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Surface-enhanced Raman scattering as a higher-order Raman process
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We propose to understand surface-enhanced Raman scattering (SERS) as a higher-order Raman process that
contains the plasmonic excitation. The SERS amplitudes are calculated with third- and fourth-order perturbation
theory. Treating the plasmonic excitation as a quasiparticle, we derive analytic expressions for all coupling matrix
elements. This leads to a general theory of plasmonic enhancement in SERS that can be applied to arbitrary
plasmonic nanostructures. We obtain the plasmon eigenvectors of a gold nanosphere and a nanosphere dimer.
They are used to calculate the enhancement of the Raman cross section of a molecule coupled to the dipole
plasmon mode. The enhancement of the cross section is up to three orders of magnitude stronger than predicted
by the theory of electromagnetic enhancement. The difference is most pronounced in vacuum and decreases
with increasing dielectric constant of the embedding medium. The predictions from understanding SERS as a
higher-order Raman process agree well with recent experiments; they highlight the dominance of plasmonic
enhancement in SERS.
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I. INTRODUCTION

Surface-enhanced Raman scattering (SERS) is the giant
enhancement of the Raman scattering cross section for a
molecule on a rough metal surface [1]. At certain hot
spots the enhancement is strong enough for single-molecule
detection [2,3]. The strong increase in sensitivity compensates
the inherently weak Raman cross section of molecules and
supplements the high selectivity of Raman spectroscopy [4].
This leads to applications in a variety of areas, such as
analytical biochemistry, forensics, and medical diagnostics [5].

The dominant mechanism of SERS is the interaction of
the Raman probe with the localized surface plasmon (LSP)
of metallic nanostructures (nanoparticles, particle clusters,
etc.) [4,6]. The theory of electromagnetic (EM) enhance-
ment treats the local near field generated by the LSP as a
strongly increased light field that drives the Raman process.
Both incoming and scattered light are enhanced by a factor
that is determined by the local near-field intensity, which
is often abbreviated as E4 enhancement [4,7]. In a more
rigorous approach, the enhancement of the scattered light
is calculated from the interaction of the radiating dipole of
the Raman scatterer with the plasmonic nanostructure [8,9].
In backscattering this approach yields similar enhancement
as the E4-enhancement approximation [4,9], but differences
occur for other scattering geometries [8].

The theory of EM enhancement is successfully employed to
obtain design criteria for plasmonic nanostructures with strong
SERS enhancement [4,7]. The predicted SERS enhancement,
however, is often two to four orders of magnitude smaller
than the peak 107–108 enhancement observed experimen-
tally [10–14]. The discrepancy was argued to arise from
an additional chemical enhancement due to charge-transfer
processes between molecule and metal [15]. Such chemical
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interactions may, in fact, lead to a quenching as well as an
enhancement depending on the specific experimental condi-
tions [4,16]. A detailed comparison between the discrepancy of
experiment and EM enhancement to the magnitude of chemical
enhancement in a given configuration is therefore challenging
and remains missing.

The theory of EM enhancement is a classical theory. It
describes the plasmon as an external antenna for the standard
Raman process. This implicitly separates a coupled quantum-
mechanical system (plasmon and Raman scatterer) into two
distinct parts. Moreover, the theory of EM enhancement does
not account for the quantum nature of the plasmonic excitation.
Various approaches were suggested that go beyond a classical
description of SERS [17–27]. They typically focused on
a quantum-mechanical description of the molecule and its
coupling to the plasmonic nanostructure, but did not challenge
the description of SERS by a standard Raman process.

Here we propose to understand SERS as a higher-order
Raman process. The plasmonic excitation then forms an
integral part of the light scattering treating plasmon and
Raman probe on an equal footing. To implement our idea
we adopt the microscopic theory of Raman scattering that
is based on perturbation theory. SERS is described within
third- and fourth-order perturbation theory. The contribution
of the plasmon gives rise to an additional pair of incoming
and outgoing resonances with a strong scattering intensity
that we identify as the plasmonic enhancement in SERS. We
obtain analytic expressions for all coupling matrix elements by
employing a formalism that is based on the second quantization
of the LSP. For a metallic nanosphere, we derive the LSP
eigenvectors up to infinite order from Mie theory. Our theory
accounts for the light and near-field polarization and leads
to selection rules for the scattering processes. We calculate
the plasmonic enhancement of a molecule close to a gold
nanosphere and in the hot spot of a plasmonic nanodimer. It
is several orders of magnitude stronger than predicted by the
EM-enhancement theory, explaining the discrepancy between
calculated EM enhancement and experiments.
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The article is organized as follows. In Sec. II, we derive
a general theory of surface-enhanced Raman scattering for a
molecule with vibronic states using higher-order perturbation
theory. We first identify all relevant Raman amplitudes and give
a general expression for the SERS enhancement (Sec. II A). We
then employ a second quantization model for the LSP to derive
the interaction Hamiltonians (Sec. II B). These are used in
Sec. II C to calculate all coupling matrix elements, which leads
to an explicit expression for the SERS enhancement (Sec. II D).
The general theory derived in Sec. II can be applied to any
plasmonic nanostructure. We demonstrate two relevant cases
for SERS: In Sec. III, we calculate the SERS enhancement
for a molecule coupled to the LSP of a gold nanosphere and
in Sec. IV for a molecule in the gap of a gold nanoparticle
dimer. Finally, in Sec. V, we compare our theory with other
quantum-mechanical approaches to SERS.

II. GENERAL THEORY

A. SERS as higher-order Raman scattering

We consider a general SERS experiment where a plasmonic
nanostructure is coupled to a molecule as a Raman scattering
probe [schematically depicted in Fig. 1(a)]. In this paper,
Raman scattering is described within the microscopic theory of
the Raman effect that is based on perturbation theory [28,29].
The core idea proposed by us is to view the SERS process
as higher-order Raman scattering (HORa). SERS is described
as a Raman process that contains the excitation of the LSP.
Our description of SERS thus differs fundamentally from the
theory of EM enhancement where an ordinary Raman process
is enhanced externally by the LSP. We argue that SERS should
be treated as one quantum-mechanical process that must not
be separated into two distinct subsystems.

