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Chapter 1 General introduction 

Macro- and micro-parasites are ubiquitous and present a constant challenge to 
their hosts. However, host animals actively resist microbes with the immune system 
representing one of the most important defenses. While previous medical 
immunological studies have provided substantial information on how hosts control 
pathogens and parasites, why certain species or individuals are more or less 
susceptible to a given pathogen remains unclear (Sheldon & Verhulst, 1996). With the 
emergence of eco-immunology as a field, it has become clear that the immune defense 
is context dependent and is a result of host’s interaction with a given biotic (e.g., 
host-parasite interaction) and abiotic (e.g., temperature, humidity) factors 
(Schulenburg et al., 2009; Martin et al., 2011; Malagoli & Ottaviani, 2014). 

Although the immune system is very complex, its components can be clustered 
into two categories, innate and adaptive, both branches having cellular and humoral 
effectors (Fig.1.1) (Murphy, 2012). The innate immune system has low specificity and 
reacts quickly to foreign antigens, representing the host’s first line of defense. In 
contrast, adaptive immunity requires an initial contact with an antigen, and it is slow 
but very antigen specific. The two branches of the immune system are connected via 
cytokines, a biologically active protein group which act as intercellular messengers 
(Murphy, 2012). 
 

 
Fig.1.1 The major immune mechanisms in vertebrates (modified from Muehlenbein, 2010) 
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1.1 Introduction to ecological immunology 

Most of the immunological literature describes studies on animals with limited 
genetic diversity and living under highly regulated laboratory conditions where 
variation in biotic (e.g., exposure to pathogens and parasites) and abiotic (e.g., food 
and water resources, temperature) factors is minimized (Lazzaro & Little, 2009; 
Pedersen & Babayan, 2011; Babayan et al., 2011; Maizels & Nussey, 2013). However, 
most organisms, including humans, live in variable natural environments which will 
influence the immune phenotype at the level of individual and species (Sheldon & 
Verhulst, 1996; Schulenburg et al., 2009; Brock et al., 2014). A new field has emerged 
called ecological immunology or eco-immunology, which attempts to address 
variation in immunological function taking into account the variability of natural 
environments (Sheldon & Verhulst, 1996; Demas & Nelson, 2012; Malagoli & 
Ottaviani, 2014). 

Eco-immunology derives primarily from life-history theory, stating that the 
immune response is energetically costly and thus will be traded-off with other 
life-history traits such as reproduction (Sheldon & Velhust, 1996). Several costs have 
been described for the different immune effectors such as developmental, use and 
maintenance costs (Schmid-Hempel & Ebert, 2003; Armitage et al., 2003; Lazzaro & 
Little, 2009). Accordingly the immune phenotype of an individual will be influenced 
by its physiological status, environment and specific pathogen pressure. Moreover, 
immune up- or down-regulation will be affected by the costs and benefits of 
developing a specific immune phenotype (Schmid-Hempel & Ebert, 2003; Gause et 
al., 2003). It is also postulated that the immune system is under sexual selection. 
Accordingly, the immuno-competence handicap hypothesis suggests that only males 
in good health can invest in both immunity and secondary sexual traits, which is 
mediated mainly by testosterone (Roberts et al., 2004). Therefore not only natural 
selection in general but specifically sexual selection shapes the evolution of the 
immune system (McKean & Nenney, 2005). The effects of sex, age or seasonality on 
the within and among species variation of immune responses constitute the main 
research topics in eco-immunology (Hasselquist, 2007; Demas & Nelson, 2012; 
Malagoli & Ottaviani, 2014). Understanding applied aspects of immunological 
variation, incorporating immunological questions in invasion biology, understanding 
the association between immuno- and reservoir-competence, or how we can use 
immunological knowledge in conservation biology are current areas of intensive study 
(Lazzaro & Little, 2009; Pedersen & Babayan, 2011; Babayan et al., 2011). 

Eco-immunology is a relatively new field and therefore many recent studies 
focus on methodological aspects, not only developing or validating new methods or 
assays originating from medical immunology but also reducing sample volumes 
needed, describing new sample storage techniques or the use of non-invasive samples 
(e.g. faeces, saliva) (Schulenburg et al., 2009; Boughton et al., 2011; Demas & Nelson, 
2012; Malagoli & Ottaviani, 2014). These methodological aspects are important in 
remote sites or in small or endangered species. The assessment of protective immune 
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phenotype is feasible in commonly studied species, such as humans, domestic species 
and model laboratory animals. For these species a myriad of measurements are 
available, both commercial and/or laboratory-developed tools. However, this is not 
the case for free-living wildlife (Lotze & Thomson, 2005; Viney & Riley, 2014). 
Moreover, in many cases researchers have to rely on a single or low volume samples. 
Despite these obstacles, several assays are available for assessing both the structure 
and the function of the immune system. Some of these parameters are influenced by 
several factors (e.g., circadian rhythm, stress) and change quickly which make 
interpretations difficult (Boughton et al., 2011; Pedersen & Babayan, 2011). Some 
measurements are suitable for characterizing within species immunological variation, 
while others are more suitable for between species comparisons (Matson et al., 2006). 
Initial studies focused on measuring one or limited number of immune parameters and 
extrapolating the obtain results to the immuno-competence of the individual or 
species (Sheldon & Verhulst, 1996). Recent studies on the other hand have been able 
to include more variables which is important since the variation in immune effectors 
depends on the context and trade-off that exist also among different parts of the 
immune response (for example T helper cell 1 versus T helper cell 2 responses) 
(Boughton et al., 2011; Pedersen & Babayan, 2011). The commonly measured 
immune parameters for wild species include the size of lymphoid organs (e.g., spleen, 
thymus, and bursa of Fabricuis for birds), total and differential leukocyte counts (e.g., 
lymphocyte, neutrophil, monocyte, eosinophil, and basophil), total immunoglobulin 
concentrations (e.g., IgA, IgD, IgE, IgG, and IgM), and complement levels. 
Functional tests, such as bacterial killing assays, lymphocyte proliferation assays or 
challenges with different non-pathogenic antigens (e.g., KLH, SRBC), with generic 
stimulants (e.g., phytohaemagglutinin) or vaccines (e.g., NDV, diphtheria-tetanus) are 
also frequently applied (Sheldon & Verhulst, 1996; Norris & Evans, 2000; Boughton 
et al., 2011; Demas et al., 2011; Viney & Riley, 2014). In addition to these organismal 
approaches, several studies apply genetics, mainly major histocompatibility complex 
(MHC) variation, as a potential reflection of immuno-competence. This has recently 
been complemented with Toll like receptor (TLR) diversity analysis 
(Acevedo-Whitehouse & Cunningham, 2006; Takeda et al., 2003; Tschirren et al., 
2013). The application of proteomics and transcriptomics in eco-immunology is also a 
recent promising development (Calis & Rosenberg, 2014). For instance, the 
transcriptome of the wild white-footed mouse (Peromyscus leucopus) revealed that 
there significantly differentially expressed genes involved in immune responses 
between urban and rural populations (Harris et al., 2015). 

Avian species have been the main eco-immunological models since the 
publication of key articles in the field (Sheldon & Verhulst, 1996; Salvante, 2006). 
Recently, however, the number and diversity of taxa has been extended to include 
molluscs (Chen & Yang, 2007), insects (Tripet et al., 2008), amphibians (Brown et al., 
2015), reptiles (French et al., 2007), and mammals (Demas & Nelson, 2012; Malagoli 
& Ottaviani, 2014). These studies integrate a diverse array of measurements (e.g., life 
history traits, parasite infections, environmental variation, and immune phenotypes) 
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from both observational and, in some cases, experimental approaches in order to 
understand what factors drive immune phenotypes and parasite burdens in natural 
populations (Babayan et al., 2011; Boughton et al., 2011). 

Many ecosystems experience significant human-driven alterations (e.g., pollution, 
habitat changes, urbanization) especially since the beginning of the last century, 
which has already demonstrated significant consequences (e.g., climate change, 
emergence of infectious diseases) (Jones et al., 2008; Martin et al., 2010; Gortazar et 
al., 2014; Becker et al., 2015). However, limited knowledge exists about the effects of 
these anthropogenic changes on the immune responses of wildlife, especially in 
mammals, on how the individuals, populations, or species respond to these new 
environments; how it affects their health status, and ultimately what the consequences 
are for example on their reservoir competence or their conservation status (Martin et 
al., 2010; Gottdenker et al., 2014; Jolles et al., 2015). 
 

