x) (black) and ImngG(x) (red) for u = 0.5. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)

for a particular value N = 3. Such model appears as the continuum limit of the lattice model
describing the integrable anti-ferromagnetic chain of spins S = N/2 in an applied magnetic
field [18]

H =Y [ Pw(SiSust) + HS; . e

where Py (x) is the polynomial of the N-th degree [19,20]. The continuum limit of this model at
H =0 is the SUy (2) Wess—Zumino—Novikov—Witten (WZNW) model perturbed by the irrele-
vant operator

H=W[SUy2)]+ n/dxﬂf"@ggj,
where ®,4; is the primary field in the adjoint representation and J, J are the holomorphic and

antiholomorphic currents of the suy(2) Kac—Moody algebra. Whence the magnetic field is ap-
plied along the z-axis the z-components of the currents acquire finite expectation values

- 1

()= (J9) = xH
where y ~ 1/J is the uniform magnetic susceptibility, and the irrelevant operator becomes rele-
vant [21]

- 1

JTP @G = ) 5.
The conformal embedding SUy (2) = U (1) x Zy establishes the equivalence between the diago-
nal component of the adjoint primary field and the thermal operator € and hence the equivalence
between the massive sector of model (21) and model (20).

The Z3 CFT and the exact solution of the massive theory (20) for N = 3 suggest that in

the disordered phase there are 2 types of particles 1 and 2 and two corresponding fields (order
parameters o1, 02 = 0}) with

(Ofo1(x) [ p)1=1, (O]o2(x)[pla=1.

where the indices correspond to the emission of particle 1 and 2 (the latter is a bound state of two
1-particles and simultaneously the anti-particle of particle 1).
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The two-particle S-matrix for the Z3-Potts model perturbed by the thermal operator has
been proposed by Koberle and Swieca [22]. It coincides with the one derived from the Bethe
ansatz solution of model (21) [18]. The scattering matrix of two particles of type 1 is

sinh 1 (0 + 2in
st0) = 20 5T,
sinh 5(0 — 5im)

This S-matrix is consistent with the picture that the bound state of two particles of type 1 is the
particle 2 which is the anti-particle of 1.

The form factors of the Zy-model (20) have been proposed in [23,24,12]. The minimal
solution of the Watson’s and the crossing equations

F@)=F(—0)S©), F(irn —0)=F(ir +6)
for the Z(3) model is
o0
73,. .1 sinh 4 3t
F*(imx) = sin 37wx exp 42(1 cosht (1 —x)) | dt
t sinh” ¢
0
1,1 4
G(§+1x)G (4-14x)
2,1 5
G(§+§X>G<§— )C)

where G (x) is the Barnes G-function [25] with the defining relation

—einl
_sm27rx

= [ D=

Gx+DH=Gx)T(x).
The form factor of the order parameter field o1 and two particles of type 2 is

F(612)

Fy (0) =(0101(0) | p1, p2)a =2 (22)
sinh 3612 — 3im)sinh § (612 + 3 )
and for the 3 particles of type 1, 1 and 2
F7(0) =(0161(0) | p1, p2, p3)112 (23)

F(612) cosh 1615 2 FIin(g;3)
sinh 3612 — 3im)sinh § (612 + i) i cosh 3613

=3

where

smh t (I —cosht (1 —x))

o
F(T (irx) =cexp /
t sinh?

0

_G(%—F%X)G(%—%x)

- 5,1 T

is the minimal form factor of the particles 1 and 2.
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3.3.1. The 3-point function
We consider the Green’s function 740,60, (x) = (0| To1(x1)0o1(x2)01(x3)|0), this 3-point
function was also investigated in [8]. As in (10) we have the simple contribution

B o (k1 ko, k3) = f / (0101 (0)| p1)(p11o1(0)] p2) {p2] 1 (0)[0)
P12

—i —i

x2w8(p1)2ms (p
L Y U
-1 m m pu
N F%\(ix,0)
4m4—k(1)+m—i6kg+m—i6 2

and as in (8) we calculate for the intermediate states
(0lo1(0)|p1){p1lo1(0)| p2, p3){p3, p2|01(0)|0) (for details see Appendix C.3)

~ 1 m m 2m
~12 12
o) ki,ky, k3) = — dg—————1 6

s 1K ) = = —k?—i—m—ief o kY + 2w — i€ ioror ®)

12 (0)=F3 (im,0,—0)F5) (—0 +im,0 +im)

010101
where we have used the crossing relation
(p11o1(0)|p2, p3) = Fy} (61 +im,02,63) + 89,0, + 89,0, S (623).