We now consider the particular SERS-type scattering event
schematically depicted in Fig. 1(a). An incoming photon ωL

excites an LSP mode w with energy �ωw [step (1) in Fig. 1(a)].
The LSP couples via its near field to the molecule and excites
a transition from the molecular ground state with energy εvib

g

into an intermediate vibronic state with energy εvib
j (2). This

intermediate state can be a virtual state. The molecule relaxes
into a final vibronic state with energy εvib

f exciting again the
LSP (3). Finally, the Raman scattered light ωS is emitted by
the LSP (4). This scattering process is depicted as a Feynman
diagram in Fig. 1(b) and corresponds to fourth-order pertur-
bation theory. The theory of EM enhancement, in contrast,
treats SERS as ordinary Raman scattering, which corresponds
to second-order perturbation theory [Feynman diagram in
Fig. 1(c)]. Our higher-order Raman description of SERS is
not to be mixed up with hyper-Raman scattering, which is
described with third-order perturbation theory because two
incoming photons are involved [30]. Surface-enhanced hyper-
Raman scattering is described with fifth-order perturbation
theory by our HORa description, in contrast to a treatment
with third-order perturbation theory by the EM-enhancement
theory [31].
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FIG. 1. Schematic depiction of SERS as higher-order Raman
scattering (HORa). We consider a molecule with vibronic ground g,
intermediate j , and final states f . (a) Energy diagram of the Raman
process for a coupled plasmon-molecule system with the steps (1)
to (4) (ωw , frequency of LSP mode w; ωL, frequency of incoming
light; ωS, frequency of scattered light). (b) Feynman diagram of
Raman process in (a), which corresponds to fourth-order perturbation
theory. (c) The same Raman process described implicitly with
second-order perturbation theory by the EM-enhancement theory.
Enhanced incoming and scattered light are indicated by thick arrows.
(d) Raman process where only incoming light and (e) only scattered
light couples to the LSP. (f) Raman process without plasmonic
enhancement.

In addition to the scattering process in Fig. 1(b), there
are three other processes that have the same initial state
(incoming photon ωL, molecule in vibronic ground state g)
and the same final state (Raman scattered photon ωS, molecule
in a final vibronic state f ). They are the two processes
where either incoming or scattered light couples to the LSP
[Figs. 1(d) and 1(e)] and the Raman process without plasmonic
enhancement [Fig. 1(f)]. The scattering pathways in Figs. 1(b),
and 1(d)–1(f) interfere, leading to the selective increase or
decrease of plasmonic enhancement at a given excitation
wavelength. This interference has to be distinguished from
interferences between electronic and vibronic Raman scatter-
ing that might lead to Fano line shapes [32,33].

We now calculate the Raman scattering amplitudes repre-
sented by the Feynman diagrams in Fig. 1 within perturbation
theory [28,29];

K
w,w′,j
pl-pl (ωL) = Mw′

pt-plM
w′,j
pl-vibM

w,j

vib-plMw
pl-pt(

�ωL + εvib
g − εvib

f − �ωw′ − iγw′
)(

�ωL + εvib
g − εvib

j − iγ vib
j

)(
�ωL + εvib

g − �ωw − iγw

) (1)
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is the scattering amplitude that corresponds to Fig. 1(b),

K
w,j

pl-pt(ωL) = Mj

pt-vibM
w,j

vib-plMw
pl-pt(

�ωL + εvib
g − εvib

j − iγ vib
j

)(
�ωL + εvib

g − �ωw − iγw

) (2)

corresponds to Fig. 1(d),

K
w,j

pt-pl(ωL) = Mw
pt-plM

w,j

pl-vibM
j

vib-pt(
�ωL + εvib

g − εvib
f − �ωw − iγw

)(
�ωL + εvib

g − εvib
j − iγ vib

j

) (3)

corresponds to Fig. 1(e), and

K
j
pt-pt(ωL) = Mj

pt-vibM
j

vib-pt

�ωL + εvib
g − εvib

j − iγ vib
j

(4)

corresponds to Fig. 1(f). γw = �/2τw is the inverse of the
lifetime τw of an LSP mode with frequency ωw. γ vib

j is the
inverse of the lifetime of the intermediate vibronic state j .
Mk−l are the coupling matrix elements that correspond to the
vertices in the Feynman diagrams; they are discussed in detail
below.

The excitation-energy dependence of the Raman scatter-
ing cross section is generated by the energy terms in the
denominators of Eqs. (1)–(4). We obtain two resonances that
are induced by plasmonic excitations in the SERS Feynman
diagrams. If the energy �ωL of the incoming light matches
the energy �ωw of an LSP mode w, the real part of an
energy term vanishes, generating an incoming resonance with
a spectral width 2γw. Similarly, an outgoing resonance occurs
if �ωS matches an LSP mode. These LSP-mediated resonances
are equivalent to the intrinsic Raman resonances with a
molecular transition [28,29]. Comparing the LSP resonances
obtained from the HORa description in Eqs. (1)–(3) with the
enhancement predicted by the theory of EM enhancement, we
note that they will occur at similar energy as the maximum in
the EM enhancement, but their intensity and excitation-energy
dependence will be very different (see below).

The experimentally accessible plasmonic enhancement
factor of the Raman cross section is calculated as

EF(ωL) =
∣∣ ∑

w,w′,j K
w,w′,j
tot (ωL)

∣∣2

∣∣ ∑
j K

j
pt-pt(ωL)

∣∣2 , (5)

with K
w,w′,j
tot = K

w,w′,j
pl-pl + K

w,j

pl-pt + K
w,j

pt-pl + K
j
pt-pt from

Eqs. (1)–(4). The four scattering processes in Fig. 1 have the
same initial and final states. They are therefore summed over
all intermediate vibronic states j and LSP modes w, w′ in
Eq. (5), before calculating the intensity of the scattered light
as the absolute square of the scattering amplitudes. This is
important, because scattering processes with amplitudes of
opposite sign (or phase) diminish by destructive quantum
interference.

B. Interaction Hamiltonians

We derived the general framework to describe SERS as
higher-order Raman scattering within perturbation theory. The
main ingredients to calculate the plasmonic enhancement in
Eq. (5) are the coupling matrix elements Mk−l = 〈k|Ĥint|l〉.
They are composed of an interaction Hamiltonian Hint and

wave functions |l〉, |k〉 of the intermediate states before and
after the interaction. The matrix elements also allow analyzing
SERS selection rules by considering the symmetries of initial
and final state and their interaction within group theory [29].
Our theory accounts for the polarization of the plasmonic near
field and the orientation of the molecular transition dipole.
Including other aspects of SERS, such as charge-transfer
transitions between metal and molecule or the field gradient
effect, will be the subject of future work [34,35].

We now derive expressions for the interaction Hamiltoni-
ans. To describe the coupling mechanisms that involve the
LSP, we use second quantization as suggested by Finazzi and
Ciccacci [36]. This formalism is also based on perturbation
theory and is employed to calculate all matrix elements in
an intuitive way. We consider the weak-coupling regime
where the plasmonic and probe system retain their electronic
properties. We stress that the general framework introduced
in Sec. II A is also applicable to the strong-coupling regime
by using alternative approaches for calculating the matrix
elements (see, e.g., Ref. [37]). The plasmonic eigenmodes
w are treated as a harmonic oscillator with the internal
Hamiltonian

Ĥinternal = NVp

2

∑
w

(
1

m
�̂2

w + mω2
w�̂2

w

)
, (6)

where N is the density of free electrons, Vp the volume of the
plasmonic nanostructure, and m the electron mass, and

�̂w =
√

�

2mNVpωw

(â†
w + âw) (7)

and

�̂w = i

√
m�ωw

2NVp
(â†

w − âw) (8)

are generalized position and momentum coordinates that
contain plasmonic creation and annihilation operators â†

w and
âw, respectively. The internal Hamiltonian is written in the
form of Eq. (6) by ignoring losses initially. Decay is instead
accounted for in the denominators of the Raman scattering
amplitudes [Eqs. (1)–(3)] by the inverse plasmon lifetime γw,
as is common practice within the microscopic theory of Raman
scattering [28,29].