1.2 The effect of captivity on immunity 

Life history theory suggests that trade-offs exist between energetically costly 
traits, such as immune response and reproduction, which is dependent on the 
abundance and availability of resources (Lochmiller & Deerenberg, 2000; 
Schmid-Hempel & Ebert, 2003). Therefore, identifying relationships between 
immune function and other traits could provide and/or extend the knowledge of how 
the evolutionary process likely has shaped the evolution of immunity (Sheldon & 
Verhulst, 1996). Comparative immunological studies have suggested that basal 
immune investment significantly increases with levels of mating promiscuity in 
primates and carnivores (Nunn, 2002; Nunn et al., 2003). This is referred to as the 
‘Sexually transmitted diseases (STDs)’ hypothesis (Nunn, 2002; Nunn et al., 2003). 
No such association has been detected between immunity and other investigated 
social (e.g., group size and population density), ecological (e.g., risk of soil-borne 
pathogens, diet) and life-history factors (e.g., pace of life, longevity) (Nunn, 2002; 
Nunn et al., 2003; Cooper et al., 2012). However, all of these studies were performed 
on captive animal populations. 

Whether these conclusions derived from captive animals can be generalized to 
free-ranging populations is unclear. Differences between captive and wild populations 
in terms of behavior and physiology have been described (Calisi & Bentley, 2009; 
Mason, 2010; Maizels & Nussey, 2013), which occurs mainly due to the differences 
in biotic (e.g. host-parasite interaction) and abiotic (e.g., resources, hygiene) factors. 
In accordance, differences in immune functions (e.g., levels of IgE, IgG, and 
activation of splenic leukocytes) have been observed between wild and captive house 
mouse and brown rat populations (Devalapalli et al., 2006; Abolins et al., 2011). 

Comparative studies of immune function in wild animals have been mainly 
conducted in avian species. In birds, comparative analyses have revealed that immune 
defense correlates positively with sociality (Møller et al., 2001), specialization by 
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avian fleas (Møller et al., 2005) and developmental period (Pap et al., 2015), but 
negatively with eggshell bacterial load (Soler et al., 2011) and basal metabolic rate 
(Pap et al., 2015) for example. The only comparative eco-immunological study of 
wild mammals was conducted on bats, showing that ecological factors such as diet, 
roosting habits indeed can relate to the species specific immune responses 
(Schneeberger et al., 2013). However, there is lack of such comparative study on other 
wild mammals, especially the most diverse group, the rodents. 

Obtaining immunological data from several free-living species in a standardized 
manner is time and resource consuming. However, previous published data can be 
used for such purposes. In eco-immunology, most of the methods (e.g., 
immunoglobulin levels, bacterial killing assay) are validated to the species-specific 
requirements of the assay (Boughton et al., 2011, Demas et al., 2011) or to the volume 
of the collected materials. One immunological variable which was systematically 
collected and reported is the total and differential WBC counts, which is used for both 
research and veterinary purposes (Weiss & Wardrop, 2010). These parameters can be 
measured under standard conditions and thus are ideal for comparative 
eco-immunological studies. 

Another methodological issue is controlling for the non-independence of traits 
resulting from shared ancestry among species using phylogenetic comparative 
methods (Felsenstein, 1985; Grafen, 1989; Pagel, 1999; Freckleton et al., 2002). The 
most common phylogenetic comparative methods to investigate the correlations 
among various traits include phylogenetically independent contrasts, phylogenetic 
generalized least squares (PGLS), and phylogenetic eigenvector regression (Paradis, 
2012; Swenson, 2014). Among these methods, the PGLS method considers the 
variation within a data set by weighing the measurement error (e.g., standard error of 
the mean) which makes the statistics more robust (Paradis, 2012; Swenson, 2014). 
The uncertainty of within-species and/or within-population data sets may derive from 
experimental procedures and/or the nature of the characteristics of the 
species/population and therefore often needs to be corrected for e.g. PGLS (Ives et al., 
2007; Silvestro et al., 2015). 
 

1.3 Colonization history and immunity 

Since the late 15th century, biological invasions have become a pervasive 
component of global change due to the accelerated globalization of trade and travel 
which has resulted in a drastic breaching of biogeographic barriers that previously had 
isolated continental and islandic biotas for millions of years (Mooney & Cleland, 
2001; Arim et al., 2006). Numerous studies have investigated the effects of biological 
invasions from various perspectives (e.g., economical, ecological, and public health), 
and demonstrate negative consequences such as decrease in biodiversity, negative 
changes of ecosystem functions and services, economic damage, and impacts on 
wildlife and public health (Nentwig, 2008; Keller et al., 2011; Morand et al., 2015). In 
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order to develop proper mitigation strategies for the effects of invasive species and 
predict the novel invasion patterns, there is a need to understand which traits are 
crucial to becoming a successful invader (Arim et al., 2006; Nentwig, 2008; Keller et 
al., 2011). 

During invasions, species are exposed to different environmental and biological 
challenges compared to their native habitats, thus facing novel selection pressures 
from both biotic (e.g., lack of predator and native parasites, encounter novel parasites 
and pathogens) and abiotic (e.g., temperature, humidity, food resources) sources 
(Phillips et al., 2010; White & Perkins, 2012). The process of becoming a successful 
invader is a result of strong selection, specific ‘founder events’ from various source 
populations and/or invasion-enhancing phenotypes (e.g., specific morphological, 
physiological, behavioral traits) (Arim et al., 2006; Travis & Dytham 2002; Shine et 
al., 2011). Therefore, studies of invasive species not only have importance for 
conservation biology, but can contribute to understanding rapid evolutionary change 
in invading species (Carroll, 2008; Brown et al., 2015). 

In invasion biology, several hypotheses have been formulated to characterize the 
success and failure of some species, many of them being associated with parasites 
(e.g., enemy release, immuno-competence advantage or novel weapons hypothesis) 
(Prenter et al., 2004; Jeschke et al., 2012a; Prins & Gordon, 2014; Morand et al., 
2015). The enemy release hypothesis suggests that the abundance or impact of some 
alien species is related to the scarcity of natural enemies in the introduced range 
compared with their native range (Colautti et al., 2004; Liu & Stiling, 2006; Jeschke 
et al., 2012a; Heger & Jeschke, 2014). The novel weapons hypothesis on the other 
hand assumes that invasive species carry pathogens which are harmless for them but 
are highly pathogenic for the native species (Jeschke et al., 2012a; Callaway & 
Aschehoug, 2000). Several of these hypotheses have been tested in plants (Jeschke et 
al., 2012a), avian (Lee et al., 2005) and amphibian species (Llewellyn et al., 2012); 
however, there is lack of studies on mammalian species, despite mammals playing a 
crucial role in the biological invasions, for instance the globally spread house mice 
(Mus musculus) or Rattus species (Berry, 1970; Jeschke et al., 2012b; Gray et al., 
2014; Morand et al., 2015). 

Due to the primary role of the immune system in defending the host against 
parasites and other pathogens, immunity is likely to play a key role in determining the 
success of an invading species (Lee & Klasing, 2004; White & Perkins, 2012). 
Life-history theory suggests that trade-offs shall favor invader’s trait(s) with low 
energy costs but providing resistance, because the abundance and availability of 
resources for survival and reproduction are not infinite in a natural environment 
(Lochmiller & Deerenberg, 2000). Accordingly, successful invaders would rely on 
energy cheap immune effectors, such as antibody mediated or constitutive innate 
immunity (Lee & Klasing, 2004; White & Perkins, 2012). In term of developmental 
and use costs, systemic inflammation and T-cell mediated immunity are the most 
costly (Lee, 2006). Therefore, one would expect them to play a lesser role in invasive 
individuals/species compared to their conspecifics from their native habitats or closely 
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related species from the novel environment. In line with these predictions, by 
comparing different sparrow (Passer sp.) species, it has been shown that dampened 
inflammatory response have been involved in the range expansion of the house 
sparrow P. domesticus (Lee et al., 2005). Similar decreases in inflammatory response 
were described in invading cane toads (Rhinella marina) from Australia (Llewellyn et 
al., 2012), with invaders relying mainly on constitutive innate, immune effectors (e.g., 
neutrophils, phagocytic cells) that are not energetically costly (Brown et al., 2015). 
However, information about the shift towards antibody-mediated immunity, especially 
in mammals, is still lacking. 
 

