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Non-equilibrium thermal transport and vacuum expansion in the Hubbard model
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One of the most straightforward ways to study thermal properties beyond linear response is to
monitor the relaxation of an arbitrarily large left-right temperature gradient TL − TR. In one-
dimensional systems which support ballistic thermal transport, the local energy currents 〈j(t)〉
acquire a non-zero value at long times, and it was recently investigated whether or not this steady
state fulfills a simple additive relation 〈j(t → ∞)〉 = f(TL) − f(TR) in integrable models. In
this paper, we probe the non-equilibrium dynamics of the Hubbard chain using density matrix
renormalization group (DMRG) numerics. We show that the above form provides an effective
description of thermal transport in this model; violations are below the finite-time accuracy of the
DMRG. As a second setup, we study how an initially equilibrated system radiates into different
non-thermal states (such as the vacuum).

I. INTRODUCTION

Low-dimensional electron systems govern the behavior
of strongly anisotropic materials (such as the iron pnic-
tides), of graphene, or of quantum dots and wires. 1d
or 2d fermions or bosons can also be realized in cold
atom setups where elementary equilibrium or real time
physics can be probed accurately. Thus, understanding
low-dimensional systems is important both fundamen-
tally and for applications in nanoelectronics or the design
of functional materials. However, Coulomb interactions
lead to a variety of many-body phenomena that cannot
be obtained by using simple perturbation theory but re-
quire more elaborate analytical or numerical techniques.
It is particularly challenging to treat systems which are
not in thermal equilibrium.

One area that has attracted considerable attention
during the past decades is transport in one dimension
where interacting models exist that can be diagonalized
exactly using Bethe ansatz techniques; typical examples
are XXZ spin chains or the Fermi-Hubbard model [1, 2].
In these systems, local conserved charges can effectively
prevent currents from scattering and can thus in princi-
ple lead to dissipationless transport at finite temperature
T > 0 [3–5]. However, even if the whole spectrum of the
Hamiltonian is known, it remains a formidable task to
determine the linear response conductivity quantitatively
since it is governed by the couplings between all excited
states [6, 7], which are difficult to compute in the Bethe
ansatz [8]. Significant progress has been made within
recent years using novel analytical [9, 10] or numerical
[11–13] techniques.

Studying transport out of equilibrium is complicated
and constitutes one of the most active areas of research
in strongly correlated condensed matter physics (for a
non-comprehensive list of recent works in this direction,
see [14–30]). A simple way to probe 1d thermal transport
[31–41] beyond the regime of linear response is to moni-
tor the real time evolution of an initial, arbitrarily large
temperature gradient. Despite its general simplicity and
experimental realization in quasi-1d spin systems [42–45],

this setup had not been studied theoretically until a few
years ago [46–49] but has gained considerable attention
since then [50–66]. The aim of this paper is to extend
previous works to the 1d Fermi-Hubbard model and to
discuss non-equilibrium setups which are more general
than temperature gradients (and which might thus be of
higher relevance for cold atom experiments).
From a theoretical perspective, the simplest way to cre-

ate a T -gradient is to prepare two semi-infinite ‘left and
right’ chains in equilibrium at temperatures TL,R and to
connect them at time t = 0. In general, one expects the
system to thermalize after some transient time and hence
no energy current 〈j(t)〉 to flow across the interface for
t → ∞. In an integrable model, however, it is reasonable
to assume that the conserved charges inhibit scattering
for arbitrarily large TL − TR and that 〈j(t)〉 acquires a
finite steady-state value. More interestingly, it was first
proposed in Ref. [47] in the context of conformal field
theory that the asymptotic current is not a complicated
function of TL and TR but rather has a simple form,

lim
t→∞

〈j(t)〉 = f(TL)− f(TR) , (1)

where f(T ) is a model-dependent function of the tem-
perature. The derivative of f is nothing but the linear
reponse conductance – which thus determines the cur-
rent even far out of equilibrium. This ‘additivity prop-

FIG. 1. (Color online) The main setups considered in this
paper. A Fermi-Hubbard chain is prepared in thermal equi-
librium at a temperature TL. At time t = 0, it is connected
to a vacuum state or to a chain exhibiting a different temper-
ature TR. The former describes the expansion after switching
off a (sharp) potential barrier, the latter models the evolution
of an initial temperature gradient.
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erty’ was confirmed analytically for free lattice fermions
[46, 49] and tested using density matrix renormalization
group (DMRG) numerics for the XXZ spin chain [48]. Its
validity for the interacting XXZ chain was subsequently
discussed critically in various works [52, 57, 62, 65, 66];
in particular, Eq. (1) is not compatible with the hydro-
dynamic approaches of Refs. [62, 65]. This suggests that
Eq. (1) provides an effective description of transport in
the XXZ chain but is violated on a scale that cannot
be resolved by the DMRG. It is the first goal of this
work to shed more light on these issues by revisiting
the temperature-gradient setup for the Fermi-Hubbard
model (FHM).