The external light field is described in second quantization
by the vector potential [38,39]

Âpt(r) = Ãpt

∑
kpt,s

εkpt,s

(
âkpt,se

ikpt·r + â
†
kpt,s

e−ikpt·r), (9)
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qpl(r), j(r) qpl(r), j(r)

Epl(r)

ωL ωShh

FIG. 2. Schematic SERS system. The Raman scatterer (gray disk)
is coupled to the dipole mode (here with index “pl”) of a plasmonic
nanoparticle dimer (white disks). The gray lines illustrate the near
field generated by the dipole plasmon mode Epl(r) with polarization
along the field lines. +/− signs indicate the dipole moment induced
by the LSP dipole mode.

with wave vectors kpt and polarizations εkpt,s . Ãpt =√
�/2ωptVRε0εm, where VR is a volume that contains the

external light field, ωpt is the frequency of the light field,
and εm is the dielectric constant of the surrounding medium.
Harmonic time dependence is assumed throughout.

To derive the plasmon-photon interaction Hamiltonian,
the external light field is included into this description as a
generalized coordinate,

Âw = 1√
Vp

∫
Vp

dV ′Âpt(r′,ωw) · qw(r′), (10)

by a projection of Âpt(r) onto the eigenvector qw(r) of an LSP
mode w [36]. The eigenvectors are normalized as∑

w

qw(r) · qw(r′) = δ(r − r′). (11)

Ĥinternal is modified with a Peierl’s substitution �̂w → �̂w +
eÂw, which leads to a plasmon-photon interaction Hamilto-
nian,

Ĥpl-pt = eNVp

m

∑
w

�̂wÂw. (12)

We now consider the excitation of a vibronic transition in
the molecule by the LSP. The molecule interacts with the LSP
via the electric field ELSP(r) generated by the plasmonic nanos-
tructure, as shown schematically in Fig. 2 (the index “LSP”
refers to the contribution of all excited plasmon modes). As
an interaction Hamiltonian we use Ĥpl-vib = −μ̂ · ÊLSP(r) with
the dipole operator of the molecule μ̂ = ∑

m,n μmn|n〉〈m| [40].
μmn is a matrix element that corresponds to the transition
dipole moment of a transition from vibronic state |m〉 to state
|n〉. The electric field

ELSP(r) = iωμ0

∫
Vp

dV ′↔G(r,r′)j(r′) (13)

is created by the electrical current density j(r) in the plasmonic

nanostructure (see Fig. 2);
↔
G(r,r′) is the dyadic Green’s

function [41], Eq. (B4). We quantize the LSP and replace
j(r) with the generalized momentum operator [36]

�̂w = m

eN
√

Vp

∫
Vp

dV ′ ĵ(r′) · qw(r′). (14)

This leads to a quantized electric field

ÊLSP(r) = iμ0eNVp

m

∑
w

ωw�̂wGw(r), (15)

with

Gw(r) = 1√
Vp

∫
Vp

dV ′↔G(r,r′)qw(r′). (16)

The remaining Hamiltonian for coupling between the external
light field and a molecule is Ĥpt-vib = −μ̂ · Êpt(r), where Êpt =
−∂Âpt/∂t .

C. Matrix elements

The interaction Hamiltonians Ĥpl-pt, Ĥpl-vib, and Ĥpt-vib

allow calculating all matrix elements in Eqs. (1)–(4). For the
plasmon-photon coupling matrix elements we obtain

Mw
pl-pt = 〈

1pl
w,0pt

∣∣Ĥpl-pt

∣∣0pl
w,1pt

kpt,εpt

〉 = ie�

√
NVp

4mVRε0εm

εpt
w

(17)

and Mw
pt-pl = (Mw

pl-pt)
∗, where we set ωpt = ωpl and

εpt
w = 1√

Vp

∫
Vp

dV ′εpt · qw(r′)eikpt·r′
. (18)

Explicit expressions for the plasmon-molecule coupling ma-
trix elements are

Mw,i
vib-pl = 〈

0pl
w,ivib

∣∣Ĥpl-vib

∣∣1pl
w,gvib

〉

= μ0e

√
�NVpω3

w

2m
μgj · Gw(r) (19)

and with the assumption that μgj ‖ μjf we obtain Mw,j

pl-vib =
−μjf /μgjMw,j

vib-pl. Finally, the matrix elements for light-
molecule coupling are

Mj

vib-pt = 〈
0pt,j vib

∣∣Ĥpt-vib

∣∣1pt
kpt,εpt

,gvib
〉

= −i

√
�ωpt

2VRε0εm

eikpt·rεpt · μgj (20)

and Mj

pt-vib = μjf /μgj (Mj

vib-pt)
∗

if μgj ‖ μjf .

D. Explicit expression for SERS enhancement

We have now all tools at hand to obtain an explicit
expression for the SERS enhancement from Eq. (5). We
consider one dominant plasmon mode w, but the theory
can be extended to multiple plasmonic modes by summing
over the excitations. To derive expressions for the coupling
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matrix elements in Eqs. (1)–(4), we made the assumption
that molecule-metal interactions can be described in the
weak-coupling regime with a perturbative approach, i.e.,
the electronic properties of plasmon and molecule are not

affected by their interaction. Both the external light field
and the LSP were described with second quantization. The
properties of the molecule were included by its transition
dipole moment. SERS enhancement is then calculated as

EF(ωL) =
∣∣∣∣1 + M̃1M̃2(

�ωL − εvib
f − �ωw − iγw

)
(�ωL − �ωw − iγw)

+ M̃1

�ωL − �ωw − iγw

+ M̃2

�ωL − εvib
f − �ωw − iγw

∣∣∣∣
2

, (21)

with the coupling factors

M̃1 = −εpt
we−ikpt·rM̃, M̃2 = (

εpt
w

)∗
eikpt·rM̃, (22)

where

M̃ = μ0e
2NVp

2m
�ωw

emol · Gw(r)

εpt · emol
. (23)

The energy is referenced to εvib
g = 0. emol is a unit vector

along the transition dipole moment of the molecule. All
quantities that describe intermediate vibronic states cancel
when deriving Eq. (21). Plasmonic enhancement in SERS is
therefore independent of the molecule under study within the
weak-coupling limit considered here.

The enhancement can be calculated with Eqs. (21), (22),
and (23) in the vicinity of an arbitrary plasmonic nanostructure.
The information about the LSP is contained in the plasmonic
eigenvectors qw(r). The eigenvectors need to be orthogonal,∫

Vp

dV ′qw(r′) · qw′(r′) = 0, (24)

for w 	= w′ and must fulfill the normalization condition in
Eq. (11). The eigenvectors qw(r) may be obtained from
the current distribution j(r) associated with the LSP mode
w [36]. Several approaches such as modal-expansion discrete-
dipole approximation [42] and boundary-elements method
eigenmode expansion [43] may be used to obtain eigenvectors.
We use the quasistatic approximation and Mie theory to obtain
analytic expressions for qw(r) associated with the plasmon
eigenmodes of a gold nanosphere and a nanosphere dimer. We
stress that our HORa description of SERS is not limited to
a specific theory for calculating the eigenvectors and matrix
elements. The second quantization approach used here serves
as an example to demonstrate the power and potential of our
theory.