1.4 Urbanization and immunity 

Human activities such as agricultural development, deforestation, and 
urbanization are associated with landscape changes with consequences for 
biodiversity, ecosystem functions and services and both animal and public health. 
Some of these effects are local or regional, but over the last century have become 
global due to rapid technical developments and globalization. Among human 
activities, urbanization is the major change affecting and transforming native 
environments, urban areas becoming the dominant environment in both developed 
and developing countries (McKinney, 2002; Elmqvist et al., 2013; Seto et al., 2013). 
Several effects, both positive and negative, of urbanization have been described (e.g., 
pollution, local climate change, increased food resources, decreased predation), and 
urbanization has been recognized as a major cause of regional biodiversity loss 
(Grimm et al., 2008; Elmqvist et al., 2013; Seto et al., 2013; Forman, 2014). While 
many of wildlife species are negatively impacted by the direct and indirect effects of 
urbanization, the so-called urban exploiters such as some rat (Rattus sp.) and mouse 
(Mus sp.) species or red fox (Vulpes vulpes) can thrive in these new, 
human-dominated ecosystems (McKinney, 2002; Kark et al., 2007; Becker et al., 
2015). 

Urban wildlife can serve as reservoirs/vectors for numerous pathogens 
(Himsworth et al., 2013; Reyes et al., 2013; Hegglin et al., 2015). High 
seroprevalence (over 50%, in total 6059 birds) of avian influenza virus in urban birds 
suggest that they play an important role in disease transmission at the human-wildlife 
interface (Verhagen et al., 2012). The prevalence of Bartonella sp. in urban black rats 
Rattus rattus (60%, 19/32) is more than four times higher compared to the rural 
individuals (13%, 2/16) (Halliday et al., 2015). Differences in terms of the distribution 
and intensity of anthropogenic disturbance, urban–rural environmental gradient could 
modify host–parasite/pathogen interactions and thus lead to emergence of infectious 
diseases threatening both animal and public health in the context of ‘One Health’, 
concept which recognizes the link between environmental, animal and human health 
(Shochat et al., 2006; Weaver, 2013; Reyes et al., 2013; Gottdenker et al., 2014; 
Mackenzie et al., 2014). Despite an observed increased incidence of pathogens and 
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parasites in urban wildlife populations, there is virtually no information on which 
mechanisms lead to the increases. Though not thoroughly investigated, chronic stress 
and modified immunity have been suggested to play an important role. The effect of 
urbanization on animal physiology has been studied mainly in reptiles and birds 
(Forman, 2014). Tree lizards (Urosaurus ornatus) showed that urban individuals may 
suppress their overall corticosterone concentrations but in parallel increase their 
immuno-competence compared with their rural counterparts, which might be the 
outcome of repeated immune challenges, such as wounding or the benefits of 
increased food resources in cities (French et al., 2008). Comparative study of 
passerine birds showed urban exploiters generally exhibit less blood parasite infection 
than rural individuals and this correlates with changes in leukocyte numbers (Fokidis 
et al., 2008). However, conflicting data has also been obtained for house sparrows 
(Passer domesticus) (Bókony et al., 2012). Another proposed scenario is that the 
increased level of some chemical pollutants or physical stressors (e.g., light or noise) 
could suppress the immunity of urban wildlife, which ultimately will shed more 
parasites and pathogens and will thus suffer higher mortality rates (Bradley & Altizer, 
2007). However, apart from limited studies in humans (Amoah et al., 2014; Mbow et 
al., 2015), similar investigations in urban mammalian species have not yet been 
conducted. 

Resulting shifts in wildlife ecology due to anthropogenic disturbance (e.g., 
urbanization) can alter the dynamics of infectious disease, and potentially enhance the 
risk of cross-species transmissions (Martin et al., 2010; Becker et al., 2015). This may 
be due to biodiversity loss and dilution effects, increasing the contact rates or via 
pollutants and stress (Bradley & Altizer, 2007; Civitello et al., 2015). Each of these 
factors is associated with the immune system. Urbanization both benefits (e.g., 
increased food resources) and hinders (e.g., increased exposure to physical and 
chemical stressors) animal condition in urban/suburban areas compared with 
rural/natural environments (McKinney, 2002). Investigating the immunity, parasite 
load, and allostatic load of urban and rural rodents could address whether urbanization 
influences their epidemiological role, or alternatively decreases body condition and 
depresses the immune responses of urban mammals. 
 

1.5 Study aims 

The aims of this study were to describe how wildlife adapts immunologically to 
human-dominated environments, which has relevance not only for evolutionary 
ecology but both for conservation biology and public health. I used rodents as a model, 
as they constitute the most diverse group of mammals, accounting for over 40% of all 
the extant mammalian species (Wolff & Sherman, 2007). They are one of the most 
important reservoir groups for zoonotic emerging pathogens due to their life-history 
traits (e.g., short lifespan with multiple litters) and close proximity to human 
populations (Avenant, 2011; Honeycutt et al., 2007). The vast majority of 
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immunological knowledge has been generated from studies of laboratory rodent 
models, mainly house mouse Mus musculus and rats Rattus rattus and R. norvegicus. 
In general, for these studies, animals have been selectively bred (e.g., genetically 
homogeneous) and maintained under specific and controlled environments (e.g., 
common hygiene, specific-pathogen free condition). However, most organisms, 
including humans, experience more dynamic, uncontrolled conditions in nature. In the 
first part of my dissertation, I examined whether the ‘Sexually-transmitted diseases’ 
hypothesis (Nunn et al., 2000; Nunn et al., 2003) can be generalized to the most 
diverse mammalian group, the rodents. The hypothesis suggests that differential 
spread of sexually transmitted diseases will be associated with variation in mating 
behavior and will drive the baseline structure of the mammalian immune system. 
Since support for this hypothesis was obtained from captive animals, I examined 
whether environment (captive versus free-living) influences the results. To do so, I 
performed a phylogenetic comparative analysis on the relationships between 
immunological data of both captive and free-living rodents and their relative testes 
mass―a proxy for mating promiscuity (Chapter 2). 

Since invading species have to adapt to the newly colonized habitat, in the 
following chapter (Chapter 3) I investigated the effect of colonization history on the 
immunity of the western house mouse (M. m. domesticus) using wild-derived outbred 
laboratory individuals from their original range (Iran) and historically recently 
colonized European populations (from France and Germany). By comparing the 
immune phenotype of the source and invader populations, I investigated whether 
immunological differences occur among populations and what mechanism can 
explain the differences with respect to colonization success. 

As urbanization is a both locally and globally influential human-driven process 
and develops rapidly in developing areas (Yang, 2013), in Chapter 4 I describe how 
this process impacts the condition and health of urban wildlife using brown rats (R. 
norvegicus) as a model species in Henan Province, China. 
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Abstract 

Urbanization has considerable side effects such as overpopulation and 
environmental pollution, favoring the emergence and re-emergence of various 
infectious agents, including those originating from wildlife species. Commensal 
brown rats (Rattus norvegicus) represent a reservoir for numerous pathogens of major 
public health concern. It is currently unclear whether urbanization amplifies their 
epidemiological role, or alternatively decreases body condition and depresses their 
immune status. We addressed these questions by measuring morphological, 
physiological and pathophysiological traits (morphometric, allostatic load, immunity, 
parasite load) in free-living brown rats sampled from forest-rural, agro-rural and 
urban areas along a gradient of increasing urbanization and human population density 
in Henan Province, China. Urban rats (1) were bigger in body length, shorter in tail 
length, heavier in body mass and had a higher body mass index than rural rodents; (2) 
had larger spleens and higher leukocyte counts than rural counterparts; (3) tended to 
have a higher allostatic load as they showed enlarged adrenal glands and a higher 
neutrophil/lymphocyte ratio; and (4) had a relatively higher parasite prevalence. We 
conclude that urban brown rats are larger and enjoy a superior nutritional status but 
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also face more challenges (allostatic load, stress) and a higher parasite load than rural 
counterparts. 
 