Intuitively, one can view Eq. (1) as a form of ‘effec-
tive thermal radiation’ [67, 68]. This interpretation sug-
gests that the function f(T ) could not only describe T -
gradients but approximately govern the thermal currents
which flow out of an equilibrated ‘left’ chain into any
state on the right as long as the time evolution is dic-
tated by an integrable Hamiltonian. It is the second aim
of this paper to collect evidence whether this hypothe-
sis is true or false. Most importantly, we will study the
expansion (into the vacuum) after switching off a sharp
potential trap.

This exposition is organized as follows. In Sec. II, we
introduce the model, discuss several ways to prepare the
initial state, and briefly sketch the idea of density ma-
trix renormalization group calculations. The evolution of
temperature gradients in the Hubbard model is studied
in Sec. III. In Sec. IV, we show results for the expansion
into the vacuum. The XXZ chain is less computationally
demanding than the FHM, and our hypothesis can be
tested for a larger class of states; we show data in the
appendix.

II. MODEL AND METHOD

A. Model

The one-dimensional Fermi-Hubbard model is gov-
erned by H =

∑

n hn with local terms

hn =−
t0
2

(

c†n↑cn+1↑ + c†n↓cn+1↓ + h.c.
)

+
U

2
(ñl↑ñl↓ + ñl+1↑ñl+1↓)

+ V (ñl↑ + ñl↓)(ñl+1↑ + ñl+1↓) ,

(2)

where cnσ annihilates a fermion with spin σ on site n, and
ñnσ = c†nσcnσ − 1/2. The on-site and nearest-neighbor
interactions are denoted by U and V , respectively; the
system is integrable for V = 0 [2]. Throughout this pa-
per, we use the hopping matrix element t0 = 1 as the
unit of energy. The local energy current is defined via a
continuity equation and reads jn = i[hn+1, hn].
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FIG. 2. (Color online) Thermal current flowing through the
Hubbard chain in the presence of an initial temperature gra-
dient defined by βL,R = 1/TL,R. The on-site and nearest-
neighbor interaction strength are U = 4 and V ∈ {0, U/8},
respectively. In the integrable case V = 0, the currents satu-
rate to a non-zero stationary-state value.

B. State preparation

The straightforward choice of the initial density matrix
ρ0 is given by the product state

ρ0 ∼ ρL ⊗ ρR , (3)

where ρL,R are the statistical operators governing the
isolated left and right systems, respectively. In order
to model an initial temperature gradient [46–49], they
are both chosen as thermal density matrices featuring
different TL,R:

ρL ∼ e−H/TL , ρR ∼ e−H/TR . (4)

Alternatively, one can employ ρR ∼ ρvac or ρR ∼ e−K/TR

in order to study the expansion into the vacuum or into a
thermal state of a different Hamiltonian K, respectively.
From a numerical perspective, it is advantageous not

to work with the product state of Eq. (3) but to model
the ‘bond’ between the left and right systems smoothly.
This can be achieved by using

ρ0 ∼ e−H̃ , (5)

and, for the temperature gradient setup, choosing H̃ as

H̃ =

{

H/TL n ≤ 0

H/TR n > 0 .
(6)

Likewise, one can create a vacuum in the right half by
adding a large chemical potential µ(ñn↑ + ñn↓) for sites
n > 0. It is important to keep in mind that the modi-
fied Hamiltonian H̃ only governs the preparation of the
initial state; the real time evolution is always determined
by the original H of Eq. (2). Since Eq. (3) and Eq. (5)
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FIG. 3. (Color online) Thermal current for the integrable model with fixed βR ∈ {0, 1, 2} and various βL (increasing from top
to bottom). The on-site interaction strength is given by U = 1 in (a,b) and U = 4 in (c,d) [the charge gap is of size ∼ 0.04 and
∼ 1.17, respectively]. The inset to (d) shows the data for βL = 0.2 on a magnified scale. If the curves for the different βR are
shifted vertically (by the same amount for all βL), they seem to converge to the same long-time asymptote, which thus depends
only on βL. This illustrates that on the time scales accessible by the DMRG, the stationary state is effectively described by
the additivity relation of Eq. (1); violations are smaller than the resolution of the method.