The §-function terms do not contribute because F2G2' (0, 0) = 0. Inserting the form factor functions
we get (up to constant factors)

- 1 m k2
~12 Z3 3 .
g ki, ko, k3) = — AN
171(7101( 1, K2 3) 647'rm4 _k10+m_l€ ( m +l€)
§7 (x) — / " 1 1 FQOYF(=20)F(15(0 +im) F13) (=0 +im)
_ _ .
J_ coshf cosh —x (sinh(e — Liz) sinh(6 + Lim) sinh %9)

For the intermediate states (0]o1(0)| p1, p2)(p2, p1lo1(0)|p3)(p3| 01(0)]0) we get

~57 1 m kY

=21 Z3 1 .

o) ki, ko, k3) =— h — +
o’la'lo‘l( 1, K2 3) 6 4kg ic (2 lE)

and as in (12)

m m

el (k1, k2, k3) = const.
Lol Z —k?+m—iek2+m—ie

perm(k)
/ m Z@3 k(3)

+eonst! Y ¥ [~ fic ) + (ki —> —ki) .
perm(o —kij +m —ie 2m

As expected, there is a threshold singularity at k® = 2m.
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Fig. 6. Plot of Re hZ3(x) (black) and Ith3(x) (red) for the Z3 model. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)

3.3.2. The 4-point function

Due to (B.4) there are contributions to the four point Green’s function from Iy, I and I3. The
one from /3 belongs to the disconnected part and the one from 15 is trivial as in (19) and (B.7).
We restrict here to the contribution from /;. We consider the Green’s function T4,5,010, (X) =
(0] Toy(x1)o2(x2)01(x3)02(x4) | 0) and as in (13) we obtain (for details see Appendix C.3)

~ ~121
Eormosos ) =D B o knl ka2 k3 kns), (03 =01,04=02)
7T€S4

1 i k95 + kO
! 3 mn n g2 —m3 T e
32mém = —kd 4 m—iekl, +m—ie 2m

TESY

Obviously, if o3 = 01 and 04 = 07 there are three functions gf(x)

z3 .
3 87~ (x) if 071072073074 = 01020107 Or (0] <> 02)
73 .
8x (x) =14 877 () if 071072073074 = 01010207 or (0] <> 02)
73 .
8171 (X) if 071072073074 = 01020207 or (0] <> 02) .

It turns out that gIZI31(x) = gIZ3(x). For plots of the functions gIZ3(x) and gIZI3(x) see Figs. 7
and 8.

4. Conclusion

In this paper we develop a technique to calculate multipoint Wightman or Green’s functions
in integrable quantum field theories in 1+1 dimension. We insert intermediate states between
the fields and use the crossing formula to write the Wightman function in terms of form factors
in a model independent way. We expect good approximations for low number of particles in
the intermediate states. In the present article we demonstrate this technique explicitly for 3-
and 4-point functions of simple models with no backward scattering: the scaling Z, Ising, the
scaling Z3 Potts and the sinh-Gordon model. The results can be applied to physical phenomena,
for example to Raman scattering [10]. In a forthcoming article we will generalize the technique
to models with backward scattering, as the O (N) o- and the O(N) Gross—Neveu model.
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g(x) 07

20T

Fig. 7. Plot of Re g,Z3(x) (black) and Im g[Z3(x) (red) for the Z3 model. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)

g(X) 200 T

-100 T

Fig. 8. Plot of Re ng]3 (x) (black) and Im g[Z[3 (x) (red) for the Z3 model. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)
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Appendix A. Crossing

The general crossing formula (31) in [9]
FOl®):0)
_ oJ /NN 7 LL O (pr . CMK
=00s Y. SN @N.0) 1O 0)) CHEFS 0 +im.0,) K@)

LUN=J
KUM=I
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Y SN 0N FO 0. 0 —im )CHE 1Ol 0, SFM @)

5 9987

and for (63,6, | ¢(0)|64) we have

LUN=J
KUM=I
| J
| | $
J
0 J) L
- ¥ W@
I KoM= :
= | R
1
For a scalar bosonic field ¢(x) the matrix element (61 | ¢(0) | 62, 03) is
F?(01;602,63) = F¥(01 +im_, 02,63) + 89, + 80, S(623) (A1)

F%(02,03;04) = FY(O3 +in_,0, +im—_, 64) + 8p,, + S(632)80,,

Sl o

with im4 =im +ie and 8, = 4 §(61 — 62). Using the form factor equation (iii) and Lorentz
invariance (see e.g. [12])

Res F(61,62,603) =2i (1 — S5(623))

Orp=im
F(01,02,03) = F(O1 +u, 00+ 1,03+ 1)

we can rewrite these equations as (6) and (7). And further one derives

TF (01,6, —im_,03 —imy) + 8y, + 80y, (A.2)
= % (F(01,00 —immy,03 —im_) + 80, (1 + S(623)) + 86,5 (1 + S(623)))
LFO3 +imy, 00 +im_, 04) + 80,y + 803, (A3)

= 3 (FOs +im—, 62+ iy, 04) + 86, (1 + S(032)) + 85, (1 + S(632))) -
Appendix B. Green’s function and intermediate states in low particle approximation

Let ¢(x) a scalar charge-less bosonic field with the normalization (0] ¢(x)|6) = 1.
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Simple examples of Wigthman and Green’s functions
wl: The 2-point Wigthman function in 1-intermediate particle approximation is

w' (x1 — x2) =/<0|<P(X1)|9)(9I¢(x2)|0> =iAy (x1 —x2)
6
and the Green’s function in this approximation is the free Feynman propagator
; i
') = 0w () + O(-Nw' (—x) = Ap (x1 —x2) = fe‘”"’ﬁ
p°—m- +1ie
p

w101: The 4-point Wightman function in 1-0-1-intermediate particle approximation is (with