Keywords urbanization; immunity; white blood cell; stress; parasite; brown rat 
 
 
Introduction 

Over the last one hundred years, urbanization has dramatically altered natural 
landscapes [1]. Numerous studies have focused on wildlife populations and their 
community ecology in order to understand how urbanization influences biodiversity 
and ecosystem functioning and services [2–4]. Such investigations underline the 
massive negative consequences of ecological changes, including the emergence and 
re-emergence of infectious diseases originating from wildlife [5–6]. Currently it is 
largely accepted that anthropogenically altered land changes increase species to 
species transmission of pathogens [7]. Yet, there is scant knowledge regarding the 
underlying physiological condition in reservoir species. Whether and how 
urbanization affects host–pathogen interactions and the immune competence in 
free-living species inhabiting altered environments [5,8] remains to be elucidated. 

Recent investigations attempted to establish the impact of environmental 
differences (e.g., rural versus urban) on the health of wildlife species which serve as 
pathogen reservoirs [9–10]. Studies in free-living tree lizards (Urosaurus ornatus) and 
passerine species (Pipilio aberti, P. fuscus, Mimus polyglottos, Toxostoma curvirostre, 
and Passer domesticus) revealed differences in morphometric, immunological and 
parameters indicative of differences in challenges and allostatic load [11–12] along 
with divergent blood parasite abundance between rural and urban populations [9,13–
14]. Apart from studies in humans [15–16], to the author’s knowledge, similar 
investigations in mammalian species have not yet been conducted so far. 

Rodents represent the most diverse mammalian group and account for over 40% 
of extant mammalian species. They are distributed across a wide variety of habitats, 
from tropical to sub-arctic zones, and populate both urban and rural areas [17]. As 
rodents (especially rats, genus Rattus) harbor numerous zoonotic agents and have a 
close commensal relationship with humans [18–22], within the context of the ‘One 
Health’ approach understanding the factors that influence their health status and 
immune response is essential. 

In this study, we examined how the rural–urban gradient in terms of urbanization 
and increasing human population density changes the condition and health in wild 
brown rats (R. norvegicus), which have been described as urban ‘exploiter’ [2]. 
Morphometric, hematological, immunological parameters and variables relevant to 
the allostatic load of individuals [11–12] were monitored. Animals inhabiting forest 
landscape (forest-rural), agricultural landscape (agro-rural), and urban areas were 
included in the analysis. We predicted that the condition and health of brown rats 
should improve with increasing levels of urbanization because they would benefit 
from the additional food and water resources and the decrease in predator presence 
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associated with urban environments [2]. Here we extend these investigations to a 
widely distributed mammal, the brown rats. 
 
Materials and methods 
Ethics statement 

Brown rats, a major pest, can be caught without a specific license in China. 
Trapping was performed with informed consent of settlement owners from the rural 
areas (Jiyuan and Luoyang) and staff of the zoological garden in Zhengzhou Zoo, 
Zhengzhou, China. This study was approved by The School of Life Sciences of 
Zhengzhou University’s Institutional Animal Care and Use Committee. Additionally, 
all the experimental procedures were approved by the Animal Welfare and Ethic 
Committee of the Leibniz Institute for Zoo and Wildlife Research (Permit Number: 
2013-05-02). All the procedures were carried out in a tranquil environment, and 
animals were euthanized individually using diethyl-ether anesthesia and 
exsanguination with all efforts to minimize discomfort. 
 
Sampling sites and rat trapping 

During August and September 2013 and 2014 we captured brown rats with 
steel-wire live traps (30 cm × 13 cm × 12 cm) baited with peanuts and apple pieces in 
three sampling sites in Henan Province (E 110°21′ – 116°39′, N 31°23′ – 36°22′), 
China: in Jiyuan, a forest rural landscape (hereafter forest-rural), in Luoyang, an 
agricultural rural landscape (hereafter agro-rural) and in Zhengzhou, a urban area 
(hereafter urban). We selected the sampling sites according to their developing 
process of urbanization, especially the resident human population density: Jiyuan (E 
112°16'40.95", N 35°08'10.31") 370 people/km2, Luoyang (E 112°24'55.72", N 
34°31'52.82") 614 people/km2 and Zhengzhou city center (E 113°40'56.00", N 
34°47'21.61") 13,347 people/km2. The density of the cantonal population of 
Zhengzhou was collated from the Henan Statistical Yearbook 2014 [23], and the 
resident human population densities of Jiyuan and Luoyang were calculated on the 
basis of data of population and area compiled from Henan Statistical Yearbook 2014 
[23] and the website of the Ministry of Civil Affairs of the People’s Republic of China 
(http://qhs.mca.gov.cn). 

Traps were set before sundown and checked at sunrise the following morning. 
Live-trapped brown rats were individually housed with standard plastic cages (37 cm 
× 26 cm × 17 cm) and carefully transported to the animal house of the Institute of 
Biodiversity and Ecology, Zhengzhou University. The cages were systematically 
coded in the animal house, and rats were allowed to get accustomed to the captive 
environment before the start of experiments. They were kept under conditions of 
ambient temperature and natural light, and given ad libitum access to water and 
standard laboratory rat diet (Henan Laboratory Animal Center, Zhengzhou, China). 
We excluded several individuals from the study as they either gave birth or turned out 
to be juveniles, and finally obtained 10 (2013: 3 F + 3 M; 2014: 3 F + 1 M), 12 (2013: 
2 F + 4 M; 2014: 2 F + 4 M) and 24 (2013: 1 F + 6 M; 2014: 8 F + 9 M) adult rats for 
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Jiyuan, Luoyang, and Zhengzhou, respectively. 
 
Sample collection and analytical procedures 

Rats were euthanized individually using diethyl-ether anesthesia and 
exsanguination. Blood samples were collected from the heart with a 21G vacutainer 
blood collection set (Becton Dickinson Medical Devices Co., Ltd., Shanghai, China) 
and pumped to a 2-mL EDTA-K2 vacuum blood collection tube (Shandong Aosaite 
Medical Devices Co., Ltd., Heze, China). The collected blood (approximate 2 ml 
blood per individual) was stored on ice until transported to the Drug Safety 
Evaluation and Research Center of Zhengzhou University, where hematological 
parameters such as total and differential white blood cell (WBC) counts were 
measured using an ABX Pentra 80 Hematology Analyser (HORIBA ABX, Ltd., 
Montpellier, France). After euthanasia, standard biometrical parameters were 
measured including body mass, body length and tail length using an SD-168 
electronic balance (0.1 g accuracy), ruler (0.1 cm accuracy) and micrometer (0.02 mm 
accuracy), respectively. Body mass index was calculated by dividing body mass 
(grams) by body length (centimeters) squared, which was adopted to assess body fat 
mass [24]. 

Following blood collection and morphological measurements, the rats were 
dissected, the spleen and the right adrenal gland of each rat were individually 
removed and weighed with a milligram balance (0.001 g accuracy) (Sartorius AG, 
Göttingen, Germany). The presence of the larva stage of the cestode Taenia 
taeniaeformis (Cestoda: Taeniidae) was identified as pea-sized whitish cysts (i.e. 
breaking the cyst and exposing the larva) on the surface of the liver. 
 
Statistical analyses 

Non-parametric analyses were employed because of the relatively small sample 
size for each group (S1 Table). Specifically, the permutation one-way analysis of 
variance test with general scores (permutation test) [25] was applied to compare 
differences between the three groups. The number of Monte Carlo simulations to 
establish the P value was set to 104. If the difference was significant, then the 
permutation test with general scores, known as Pitman’s test, was used as a post hoc 
test for multiple comparisons [25] for which we obtained exact P values. To control 
the type I error originating from post hoc multiple testing, we adjusted the 
significance threshold α by controlling the false discovery rate as suggested by 
Benjamini and Hochberg [26]. All these analyses were performed with StatXact 10 
(Cytel, Cambridge, MA, USA), with the tests conducted as two-sided tests and a 
significance level of α at 0.05. Figures were plotted with R version 3.1.2 for Windows 
[27]. Given the potential effect of allometry, we checked for possible effects of body 
mass and populations on rat immunological variables and found no obvious 
interaction of any immunological parameters with body mass (S1 Fig). 
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Results 
Morphometric measurements 

Significant differences in body length, tail length, body mass and body mass 
index were observed among the three sampling sites (permutation test: body length, 
statistic = 17.20, df = 2, P < 0.0001; tail length, statistic = 10.54, df = 2, P = 0.0024; 
body mass, statistic = 14.96, df = 2, P = 0.0001; body mass index, statistic = 8.83, df 
= 2, P = 0.01; Fig 1). 
 

