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Abstract: Immunologically restricted patients such as those with autoimmune diseases or
malignancies often suffer from delayed or insufficient fracture healing. In human fracture hematomas
and the surrounding bone marrow obtained from immunologically restricted patients, we analyzed
the initial inflammatory phase on cellular and humoral level via flow cytometry and multiplex
suspension array. Compared with controls, we demonstrated higher numbers of immune cells
like monocytes/macrophages, natural killer T (NKT) cells, and activated T helper cells within
the fracture hematomas and/or the surrounding bone marrow. Also, several pro-inflammatory
cytokines such as Interleukin (IL)-6 and Tumor necrosis factor α (TNFα), chemokines (e.g., Eotaxin
and RANTES), pro-angiogenic factors (e.g., IL-8 and Macrophage migration inhibitory factor: MIF),
and regulatory cytokines (e.g., IL-10) were found at higher levels within the fracture hematomas
and/or the surrounding bone marrow of immunologically restricted patients when compared
to controls. We conclude here that the inflammatory activity on cellular and humoral levels at
fracture sites of immunologically restricted patients considerably exceeds that of control patients.
The initial inflammatory phase profoundly differs between these patient groups and is probably one
of the reasons for prolonged or insufficient fracture healing often occurring within immunologically
restricted patients.
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1. Introduction

Patients suffering from disorders which impact their immune function often exhibit delayed or
ineffective fracture healing [1–9], and sometimes even the development of pseudarthrosis [7–9]. Very
heterogeneous circumstances are associated with restricted immune functions: inter alia autoimmune
diseases, malignancies, diabetes mellitus, osteoporosis, and persons suffering from alcoholism, but
also among the elderly [1–6]. The reasons for impaired fracture healing in these patients are not
yet known in detail. Fracture healing is a complex regenerative process generally starting with
inflammation [10]. After a trauma which leads to a fracture, a hematoma is formed in the fracture gap.
This fracture hematoma represents the site of the initial inflammatory phase [11]. We characterized
previously the initial inflammatory phase of control patients from the immunological point of view [12].
We could confirm the inflammatory nature of this initial phase both on RNA and protein levels
showing high concentrations of pro-inflammatory cytokines such as IL-1β, Interferon (IFNγ or TNFα
and chemokines like Monocyte chemotactic protein 1 (MCP-1), Interferon gamma-induced protein
10 (IP-10) and Regulated on activation, normal T cell expressed and secreted (RANTES) [12,13].
Furthermore, we demonstrated that immune cells invade and become activated [12]. Very little is
known about these initial processes of fracture healing in patients with restricted immune functions.
The heterogeneous group of immunologically restricted patients analyzed in this study is described
in greater detail in the Section 4 “Materials and Methods” subheading Section 4.1 “Patients”. On
the RNA level, a distinctly increased inflammation has already been described for immunologically
restricted patients [14]. Furthermore, we have shown that immunologically restricted patients exhibit
an inadequate response to bioenergetically adverse conditions like hypoxia which characterize the
early milieu within the fracture gap [14]. Both enhanced inflammatory response and inadequate
adaptation to hypoxia may lead to the decreased expression of Runt-related transcription factor 2
(RUNX-2) shown in the fracture hematomas of patients with restricted immune functions [14]. RUNX-2
is a transcription factor mediating osteogenesis [15–17].

Apart from this information, our knowledge about the initial inflammatory phase of fracture
healing in immunologically restricted patients is still scarce and incomplete. This drove us to perform
a detailed analysis of immune cell populations and pro-inflammatory and regulatory cytokines,
chemokines, and factors regulating angiogenesis within fracture hematomas and the surrounding
tissue in patients suffering from disorders concerning impact on immune functions. These results were
then compared to those of previously analyzed data on fracture hematomas obtained from control
patients (patients lacking co-morbidities associated with delayed fracture healing) [12]. Here, to our
knowledge, we give the first detailed immunological characterization of the fracture hematoma from
immunologically restricted patients.