Jy=1=[d6)
w1°1<z>=/<0|¢<x1)|el><el|¢<x2>|0> /<0|¢<x3)|94><04|<p<x4>|0>

o 0
=w'(x; —x)w' (x3 — x4) (B.1)
which implies that also

M) =1 — )Tt (3 — xa).

w121: The 4-point Wightman function in 1-2-1-intermediate particle approximation is (with

Jo=Jo - Joy

1
w'(x) = §/<0|so<x1>|91><91 |@(x2) |62, 63) (63,602 | 9(x3) | 64) (04 | 9(x4) | 0)
0

/e*l’)flpl*ixz(szer*pl)*ixs(p4*P2*P3)+ix4P4 F(61; 62,03)F (6, 03; 64).
0

N =

(B.2)
Using equations (6), (7) and the identity
(a@a+b+c)yd+e+ f)= (%a—l—b—l—c)d—l—a(%d—l—e—i—f)+(b+c)(e+f) we derive
F(01;02,03) F (02, 03; 04)
=(F (01,6 —im_,03 —imy) + 8o, + 8gy5)
X (F(93 +img, 0 +im_,04) + 8p,, + 5934)
- (%F(el,ez T 03 —imy) + 8oy, + 5913) F(Os+imy,00+im_,04)
L F©O1,60,—in_, 63 —iny) (%F(93 ity O+ in_,04) + Sgy, + 5934)
+ (89192 + 89193) (89492 + 89493)
which is using (A.2) and (A.3) equal to
= % (F (61,600 —immy, 03 —imm_) + 86, (1 + S(623)) + 86,5 (1 + S(623)))
X F@3+iny,0+in_,64)
+ F (61,00 —im_,05 —imy)



H.M. Babujian et al. / Nuclear Physics B 917 (2017) 122-153 139

X 5 (F(O3 +im—, 02 +imy, 04) + 865, (1 + S(632)) + 865, (1 4 S(632)))
+ (80,6, + 80,165) (80y0, + S0,05)
=1F@01,600 —imy, 03 —in YF(O3+imy, 00 +in_,04) (B.3)
+ F(01,00 —in_, 03— im ) F(03 +im_,0p +imy, 04)
+ % (801, (1 + S(623)) + 86,5 (1 + S(623))) F (03 + imy, 0 + im—, 04)
+ F (01,0, —im_, 03 —imy)5 (86, (1+ S(032)) + 89y, (1 + S(632)))
+ (80,6, + 80,0) (8046, + S0465)
=1+ L)+ 1)
where we have introduced
LO)=1F0,,60—imy, 03 —in YF(O3+imy, 0 +in_,04)
+ 3F (01,0, —in_, 03 —im ) F (03 +im_, 0o +imy,04)
D©) =} (S0, (1 + S(6023)) + 6y, (1 + S(623))) F (63 + i, 62 + im—, 64) (B.4)
+ LF (01,60 — im_, 63— imy) (86, (1 + S(B32)) + gy, (1 + 5(632)))
13(0) = (5912 + 3913) (8924 + 8934)
From I3 we calculate
wir' @) =w' (@r —x)w' (2 —x3) +w' @1 —x3)w' (2 —x4) (B.5)
which together with (B.1) yields the disconnected part of T(k) = Tgisc (k) 4+ T, (k). This means
the connected part of the Green’s function is given by 11(6) + 12(9).

General case We start with (1), insert sets of intermediate states and write y; = x;

1 o
=Y 3 / Ly i@, (y)

TES,

xf / ©Olez1 DI PP 11"y (PP g (y0)10)
pH  pti-D

with the notation of (4). We perform the y-integrations and obtain for E defined in 3)

- 1
B,0=2 > — / / 0lex1 O POy V1. 1" ) (P D 9rn (0)]0)

TESH p(l) p(nfl)

1 1
LG IED DR CED W

—i —i —i
) DIy o +Za)(])—ie ' ok +Zw(2)—iemk0 +Za)("7l)—ie
i=2"mi J i=3"mi J n j

because

. . 1
.1 o (i) i—1)
f dyle 2 (= Zr 2w )

=276 (Z k}) 278 (k7'r2 _ ZPE'Z) + Zp;l))l s (km N Zp;n_l))l
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and

0 iy,o(knﬁz Py +E P_ii71)>0 _ 0
dy"®1.a(y)e =278 (Z K )

—i —i —i

X
Kyt 4k, + Yol —ie k4 4k, + X0 —ie K, + X0V —ie

which proves (4). For kl.1 — 0 the result is

- 1
Ez(k)=ZZ;/~-- / (@1 O[NPV 1" Y (P D rn(0))  (B.6)

TESy - p(l) p(n—l)

1 1
x 2mé (Z p}l)) ...2w8 (Z pj."_l))

— —1 —

1 l
X
0 I _ - 0 @ _ . " (n=1) _
Z?:Z kni + ij —l€ Z?=3 km' + ij —le kJ(')rn + Zw./’n — 1€

Example: the 4-point function Let ¢ = pp@p@. We use the intermediate states

(0l9(0)| p1)(P119(0) P2, P3)(P3. P219(0)| pa)(pal (0)|0) and as in (B.2) we obtain in this
approximation

5,0 =3 / / / / 278 (p1) 278 (p2 + p3) 28 (pa)

