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We propose to compute approximations to invariant sets in dynamical systems by minimizing an

appropriate distance between a suitably selected finite set of points and its image under the

dynamics. We demonstrate, through computational experiments, that this approach can successfully

converge to approximations of (maximal) invariant sets of arbitrary topology, dimension, and

stability, such as, e.g., saddle type invariant sets with complicated dynamics. We further propose to

extend this approach by adding a Lennard-Jones type potential term to the objective function, which

yields more evenly distributed approximating finite point sets, and illustrate the procedure through

corresponding numerical experiments. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4983468]

In the phase space of any nonlinear dynamical system,

the “skeleton” of the global dynamical behavior con-

sists of the invariant sets of the system, e.g., fixed

points, periodic orbits, general recurrent sets, and the

connecting orbits/invariant manifolds between them.

Computational methods for approximating invariant

sets have been, and will continue to be, a major part

of the “toolkit” of every dynamical systems researcher,

whether on the mathematical or on the modeling side.

In this contribution we devise and implement a new

variational approach for this task, which is able to

compute invariant sets of arbitrary dimension, topol-

ogy, and stability type. In addition—and in contrast to

classical techniques—our method provides an approxi-

mate parametrization of the invariant set, which can

be (smoothly) followed in parameter space.

I. INTRODUCTION

One central question in dynamical systems theory is to

understand the existence and structure of invariant sets.

Basic and important examples for invariant sets are fixed

points/equilibria, periodic and quasiperiodic orbits and their

associated stable, and unstable manifolds. In systems with

chaotic behaviour, invariant sets with complicated topology

may exist. A plethora of numerical techniques has been

developed in order to approximate these sets computation-

ally: Straightforward simulations (or more generally indirect
methods) typically reveal parts of some invariant sets, e.g.,

some attractor or repeller of the system, cf., e.g., Ref. 20.

They can also be adapted in order to compute saddle type

invariant sets, cf., e.g., Refs. 13, 19, 17, and 21. Direct meth-
ods, in contrast, focus on invariant sets of some particular

type or topology like the examples mentioned above,

including invariant sets of saddle type. They, however,

include knowledge about the structure of the invariant set

into the design of the method, in particular, on how to prop-

erly parametrize the set, cf., e.g., Refs. 1–3, 14, 15, 11, and

5. In contrast, set oriented techniques are capable of approxi-

mating the invariant set without any a priori knowledge of

its structure.7–10 In these, the set under consideration is cov-

ered by a subset of a (possibly cubical, as in GAIO) finite

granularity decomposition of phase space. While this box

covering provides a rigorous outer approximation to some

invariant set, it does not provide a parametrization which

varies smoothly in case that the invariant set varies smoothly

with some system parameter. Rather, any change in the

parametrization will come quantized (by the cube size).

Consequently, we cannot quantify stability of the invariant

set via infinitesimal concepts like spectral properties of some

suitable operator.

The approach described in this paper is motivated by

the desire to compute approximations to invariant sets of

arbitrary topology, dimension, and stability type which do

vary smoothly as mentioned. We propose to approximate

some invariant set by a finite scattered point cloud which

minimizes a certain objective functional (cf. Ref. 4 for

another variational approach based on the lifetime of tra-

jectories). In its most basic form, this functional is sim-

ply the distance (given by some metric on sets, as e.g.,

the Hausdorff metric) between the point cloud and its

image under the dynamics. We give computational evi-

dence that already this basic approach yields a useful

approximation if the invariant set is (sufficiently strongly)

hyperbolic. We further propose to augment this basic

functional by a second term which penalizes a “too

uneven” distribution of the point cloud. Here, we use a

Lennard-Jones potential for this purpose. Our numerical

experiments suggest that this indeed improves the approx-

imation quality if the involved algorithm parameters are

chosen appropriately.

a)oj@tum.de
b)yannis@princeton.edu

1054-1500/2017/27(6)/063102/9/$30.00 Published by AIP Publishing.27, 063102-1

CHAOS 27, 063102 (2017)

http://dx.doi.org/10.1063/1.4983468
http://dx.doi.org/10.1063/1.4983468
http://dx.doi.org/10.1063/1.4983468
mailto:oj@tum.de
mailto:yannis@princeton.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4983468&domain=pdf&date_stamp=2017-06-06