differ only locally, one expects that they yield the same
stationary state at long times, which we have verified ex-
plicitly. However, the latter choice is numerically favor-
able (the DMRG bond dimension increases more slowly);
this is reasonable since the initial state is already ‘closer’
to the stationary one if the left and right systems are not
fully disconnected initially. Hence, we exclusively employ
Eq. (5) from now on.

C. Density Matrix Renormalization Group

The thermal density matrices e−H/T as well as the real
time evolution operators e−iHt of one-dimensional sys-
tems can be determined by virtue of the time-dependent
[69–74] density matrix renormalization group method
[75–77], which in practice can be set up elegantly using
matrix product states [78–81]. Finite temperatures [82–
88] are incorporated via a purification |Ψ〉T of e−H/T , and
the state |Ψ〉T can be obtained from the (known) |Ψ〉∞
using an evolution e−H/2T in β = 1/T . Both e−H/T as
well as e−iHt are factorized by a fourth order Trotter-
Suzuki decomposition. We keep the discarded weight
during each individual ‘bond update’ below a threshold
value, which leads to an exponential increase of the bond
dimension during the real time evolution. In order to ac-
cess time scales as large as possible, we employ a finite-
temperature disentangler [11, 89], which exploits the fact
that purification is not unique to slow down the growth
of the bond dimension. Our calculations are performed
using a system size of the order of L ∼ O(100) sites. By
comparing to other values of L, we have ensured that

L is large enough for the results to be effectively in the
thermodynamic limit.

III. CURRENTS INDUCED

BY A TEMPERATURE GRADIENT

In this section, we study the energy currents induced
by a temperature gradient (defined by TL and TR) in the
Fermi-Hubbard model. We exclusively focus on the case
of half filling where a charge gap opens for U > 0 while
spin excitation remain gapless. We always average 〈jn〉
over the two sites n closest to the boundary where the
initial T -gradient is applied; this average is denoted as
〈j〉 from now on.
Fig. 2 shows the time evolution of the currents for

fixed U = 4 where the charge gap is of O(1) [2]. As
expected, one observes that 〈j(t)〉 relaxes to a non-zero
steady-state value in the integrable case of V = 0 but
decay to zero for non-vanishing nearest-neighbor interac-
tions. However, the time scale on which this decay sets
in becomes large if both TL and TR are below the gap.
It is a priori unclear whether or not the functional form

of the steady-state current given in Eq. (1) provides an
effective description of thermal transport for the FHM;
the reason for this is two-fold. Firstly, the FHM sup-
ports ballistic thermal transport in equilibrium [35, 41],
but – in contrast to the XXZ chain – does not feature
a fully-conserved current,

∑

n[jn, H ] 6= 0. Secondly, it
was argued using field theory [52] that Eq. (1) only holds
approximately in the gapped phase of the XXZ chain
and that small deviations cannot be resolved on the time
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FIG. 4. (Color online) Temperature-dependence of the func-
tion f(T ) which governs the steady-state current via Eq. (1).

scales reached in the numerics of Ref. [48]. The half-filled
FHM always features a gap whose size is tuneable by the
strength of the on-site interaction; hence, it provides an
alternate testing ground for the influence of gaps.

In Fig. 3, we show the currents flowing in the integrable
FHM for different on-site interactions U = 1 in (a,b) and
U = 4 in (c,d); the size of the charge gap is ∼ 0.04
and ∼ 1.17 in the former and latter case, respectively
[2]. Note that at U = 0, the spin degrees of freedom do
not couple, and the problem reduces to that of spinless
free fermions where it was shown analytically that Eq. (1)
holds. For each U , Fig. 3 displays data for three represen-
tative temperatures βR = 1/TR ∈ {0, 1, 2} on the right
and varying βL = 0 . . . 6. After shifting the curves for
βR = 0 [panels (a) and (c)] and those for βR = 2 [pan-
els (b) and (d)] vertically (by the same amount for all
βL), their long-time asymptotes seem to agree with that
of βR = 1. The same holds true for all other values of
βR = 0 . . . 6. This indicates that Eq. (1) provides a good
effective description of transport in the FHM; violations
cannot be resolved on the finite time scales accessible by
the DMRG. A potential reason for this observation might
be that Eq. (1) in fact holds exactly in certain regimes
(such as large temperatures or small temperature differ-
ences). One should note that the parameters of Fig. 3
cover two important limits: The weight of the Drude
peak is minimal around U = 1 [41] (the regular contri-
bution to the conductivity vanishes both for U = 0 and
U → ∞), and the temperatures reached at U = 4 are
significantly below the charge gap. No systematically-
increasing violation of Eq. (1) can be detected in either
case.