TE€Supy pa p3 pa

1
x5 Ole@|p1){p1le©)|p2, p3){p3, P219(0)|p4){pal ¢(0)]0)
—i —i —i

_k7(-)rl+w1 _i€k23 +k24+a)2+w3—i6k24+a)4—ie

__ 1 i m m (10, 10 .
= T30 Z _k?+m—i€k2+m—i€g( (k3+k4)/(2m)+le)

perm(k)
(x) _1/d9 ! ! F?0;0,—-6)F%@©, —6;0)
X)= — e — . — —_A-
& 4 cosh6 cosh — x T 7

which is (13) and F(0; 0, —0)F (6, —0; 0) is given by (see (B.4))
F(01;02,03)F (02,603, 04) = 11(8) + 12(0) + 13(8)-

As mentioned in the context of (B.5) the connected part of éw(@ is obtained by

-1 1 1
g1(x) + g2(x) = deemm (h(@"‘h(@) .

The contribution from /; will be calculated for the Z(2)-, the Z(3)-scaling Ising and the sinh-
Gordon models. The contribution from I, leads to 0/0, therefore the limit kl.l — 0 has to be taken
more carefully.
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Contribution of 7;: For k; = (k?, m sinh k;) this is equal to

- 1 1
B =5 3 = [ [ @0kl — pd - phiater. 62,62, k)
permipy (M) P2 p3

gy i i i
—k) + w1 —ie k) + k] +wp + w3 —i€ k] +ws —ie

with I>(k1, 62, 03, —k4) given by (B.4). Taking first the term with §,,6, we get (because 63 — «2)

LA D> 51+ Sk1) F¥ G+ imy k1 +im—, —k4)
2 2m)> 2m coshx; 2 - -
—i

perm(k)
—i —i

X0 0, 4,0 0 :
—kj +mcoshky k3 + ky + mcoshiy +mcoshiy ky + m coshiy

We write
F?(61,6,,63) = Htaﬂh 36ij F?(61,02,03)
i<j
then for small «; (using S(0) = —1)
3 (1+ S(e12)) FO e +im i1 +im—, —Ks)
1 1 1 -
— %k128'(0) tanh 5 coth 5 (k2 + k4) coth 5 (k1 4+ k4) F(im,im,0)
—K2 .
N 21 S'(O)F?(im,im,0)
(k2 + K4) (K1 + K4)
Similarly we get the other contribution from /5 and calculate

(k1 — K2)? (k1 — K3)?

(k2 +ra) (i1 +ka) (k3 + K4) (k1 + K4)
(k3 — kg)? (k2 — kes)?

(k1 +x4) (k1 +K3) (k1 + K1) (k1 +K2) -

up to terms proportional to k1 + k2 + k3 + k4, which do not contribute because of the §-function
) (k} + ké + k; + k)‘). Therefore in the limit x; — 0
| m m
3 g2 (= (K + ) /@m) +ie)

Epa(k) = ——= ——
p2(k) 32 o k0 pm —iekl +m—ie

perm(k)
g2(x) =87 S (0)F¥ (i, in,O)i. (B.7)
Appendix C. Models
C.1. The scaling Z, Ising model
The Quantum Ising model is described by the Hamiltonian
(C.1)

H:Z(— Jojor +ho,f>,
n
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where o¢ are the Pauli matrices. This model has numerous condensed matter realizations being
one of the most popular models of condensed matter theory. It describes a sequence of cou-
pled two level systems. They may represent spins; then the first term describes an anisotropic
exchange interaction. In this case o'* directly couples to external magnetic field: ugBjo).

States of the two level systems may also correspond to positions of electric charges in a
double well potential. Then the first term is the dipole—dipole interaction and the transverse
field describes the quantum tunneling between the wells. Then o would be the dipole moment
operators. Their interaction with the electric field is given by pEZo} with p being the dipole
moment.

Since the dominant interaction is ferromagnetic, the strongest fluctuations take place at zero
wave vectors which guarantees a direct coupling to the electromagnetic field creating optimal
resonance conditions. The Ising model (C.1) has two phases depending on the sign of m =h — J.
The resonance occurs in the paramagnetic phase m > 0 when the ground state average of the
order parameter (o *) = 0. In that case the electromagnetic field has a nonzero matrix element
between the ground state and single magnon state.

In the scaling limit model (C.1) can be described by an interacting Bose field o =
Cm!/8¢ (x), where C is a numerical constant and m = h — J. The excitations are non-interacting
Majorana fermions with the 2-particle S-matrix S% @(9) = —1. The field o* = (m/J)/%e(x) ~
Y (x), where ¥ is a free Majorana spinor field. The n-particle form factors for the order pa-
rameter o (x) is given by (14). From € (x) ~ ¥ (x) one has for a free Majorana spinor field (up
to a constant)

(01€(0)161, 62) = sinh 36y, . (C.2)

C.1.1. The 3-point function
We calculate Epye (k) in the limit kil — 0. For the various permutations in (4) we obtain:

a) For the permutation 7 =123 and n; =1, np =2

é;%%(kl,kz,ks)=%///2n8(m>2na(pz+p3) (Olp(0)| p1)
.Pl P2 P3
—1
—k?—i—m—iekg—i-a)z—i-wg—ie
_ 1 m /deszW(m,e,—e)Ff(—9+in,9+in)
64m*x —k(l)—i-m—ie kg+2a)—ie

which is (8). Equations (14) and (C.2) imply

x (p1le(0)|p2, p3){p3. p21€(0)|0)