II. INVARIANT SETS

We consider a discrete-time dynamical system

xkþ1 ¼ f ðxkÞ; k ¼ 0; 1; 2;…;

where f : Rd ! Rd is a diffeomorphism (e.g., an explicit

mapping or the time-T-map of some ordinary differential

equation). A set X � Rd is invariant if

X ¼ f ðXÞ:

Simple examples for invariant sets are fixed points �x ¼ f ð�xÞ
or periodic orbits X ¼ fx0;…; xp�1g; xkþ1 mod p ¼ f ðxkÞ. If

X � Rd is invariant, then, by continuity of f, its closure is

invariant as well, and so in the following, we can restrict our

considerations to closed invariant sets. In fact, we will be

concerned with compact invariant sets only. Given some

compact set Q � Rd, the set

InvðQÞ ¼ fx 2 Q j f kðxÞ 2 Q for all k 2 Zg;

is the maximal invariant set within Q. By definition, it con-

tains all invariant sets which are contained in Q. In many

cases, e.g., in the numerical experiments below, Inv(Q) is

independent of Q if Q is chosen large enough.

III. A VARIATIONAL SCHEME FOR INVARIANT SETS

Our approach to computing compact invariant sets will

be based on minimizing the distance between some compact

set X � Rd and its image f ðXÞ � Rd . Let C be the set of

non-empty compact subsets of Rd, and let d : C � C !
½0;1Þ be a metric on C. Then,

X ¼ f ðXÞ if and only if dðX; f ðXÞÞ ¼ 0: (1)

In any numerical computation, we can only work on some

subset of C which can be described by finitely many parame-

ters. In this subset, we cannot expect to satisfy d(X, f(X))¼ 0.

The idea of our approach is to minimize the (“energy”) func-

tional E : C ! ½0;1Þ,

EðXÞ ¼ dðX; f ðXÞÞ; (2)

on some suitable subset ~C � C instead.

Let Brð0Þ � Rd be the ball centered at 0 with radius

r, and recall that the subset relation � is a partial order

on C.
Proposition 1. Suppose that Inv(Br(0))¼ S for some S 2

C for all sufficiently large r. Then, the set S is the unique minimizer
of E on C which is maximal with respect to the subset relation.

Proof. By (1) and the definition of E, any minimizer of

E is an invariant set. Thus, the union U ¼ [X2C;X¼f ðXÞX of all

compact invariant sets is a minimizer. Further, since it con-

tains all other minimizers from C, it is the unique set which

is maximal with respect to the subset relation. �

A. The Hausdorff metric

A common way to measure distances between compact

sets is via the Hausdorff metric which is defined as follows:

For any non-empty set X � Rd , the distance of a point y 2
Rd from X is

dðy;XÞ ¼ inf
x2X
ky� xk2:

The distance of a second non-empty set Y � Rd from X is

dðY;XÞ ¼ sup
y2Y

dðy;XÞ;

and since this distance is not symmetric, one defines the

Hausdorff metric

dHðX; YÞ ¼ maxfdðY;XÞ; dðX; YÞg
¼ max sup

y2Y
inf
x2X
ky� xk2; sup

x2X
inf
y2Y
ky� xk2

� �

between X and Y. Note that ðC; dHÞ is complete.

B. A modified Hausdorff metric

As mentioned, we are going to minimize the energy func-

tional (2) on some subset of C. In fact, we will simply use finite

subsets ~X ¼ fx1;…; xng � Rd (i.e., point clouds) for this pur-

pose, such that E can be seen as a function on Rnd , where n is

the (fixed) number of points in these subsets. Unfortunately, E :
Rnd ! ½0;1Þ is not smooth and this prevents us from using