III. SERS BY A GOLD NANOSPHERE

A. Adaption of model

We apply our theory to a molecule that is coupled to the
LSP of a gold nanosphere, which is the simplest model case
for SERS. The LSP eigenvectors qw(r) are obtained from the
internal electric field in the gold nanosphere using Mie theory
[Eq. (A3)]. Details on expressions and notation of Mie theory
are provided in Appendix A. For light polarization along the
x axis the relevant plasmon eigenvectors are

qn(r) = ξE0i
n+1 2n + 1

n(n + 1)
dn(ωn)N(1)

e1n(r), (25)

with a normalization factor ξ . The index n indicates the order
of the LSP mode, i.e. dipole, quadrupole, etc., with degeneracy
(2n + 1) [43]. The Mie coefficient |dn(ω)|2 becomes maximal
at ω = ωn, which we use to obtain the LSP energies �ωn

(Appendix D). We dropped all terms related to the vector
spherical harmonics M(1)

o1n because they represent the excitation
of magnetic resonances that are inherently weak in gold
nanostructures [4]. The eigenvectors fulfill Eq. (24) because
the vector spherical harmonics N(1)

e1n(r) are orthogonal. We use∑
w = ∑

n(2n + 1) and rewrite Eq. (11) as

Vp =
∑

n

(2n + 1)
∫

Vp

dV

∫
Vp

dV ′qn(r) · qn(r′) (26)

to calculate the normalization factor ξ . The integral vanishes
for all n 	= 1 and we obtain

qn(r) = in+3k3
n

√
Vp(2n + 1)/n(n + 1)√

48π [kna cos (kna) − sin (kna)]

dn(ωn)

d1(ω1)
N(1)

e1n(r),

(27)

where a is the radius of the gold nanosphere. For the dipole
plasmon mode (n = 1, in the following with index “pl”) the
expression simplifies to

qpl(r) = k3
pl

√
3Vp

8π [kpla cos (kpla) − sin (kpla)]
N(1)

e11(r). (28)

As an alternative way to calculate the eigenvectors, we use
the quasistatic point-dipole approximation. It is considered to
be valid if the gold nanosphere is much smaller than the wave-
length of the incident light. We obtain the LSP eigenvector
from the induced dipole moment in the sphere center

ppl(r,ω) = α(ω)E0εptδ(r), (29)

where α is the polarizability of the gold nanosphere; see
Eq. (C3). Normalization leads to the simple expression

qpl(r) =
√

Vp

3
εptδ(r). (30)

With the explicit expression for the plasmon eigenvector,
we have now all ingredients at hand to calculate the plasmonic
SERS enhancement by a single nanosphere using Eq. (21).
In the following, we restrict our calculations to the dipole
plasmon mode, which provides the strongest enhancement. For
a molecule with its transition dipole moment oriented along
the polarization of the incoming light we find the coupling
factors

M̃1(r) = −μ0e
2NVp�ωplkpl

24πm
β(r) (31)
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(a)

(b)

FIG. 3. Plasmonic enhancement from SERS as higher-order
Raman scattering (HORa) and EM enhancement (EM) for a molecule
positioned 2 nm beside a gold nanosphere. (a) Maximum enhance-
ment as a function of sphere diameter (εm = 1). Solid lines correspond
to enhancement from calculations based on Mie theory and dashed
lines correspond to quasistatic approximation. Diamonds mark the
enhancement obtained by EM-DR. (b) Maximum enhancement for
30-nm gold nanosphere as a function of dielectric constant εm of
the surrounding medium. (Parameters: Raman shift of 1000 cm−1,
emol ‖ εpt, N = 5.9 × 1022 cm−3, ωpl, and γpl from fit of |d1(ω)|2; see
Appendix D.)

and M̃2 = −M̃1e
2ikplr cos ϑ . β is a dimensionless factor that

describes the position dependence of the coupling. Using
the plasmon eigenvector within the quasistatic approximation,
Eq. (30), we find

β(r,ϑ = π/2,ϕ = 0) = 2eikplr
1 − ikplr

k3
plr

3
, (32)

for the enhancement along the x axis (εpt = ex , kpt = kplez,
sphere center at origin). Explicit expressions for β derived
from the LSP eigenvector within Mie theory, Eq. (28), are
given in Appendix B.

B. Calculation of SERS enhancement

We calculate the SERS enhancement for a molecule coupled
to the LSP dipole mode of a gold nanosphere as a function
of sphere size, dielectric environment, and position of the
molecule (Figs. 3 and 4). Energy �ωpl and spectral width 2γpl of
the LSP mode are obtained from Mie theory. It predicts values
that nicely resemble experimental data [44] (see Appendix D).
We compare the calculated enhancement treating SERS as
a higher-order Raman process within perturbation theory

(a)

(c)

(b)

(d)

FIG. 4. Geometry of a SERS hot spot. Maximum enhancement
is calculated as a function of molecule position close to a 30-nm gold
nanosphere from (a) SERS within higher-order Raman scattering
(HORa), (b) EM model, and (c) EM-DR model. (d) Maximum
enhancement along the x axis as a function of distance to the
sphere center. Enhancement is normalized to the enhancement at the
sphere surface (x = 15 nm). (Parameters: Raman shift of 1000 cm−1,
emol ‖ εpt, εm = 1, N = 5.9 × 1022 cm−3, ωpl, and γpl from fit of
|d1(ω)|2; see Appendix D.)

to that obtained from the theory of EM enhancement. EM
enhancement is calculated as the product of the local electric-
field intensities at ωL and ωS; see Eq. (C1) in Appendix C.
We further calculate the EM enhancement with the EM model
including dipole radiation effects (EM-DR) [8,9].

Our HORa description of SERS [blue line in Fig. 3(a),
HORa, Eq. (21)] predicts 103 enhancement of the Raman
cross section for a molecule positioned 2 nm away from
an Au sphere with a diameter of 10 nm. The enhancement
increases to ∼105 for a sphere diameter of 100 nm. The EM
enhancement is two orders of magnitude weaker [red line
in Fig. 3(a), EM]. EM and EM-DR models lead to almost
identical enhancement (diamond plot markers). Our approach
thus predicts a strikingly stronger plasmonic enhancement in
SERS than the theory of EM enhancement. The question arises
how the theories compare to experiment. It is challenging
to compare the SERS enhancement from experiments with
that predicted by theory because of the uncertainties involved.
Nevertheless, in a recent experiment colocalized atomic force
and SERS microscopic imaging were used to characterize
individual gold nanoparticles coated with molecules [13]. The
measured SERS enhancement for gold nanorods (106–107)
was two to three orders of magnitude stronger than the
calculated EM enhancement. The discrepancy was attributed
to chemical enhancement, which could not be quantified. From
our HORa calculations we conclude plasmonic enhancement
accounts for most of the SERS intensity; it was underestimated
by the EM-enhancement theory.