FO>im,0,—0)F (=0 +im, 0 +im)
o - . _(cosh® + 1)2
=2itanh 5 (i7 —0) tanh 5 (i + 6) tanh sinh (—0) = 2i “ooshd
cos

and therefore
i m
32xm* —kY +m —ie

o0
ho + 1)2 1
hJZr(Z)(x)=/d9(COS +1
cosh?f® coshf —x

e (k1. k2, k3) = h2P (k9 /@m) + i€)

Sope

—00
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2 2 1 1+ x)? 1
- _Za__x _4i arctanh X

X X x2 x2/x2 -1 «/xz—l.

b) For the permutation 7 =321 andny =2, np =1

E2pp ks, k2, k1)

1
=5///2ﬂ5(p1+p2)2ﬂ5(p3) (0le (@ p1, p2){p2, P1le(0)| p3)
.I’I P2 P3

x (p3lp(0)|0)

—i —i

kg—i-kg—l—a)l—l—wz—iek?—i-a)g—ie

! i ! 1F€(9 0) F¥(—0 +im, 0 +im, 0) i
=———— [ — ,— - im, in,))———m—
2040 4 m—ie2m ) 20 —k§ + 20 —ic
6
. 1 m /‘dGmZmFG(G,—9)F¢(—9+in,9+in,0)
- 64mr k0 +m —ie ® —k§ + 2w — i€

which is (9) and

ho + 1)2
F€ (8, —0) F¥(—0 + im0 + i, 0) = 2 OO 17
cosh6

imply again

821 (k3 ko, k1) =

g2, — 2P/ 2m) +ie).

- R2am? k(l)—i—m —ie

¢) For the permutation 7 =132 and n; =1, np =1

ey (k1. k3, ko) = f / 2708 (p1) 278 (p2) (019 (0) | p1) (p11€(0)| p2) (219 (0)|0)
P11 P2
—i —i

X
kg+kg+a)1—iekg+w2—ie

1 m m F€ (i, 0)
=—— i,
4m? —k?—}—m—ie kg—}—m—ie

i m m

4m? —k?—}—m—iekg—}—m—ie

which is (10) because F€ (i, 0) = sinh %in =1.

d) For the permutation 7 = 132 and n; =3, np =1

oty (ki k3, ko)

1

=5 / / / f 10O p1, 2. p3)(p3. p2. pile©)]pa)(pal 9 (0)]0)
P1 D2 P pa

—i —i

—k?+w1+w2+w3—iekg+a)4—ie

X 218 (p% + pé + p%) 27 é (p}‘)
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3'2m/// k0+w1+w2+w3—zek0+m—ze
P1 p2 pP3

x 278 (pl + ph+ pl) F9(01,02, 05 F* (61,05, 05 1)
There are 3 contributions from
F€(01,02,03;04) = 89,0, F (03 + im, 00 +im)
— 86,0, F (03 +im, 0y +im) + 850, F€ (02 + i, 01 + im)

It turns out that all 3 give the same result, therefore

Eovp (ki ks, k)

11 —
=35 [/
3‘2mk0+m—ze k0+w1+a)2+w3—16

p1 p2 p3

X 2778 (p} +pl4 p3) F(01,02,03)80,6, F (03 + i, 65 + im)

1= 1 m /d@ 2m 2mF (0,6, —0)F(—6 +im, 6 + i)

_2(2m)3mgkg+m—ie 20 —k0+m+2a)—ie
. 1 m /‘demZmF(O 0, —O0F<(—0 +im,0+im)
- 64m4nkg+m—ie 1) —k?—i—m—i—Zw—ze
and
(cos.h@—l)2

F?0,0, —0)F (=0 +im, 0 +im)=2i
coshf

—1 m
32m 47Tk0+m—1

T ho — 1)2 1
hg(z)(x):/d (coshf — 1)

cosh?@ coshf —x

(k1. k3, kp) = h2@ @ j@m) = 1)

(05‘/’

—o0
2 2 1 —1)? 1
=——4+-7——=mw—4 x ) arctanh e

X ox x? x2V/x2—1 Vx2—1

d) For the permutation 7 = 132 and ny = 1, ny = 3 we find, similarly

-1 m
32m4r kO +m—ie

ot (k1 k3, ko) = h2® (=K /2m) - L +ie).

Finally with (12) we obtain (15).