standard schemes for the minimization. We therefore employ

the following modified Hausdorff distance instead. We use

d̂ðy; ~XÞ ¼ dðy; ~XÞ2 ¼ min
x2 ~X
ky� xk2

2

in order to measure the distance of some point y 2 Rd from

some non-empty finite set ~X. We further define the distance

d̂ ~Y ; ~X
� �

¼ 1

j ~Y j
X
y2 ~Y

d̂ y; ~X
� �

¼ 1

j ~Y j
X
y2 ~Y

min
x2 ~X
ky� xk2

2

of some non-empty finite set ~Y from ~X (j ~Y j denotes the num-

ber of points in ~Y ) and finally define the Hausdorff-like

distance

d̂H
~X; ~Y
� �

¼ 1

2
d̂ ~X; ~Y
� �

þ d̂ ~Y ; ~X
� �� �

between two non-empty finite sets ~X and ~Y . Note that d̂H is a

metric on the set of non-empty finite subsets of Rd . For

some set ~X ¼ fx1;…; xng � Rd, the corresponding energy

functional reads explicitly

Ê x1;…; xnð Þ ¼ E ~Xð Þ ¼ d̂H
~X; f ~Xð Þ
� �

¼ 1

2n

Xn

i¼1

min
j¼1:n
kxi � f xjð Þk2

2

þ 1

2n

Xn

i¼1

min
j¼1:n
kf xið Þ � xjk2

2

¼ 1

2n

Xn

i¼1

kxi � f xj ið Þð Þk2
2

þ 1

2n

Xn

i¼1

kf xið Þ � xj ið Þk2
2; (3)

where jðiÞ ¼ argminj¼1;…;nkxj � f ðxiÞk2
.
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Remark 1. Note that Êð ~XÞ ¼ 0 if and only if ~X is a

union of periodic orbits, and one might expect this to prevent

our approach from being able to compute, e.g., heteroclinic

orbits. Since, however, in practice, any minimization scheme

for Ê will be terminated as soon as some stopping criterion

is fulfilled (e.g., when krÊð ~XÞk < 10�6), this does not seem

to be an issue—cf. Experiment 5 where we cover part of the

unstable manifold of a saddle type fixed point.

C. Implementation

We are going to minimize the energy functional Ê by a

standard Quasi-Newton scheme, namely the limited memory

Broyden-Fletcher–Goldfarb-Shanno (BFGS) scheme as

implemented in the Matlab function fminlbfgs (by Dirk-

Jan Kroon, University of Twente). In order to compute the

distance d̂ðy;XÞ of some point y from some finite set ~X, we

employ a kd-tree based search for some point x ¼ xðyÞ 2 ~X
which is closest to y. This is conveniently implemented in

the knnsearch command in Matlab. In fact, knnsearch
can return the k 2N nearest neighbours at once and each

query of this type takes Oðlog j ~XjÞ time. Overall, this trans-

lates into a running time of Oðj ~Xj log ð ~XÞÞ and all the exam-

ples in Sec. IV only take a few seconds to run on a recent

machine. For j ~Xj ¼ 104, the runtime will be a few minutes.

IV. COMPUTATIONAL EXPERIMENTS

Experiment 1. (Fixed point in 1d) Let us start with the

simplest possible example: a linear map on the line. We

consider f : R! R; f ðxÞ ¼ ax with a¼ 0.1 and a¼ 10.

The maximal invariant set in Q¼ [–1, 1] is Inv(Q)¼ {0}.

We initialize ~X with 40 points, chosen randomly from [–1,

1] according to a uniform distribution and terminate the

BFGS iteration as soon as krÊk1 < 10�6. Figure 1 shows

the evolution of ~X in course of the optimization for both

values of a. The BFGS iteration terminates after 21 and 18

steps with an Ê value of around 10�11, and the Hausdorff

distance of ~X from {0} is � 10�6 for a¼ 0.1 and� 2 �
10�5 for a¼ 10.

The speed of convergence seems to strongly depend

on the contraction constant a: Figure 2 shows the evolution

of ~X in course of the BFGS iteration for a¼ 1.1 (left) and

a¼ 1.01 (right). While in both cases the objective function

value is less than 10�8, the Hausdorff distance of ~X from

{0} is still rather large, namely�0.003 for a¼ 1.1

and� 0.1 for a¼ 1.01, even after a much larger number of

iterations.