Another interesting point in Fig. 3(a) is the comparison
between Mie theory (solid lines) and the quasistatic approxi-
mation (dashed). The quasistatic approximation for the HORa
calculations coincides surprisingly well with Mie theory. This
arises because the normalization factor ξ in Eq. (25) decreases
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with sphere diameter within Mie theory, which is not the
case within the quasistatic approximation. The much simpler
equations based on the quasistatic approximation can therefore
be used to accurately calculate the enhancement from our
approach around a nanosphere of arbitrary size. The quasistatic
calculations with the theory of EM enhancement, in contrast,
underestimate the enhancement for nanospheres larger than
40 nm.

The HORa description of SERS predicts the opposite
dependence of the plasmonic enhancement on the dielectric
constant εm of the surrounding medium compared to the
EM-enhancement model [Fig. 3(b)]. An increase in refractive
index

√
εm leads to a decrease in enhancement for HORa

calculations, whereas the EM enhancement increases. The
difference between the models is therefore less pronounced for
the typical environments encountered in SERS experiments,
such as water (εm = 1.77) or a SiO2 substrate (εm,eff <

1.5) [45]. The dependence of the SERS enhancement on
dielectric environment may thus serve as an experimental
prove of our theory.

We calculate the plasmonic enhancement as a function of
molecule position close to a 30-nm gold nanosphere (Fig. 4).
The transition dipole moment of the molecule is parallel to the
x axis (i.e., emol‖εpt). Our approach [Fig. 4(a)] predicts in this
case a spatially more confined hot spot than EM [Fig. 4(b)] and
EM-DR [Fig. 4(c)]. This has two origins. First, the polarization
of the plasmonic near field is included within our approach.
Coupling is strongest for Epl‖emol but vanishes for Epl ⊥ emol.
Moving away from the x axis, Epl is no longer parallel to emol

(see field lines in Fig. 2, which shows a similar geometry for
a nanoparticle dimer) leading to a more strongly confined hot
spot than EM enhancement. The near-field polarization is also
included in the EM-DR calculation, resulting likewise in a
more localized hot spot than EM enhancement. The difference
between HORa and EM-DR is explained by the stronger total
enhancement predicted by our description of SERS (∼104

for HORa and ∼102 for EM-DR). Strong enhancement leads
to a dominance of the scattering process where incoming
and scattered light couple to the plasmon [Fig. 1(b)] with
an ∼1/r12 dependence along the x axis, as can be estimated
from Eqs. (21), (31), and (32); see blue line in Fig. 4(d). In
the enhancement regime predicted from the EM-DR model,
scattering processes in which either the incoming light or the
scattered light couple to the plasmon become more important
[Figs. 1(d) and 1(e)]. The enhancement follows an ∼1/r9

dependence [see diamonds in Fig. 4(d)]. This accounts for the
more extended hot spot of EM-DR in Fig. 4(c). Overall, there
is good agreement between the hot-spot geometries predicted
from our theory and EM or EM-DR theory. Both theories
lead to the same design criteria for SERS substrates, which is
important for the modeling of nanostructures.

IV. ENHANCEMENT IN GOLD NANODIMER

A. Adaption of model

A single nanosphere as discussed in Sec. III is an interesting
model system for plasmonic enhancement and frequently
studied theoretically. However, its enhancement is usually too
weak for SERS experiments. The general consensus within

the community is that SERS arises from dimers or clusters
of nanoparticles [11,47]. We therefore apply our theory to
a molecule that is placed in the plasmonic hot spot of a
gold nanoparticle dimer. We restrict the calculations to the
lowest-order dipole mode w = 1 (here with index “pl”), with
frequency ωpl and light polarization along the dimer axis.
The plasmon eigenvector qpl(r) is obtained from the induced
dipole moment ppl(r), Eq. (C7), in the quasistatic point-dipole
approximation. By normalizing with respect to the three dipole
modes of the nanodimer (one ‖ and two ⊥ to the dimer axis),
we find

qpl(r) = ξ (d)
√

Vp
d
d

[δ(r − d/2) + δ(r + d/2)], (33)

with a normalization factor

ξ (d) = αind
‖ (ωpl,‖,d)

2
√

[αind
‖ (ωpl,‖,d)]2 + 2[αind

⊥ (ωpl,⊥,d)]2
, (34)

where d connects the two sphere centers and d = |d|. The
polarizabilities αind

‖ and αind
⊥ of the gold nanodimer are derived

in Appendix C. Note that the point-dipole approximation is
valid only for d > 3a. A formalism that goes beyond this
approximation must be based on generalized Mie theory and
will be the subject of future work.

Using Eq. (33), we find the coupling factors

M̃1(d) = −4μ0e
2NVp�ωplkpl

πm
β(d) (35)

and M̃2 = −[ξ ∗(d)/ξ (d)]M̃1, with

β(d) = ξ 2(d)eikpld/2 2 − ikpld

k3
pld

3
(36)

for the plasmonic enhancement in the center of the nanodimer.

B. Calculation of SERS enhancement

We calculate the SERS enhancement for a molecule in a
gold nanodimer with 30 nm sphere diameters as a function
of gap size and dielectric constant εm of the surrounding
medium [Fig. 5(a)]. ωpl and γpl are obtained from a fit of
the polarizability |αind

‖ (ω,d)|2; see Appendix D . For a gap of
15 nm and εm = 1, our HORa description of SERS predicts
an enhancement (3.8 × 104) that is ∼350 times larger than the
EM enhancement (1.1 × 102). The ratio gets even larger for
smaller gap sizes and increases to three orders of magnitude
for a gap of 5 nm [48]. This increase can be attributed to the
quasiparticle description of the LSP. The normalization factor
ξ (d) increases with the coupling between the two nanospheres,
i.e., with decreasing gap size. The dipole mode along the dimer
axis dominantes over the modes perpendicular to the dimer axis
and the degeneracy between the three dipole modes is lifted. In
Fig. 5(a), we also plot the difference in enhancement predicted
by our approach and EM enhancement for water (εm = 1.77)
and a SiO2 substrate with εm,eff = 1.4. The difference in
enhancement decreases with increasing refractive index

√
εm

of the environment, similar to the case of a single sphere. The
excitation-energy dependence of the plasmonic enhancement
shows a symmetric Lorentzian resonance profile from an
overlapping incoming and outgoing resonance [blue line in
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(a)

(b)

FIG. 5. Plasmonic enhancement from our description of SERS
as higher-order Raman scattering (HORa) and EM-enhancement
model in the hot spot of a gold nanodimer. (a) Maximum en-
hancement from HORa description divided by maximum EM
enhancement as a function of gap size for three typical values of εm.
(b) Comparison of excitation-energy dependence of enhancement
from HORa description and EM-enhancement model for a gap of
15 nm and water as the surrounding medium (εm = 1.77). Energies
of incoming and scattered light are indicated by dashed lines.
(Parameters: 30 nm sphere diameters, Raman shift of 1000 cm−1,
N = 5.9 × 1022 cm−3, ωpl, and γpl obtained from fit of |αind

‖ (ω,d)|2;
see Appendix D.)