C.1.2. The 4-point function
From (13) for k; = (k?, 0) in momentum space the contribution from I in (B.4) vanishes,
because S(0) = —1 and we get
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i

0 0
m m of k3 kg
B =5s 2 ¢ (‘—“6

(6ol

0 70 :
perm(® —kj +m—iek)+m—ie 2m

1 1 1
z2 z
=—_1]de —177(0,0,—6,0
g7 4f coshf coshf —x ¢ ( )
From (B.4) and (14) we obtain

172(0,0,-6,0)

=1 F0,0 —ing, -0 —in_)F(—0 +imy,0+in_,0) + (€ > —¢)

1 1 1
1 (2i)? tanh S (<0 +im+ie) tanh 5 @ +im —ie) tanh 5 (20)

1 1 1
X tanh 3 (—26) tanh 3 (—6 4+ im +ie)tanh 3 O@+im —ie)+ (e > —€)
=2tanh? 0 coth® 1 (0 —i€) + (e — —e).

and

T h*1 (6 — ie) tanh?0
gZ(Z)(x) _ _l / 40 coth™ 5 (6 —i€) tan + (e > —¢)
2 coshé (coshf — x)

—00

X 41 2
/ coth 59 tanh” 0 1 16 1 40
coshé coshd —x 60%21—x

—00

which can be calculated:
for Rex < —1

2. /2
gz<z>(x)=£_15_ﬂ_§_ﬂ_z_w—x—lmn(_H xz_l)
1—x 2x  x x2 x3 x3(x —1)2
forRex > 1

gZ(Q)(x:l:ie)zlm 157 8 4n4+2 m

— 2x X x2 x3
(x+ 1) V/x2 = L

EraT (j:in+ln(x+,/x2_ 1))

D2Vx2 =1
meg?®(x +ie) = FO(x — 1)271()“L)—)C2
x3x-1
for—1<x<1

16 157 8 4n+2 =«
§¥ P =—

1—-x 2x x x2 x3
(x+1D?%iv1—x2

T <—x +iv1 _xz)

94
= <? + 1071) + 0 (x)
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The intrinsic coupling g [7], defined by E(0) = — # 8R 1s

47 15
= 2 14.98028
SR=57F 5

C.2. The sinh-Gordon model

The classical sinh-Gordon Lagrangian is

o 1 1
£356 = %8M<p8“(p + E (coshBp — 1) = %Bugoa“(p — Ea(pz + ﬂzaﬂ(f + 0 (ﬁ3) (C.3)

and the field equation
Do, x) + % sinh B (7, x) = 0.

with
2
-
87 + B2
The model is super-renormalizable, therefore after introducing normal products in (C.3) there

are only two finite renormalization constants. The wave function and the mass renormalization
constants are given by [16,26]

O<p 1

T
(01pO) | p)=vZ¢, a=m>——.
sin
with [16]
T -
Z=01-p) .27{ E(—wn), E(x)=exp —n/ - dt
sin 5 sinmt

0

The S-matrix can be obtained by analytic continuation (from g — if) of the sine-Gordon S-
matrix which was derived in [11,15]

00 1
sinh@ —isinmu dr cosh (7 - M>t

8§56 (x) = =— -2 inhr—
@)= o+ isnap - OP r coshly o im
0
The minimal sinh-Gordon form factor is [16,17]
00 1
G cosh (2 — u) t 0
F>%(0) =exp - T —1)cosht|1—— (C4)
tsinht cosh jt 4

0
=—isinh 360 £ (u+ (1 -6/ (7)) & (w— (1 -6/ (in)))

where the meromorphic function’

5 The function E (x) was introduced in [16] and also used in [6] and [9].
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S(x)z\/m:lo_o[F(l+k—%x>f‘<%+k+%x)f‘<%+k>
cos S k:OF(%—i—k—%x)F(l—i—k—l-%x)F(%+k>

has been introduced, for more details see Appendix C.2.2. The 3-particle form factor is [16,17]

i F(012)F(013) F (6
FSG(91,92,93):—\/ﬁsme 1( 12)F( 113) ( 23)1
F (i) cosh 5617 cosh 5613 cosh 5653

(C.5)

where the normalization follows from the form factor equation (iii) and (C.4)
Res F(601,6,,63) =2i (1 - S(623) vV Z¥

Oro=im
sinh 6

FSC@0+in)F59 @) = ———.
©+im) ©) sinh6 +isinmp

C.2.1. The 4-point function
From (13) for k; = (le, 0) we get with ¢ = pppe

~SG —i m m s (—1 ( 0 0)
8,7 (k) = — (K +k
&) 327mo Z —kY +m —ie k0+m—ieg (2’" 2o

perm(k) 1 4
where ¢3¢ (x) = ng(x) + gZSG(x) and

1 1 1
SG SG
; =) —————1"7(0,0, —0,0)db .
&) 4/cosh9 coshg —x ¢ ( )

From (B.4) and (C.5) we obtain
ISG(O 0,-0,0)=3Z?F59(0,0 —imy, —0 —in )F*C (0 +imy,0 +in_,0)

+ (e — —¢€)
= 156©)172(0,6,-6,0)
where IQZ 2 as defined in (17). We have introduced

(Z‘/’)zsm T

1596 =
with
Fo®) = FS0(0)/ (~isinh 36) = & u+ (1 =0/ 7)) (w — (1 =6/ (i) .