Experiment 2. (A connecting orbit in 1d) We next con-

sider a nonlinear map on the line for which the maximal

invariant set is the interval [0, 1] and the map is

f(x)¼ xþ ax(1 � x) with a¼ 0.8. It possesses two fixed

points, namely �x1 ¼ 0 (unstable) and �x2 ¼ 1 (stable). Points

within (0, 1) are heteroclinic to these two equilibria so that the

maximal invariant set within any set Q covering [0, 1] is the

interval [0, 1]. We choose Q¼ [�1, 2] and initialize X by a

set of points chosen randomly from [�1, 2] according to a

uniform distribution. Figure 3 shows the evolution of ~X in

course of the BFGS iteration for n¼ 100 (left), as well as the

Hausdorff distance dH between ~X and [0, 1] (approximated by

computing dH between ~X and a grid of 104 points in [0, 1]).

Experiment 3. (A connecting orbit in 2d) Similarly, for

the map

f ðx; yÞ ¼ ð1:5x3 � 0:5x; 10yÞ

with fixed points (–1, 0) (unstable center), (0, 0) (saddle),

and (1, 0) (unstable center), the maximal invariant set within

any set Q which contains [–1, 1]� {0} is Inv(Q)¼ [–1,

1]� {0}. We start with a set ~X of 100 points which are cho-

sen randomly from [–2, 2]2 according to a uniform distribu-

tion. Figure 4 shows the iterates of ~X in course of the

optimization after 3 and 30 BFGS steps.

Experiment 4. (An unstable invariant disk in the plane)

We repeat the experiment with a map for which the maximal

invariant set inside a sufficiently large neighborhood is an

unstable disk. We consider the vector field

vðx; yÞ ¼ �yþ axðx2 þ y2 � 1Þ
xþ ayðx2 þ y2 � 1Þ

" #

with a¼ 10 and define the map f as one Euler step with step

size h¼ 0.1, i.e.,

f ðx; yÞ ¼ ðx; yÞ þ hvðx; yÞ:

FIG. 1. Linear map on the line, evolution of ~X in course of the optimization. Left: a¼ 0.1; right: a¼ 10.
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We start with a set ~X of 1000 points which are chosen

randomly from [–2, 2]2 according to a uniform distribution.

Figure 5 shows the iterates of ~X in course of the optimization

after 3 and 30 BFGS steps.

Clearly, the objective function Ê will typically possess

many local minima, and the result of the minimization will

strongly depend on the initialization of ~X. This is exempli-

fied in Fig. 6, where the results of the BFGS after 500 itera-

tions are shown for different initializations of ~X. This is one

motivation for the construction proposed in Sec. V.

Experiment 5. (The H�enon map) Let us now consider

an example with a chaotic invariant set as exhibited by the

H�enon map

f ðx; yÞ ¼ ð1� ax2 þ y; bxÞ:

For a¼ 1.2, b¼ 0.3, this map possesses an attractor as shown

in Fig. 7 (left). The maximal invariant set [in the center of

that figure, computed by GAIO (https://github.com/gaioguy/

GAIO)7] additionally contains a saddle fixed point around

FIG. 2. Linear map on the line, evolution of ~X in course of the optimization. Left: a¼ 1.1; right: a¼ 1.01.

FIG. 3. Connecting orbit on the line: approximation of Inv(Q)¼ [0, 1] (lightly red shaded) by a set ~X of n¼ 100 (left) points. Right: the Hausdorff distance

between ~X and the maximal invariant set [0, 1] shrinks to�3 � 10�2 in course of the iteration.

FIG. 4. Connecting orbit in the plane: the set ~X (blue) initially (left) and after 3 (center) and 30 (right) BFGS iterations.
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(–1.25, –1.1) and part of its unstable manifold connecting the

fixed point to the attractor. The point cloud that results from

our variational approach approximately fills this covering.

We initialized the optimization with a set ~X of points which

have been chosen randomly from the square [–2, 2]2 accord-

ing to a uniform distribution and ran the BFGS scheme until

the value of the objective function fell below 10�6. Clearly,

there are regions (surrounded by black lines) where points

converge extremely slowly. We conjecture that this is due to

(near-)tangencies between stable and unstable manifolds,

i.e., (near-)nonhyperbolic behaviour.