2. Results

2.1. Fracture Hematomas of Immunologically Restricted Patients Comprise Higher Amounts of
Monocytes/Macrophages, Hematopoietic Stem and Progenitor Cells, as Well as NKT Cells, While Less
Regulatory T Cells Are Present, and T Helper Cells Exhibit an Activated Phenotype

Immune cell populations were analyzed within the fracture hematoma (FH) and the surrounding
bone marrow (SBM) of immunologically restricted (IR) patients (dark grey) and compared to FH and
SBM of controls (light grey); the gating strategy is presented in Supplemental Figure 1. The amounts of
CD14+ monocytes/macrophages (as percentage of all leucocytes found in the fracture hematoma) and
CD34+ hematopoietic stem and progenitor cells (as percentage of all mononuclear cells) were increased
significantly within SBM IR (surrounding bone marrow of immunologically restricted patients) when
compared to SBM of controls and numerically within the FH IR when compared to FH of controls
(Figure 1A,B). It should be noted that the data for controls presented in Figure 1 and elsewhere in this
manuscript were taken from our recent publication [12]. The amounts of CD3+CD56+ natural killer T
(NKT) cells (as percentage of all lymphocytes) and activated CD45RA−CD25+CD3+CD4+ T helper cells
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(as percentage of all T helper cells) were increased significantly within SBM IR (SBM of immunologically
restricted patients) when compared to SBM of controls and significantly within the FH IR when
compared to FH of controls (Figure 1C,D). The number of activated CD45RA−CD25+CD3+CD4+ T
helper cells (as percentage of all T helper cells) within the FH IF was significantly increased when
compared to SBM IR. The CD25+CD127−CD3+CD4+ regulatory T cells (as percentage of all T helper
cells) were significantly decreased within SBM IR when compared to SBM, but were significantly
increased within the FH IR when compared to SBM IR (Figure 1E). For the Mann-Whitney U test for
independent groups, and Wilcoxon t-test for paired samples, statistically significant probability values
of p < 0.05 are indicated.
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NKT cells were detected within lymphocytes; (D) The activated CD45RA−CD25+CD3+CD4+ T helper 
cells were detected within the whole T helper cell population; (E) CD25+CD127−CD3+CD4+ 
regulatory T cells were detected within the whole T helper cell population. Controls n = 42, IR patients 
n = 20. IR-patients vs. controls Mann-Whitney U test, FH vs. corresponding SBM Wilcoxon test,  
p-values < 0.05 are shown as numbers in the Figure. 
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Figure 1. Monocytes/macrophages, hematopoietic stem and progenitor cells, natural killer T (NKT)
cells and activated T helper cells accumulate in fracture hematoma (FH)/surrounding bone marrow
(SBM) of immunologically restricted (FH IR/SBM IR) patients while regulatory T cells are decreased in
SBM. Leukocytes from FH IR/SBM IR of immunologically restricted patients (dark grey) and controls
(light grey) were isolated, stained with various surface markers and analyzed by flow cytometry.
(A) Within all leukocytes, the CD14+ monocytes/macrophages were detected; (B) CD34+ hematopoietic
stem and progenitor cells were detected within the mononuclear cells; (C) CD3+CD56+ NKT cells
were detected within lymphocytes; (D) The activated CD45RA−CD25+CD3+CD4+ T helper cells were
detected within the whole T helper cell population; (E) CD25+CD127−CD3+CD4+ regulatory T cells
were detected within the whole T helper cell population. Controls n = 42, IR patients n = 20. IR-patients
vs. controls Mann-Whitney U test, FH vs. corresponding SBM Wilcoxon test, p-values < 0.05 are shown
as numbers in the Figure.