Therefore as in (16) and (17) we obtain

1 1 1
SG SG
= —— — 1 0,9, _Q’Ode
817 @) 4 / cosh® cosh — x ! ( )
v coth* 19 tanh? 6 1 1
SG 2 SG

=— 0 — 0 do.
/ (f ©) coshd coshf — Fo )921 )
—00

The functions gISG(x) for © = 0.3 and p = 0.5 are plotted in Fig. 4 and 5
The contribution from I, follows from (B.7) as

ds( 1 ) 1
¢3¢ (x) = —16mi d(e ) JZ# = 2 7

1—x—ie sinmp 1—x
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C.2.2. Properties of £(x)
Representations

100 dt cosh(%—x)t
S(X)=3XP§/ -1

t sinht cosh %t

0
— exp {% (;— (Liz(e"”) - Li2(—eix”)>
- xln(l —ei"”) —(1 —x)ln(l +ei"”> +1In2+ %in (x - %)) }
g G (1+3%)6 (3 - ix)
VTG (1- 1) 6 (54 )

where G is Barnes G-function and Lis(x) the dilogarithm.(’ The function &(x) is meromorphic
and satisfies

E(1—x)=§(x), EME(—x)cos 3mx =y EX)E(—x)=1

which imply the form factor equation (i) F5¢ (x) = F5C (—x)S5% (x).

C.3. The Z3-model

The two-particle S-matrix for the Zy-Ising model has been proposed by Koberle and Swieca
[22]. The scattering of two particles of type 1 is given by
sinh (0 + 1)

S©) = -
@ sinh § (0 — 1)

(C.6)

This S-matrix is consistent with the picture that the bound state of N — 1 particles of type 1 is the
anti-particle of 1. The form factors of the Zy-model have been proposed in [23,12]. The minimal
solution of Watson’s and the crossing equations

F®)=F(—6)S®), F(ir —0)=F(inr +0)
for the Z3 model is

sl
sinh 3t

(I —coshr (1 —x))) dt

o0
FZ3(irrx) =1 sin ax expf
2 t sinh? ¢
0

where G (x) is Barnes G-function.

6 In Mathematica: Lip (x) = PolyLog[2, x].
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The form factor of the order parameter o(x) and two particles of type 2 is given by (22)
[23,12] where ¢, = — %\/Ef/_n_% G (%) /G (%) is determined by the form factor equation (iv)
Resm:%m F2”21 @) = \/EFIUI ' = +/2T. The intertwiner I" defined by is defined by

sinh & (ix + 2Z%)

1
s =—V3=T,'T},, I} =T} =T =33,
p=2ix sinh §(imx — ZL) 2t 12 11

The form factor of o (x) for the 3 particles of type 112 is given by (23) [23,12], where ¢3 =

2
«/gn% (G (%)) / (G (%)) is determined by Res, =lix F7L(0) = \/_F"' (9)T'. The minimal
form factor of the particles 1 and 2

) G
P sinh Et (1 —cosht (1 —x)) = o

o
(“fi';(mx) =cex /
0

satisfies F(‘%‘)‘(Q) F(‘?g( 0)S(12)(0), where S(12)(0) = _W

particles 1 and 2.

C.3.1. The 3-point function

The three point function Green’s function (see also [8])
Toyo100 (X) = (0| To1(x1)o1(x2)01(x3)|0) of the field o1(x) is different from zero, because
101071 is in the vacuum sector. We have the contributions

ém 01071 (k) = Z (H(lr}glgl (knl s kﬂza k7T3) + étlr?glol (knl s k7T2a k7T3)

NESx
~21
+ “alglgl (knl ) kﬁ2» kﬂ3)) .

For the permutation 7 = (1, 2, 3) and the intermediate states
(0lo1(0)| p1){p1lo1(0)| p2)(p2| 01(0)|0) the E-function is as in (10)

ololal(kl kz,k3)—// (0lo1(0)| p1){p1lo1(0)| p2) (P21 01(0)|0)
pi D2
—i —i
k8+k2+w1—iek§)+w2—ie
_ —1 m m
W—k?+m—iek§)+m—i

X 218 (p1) 278 (p2)

Fy) (im,0)

For the permutation 7 = (1, 2, 3) and the intermediate states
(0lo1(0) | p1){p1lo1(0) p2, p3){p3, P2l 01(0)|0) the E-function is as in (8)

82tk = 51 [ [ [ 0 @1p1) 11 @Iz, p) 3. p2l o1 010
p1 P2 P3
—i —i

k8+kg+w1 — i€ kg+w2+w3—ie

x 28 (p1) 2m8 (p2 + p3)
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_ 1 m /d@m 2m 12 ()
 64mm? —k) +m —ie o k) + 20 —ie 777

1) 5 (0) = F3!\(im,0,—0)Fy) (—0 + im0 + im)
where the crossing relation
(p11o1(0)| p2, p3) = F3 (61 +im, 02,603) + 89,0, + 86,6, 5(623)

has been used. The §-terms do not contribute because F (() 0) = 0. Inserting the form factor
functions we get

1 m k0
ki, ko, k W3 -=
Bt (k1 k2, k3) = T pr—— < 5 —}-le)

o
M%ﬂ=/1 I I FOOFC20)Fyin +0) Fiym —6)
. cosh6 cosh6 — <5inh(9 — %im) sinh(6 + Sir) sinh § 0)

For the intermediate states (0]o1(0)|p1, p2)(p2, p11o1(0)|p3){p3|01(0)|0), where |p) is a parti-
cle state of type 2 which is the anti-particle of 1, the E-function is as in (9)