We further consider the case a¼ 2 where the map pos-

sesses a saddle type maximal invariant set with a Cantor-like

structure, cf. Ref. 19. Note, in particular, that this set cannot

be computed/observed by mere simulation in forward or

backward time since this set is unstable in both time direc-

tions (this is the unicorn we are alluding to in the title).

Figure 8 shows a covering of the maximal invariant set as

well as its approximation by 1000 points through our varia-

tional scheme after 20 and 200 steps of the optimizer, as well

as after the gradient of the objective function decreased

below 10�6.

FIG. 5. Unstable invariant disk (red) in

the plane: the set ~X (blue) after 3 (left)

and 30 (right) BFGS iterations.

FIG. 6. Unstable invariant disk (red) in the plane: the 500th iterate of ~X for an initial set ~X of 1000 points chosen from a uniform grid (left), randomly (center),

and as pseudo-random points (right), i.e., Halton points.18

FIG. 7. H�enon map: attractor (left), maximal invariant set (center), and the iterates of 1000 randomly chosen points after termination of the BFGS scheme

(when jÊð ~XÞj < 10�6 after 769 steps).
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Experiment 6. (A chaotic saddle in 3d) We finally con-

sider an example in R3 exhibiting a saddle type maximal

invariant set with complicated dynamics and fractal struc-

ture. The map is f ðx; y; zÞ ¼ ðy; z; aþ bxþ cy� z2Þ with

a¼ 2.2, b¼ 0.1, and c¼ 0.3, which is constructed in analogy

to the H�enon map. Figure 9 shows a covering of the maximal

invariant set within the cube [–2, 2]3 computed by GAIO.

We initialize the optimization of Ê with a set ~X of 500 points

which have been chosen randomly from the cube [–2, 2]3

according to a uniform distribution. Figure 10 shows the iter-

ates of ~X after 20 and 200 steps of the optimizer, as well as

after termination. Again, we observe slow convergence in

certain regions like in the 2d H�enon example.

V. ADDITIONAL POTENTIALS

While the points in ~X seem to converge towards the

maximal invariant set Inv(Q) in the experiments above, their

distribution is typically far from uniform on it. Moreover,

one seems to obtain different minimizers depending on the

initialization (and also we do not identify vectors which yield

the same set, i.e., we do not factor by the permutational sym-

metries of the vector). In fact, in many of the experiments,

points tend to cluster quite heavily in certain areas and even

coincide (cf. Fig. 6). In view of our goal to best approximate

the maximal invariant set in terms of the Hausdorff distance

and to ultimately obtain a unique minimizer, it would be

desirable to distribute ~X more uniformly.

As a first step towards this goal, we are going to add a

term to the potential Ê, which strongly penalizes points in ~X
from getting too close and favors them to attain a certain dis-

tance d between each other. This can be accomplished by a

Lennard-Jones potential, cf. Ref. 12,

Vd rð Þ ¼ d
r

� �2p

� 2
d
r

� �p

þ 1;

where the exponent p 2N controls the “rigidity” of the

potential and where r is the distance between two points in
~X. In the following experiments, p¼ 1 seemed to work best

for our purposes. The proper distance d ultimately depends

on the dimension of Inv(Q) and the number n of points in ~X
so that we cannot fix the value of d a priori and we therefore

include d as an optimization variable. One can imagine the

Lennard-Jones potential to be a “soft” version of the hard
sphere potential,12 and correspondingly, we here imagine the

points in ~X to be surrounded by balls of radius d.

For each point in ~X, we are going to restrict the evalua-

tion of V to the m nearest points from ~X. The corresponding

augmented objective function reads

J x1;…; xn; dð Þ ¼ Ê x1;…; xnð Þ

þ l
1

n

Xn

i¼1

1

m

X
j2Nm ið Þ

Vd kxi � xjk2

� �
; (4)

where Nm(i) is the set of m nearest neighbours of xi and l> 0

is a weighting parameter. Larger l will favor the points from
~X to attain a lattice structure, while smaller l favors them to

be close to some invariant set.