2.2. Fracture Hematomas and the Surrounding Bone Marrow of Immunologically Restricted Patients Exhibit
Higher Concentrations of Pro-Inflammatory Cytokines When Compared to Controls

Pro-inflammatory cytokines were quantified within the FH and SBM of controls (data previously
published in [12]) and immunologically restricted (IR) patients. The concentrations of IL-1β, IL-9, IFNγ,
and TNFα were significantly increased in both SBM IR and FH IR when compared to SBM and FH
of controls (Figure 2A,C,E,F). The amount of IL-6 was significantly increased within the FH IR when
compared to FH (Figure 2B). The concentration of IL-12 was significantly increased within the SBM IR
when compared to SBM (Figure 2D). The amounts of IL-9, IFNγ, and TNFα were significantly decreased
within the FH IR when compared to the corresponding SBM IR (Figure 2C,E,F). Mann-Whitney U test
for independent groups, Wilcoxon t-test for paired samples, statistically significant probability values
of p < 0.05 are indicated.
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Figure 2. Pro-inflammatory cytokines are found at high concentrations in FH/SBM of 
immunologically restricted patients (FH IR/SBM IR). Supernatants from FH and SBM of 
immunologically restricted patients (FH IR/SBM IR: dark grey) and controls (FH/SBM: light grey) 
were analyzed for the concentrations of pro-inflammatory cytokines via multiplex suspension array. 
(A) Interleukin (IL)-1β; (B) IL-6; (C) IL-9; (D) IL-12; (E) Interferon γ (IFN)γ; (F) Tumor necrosis 
factor α (TNFα). Controls n = 42, IR patients n = 20. IR-patients vs. controls Mann-Whitney U test, 
FH vs. corresponding SBM Wilcoxon test, p-values < 0.05 are shown as numbers in the Figure. 
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Figure 2. Pro-inflammatory cytokines are found at high concentrations in FH/SBM of immunologically
restricted patients (FH IR/SBM IR). Supernatants from FH and SBM of immunologically restricted
patients (FH IR/SBM IR: dark grey) and controls (FH/SBM: light grey) were analyzed for the
concentrations of pro-inflammatory cytokines via multiplex suspension array. (A) Interleukin (IL)-1β;
(B) IL-6; (C) IL-9; (D) IL-12; (E) Interferon γ (IFN)γ; (F) Tumor necrosis factor α (TNFα). Controls
n = 42, IR patients n = 20. IR-patients vs. controls Mann-Whitney U test, FH vs. corresponding SBM
Wilcoxon test, p-values < 0.05 are shown as numbers in the Figure.

2.3. Regulatory Cytokines Are Increased at Fracture Sites of Immunologically Restricted Patients When
Compared to Controls

The concentration of IL-10 was significantly increased only within the SBM IR when compared
to SBM (Figure 3A), while the concentration of IL-13 was significantly increased in both SBM IR and
FH IR when compared to SBM and FH of controls (Figure 3B). For the Mann-Whitney U test for
independent groups, and Wilcoxon t-test for paired samples, statistically significant probability values
of p < 0.05 are indicated.
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Figure 3. Regulatory cytokines are increased in FH/SBM of immunologically restricted patients.
Supernatants from FH and SBM of immunologically restricted patients (FH IR/SBM IR: dark grey)
and controls (FH/SBM: light grey) were analyzed for the concentrations of regulatory cytokines via
multiplex suspension array. (A) IL-10; (B) IL-13. Controls n = 42, IR patients n = 20. IR-patients vs.
controls Mann-Whitney U test, FH vs. corresponding SBM Wilcoxon test, p-values < 0.05 are shown as
numbers in the Figure.
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2.4. Fracture Hematomas and the Surrounding Bone Marrow of Immunologically Restricted Patients Exhibit
Higher Concentrations of Chemokines When Compared to Controls