Gm@=%///wm®mjmmmmeMMm@m

P1 P2 P3

—i —i
nk(2)+nk(3)+a)1+a)2—ie nkg+a)3—ie

=Gt g —ie ) o T 201

x 218 (p1) 278 (p2 + p3)

121 (0) = F5 (0, —0)Flly(—0 +im, 0 +im, 0)
where (22), (23) and the crossing relation
(P2, P1lo1(0)| p3) = (F{ (62 + i, 01 +im, 63) + 8,0, + S(621)8,0,)

have been used. Again the §-terms do not contribute because ngl (0,0) = 0. Inserting the form
factor functions we get

~A~7 1 m kO

647Tm4k(3)—|—m—ie 2m
and as in (12)

m m

el (k1, k2, k3) = const.
Lol Z —k?+m—iek§+m—ie

perm(k)
/ m Z@3 kg

+ const. Z ﬁh -2 4ie + (ki —> —k;) .
perm(k) _kl +m—ie 2m

For h%3(x) see Fig. 6.
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C.3.2. The 4-point function
We consider the Green’s function
Toyopai00 (X) = (0| To1(x1)02(x2)01 (x3)02(x4) | 0) and calculate for 03 = 01 and 04 = 02

= 5121
Eoiooyoy (k1 k2, k3, ks) = E o 0mr0m30s K 1 K2y K3, kra)
TES,
where as in (B.3) the result is expressed by 3 terms I, I, I3. The I3 term again contributes to
the disconnected part and the I is as in (19) given by g» = const./(1 — x). We calculate here
the more interesting contribution from /;. For the various permutations we have to calculate as
in (B.6):

I) for the permutation 7 = (1, 2, 3, 4) and the intermediate states
(0lo1(0) p1){p1lo2(0)| p2, p3)(p3, P21 01(0)| p4){pa| 52(0)|0) we obtain

L - m k9 + &8

=121 — r : * .
ki, ky, k3, kg) =— “Tom '€
Ulazﬂlaz(l 2. k3, kq) 32 mor _k?+m—i6k2+m—ieg1 ( m +1>

-1 1 1
73,0\ _ 121
0= [0 b 00,200
1;12;20152(91, 02,03, 04) = (p1lo2(0)| p2, p3){p3, P2101(0)| pa)i

where (...); means that we only take into account the term from /; and as in (B.4)

121
1)) 516,06, —6,0)
1F2”221 0,6 —ing, —0 — in_)F;l‘l(—O +imy,0+in_,0)+ (my < )
2(F?3 (im — 0) FB" (ir — 6) 2 pmin (29) F3in (—20)
(sinhz (8 — gin) sinh% (9 + gin) coshe)

where (23) and charge conjugation invariance Fsz, (8) = F{}, () have been used. For g73(x)
see Fig. 7. For the permutations
T=(@3,2,1,4), (1,4,3,2), (3,4, 1, 2) the result is, similarly, expressed by gIZ3(x).

II) for ¥ = (1, 3, 2, 4) and the intermediate states
(0lo1(0) p1){p1lo1(0)| p2, p3)(p3, P21 02(0)| p4){p4| 02(0)|0) we obtain

1 m m k9 + kY
=121 Z3 2Tk
ki, k3, ko, kg) = —— -
Bor01010; (k1. k3. k2. K4) 32m6n—k?+m—iek2+m—ieg”< 2m tie

1 1 I
Z3, N _ 121
811 () =4 fdecoshe cosho — x o200 6. 6.0
1121

o100, (01502, 03,64) = (p1lo1(0)| p2, p3){(p3, p2102(0)| pa)i
where (...); means that we only consider the term from /; and as in (B.4)

21 0,0, —6,0)

01010202

=1F0,0 —imy, —0 —in_)Fyy (=0 +imy, 0 +in_,0) + (74 < 7).
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For g 3 (x) see Fig. 8. For the permutations
T = (3, 1,2,4), (1,3,4,2), (3,1,4,2) the result is, similarly, expressed by g7; 3(x)

III) for 7 = (1, 2,4, 3) and the intermediate states
(0lo1(0) | p1){p1lo2(0) P2, P3){P3, P2l 02(0)| p4)(pa| 01(0)|0) we obtain

1 i m m k9 + k2
=121 Z3 4 3 .
ki,ky, ka, k3) = —— - €
o1y (k1. k2, ka, k3) 32 mén —k?—i—m—ie k(s)—i—m—ieglu 2m !
-1 1 1 121
8111 = ao cosh® coshf — 0102020, (0.6 =0, 0)

112! (91,02,93,94>=<p1|oz(0)|ﬁz,p3><p3,ﬁ2|az<0)|ﬁ4>1

01020201

where (...); means that we only consider the term from /; and as in (B.4)

121
I[,maza1 (0 0,—0,0)
221(O 0 —imy,—0 —im_) 212( O0+ing,0+in_,0)+ (my <> m_).

It turns out that I121 0,0,—-0,0) = 1121 (0,6, —6, 0) which follows from charge conju-

O'IO'ZUZO'I 01020102

gation invariance F221 01, 0;,03) = 112 (01, 63, 63), therefore

gfi) =gl ).
For the permutations = = (3, 2,4, 1), (1,4,2,3), (3,4, 2, 1) the result is, similarly, expressed
by g7 (x).
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