In Fig. 4, we plot the temperature-dependence of the
function f(T ) which (to the accuracy of our finite-time
numerics) effectively governs the steady-state current. At
U = 0, f is known analytically [46, 49], and its limiting
behavior reads f(T → ∞) ∼ 1/T , f(T → 0) ∼ T 2.
In the latter case, the prefactor is determined by the
central charge of the corresponding conformal field the-
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FIG. 5. (Color online) The same as in Fig. 3, but comparing
the currents flowing into a thermal state at βR = 1 with an
expansion into the vacuum for various βL of the left system.
The on-site interaction is (a) U = 1 and (b) U = 4. [The
curve for βL = 3 is not shown in (b).]

ory [47], and it was demonstrated explicitly the same
holds true for the the XXZ chain in its gapless phase [48].
While the large-T limit of the FHM is still described by
f(T ) ∼ 1/T , the time scales reached by the DMRG are
insufficient to reliably extract the functional form of f(T )
for temperatures much smaller than the charge gap; e.g.,
the data in Fig. 4 for U = 4 can be fitted equally (badly)
both by a quadratic or an exponential function for β > 2.

IV. EXPANSION INTO THE VACUUM

As mentioned above, Eq. (1) can be interpreted intu-
itively as a form of ‘effective radiation’. The suggests that
the energy currents flowing out of a left system which
is prepared in thermal equilibrium at a temperature TL

could approximately be described by f(TL)+C irrespec-
tive of the initial state of the right system as long as the
time evolution is governed by an integrable Hamiltonian
H .
The most important test for this hypothesis is an ex-

pansion into a vacuum state (i.e., empty sites), which
can be viewed as preparing an equilibrated system in the
presence of a sharp potential trap which is then switched
off at time t = 0. In Fig. 5, we show the currents flowing
into the vacuum with the thermal ones for U ∈ {1, 4}; on
the accessible time scales, their steady-state again coin-
cides up to a constant which does not depend on TL. This
shows that limt→∞〈j(t)〉 = f(TL) + C is approximately
fulfilled (violations are below the finite-time resolution of
the DMRG). Due to the computational complexity of the
Hubbard model, we refrain from studying the expansion
into various other non-thermal states but will carry out
such an analysis for the simpler case of the XXZ chain
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sity 〈hn(t)〉 and the energy current 〈jn(t)〉 in the FHM at
U = 4 for the expansion of a thermal state with βL ∈ {0, 2}
into the vacuum for two times t.

(see the appendix).
The currents which flow into the vacuum are negative

for all TL (as a reminder, the curves in Fig. 5 are shifted
upwards to a constant whose size can be identified by
the value at time t = 0). One can understand this from
the fact that formally, the vacuum correspond to a state
with a negative temperature, i.e., a state whose energy
is higher than the one at T = ∞. This is illustrated
in Fig. 6 which contains the full spatial profiles of the
energy density 〈hn(t)〉 as well as the currents 〈jn(t)〉 for
two different times t. Note that after initial transients
have died out, both acquire a steady-state form if the
position n is rescaled by t. Analogous observations were
made for the temperature-gradient setup [62].