Fig. 5(b); γpl ≈ 0.15 eV]. The resonance is more pronounced
than within the EM-enhancement model [red line in Fig. 5(b)].

In recent experiments with gold nanoparticle dimers and
trimers a combination of Raman spectroscopy and electron
microscopy was used to obtain a structure-activity relationship
for SERS [10–12,49]. In all experiments the measured SERS
enhancement was considerably higher than the calculated EM
enhancement. Crozier and co-workers measured two to four
orders of magnitude difference to the EM enhancement for
lithographically fabricated gold nanodimers on SiO2 and Si3N4

substrates as plasmonic nanostructure [11,12]. Van Duyne
and co-workers used molecule-coated dimers and trimers of
chemically synthesized gold nanoparticles encapsulated in
a SiO2 shell [10,49]. The EM-enhancement theory under-
estimated the measured values by factors between 50 and
100. The discrepancy was argued to arise from chemical
enhancement. Chemical enhancement is expected to give rise
to both enhancement and weakening of the Raman response
depending on the details of the system under study [4,16]. In
view of this, a consistent increase in all experiments appears

quite surprising. The description of SERS as a higher-order
Raman process excellently explains the experimental findings.
Experiments in which chemical enhancement is excluded
through the choice of nanoplasmonic system and Raman probe
are highly desirable to compare plasmonic enhancement in
theory and experiment.

V. PRIOR QUANTUM-MECHANICAL SERS THEORIES

A number of quantum-mechanical approaches to SERS
have been proposed in the last decade. In this section, we want
to elucidate differences and similarities to our approach. It is
not our intent to provide an exhaustive summary of all previous
theoretical work; our discussion focuses on selected studies
that we found representative for other approaches as well.
The main idea of our microscopic theory is the description of
SERS as a higher-order Raman process. We therefore focus
our discussion on the treatment of the Raman process in the
previous quantum-mechanical approaches.

Jensen and co-workers used an atomistic electrodynamics
model for the metal nanoparticle and described the molecule
with time-dependent density functional theory [17,18].
This hybrid quantum-mechanics–classical-electrodynamics
approach was demonstrated to be particularly suitable for
describing the metal-molecule interaction at atomic length
scales. The description of the Raman effect was based on
the Kramers-Heisenberg-Dirac formalism, which is second-
order perturbation theory [50]. It thereby differed from our
description of surface-enhanced Raman scattering as third-
and fourth-order scattering processes. In contrast to our
work, calculated enhancement factors were identical with EM
enhancement for metal-molecule distances larger than 6 Å,
whereas deviations of less than an order of magnitude were
found for smaller distances [18].

A microscopic theory of SERS based on a many-body
Green’s function approach was proposed by Masiello and
Schatz [19,20]. The molecule was treated with first-principles
quantum mechanics, whereas the LSP was described with
classical electrodynamics. The repeated interaction of a molec-
ular dipole with its image in a nearby metallic nanoparticle
was demonstrated to become particularly important in the
strong-coupling regime [21]. The metal-molecule interaction
was treated up to infinite order in perturbation theory. This is
not to be confused with the description of the Raman effect,
which was contrary to our approach described as first-order
Raman scattering with second-order perturbation theory [19].

A quasiclassical description of SERS based on the Purcell
effect was proposed by Gu et al. [25]. While the enhancement
of the incoming light was calculated in the same way as in the
EM-enhancement theory, the enhancement of the scattered
light was calculated with the Purcell effect using Fermi’s
golden rule. The approach thereby used the same implicit
description of the Raman effect as the EM-enhancement
theory. Predictions from this model agreed with the EM-
enhancement theory.

Kelley proposed a fully quantum-mechanical treatment of
SERS based on the density matrix formalism [22]. SERS and
Raman scattering in the absence of a plasmonic nanostructure
were both described with a perturbative expansion of the
density matrix up to fourth order. Molecules and plasmonic
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nanoparticles were assumed to interact through Förster-type
energy transfer, which lead to mixed states. The SERS en-
hancement was strongly affected by the electronic resonances
of the molecule. The enhancement was found to be the
largest for a molecular resonance far away from the plasmonic
resonance of the nanoparticle. This theory goes, similar to
our approach, beyond the external plasmonic enhancement
description of SERS and treats molecule and nanoparticle
transitions on equal footing. It is, however, limited to the
strong-coupling regime, which is uncommon in SERS.

VI. CONCLUSION

We propose to model SERS as a higher-order Raman
process. The plasmonic excitation is treated as an integral
part of the Raman scattering process. Our approach modifies
the widely employed microscopic theory of Raman scattering
to correctly describe SERS. The interaction Hamiltonians
involving plasmonic excitations were derived using second
quantization of the LSP. This perturbative approach enabled
us to obtain analytic expressions for all coupling matrix
elements with no further need for numerical implementation.
Chemical interactions between the metal and molecule wave
functions can be included within perturbation theory with
Herzberg-Teller terms, as demonstrated by Lombardi and
Birke [15,34]. Furthermore, our approach can be also applied
to SERS in solid-state materials, such as graphene [51,52]. In
this case all Raman amplitudes must be calculated one order
higher in perturbation theory because of decoupled vibrational
and electronic states.

We demonstrated the power of understanding SERS as
higher-order Raman scattering by calculating the plasmonic
enhancement of the Raman scattering cross section for a
molecule coupled to the LSP of a gold nanosphere and
a nanosphere dimer. Our theory leads to the same design
criteria for plasmonic nanostructures as the EM and EM-DR-
enhancement theory and accounts for the polarization of the
plasmonic near field. The predicted enhancement close to the
gold nanosphere was up to two orders of magnitude larger than
expected from electromagnetic enhancement, a difference that
increased to up to three orders of magnitude in the hot spot of a
nanodimer. The prediction of stronger plasmonic enhancement
is attributed to the proper description of SERS as a higher-order
Raman effect. It explains the enhancement factors extracted
in recent SERS experiments [10–13,49] and furthermore
highlights the dominance of plasmonic enhancement in SERS.
Our theory is an important step towards a unified quantum-
mechanical description of SERS.
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APPENDIX A: MIE THEORY

In this Appendix we provide all relevant expressions of
Mie theory that were used in this work. We use the notation
by Bohren and Huffman [53]. Consider a plane wave with

amplitude E0, polarization along the x axis, and propagation
along the z axis as incident light field

Einc = E0e
ikr cos ϑ êx. (A1)

This expression can be expanded in vector spherical harmonics
(VSH),

Einc = E0

∞∑
n=1

in
2n + 1

n(n + 1)

(
iN(1)

e1n − M(1)
o1n

)
. (A2)

The induced electric field inside the nanosphere is

Eint = E0

∞∑
n=1

in
2n + 1

n(n + 1)

(
idnN(1)

e1n − cnM(1)
o1n

)
, (A3)

and the scattered electric field around the nanoparticle is

Esca = E0

∞∑
n=1

in
2n + 1

n(n + 1)

(
bnM(3)

o1n − ianN(3)
e1n

)
. (A4)