 
Fig 1. Morphological variables of brown rats sampled from forest-rural, 
agro-rural and urban areas. 
(A) Body length (cm). (B) Tail length (cm). (C) Body mass (g). (D) Body mass index 
(g/cm2). Measurements are shown as boxplots with median (bold solid lines), first and 
third quartiles (top and bottom of the box), ± 1.5 × interquartile range between the 
upper and lower quartiles (upper and lower whiskers), and values of more than 1.5 × 
upper quartile (unfilled cycles). *, 0.01 < P ≤ 0.05; **, 0.001 < P ≤ 0.01; ***, P ≤ 
0.001. 
 

Urban rats were bigger in body length than forest-rural (Pitman’s test: statistic = 
171.2, P < 0.0001, adjusted α = 0.0167) and agro-rural individuals (Pitman’s test: 
statistic = 464.7, P = 0.00052, adjusted α = 0.033), but no significant difference 
between forest-rural and agro-rural individuals was detected (Pitman’s test: statistic = 
171.3, P = 0.60, adjusted α = 0.05) (Fig 1A). The urban rats had a shorter tail than the 
forest-rural individuals (Pitman’s test: statistic = 167.4, P = 0.00069, adjusted α = 
0.0167). Tail length was similar between urban and agro-rural individuals (Pitman’s 
test: statistic = 352.4, P = 0.067, adjusted α = 0.033), and between forest-rural and 
agro-rural groups (Pitman’s test: statistic = 167.4, P = 0.19, adjusted α = 0.05) (Fig 
1B). The urban rats had a heavier body mass than the forest-rural counterparts 
(Pitman’s test: statistic = 1024, P = 0.0033, adjusted α = 0.033) and agro-rural 
individuals (Pitman’s test: statistic = 3.782, P = 0.00072, adjusted α = 0.0167). There 
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were no differences between forest-rural and agro-rural rats (Pitman’s test: statistic = 
1105, P = 0.85, adjusted α = 0.05) (Fig 1C). The urban rats (mean = 0.41 g/cm2; 95% 
CI [0.395, 0.429]) showed a higher body mass index than the agro-rural individuals 
(mean = 0.36 g/cm2; 95% CI [0.331, 0.381]) (Pitman’s test: statistic = 9.886, P = 
0.0052, adjusted α = 0.0167). No distinct differences between urban and forest-rural 
rats (mean = 0.37 g/cm2; 95% CI [0.343, 0.399]) (Pitman’s test: statistic = 3.71, P = 
0.063, adjusted α = 0.033), or between forest-rural and agro-rural individuals were 
revealed (Pitman’s test: statistic = 3.71, P = 0.46, adjusted α = 0.05) (Fig 1D). 
 
Immunological measurements 

Absolute and relative spleen mass are commonly used to assess the immunity of 
animals (e.g., avian [28]; mammals [29]) as they can reflect their immune-competence 
and/or acute pathogen and parasite exposure and current infections [30]. Significant 
differences in spleen mass, both absolute (permutation test: statistic = 16.45, df = 2, P 
= 0.0002) and relative (permutation test: statistic = 10.49, df = 2, P = 0.0028) from 
the three sites were detected (Fig 2). The urban rats displayed a heavier spleen than 
the forest-rural (Pitman’s test: spleen mass, statistic = 2.043, P = 0.0011, adjusted α = 
0.033; relative spleen mass, statistic = 1.773, P = 0.0055, adjusted α = 0.0167) and 
agro-rural rats (Pitman’s test: spleen mass, statistic = 14.65, P = 0.00093, adjusted α = 
0.0167; relative spleen mass, statistic = 2.659, P = 0.017, adjusted α = 0.033). No 
significant differences between forest-rural and agro-rural rats were observed 
(Pitman’s test: spleen mass, statistic = 2.043, P = 0.65, adjusted α = 0.05; relative 
spleen mass, statistic = 2.659, P = 0.54, adjusted α = 0.05) (Fig 2A, 2B). 
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Fig 2. Immunological variables of brown rats sampled from forest-rural, 
agro-rural, and urban areas. 
(A) Absolute spleen mass (g). (B) Relative spleen mass (%). (C) Total white blood 
cell (WBC) counts ( 109 cells/L). Measurements are shown as boxplots with median 
(bold solid lines), first and third quartiles (top and bottom of the box), ± 1.5 × 
interquartile range between the upper and lower quartiles (upper and lower whiskers), 
and values of more than 1.5 × upper quartile (unfilled cycles). *, 0.01 < P ≤ 0.05; **, 
0.001 < P ≤ 0.01; ***, P ≤ 0.001. 
 

Total white blood cell counts (WBC) are indicative of pathogen exposure levels 
with different classes of WBC diagnostic for exposure to specific pathogen classes 
[31]. Brown rats from all three sites displayed significant differences in total WBC 
counts (permutation test: statistic = 11.14, df = 2, P = 0.0012), neutrophils 
(permutation test: statistic = 7.687, df = 2, P = 0.015), monocytes (permutation test: 
statistic = 7.784, df = 2, P = 0.0121), and eosinophils (permutation test: statistic = 
8.198, df = 2, P = 0.009), but not lymphocytes (permutation test: statistic = 4.84, df = 
2, P = 0.0785) or basophils (permutation test: statistic = 3.902, df = 2, P = 0.11) (Fig 
2C, Table 1). The urban rats presented significantly higher numbers of circulating 
WBC counts than the rats inhabiting forest-rural (Pitman’s test: statistic = 27.5, P = 
0.0013, adjusted α = 0.0167) and agro-rural (Pitman’s test: statistic = 114.4, P = 0.039, 
adjusted α = 0.033) areas. In contrast, no significant difference in total WBC between 
forest-rural and agro-rural individuals (Pitman’s test: statistic = 27.5, P = 0.085, 
adjusted α = 0.05) was observed (Fig 2C). The differential WBC counts displayed 
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complex patterns of differences or the lack of them between the three groups (Table 
1). 
 
Table 1. Numbers of immune cells (× 109 cells/L) of brown rats sampled from 
forest-rural, agro-rural and urban areas. 

Total WBC 
Forest-rural (n=10) Agro-rural (n=10) Urban (n=20) 

2.750±0.373a 3.840±0.459a,b 5.720±0.586b 
Neutrophil 0.380±0.099a 0.936±0.181b 1.107±0.175 (18)b 
Lymphocyte 2.015±0.315a 2.186±0.303a

 2.979±0.318a 
Monocyte 0.326±0.088a 0.645±0.188a,b 1.376±0.287 (19)b 
Eosinophil 0.008±0.003a 0.029±0.009a,b 0.051±0.010 (19)b 
Basophil 0.034±0.007 a 0.036±0.008 a 0.084±0.023a 

Number in brackets indicates the sample size. WBC, white blood cells. Values in cells 
are presented as mean ± standard error. Superscripts (a, b) indicate the statistical 
analyses (see main text for statistical analyses for details): same letter means no 
significant difference, otherwise significant difference occurs between groups. 
 
Allostatic load and Taenia sp. larvae prevalence 

The size of right adrenal gland was used to assess the level of allostatic load, 
possibly caused by ‘social stress’ generated by potentially increasing population 
density and sociality with increasing urbanization [32–33]. The 
neutrophil/lymphocyte ratio in rats, which could reflect the impact of aggressive or 
agonistic interactions [34], was adopted as an indicator to estimate chronic stress. 
Absolute adrenal gland mass differed among groups (permutation test: statistic = 
10.68, df = 2, P = 0.0028) whereas relative adrenal gland mass (permutation test: 
statistic = 0.007, df = 2, P = 1.0) and neutrophil/lymphocyte ratio (permutation test: 
statistic = 3.475, df = 2, P = 0.17) did not differ between the three groups (Fig 3). 
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Fig 3. Variables of allostatic loads of brown rats sampled from forest-rural, 
agro-rural, and urban areas. 
(A) Absolute adrenal gland mass (g). (B) Relative adrenal gland mass (%). (C) 
Neutrophil/lymphocyte ratio. Measurements are shown as boxplots with median (bold 
solid lines), first and third quartiles (top and bottom of the box), ± 1.5 × interquartile 
range between the upper and lower quartiles (upper and lower whiskers), and values 
of more than 1.5 × upper quartile (unfilled cycles). *, 0.01 < P ≤ 0.05. 
 