A. Computational experiments

Experiment 7. We reconsider experiment 4, choose

l¼ 1, and initialize ~X as a uniform grid of

n¼ 32� 32¼ 1024 points within the square Q¼ [–2, 2]2. We

initialize d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðQÞ=ðnpÞ

p
, i.e., such that the sum of the

FIG. 8. Maximal invariant set in the H�enon map: iterates of an initial set of 1000 randomly chosen points after 20 (left) and 200 (center) steps of the BFGS

scheme, as well as after termination (krÊk1 < 10�6, 928 steps).

FIG. 9. 3d chaotic saddle: box covering of the maximal invariant set.
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volumes of balls centered at the points in ~X with radius d is of

the same order as the volume of Q. Figure 11 shows the iter-

ates of ~X after 500 steps of the BFGS scheme for m¼ 6 (left)

and m¼ 30 (right). The larger number of neighbors yields a

much better approximation.

Figures 12 and 13 show the results of the same experi-

ment, albeit for the H�enon map. While a larger number of

neighbours tends to yield a more uniform covering of the

maximal invariant set here as well, they also tend to hide

finer structures (given a fixed number of balls).

VI. DISCUSSION AND FUTURE DIRECTIONS

In the numerical experiments above, we have used the

GAIO output as a reference for the computations since in prin-

ciple it provides a rigorous covering of the maximal invariant

set, cf. Ref. 6. While the approach proposed in this paper does

not live up to this goal, it (1) potentially might be applicable

to higher dimensional problems more efficiently since we do

not need to map subsets of full state space dimension and (2)

it potentially might be more suitable for a numerical study of

bifurcations of invariant sets since the point cloud can be var-

ied smoothly with a system parameter. A simple example

would be the tracking of an attracting invariant circle through

resonance horns. While the attractor changes from periodic to

quasiperiodic depending on the rationality of the frequency

ratio, the approximating point cloud would change smoothly

since while the attractor changes, the maximal invariant set

persists and varies smoothly.

Clearly, the experiments in this paper can only be seen

as a first step. Of course, it would be desirable to gain insight

into the general convergence behavior of the scheme, in par-

ticular as the number of points goes to infinity, and this is

currently under investigation. Further, it would be desirable

to alleviate the bad convergence behavior in weakly hyper-

bolic regions.

While the inclusion of the Lennard-Jones potential seems

to point in the right direction, it also raises new issues like the

proper number of neighbors and the proper value of the

weighting parameter l. Of course, other potentials might be

conceivable as well. In particular, it might be useful to adapt

the “radius parameter” d locally, i.e., use balls of smaller

radius where appropriate. A multilevel scheme might be use-

ful where one considers balls of several scales at the same

time in the spirit of the famous “cheese theorem” of Lieb.16

As mentioned, in principle any metric on the set of com-

pact subsets of Rd will do. Our choice of a Hausdorff type

distance was motivated by smoothness considerations. A nat-

ural candidate for a different choice would be the

Wasserstein or earth mover’s distance (where ~X is seen as a

sum of atomic measures). We will explore whether this bears

any advantage over the Hausdorff type distance used here (in

FIG. 10. 3d chaotic saddle: iterates of an initial set of 500 randomly chosen points after 20 (left) and 200 (center) steps of the BFGS scheme, as well as after

termination (krÊk1 < 10�6, 727 steps).

FIG. 11. Invariant disk, with Lennard-Jones potential: 500th iterate of the initial point cloud for m¼ 6 (left) and m¼ 30 (right). We show the set ~X (black dots)

together with surrounding balls of radius d (where d results from the optimization).
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particular, since the numerical effort for computing the

Wasserstein distance is presumably larger than that for the

Hausdorff type metric).

With the limited memory BFGS scheme, we used a stan-

dard quasi-Newton method for the minimization of the

objective functional. Depending on the set-metric employed,

other schemes might be more beneficial, both from a theoret-

ical point of view (in order to prove convergence) and also

from a numerical efficiency point of view.

As mentioned, one of the motivations for considering

the approach advocated in this paper was to construct an

approximation of some invariant set which varies smoothly

in the case that the underlying invariant set varies smoothly

with some system parameter. In fact, it is an interesting ques-

tion whether our approach can be embedded into a path fol-

lowing scheme.

Another interesting question is how to modify the func-

tional E such that an invariant set of particular type is com-

puted, e.g., is it possible to directly compute the chain

recurrent set instead of the maximal invariant one.
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