The VSH are defined as

Memn = ∇ × (r�emn), Momn = ∇ × (r�omn), (A5)

and

Nemn = ∇ × Memn

k
, Nomn = ∇ × Momn

k
, (A6)

where

�emn = cos (mϕ)P m
n (cos ϑ)zn(kr), (A7)

�omn = sin (mϕ)P m
n (cos ϑ)zn(kr). (A8)

Here e stands for even and o for odd; P m
n is the asso-

ciated Legendre polynomial. The superscript (1) specifies
zn(kr) = jn(kr) and (3) specifies zn(kr) = h(1)

n (kr), where jn

is the spherical Bessel function and h(1)
n the spherical Hankel

function of the first kind. The VSH satisfy orthogonality in a
sense that ∫ π

0
dϑ sin ϑ

∫ 2π

0
dϕNemn · Nem′n′ = 0, (A9)

if n 	= n′ or m 	= m′. Similarly, (Memn, Mem′n′ ), (Nomn, Nom′n′),
and (Mom, Mom′n′) are orthogonal sets for n 	= n′ or m 	= m′.
Additionally, VSH of different kinds form orthogonal sets,
i.e., (Nemn, Mem′n′), (Nemn, Nom′n′), etc., for all n,n′,m,m′. The
optical response of the nanosphere is described by the Mie
coefficients

an = sψn(sρ)ψ ′
n(ρ) − ψn(ρ)ψ ′

n(sρ)

sψn(sρ)ξ ′
n(ρ) − ξn(ρ)ψ ′

n(sρ)
, (A10)

bn = ψn(sρ)ψ ′
n(ρ) − sψn(ρ)ψ ′

n(sρ)

ψn(sρ)ξ ′
n(ρ) − sξn(ρ)ψ ′

n(sρ)
, (A11)

cn = sψn(ρ)ξ ′
n(ρ) − sξn(ρ)ψ ′

n(ρ)

ψn(sρ)ξ ′
n(ρ) − sξn(ρ)ψ ′

n(sρ)
, (A12)

dn = sψn(ρ)ξ ′
n(ρ) − sξn(ρ)ψ ′

n(ρ)

sψn(sρ)ξ ′
n(ρ) − ξn(ρ)ψ ′

n(sρ)
, (A13)
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with

ψn(ρ) = ρjn(ρ), ξn(ρ) = ρh(1)(ρ), (A14)

and their derivatives denoted by “ ′ ”. We used the substitutions
ρ = ka and s = √

εAu/εm, with the dielectric function of gold
εAu and the sphere radius a.

APPENDIX B: COUPLING FACTORS FOR SERS BESIDE
A SINGLE NANOSPHERE

The coupling factors M̃1 and M̃2 in Eq. (22) contain the
integrals ε

pt
pl and Gpl(r). We calculate ε

pt
pl from Eq. (18) by

using the expansion of a plane wave into VSH in Eq. (A2),

ε
pt
pl = −

∞∑
n=1

in
2n + 1

n(n + 1)

1√
Vp

∫
Vp

dV ′[M(1)
o1n(r′) − iN(1)

e1n(r′)
] · qpl(r′). (B1)

The integral vanishes except for n = 1 because of qpl ∝ N(1)
e11 and the orthogonality of the VSH. With Eq. (28), we obtain the

analytic expression

ε
pt
pl(ρ) =

√
3

4

1 + ρ2 − ρ4 + (−1 + ρ2) cos (2ρ) + ρ(−2 + ρ2/2) sin(2ρ)

ρ3(ρ cos ρ − sin ρ)
, (B2)

where ρ = kpla. To calculate Gpl(r), we first express the dyadic Green’s function in terms of the Helmholtz Green’s function,

G0(r,r′) = eik|r−r′|

4π |r − r′| , (B3)

as

↔
G(r,r′) =

(↔
I + 1

k2
∇r∇r

)
G0(r,r′), (B4)

with the abbreviation ∇G0 = ∇ · (G0

↔
I ) [41]. We use an expansion of the Helmholtz Green’s function,

G0(r,r′) = ik

∞∑
l=0

jl(kr ′)h(1)
l (kr)

l∑
m=−l

Y ∗
lm(ϑ ′,ϕ′)Ylm(ϑ,ϕ), (B5)

in spherical harmonics Ylm [54]. We first calculate with Eq. (28) for the dipole plasmon mode,

∫
Vp

dV ′G0(r,r′)qpl(r′) = ik4
pl

√
3Vp

8π [kpla cos (kpla) − sin (kpla)]

∞∑
l=0

h
(1)
l (kplr)

l∑
m=−l

Ylm(ϑ,ϕ)

×
∫ a

0
dr ′r ′2

∫ π

0
dϑ ′ sin ϑ ′

∫ 2π

0
dϕ′jl(kplr

′)Y ∗
lm(ϑ ′,ϕ′)N(1)

e11(kplr
′,ϑ ′,ϕ′). (B6)

The integral vanishes except for l = 0 and l = 2 and we obtain

∫
Vp

dV ′G0(r,r′)qpl(r′) =
√

3Vp

8πρ3(ρ cos ρ − sin ρ)

eikplr

k2
plr

3

{
k2

plr
2ρ3 −2ρ + sin (2ρ)

6
ex + [−6 − 6ρ2 + 2ρ4 + (6 − 6ρ2) cos (2ρ)

− ρ(−12 + ρ2) sin (2ρ)]
(−3 + 3ikplr + k2

plr
2
)
(2 sin ϑ cos ϕer − cos ϑ cos ϕeϑ + sin ϕeϕ)/12

}
.

(B7)

As a last step we calculate Gpl(r) in Eq. (16) using the vector Laplacian in spherical coordinates,

Gpl(r,ϑ,ϕ,ρ) =
√

3

8πρ3(ρ cos ρ − sin ρ)

eikplr

k2
plr

3

{
k2

plr
2ρ3 −2ρ + sin (2ρ)

6
ex + [−6 − 6ρ2 + 2ρ4 + (6 − 6ρ2) cos (2ρ)

− ρ(−12 + ρ2) sin (2ρ)]
(−3 + 3ikplr + k2

plr
2)(2 sin ϑ cos ϕer − cos ϑ cos ϕeϑ + sin ϕeϕ)/12

− 2(ρ cos ρ − sin ρ)2
[
er sin ϑ cos ϕ

(
2 − 2ikplr − k2

plr
2
) + (eϑ cos ϑ cos ϕ − eϕ sin ϕ)(−1 + ikplr)

]}
. (B8)
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For emol = εpt = ex and kpt = kplez we obtain

β(r,ϑ,ϕ) = 9

8

1 + ρ2 − ρ4 + (−1 + ρ2) cos (2ρ) + ρ(−2 + ρ2/2) sin(2ρ)

ρ6(ρ cos ρ − sin ρ)2

eikplr(1−cos ϑ)

k3
plr

3

{
k2

plr
2ρ3[−2ρ + sin (2ρ)]/6

+ [−6 − 6ρ2 + 2ρ4 + (6 − 6ρ2) cos (2ρ) − ρ(−12 + ρ2) sin (2ρ)]
(−3 + 3ikplr + k2

plr
2
)