The absolute adrenal gland mass of urban rats was higher than those of the 
forest-rural (Pitman’s test: statistic = 0.243, P = 0.0097, adjusted α = 0.033) and 
agro-rural rats (Pitman’s test: statistic = 0.759, P = 0.0067, adjusted α = 0.0167). This 
parameter did not differ between forest-rural and agro-rural rats (Pitman’s test: 
statistic = 0.243, P = 1.0, adjusted α = 0.05) (Fig 3A). 

Rats are common intermediate host for the cestode Taenia taeniaeformis of 
whom the larval stage is described as Cysticercus fasciolaris [35–36]. The prevalence 
of Taenia sp. larvae in urban rats (21.7 %, 5/23) was twice the value recorded for rural 
rats (forest-rural 10.0 %, 1/10; agro-rural 8.3 %, 1/12), although this was statistically 
not significant (Chi-Square test, Pearson χ2 = 1.38, df = 2, P = 0.50). 
 
Discussion 

Studies of free-ranging urban wildlife suggest that increased food availability and 
lower predator pressure contribute to better body condition (e.g., bigger size and 
higher weight) than in rural wildlife [37–39]. Brown rats living in urban areas were 
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bigger in body size, heavier in body mass and had a higher body mass index than 
forest-rural and agro-rural rats. This is consistent with previous work demonstrating 
that abundant food resources in urban environments [40] results in increased body 
mass and positively correlates with fat tissue storages in rats [10]. 

The urban rats also displayed elevated values of several immune parameters such 
as total WBC counts, neutrophil, monocyte and eosinophil numbers and spleen size 
(Fig 2, Table 1). There are several explanations for these findings that are not 
mutually exclusive. Because of the energetic costs of immune responses, individuals 
in better conditions or inhabiting environments with abundant resources can invest 
more in immunity [41]. Thus, urban rats can allocate more resources to immune 
activity than the rural individuals. This is partially consistent with our prediction. 
Enhanced immunity has been also observed in an avian urban ‘exploiter’, the house 
sparrow Passer domesticus [9]. A second explanation is that elevated immune 
parameters in urban rats reflect higher pathogen exposure than in their rural 
counterparts. Although the observed trends did not reach statistical significance, the 
prevalence of larvae of Taenia sp. in urban rats was twice as high as in forest-rural 
and agro-rural individuals. This observation is consistent with studies demonstrating 
that prevalence of cestodes in urban rats exceeded that detected in rodents inhabiting 
rural areas [42–43]. Cysticerci of T. taeniarformis initiate an immune response [44], 
and more frequent exposure would be reflected in a higher prevalence. The larger 
spleens detected in urban rats could therefore reflect prior parasite exposure or 
ongoing infections rather than a heightened immuno-competence [45–46]. This is 
consistent with results from studies examining the prevalence and consequences of 
exposure to nematodes. Investigations conducted in the same province concluded that 
the prevalence of the nematode Capillaria hepatica in rats collected from urban 
settlements (20%, 142/707) was six times higher than in rural environments (3.36%, 
15/446) [47]. Experimental infections demonstrated that the spleen plays a major role 
in the defense against nematodes in rats [48]. Our results on increased spleen size 
therefore suggest a direct influence of parasitic burden in urban brown rats. In line 
with these findings, increased number of eosinophils also reinforces the higher 
exposure of urban rats to parasites compared to their rural counterparts. In 
comparative immunological studies, total and differential white blood cell counts are 
used as proxies for species-specific immune investment [49], however these 
parameters are used both in human and in veterinary medicine to diagnose current, 
ongoing infections [31,50]. While high total WBC counts (leukocytosis) suggest a 
pathologic process, and increases in certain lymphocyte types indicate exposure to 
specific pathogen group or antigen class. For example, neutrophilia (high neutrophil 
numbers) could indicate bacterial infection, lymphocytosis (increase in lymphocyte 
counts) an acute viral infection, eosniphilia (increase in eosinophils) parasitic 
infestations; monocytosis (high monocyte numbers) chronic inflammation and 
basophilia (increase in basophils) is common during allergic reactions [50]. In 
addition to the higher observed parasite exposure, our results on differential WBC 
counts indicate a higher prevalence of bacterial infections and chronic inflammatory 
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processes. Although pathogen surveillance was not undertaken, future microbiological 
studies associated with histopathology may represent a future line of research to 
clarify the basis of the observed higher monocyte and neutrophil numbers in urban 
rats. 

Although no statistically significant differences in relative adrenal gland sizes 
were found, absolute adrenal gland size in urban rats was greater than in rural rats 
(Fig 3). Enlarged adrenal glands suggest an increase in long-term allostatic load (e.g., 
‘stress’ from crowded social living conditions) independent of weight [32–33,51]. No 
direct analysis of aggressive behaviors in rural and urban rats was performed. 
However, tail length, an indicator of aggressive behavior [52], of urban rats was 
significantly shorter than in forest-rural rats, suggesting that urban rats experienced 
more frequent aggressive interactions. This could be indicative of density-dependent 
effects such as an increase in competition because of the possibly higher rat densities 
in urban environment [53]. The trend towards a higher neutrophil/lymphocyte ratio, a 
reliable indicator of chronic stress [34], in urban rats than in rural individuals would 
be consistent with such an idea. Common voles (Microtus arvalis) inhabiting areas 
with heavy industrial emissions exhibited elevated total WBC counts and displayed 
larger spleens than animals sampled from non-industrial areas [54]. Urban pollution 
might therefore also contribute to the allostatic load of urban rats. 

The results of the current study suggest the increased access to food, the higher 
parasite burden and the increased allostatic load associated with urbanization all 
modulate the condition and health of brown rat populations. As the emerging picture 
is complex, since urbanization is not only associated with improvements to body 
condition but also increases in allostatic and parasite load, it will be important to 
monitor the intensification of urbanization process on wildlife and, particularly, on 
known reservoirs of zoonotic pathogens such as rodents. 
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Supporting Information 
S1 Fig. Graphical assessment of interactive effects. 

 
S1 Fig. The possible influence of body mass across three sampling sites, 
representing a gradient of increasing urbanization and human population density 
(from forest-rural via agro-rural to urban), on the immunological variables measured. 
No obvious interactions of body mass of brown rats was observed with body mass 
index (A), absolute (B) and relative (C) spleen mass, total white blood cell (WBC) 
counts (D), absolute (E) and relative (F) adrenal gland mass, and 
neutrophil/lymphocyte ratio (G). 
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Chapter 5 Concluding remarks 

In comparison to the mechanistic view of the immune system in the defense of 
the host, ecological immunology puts the organism in a broader context, where the 
defense is only one trait with costs and benefits relative to other life-history traits due 
to limited resources (Schulenburg et al., 2009; Demas & Nelson, 2012; Viney & Riley, 
2014). Despite the great progress in the last decades, methodological issues have 
hindered progress (Martin et al., 2011). Limited sample volumes, difficult and 
variable field conditions or extrapolations from simple assays despite the complexity 
of the immune system all hinder progress. Nevertheless, eco-immunology as a field 
has diversified extensively both in terms of new methods developed and applied 
(Demas et al., 2011), new non-model species and research questions introduced 
(Schulenburg et al., 2009). While early years were dominated by avian 
eco-immunological studies, which dealt with general questions such as effect of sex, 
age, season or latitude/environment on immunity (Hasselquist, 2007), recent 
mammalian studies have described both generalizable, and in some cases, 
contradictory processes. 

During my PhD study, I was primarily interested in how environmental 
differences in human-dominated habitats influence the immunity of rodents. In the 
first part of this dissertation, I tested whether the previously described 
‘Sexually-transmitted diseases (STDs)’ hypothesis, which states a positive correlation 
between species-specific basal immunity (e.g., leucocyte numbers) and the level of 
mating promiscuity (Nunn et al., 2000), holds true in rodents. Moreover, since the 
previous evidence for this hypothesis was derived from studies of captive primates 
and carnivores, I also compared free-living and captive rodents (Chapter 2). The 
results suggested that the hypothesis is not generalizable to either captive or 
free-living rodents, because the total and differential WBC counts did not co-vary 
with the residual testes mass – a correlate of mating promiscuity. Moreover, species 
with greater adult body mass averaged across sexes had elevated total WBC and 
differential WBC (neutrophils and lymphocytes) counts, and captive animals 
presented higher lymphocyte cell counts than free-ranging ones, indicating a clear 
captivity effect though this did not affect the conclusion about the STDs hypothesis. 
Based on these findings, further comparative studies are needed on free-living 
mammalian species. 