V. SUMMARY & OUTLOOK

In this paper, we have investigated non-equilibrium
thermal transport within the one-dimensional Fermi-
Hubbard model. We have shown that the steady-state
current flowing out of an initially equilibrated ‘left’ chain
can approximately be described via a universal function
of its temperature TL, limt→∞〈j(t)〉 = f(TL) + C, irre-
spective of the initial state on the right. The latter only
modifies the constant C, where C = −f(TR) if the sys-
tem on the right is also thermal with a temperature TR.
Violations of this form are below the finite-time resolu-
tion of the density matrix renormalization group.
This result is interesting for three reasons: Firstly,

it implies that the currents even far out of equilibrium
are effectively determined by the linear-response conduc-
tance ∂T f(T ) [47]. Secondly, it establishes upper bounds
that any analytical solution can be tested against and
provides a starting point for the design of phenomeno-
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FIG. 7. (Color online) Thermal current flowing in a XXZ spin
chain with ∆ = 0.5 (this value governs the time evolution) if
a thermal state with an inverse temperature βL on the left
is connected to different states on the right: (i) a thermal
state of the same chain, (ii) the vacuum, (iii) a half-polarized
Neel state, and (iv) a thermal state of a XXZ chain with a
different ∆ = 1. The curves for (ii-iv) are shifted vertically
(by the same amount for all βL). Note that data for (iii)
and (iv) could only be calculated up to t ≈ 8 due to the fast
growth of the bond dimension for these global quenches.

logical transport theories [52, 57, 62, 65, 66]. Thirdly,
once it becomes feasible to measure energy densities in
fermionic quantum-gas microscopes, it should be possible
to test this ‘effective theory’ experimentally by prepar-
ing a system in equilibrium in the presence of a potential
trap, which is then switched off (expansion into the vac-
uum).
While the Hubbard model does not feature a fully-

conserved energy current, most of the spectral weight
of the equilibrium conductivity is concentrated in the
Drude peak [48]. It would be interesting to generalize
the present study to models for which this is not the
case.
Acknowledgments — Support by the Emmy Noether

program of the Deutsche Forschungsgemeinschaft (KA
3360/2-1) is acknowledged.

VI. APPENDIX: XXZ CHAIN,

EXPANSION INTO DIFFERENT STATES

We now revisit the non-equilibrium dynamics of a XXZ
spin chain whose Hamiltonian reads

H =
∑

n

[

1

2

(

S+
n S

−
n+1 + S−

n S+

n+1

)

+∆Sz
nS

z
n+1

]

, (7)

where S± = Sx ± iSy, and Sx,y,z are spin-1/2 opera-
tors. Since this model is computationally cheaper than
the FHM, one can tackle a larger class of initial states;
thermal gradients were already studied in Ref. [48].
In Fig. 7, we show the currents flowing from a ther-

mal state of a chain with ∆ = 0.5 and various TL on the
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FIG. 8. (Color online) The same as in Fig. 7 but in the gapped
phase with ∆ = 3 and for various thermal states on the right.
The curves for βR = 0 and βR = 2 were shifted vertically.

left into several different states on the right: (a) a ther-
mal state, (b) the vacuum (i.e., all spins pointing up),
(c) a partial Neel state with a staggered magnetization
of ±0.27 (which we induce by applying a staggered mag-
netic field of strength 1 at a temperature TR = 1), and
(d) a thermal state of a different chain with ∆ = 1. As
a reminder, we note that the time evolution is always
governed by the integrable Hamiltonian of Eq. (7). The
setups (c) and (d) correspond to global quenches, which
are numerically challenging; only time scales of t ≈ 8 are
accessible in this case. In Fig. 8, we present additional
data for the temperature gradient setup in the gapped
phase with ∆ = 3. One observes that the curves seem
to approach the same steady-state value if shifted ver-
tically (by the same amount for all TL). This provides
further evidence that the asymptotic currents are well
approximated by the form limt→∞〈j(t)〉 = f(TL) + C.
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Phys. Rev. Lett. 114, 140601 (2015).
[11] C. Karrasch, J. H. Bardarson, and J. E. Moore,

Phys. Rev. Lett. 108, 227206 (2012).
[12] R. Steinigeweg, J. Gemmer, and W. Brenig, Phys. Rev. B

91, 104404 (2015).
[13] R. Steinigeweg, J. Herbrych, X. Zotos, and W. Brenig,

Phys. Rev. Lett. 116, 017202 (2016).
[14] D. Gobert, C. Kollath, U. Schollwöck, and G. Schütz,
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[21] M. Žnidarič, Phys. Rev. Lett. 106, 220601 (2011).
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J. Stat. Mech. (2004) P04005.
[72] P. Schmitteckert, Phys. Rev. B 70, 121302(R) (2004).
[73] G. Vidal, Phys. Rev. Lett. 98, 070201 (2007).
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Phys. Rev. Lett. 93, 207204 (2004).

[85] M. Zwolak and G. Vidal, Phys. Rev. Lett. 93, 207205
(2004).
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