× (2 sin2 ϑ cos2 ϕ − cos2 ϑ cos2 ϕ − sin2 ϕ)/12 − 2(ρ cos ρ − sin ρ)2

× [
sin2 ϑ cos2 ϕ

(
2 − 2ikplr − k2

plr
2
) + (cos2 ϑ cos2 ϕ + sin2 ϕ)(−1 + ikplr)

]}
(B9)

in Eq. (31). We abbreviated ρ = kpla.
Within the quasistatic point-dipole approximation, i.e., Eq. (30), we find ε

pt
pl = 1/

√
3 and

Gpl(r) = 1√
3

↔
G(r,0)ex = 1√

3
G0(r,0)ex + 1√

3k2
pl

∇r{∇r·[G0(r,0)ex]}

= kple
ikplr

4
√

3π

[
er sin ϑ cos ϕ

2 − 2ikplr

k3
plr

3
+ (eϑ cos ϑ cos ϕ − eϕ sin ϕ)

k2
plr

2 + ikplr − 1

k3
plr

3

]
, (B10)

which leads to

β(r,ϑ,ϕ) = eikplr(1−cos ϑ)

k3
plr

3

[
sin2 ϑ cos2 ϕ(2 − 2ikplr) + (cos2 ϑ cos2 ϕ + sin2 ϕ)

(
k2

plr
2 + ikplr − 1

)]
(B11)

in Eq. (31).

APPENDIX C: EM ENHANCEMENT

The EM enhancement is calculated as

EFEM(ωL) = |Einc + ELSP(ωL)|2
|Einc|2

|Einc + ELSP(ωS)|2
|Einc|2 , (C1)

with the incident electric field Einc and the electric field gen-
erated by the plasmonic nanostructure ELSP at the frequency
ωL of the incoming laser or the frequency ωS of the Raman
scattered light. This expression is a good approximation of the
EM enhancement in the backscattering configuration, which
is considered in this article [4,9]. We also calculate the EM
enhancement with the EM-DR following the steps in Ref. [8].

Beside a single gold nanosphere we use ELSP = Esca from
Eq. (A4) within Mie theory and

ELSP(r,ω) = k2α(ω)

ε0εm
E0

↔
G(r,0)ex (C2)

within the quasistatic approximation (for Einc = E0ex);

α(ω) = 4πε0εma3 εAu(ω) − εm

εAu(ω) + 2εm
(C3)

is the polarizability of the gold nanosphere. We use an
analytical model for the dielectric function of gold εAu(ω) from
Ref. [55] to reproduce the experimental data from Ref. [56].

We calculate the enhancement in the hot spot of a gold
nanosphere dimer within the quasistatic point-dipole approxi-
mation following the steps in Ref. [57]. The dimer consists of
two gold spheres with radius a and center-to-center distance
d. The spheres are placed on the x axis at d/2 (sphere 1) and
−d/2 (sphere 2). For light polarization along the dimer axis,

the local electric field acting on sphere 1 is

Eloc
1 = Einc + Epl

2 (d/2,0,0)

= Einc + α(ω)eikpld

2πε0εmd3
(1 − ikpld)Eloc

2 , (C4)

where Epl
2 (d/2,0,0) is the scattered field of sphere 2 at the

position of sphere 1 [calculated with Eqs. (C2) and (B10)].
Similarly, the local electric field acting on sphere 2 is

Eloc
2 = Einc + Epl

1 (−d/2,0,0)

= Einc + α(ω)eikpld

2πε0εmd3
(1 − ikpld)Eloc

1 . (C5)

This system of two coupled equations can be solved for Eloc
1,2,

which leads to

Eloc
1 = Eloc

2 =
1 + α(ω)eikpld

2πε0εmd3 (1 − ikpld)

1 − [
α(ω)eikpld

2πε0εmd3 (1 − ikpld)
]2

Einc. (C6)

The induced dipole moment in the nanosphere dimer is

p(r,ω) = αind
‖ (ω)Einc[δ(r − d/2) + δ(r + d/2)], (C7)

with

αind
‖ = α(ω)

1 + α(ω)eikpld

2πε0εmd3 (1 − ikpld)

1 − [
α(ω)eikpld

2πε0εmd3 (1 − ikpld)
]2

. (C8)

The electric field generated by the nanosphere dimer is then

ELSP(r,ω) = k2αind
‖ (ω)

ε0εm
E0[

↔
G(r, − d/2) +

↔
G(r,d/2)]ex.

(C9)
For light polarization perpendicular to the dimer axis we obtain

αind
⊥ = α(ω)

1 − α(ω)eikpld

4πε0εmd3

(
1 − ikpld − k2

pld
2
)

1 − [
α(ω)eikpld

4πε0εmd3

(
1 − ikpld − k2

pld
2
)]2

. (C10)
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(a)

(b)

FIG. 6. Plasmon energy �ωpl (blue) and full width at half
maximum 2γpl (red) as function of (a) sphere diameter and (b)
dielectric constant εm of surrounding medium. Data represented by
plot markers were obtained from fit of |d1(ω)|2, Eq. (A13). Solid lines
are fit of these data with polynomial.

APPENDIX D: ENERGY AND SPECTRAL
WIDTH OF PLASMON

In this Appendix we describe, how we obtained the energy
�ωpl and spectral width 2γpl of the dipole LSP mode for the
plots in Figs. 3, 4, and 5.

For the calculation of the SERS enhancement beside a
single Au nanosphere, i.e., Figs. 3 and 4, we deduced ωpl

and γpl from the excitation-energy dependence of the internal
electric field given by |dn=1(ω)|2. Values for ωpl and γpl

were obtained from a fit with a single Lorentzian peak for
several sphere diameters and dielectric constants εm of the
surrounding medium [plot markers in Figs. 6(a) and 6(b)].
These values were then fit with a polynomial to obtain ωpl and
γpl as a function of sphere diameter and εm [lines in Figs. 6(a)

(a)

(b)

FIG. 7. (a) Plasmon energy Epl = �ωpl and (b) spectral width
FWHM = 2γpl as function of gap size of nanosphere dimer for
three dielectric constants εm. Data represented by plot markers were
obtained from a fit of |αind

‖ (ω,d)|2, Eq. (C8). Solid lines are fit of these
data with polynomial.

and 6(b)]. For the calculation of the enhancement within the
quasistatic approximation in Fig. 3(a), we used the values
of ωpl and γpl for the smallest sphere diameter of 10 nm in
Fig. 6(a).

To calculate the SERS enhancement in the center of the
gold nanosphere dimer, we obtained ωpl and γpl from a fit of
the dimer polarizability |αind

‖ (ω,d)|2, Eq. (C8), with a single
Lorentzian peak and a constant background. Values of ωpl

and γpl were calculated as a function of gap size d (in steps
of 1 nm) for three values of εm [plot markers in Figs. 7(a)
and 7(b)]. These discrete values were fit with a polynomial to
obtain the functions ωpl(d,εm) and γpl(d,εm); see solid lines in
Fig. 7. A similar approach was used to determine the plasmon
energies ωpl,⊥ in Eq. (34) from |αind

⊥ (ω,d)|2.
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