Since invasive species are among the most important factors contributing to 
biodiversity loss and several studies target on understanding which traits define a 
successful invader. Understanding these questions has implication for both 
conservation biology and evolutionary ecology. In Chapter 3, I studied how the 
colonization history shaped the immunity of western house mouse (Mus musculus 
domesticus) using laboratory outbred but wild-derived individuals. Using this 
common garden approach, the impacts of current environments (e.g., temperature, 



Chapter 5 Concluding remarks 

84 
 

exposure to pathogens) were minimized but the effects of genetic variation were 
highlighted. This study provided the first empirical evidence that successful invasive 
rodent species down regulate their costly cellular immune mechanisms in new 
habitats, which is compensated by developing high antibody-mediated immunity. The 
mechanism underlying the observed patterns could be a ‘founder effect’ in western 
house mouse and/or selection pressure exerted by the composition of local parasitic 
helminth communities. My findings were in accordance with previous avian and 
amphibian studies, showing a shift from the costly immune parameters and thus 
maximizing their competitiveness or reproduction (Lee & Klasing, 2004; Lee et al., 
2005; Llewellyn et al., 2012). 

Finally, I was interested in the condition and health of wild brown rats sampled 
from forest-rural, agro-rural and urban areas along a gradient of increasing 
urbanization and human population density in Henan Province, China (Chapter 4). 
The findings showed that urban rats (1) were bigger in body length, shorter in tail 
length, heavier in body mass and had a higher body mass index than rural rodents; (2) 
had larger spleens and higher leukocyte counts than rural counterparts; (3) tended to 
have a higher allostatic load as they showed enlarged adrenal glands and a higher 
neutrophil/lymphocyte ratio; and (4) had a relatively higher parasite prevalence. These 
findings suggest that urban brown rats are larger and enjoy a superior nutritional 
status but also face more challenges (allostatic load, ‘stress’) and a higher parasite 
load than rural counterparts. Although the results of this pilot study are very 
promising and provide a background for further studies on the effect of urbanization 
on wildlife health, the findings should be interpreted cautiously. First, the small 
sample sizes of the two rural groups limited the use of multivariate parametric 
analysis (e.g., general linear models), which allows for parallel testing of the effect of 
both sampling site and gender on the measured parameters. Since the human 
population density between the two rural sites (370 people/km2 and 614 people/km2) 
is of the same magnitude compared to the urban area (13,347 people/km2), merging 
the rural groups could be a solution for this issue. Moreover, only adult rats were 
sampled during this experiment, however, the exact age was not determined (e.g., 
weight of eye lens, growth of molar teeth; Sengupta, 2013). Integrating information of 
precise age estimation could strengthen the conclusion regarding the rat 
morphological analysis, because it has been shown that morphometric traits (e.g., 
body mass; Hughes & Tanner, 1970; Hofstetter et al., 2006) but not the hematological 
parameters (e.g., leukocyte counts; Matsuda et al., 2000) are associated with the age 
of laboratory rats. On the other hand, the differences in morphometry among the 
sampling sites could be a result of non-random distribution of age groups among the 
rat locations tested. These factors should be considered in future studies of the 
relationship between health status and environmental differences in wild rats. As the 
physiological mechanisms associated with urbanization seems to be very complex, 
further studies involving comprehensive pathogen screen (using both molecular and 
serological methods) associated with histopathology, more elaborated immune tests 
(e.g., flow cytometry, functional immune assays) and newer OMICS (e.g., proteomics, 



Chapter 5 Concluding remarks 

85 
 

transcriptomics) approaches will allow for a better understanding of the effect of 
urban environment on wildlife physiology. Moreover, similar to my study on the 
effects of invasion, a common garden approach would be required to determine how 
plastic these traits are. 

In conclusion, when investigating the effect of anthropogenic environments (e.g., 
free-living versus captive, native versus invaded, rural versus urban) on immunity of 
rodents, I found that they all demonstrated significant impacts. When considering the 
influence of human presence or activity on the immunity of rodents, based on the 
experiments of my thesis, it could be generally concluded that human dominated 
habitats (e.g., urban and captive environment) augment the immunity of rodents, 
while introduction to novel areas causes a shift between cellular and humoral 
immunity rather than a decrease or increase in their overall immunity. Since immune 
function is an energetically costly trait, most of these findings could be explained by 
increased access to food, whereas negative effects could be explained by relatively 
higher pathogen exposure in human dominated areas. Wild rodents are very important 
reservoirs for zoonotic pathogens, and their immunity is associated with reservoir 
competence. Therefore, it is necessary to understand the effect of various scales of 
human-associated (e.g., captivity, invasion, urbanization) and natural (e.g., latitudinal, 
altitudinal) environmental differences on the immunity of wild rodents in the context 
of “One Health”. Moreover, as most of these species are also models for medical 
immunology, the existing tools developed make them an ideal model for answering 
evolutionary immunological questions. The comparison of the immune- and 
reservoir-competence in rodent species is needed, and the effect of environment on 
the epidemiological role of rodents at population and species level needs to be 
performed. My dissertation will serve as a basis for this future work. 
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Summary 

In comparison with medical immunology, which focuses on mechanistic 
descriptions of defense mechanisms against pathogens and parasites, ecological 
immunology hypothesizes that variation in immune defense, both within and among 
species, is a result of biotic and abiotic factors of an animal’s environment. 

Macro-environment can greatly influence immunity in terms of both resources 
and pathogen pressure. In this thesis, I attempted to compare the immunity of animals 
living in different human-influenced environmental gradients. By using different 
study designs (comparative, experimental and correlative approaches), I examined 
whether captivity, colonization history and urbanization have an effect on the 
immunity of rodents. Rodents constitute the most diverse group of mammals, 
accounting for over 40% of all the extant mammalian species. They are one of the 
most important reservoirs for zoonotic emerging pathogens due in part to their 
life-history traits (e.g., short lifespan with multiple litters) and close proximity to 
human populations. Moreover, the vast majority of immunological knowledge has 
been generated by studies on laboratory model rodents (e.g., house mouse Mus 
musculus, lab rats Rattus rattus and R. norvegicus), and the developed immunological 
techniques and tools can be generally applied to free-living conspecifics. 

Previous comparative eco-immunological studies have suggested that mating 
promiscuity is one of the main factors explaining the variation in basal immune 
investment (total and differential white blood cell (WBC) counts) in captive primates 
and carnivores. In Chapter 2, I examined whether this conclusion is generalizable to 
other mammalian groups, how the observed patterns are related to the living 
environment and if there are differences between free-living and captive animals. 
Using phylogenetic generalized least-squares statistical models considering 
non-independence resulting from shared ancestry, I confirmed that species with 
greater adult body mass averaged across sexes had elevated total and differential 
(neutrophils and lymphocytes) WBC counts, and found that captive animals presented 
higher lymphocyte numbers than free-ranging ones. However, I found that the total 
and differential WBC counts did not co-vary with the residual testes mass, a correlate 
of mating promiscuity, suggesting that previous conclusion generated from studies of 
captive primates and carnivores is not generalizable to all mammals. These results 
also emphasize the need for further comparative studies on free-ranging animals. 

Parasites play an important role in the invasion processes and success of their 
hosts through multiple biological mechanisms such as ‘parasite release’, 
‘immuno-competence advantage’ or ‘novel weapon’, among others. In Chapter 3, I 
examined whether colonization history had an effect on the immunity of western 
house mouse (M. m. domesticus). Using a common garden experimental approach of 
wild-derived outbred laboratory populations, I compared the cellular and humoral 
immunity of European and Iranian mice, representing the newly colonized and source 
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populations respectively. I found that European mice had lower total WBC counts but 
higher immunoglobulin E concentrations than their Iranian counterparts, providing the 
first empirical evidence that successful invasive species downregulate their costly 
cellular immune mechanisms in new habitats, which is compensated by developing 
high antibody-mediated immunity. Invasive species capable of such immunological 
shift can be successful in novel habitats by increasing fitness both in term of survival 
(e.g., efficient immunity, low costs) and reproduction (e.g., investing more resources). 

Since the beginning of last century, urbanization has had considerable global 
effects such as overpopulation and environmental pollution, favoring the emergence 
and re-emergence of various infectious agents, including those originating from 
wildlife. It is unclear, however, which physiological mechanisms are behind these 
emergence events. I attempted to address these questions in the Chapter 4 by 
measuring the morphological, physiological and pathophysiological traits 
(morphometry, allostatic load, immunity, parasite load) of free-living brown rats (R. 
norvegicus) sampled from forest-rural, agro-rural and urban areas along a gradient of 
increasing urbanization and human population density in Henan Province, China. 
Urban rats had increased body condition, but also relatively higher allostatic (stress) 
and parasite load compared to rural individuals, indicating the complex effect of 
urbanization on the physiology of wildlife. 

The results of this dissertation demonstrate that anthropogenic activities (captive 
maintenance, colonization history, and urbanization) have a clear effect on the 
immuno- and reservoir-competence of rodents, information which may be crucial in 
the context of the ‘One Health’, concept which recognizes human, animal and 
environmental health as connected and interlinked. 
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Zusammenfassung 

Titel: Der Einfluss von umweltbedingten Unterschieden auf die Immunantwort von 
Nagetieren. 

Im Vergleich mit der medizinischen Immunologie, die sich auf die 
mechanistische Beschreibung der Abwehrmechanismen gegen Krankheitserreger 
konzentriert, geht die ökologische Immunologie davon aus, dass die Variation der 
Immunabwehr, sowohl innerhalb einer Tierart als auch zwischen den Tierarten, von 
biotischen und abiotischen Umweltfaktoren beeinflusst wird. 

Das Makroumfeld hat dabei generell einen Einfluss auf die Immunität in 
Hinblick auf die Reserven und den pathogenen Druck. In der vorliegenden Arbeit 
wird die Immunität von Tieren aus verschieden stark durch den Menschen 
beeinflussten Umgebungen miteinander verglichen. Durch den Gebrauch 
unterschiedlicher Studienansätze (komparative, experimentelle und korrelative) 
untersuchte ich, ob Gefangenschaft, Kolonisationsgeschichte sowie Urbanisierung 
einen Effekt auf die Immunität von Nagetieren hat. Innerhalb der Säugetiere sind 
Nagetiere die Gruppe mit der höchsten Diversität, welche mehr als 40% der gesamten 
Säugetierarten stellt. Infolge ihrer lebensgeschichtlichen Merkmale (z.B. kurze 
Lebensspanne mit vielen Nachkommen) und ihrer engen Nähe zur menschlichen 
Bevölkerung stellen Nagetiere eines der wichtigsten Reservoire von neu 
aufkommenden Zoonose-Erregern dar. Ein großer Teil des heutigen Wissens über die 
Immunologie wurde an Modell-Labornagetieren wie z.B. der, Hausmaus (Mus 
musculus) und Laborratten (Rattus rattus und R. norvegicus) gewonnen. Die hierbei 
entwickelten immunologischen Techniken und Methoden sind leicht auf wild lebende 
Artgenossen anwendbar.  

Frühere vergleichende Arbeiten der Öko-Immunologie deuteten darauf hin, dass 
Promiskuität ein Hauptfaktor zur Erklärung der Varianz unterschiedlicher relativer 
Investitionen in die grundlegende Immunantwort (Gesamtzahl weißer Blutkörperchen 
und Differentialblutbild) bei in Gefangenschaft gehaltenen Primaten und Karnivoren 
darstellt. Im zweiten Kapitel wird geprüft, ob diese Schlussfolgerung auf andere 
Säugetierarten generalisierbar bzw. übertragbar ist und wie das beobachtete Muster in 
Verbindung zu Umweltbedingungen gebracht werden kann. Auch wird untersucht ob 
und in wie fern Unterschiede zwischen wild lebenden und in Gefangenschaft 
gehaltenen Tieren bestehen. Durch Einsatz der phylogenetisch generalisierten 
statistischen Methode der kleinsten Fehlerquadrate, welche unabhängige Resultate 
gleicher Herkunft berücksichtigt, konnte ich bestätigen, dass Tiere mit größerer 
adulter Körpermasse (bei gleichem Anteil beider Geschlechter) eine höhere absolute 
Anzahl weißer Blutkörperchen und im Differentialblutbild einen hören Anteil 
neutrophiler Granulozyten und Lymphozyten aufwiesen. Tiere in Gefangenschaft 
wiesen im Vergleich zu wild lebenden eine höhere Anzahl an Lymphozyten auf. Es 
fand sich jedoch keine Korrelation mit der Hodenmasse als Maß für promiskuitive 
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Paarungssysteme. Dies legt nahe, dass sich die Schlussfolgerungen von Studien an in 
Gefangenschaft lebenden Primaten und Karnivoren nicht generell auf alle Säugetiere 
übertragen lassen. Die Ergebnisse der vorliegenden Studie unterstreichen den Bedarf 
für weitere vergleichende Studien an wild lebenden Tieren. 

Parasiten spielen eine wichtige Rolle beim Invasionsprozess und dem 
Wirtserfolg durch multiple biologische Mechanismen wie unter anderem dem der 
Parasitenfreisetzung, des Immunkompetenzgewinns oder ihrer neuartigen Waffen. In 
Kapitel 3 untersuchte ich, ob die Kolonisierungsgeschichte einen Effekt auf die 
Immunität der westlichen Hausmaus (M. m. domesticus) hat. Mittels aus der Wildnis 
stammender ausgezüchteter Labormauspopulationen verglich ich die zelluläre und 
humorale Immunität der Europäischen und der Iranischen Maus, welche die neu 
kolonialisierte, respektive die Ausgangspopulation repräsentieren. Die vorliegenden 
Studien zeigten, dass Europäische Mäuse im Vergleich zu ihren iranischen 
Verwandten eine niedrigere Anzahl weißer Blutkörperchen aufwiesen aber zugleich 
eine höhere Konzentration an Immunglobulin E. Dies stellt den ersten empirischen 
Beweis für eine erfolgreiche invasive Art dar, ihre kostenintensiven zellulären 
Immunmechanismen in einem neuen Habitat herabzuregulieren und zum Ausgleich 
eine höhere antikörpervermittelte Immunität zu entwickeln. Invasive Arten, die die 
Fähigkeit einer derartigen Verlagerung der Immunabwehr besitzen, verfügen in einem 
neuen Habitat über einen Vorteil sowohl im Überleben (z.B. effizienteres 
Immunsystem, geringere Kosten), als auch bei der Reproduktion (z.B. mehr freie 
Ressourcen investierbar).  

Die seit Beginn des letzten Jahrhunderts durch zunehmende Urbanisierung 
entstandenen massiven globalen Effekte, insbesondere der  Überbevölkerung und 
Umweltverschmutzung, begünstigen das Auftauchen und Wiederaufkeimen 
verschiedener infektiöser Erreger inklusive solcher, welche ihren Ursprung in 
Wildtieren nehmen. Bis dato ist unklar, welche physiologischen Mechanismen dieser 
Entwicklung zugrunde liegen. Diesen Fragen versuchte ich in Kapitel 4 nachzugehen, 
indem ich die morphologischen, physiologischen und pathophysiologischen 
Merkmale (Morphometrie, allostatische Last, Immunität, parasitäre Belastung) der 
wild lebenden braunen Ratte (R. norvegicus) in abgelegenen Wald- , Agrar-, sowie 
urbanisierten Regionen entlang eines Urbanisierungsgradienten und in Abhängigkeit 
der der Bevölkerungsdichte der chinesischen Provinz Henan untersuchte. Urbane 
Ratten wiesen dabei eine höhere Körpermasse, aber auch eine höhere allostatische- 
und Parasitenblast im Vergleich zu Ratten aus abgelegeneren Regionen auf. Dies 
weist auf einen komplexen Effekt von Urbanisierung auf die Physiologie der 
Wildtiere hin. 

Die in dieser Dissertation vorliegenden Ergebnisse zeigen, dass anthropogene 
Aktivitäten (Gefangenschaftshaltung, Kolonisierungsgeschichte und Urbanisierung) 
einen deutlichen Effekt auf die Immunkompetenz und den Gehalt an Pathogenen 
(Anzahl und Arten) von Nagetieren ausüben. Diese Informationen sind essentiell im 
Hinblick auf das „One Health“ Konzept, welches der engen Verknüpfung zwischen 
der Gesundheit von Menschen und Tieren und der Umwelt Rechnung trägt. 
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