Chemokines were quantified within FH and SBM of controls [12] and immunologically restricted
(IR) patients. The concentration of Eotaxin was significantly increased in both SBM IR and FH IR
when compared to SBM and FH of controls (Figure 4A). The concentrations of IP-10 and RANTES
were significantly increased within the SBM IR when compared to SBM (Figure 4B,D). The amount of
Macrophage inflammatory protein 1α (MIP-1α) was significantly increased within the FH IR when
compared to FH (Figure 4C). The MIP-1α concentration was significantly increased within the SBM IR
when compared to the corresponding FH IR (Figure 4C). For the Mann-Whitney U test for independent
groups, and Wilcoxon t-test for paired samples, statistically significant probability values of p < 0.05
are indicated.
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Figure 4. Chemokines are up-regulated in FH/SBM of immunologically restricted patients.
Supernatants from FH and SBM of immunologically restricted patients (FH IR/SBM IR: dark grey)
and controls (FH/SBM: light grey) were analyzed for the concentrations of chemokines via multiplex
suspension array. (A) Eotaxin/CCL11; (B) Interferon gamma-induced protein 10 (IP-10/CXCL10);
(C) Macrophage inflammatory protein 1α (MIP-1α/CCL3); (D) Regulated on activation, normal T cell
expressed and secreted (RANTES/CCL5). Controls n = 42, IR patients n = 20. IR-patients vs. controls
Mann-Whitney U test, FH vs. corresponding SBM Wilcoxon test, p-values < 0.05 are shown as numbers
in the Figure.

2.5. Factors Mediating Angiogenesis Were Found at Higher Concentrations within the Fracture Hematomas
and the Surrounding Bone Marrow of Immunologically Restricted Patients When Compared to Controls

Angiogenic factors were quantified within the FH and SBM of controls [12] and immunologically
restricted (IR) patients. The concentrations of IL-8, Platelet-derived growth factor (PDGF), and
Granulocyte-colony stimulating factor (G-CSF) were significantly increased in SBM IR when compared
to SBM of controls (Figure 5A,C,D). The amount of MIF was significantly increased within the FH
IR when compared to FH (Figure 5B). The IL-8 and MIF concentrations were significantly increased
within the FH IR when compared to the corresponding SBM IR (Figure 5A,B). For the Mann-Whitney U
test for independent groups, and Wilcoxon t-test for paired samples, statistically significant probability
values of p < 0.05 are indicated.
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Figure 5. Angiogenic factors are highly secreted in FH/SBM of immunologically restricted patients.
Supernatants from FH and SBM of immunologically restricted patients (FH IR/SBM IR: dark grey) and
controls (FH/SBM: light grey) were analyzed for the concentrations of angiogenic factors via multiplex
suspension array. (A) IL-8; (B) Macrophage migration inhibitory factor (MIF); (C) Platelet-derived
growth factor (PDGF); (D) Granulocyte-colony stimulating factor (G-CSF). Controls n = 42, IR patients
n = 20. IR-patients vs. controls Mann-Whitney U test, FH vs. corresponding SBM Wilcoxon test,
p-values < 0.05 are shown as numbers in the Figure.

3. Discussion

The initial inflammatory phase of fracture healing differs between controls and immunologically
restricted patients. As we have shown before, in controls (patients lacking co-morbidities associated
with delayed fracture healing) there is significant inflammatory activity within the fracture hematoma
(FH) and surrounding bone marrow (SBM) [12]. This situation was seen to be different to that found in
immunologically restricted patients who are known to suffer more often from delayed or insufficient
fracture healing [1–9], as shown in this work here. Previously, we could demonstrate pronounced
inflammation and inadequate response to hypoxia in fracture hematomas of immunologically
restricted patients on the RNA level [14]. Here we confirm these data on the protein level and
add detailed information by extensively characterizing cellular composition, cellular activity, and
cytokine/chemokine milieu.

3.1. Immune Cells in Fracture Hematoma of Immunologically Restricted Patients

We observed an increased invasion of monocytes/macrophages into the SBM of IR patients when
compared to controls. It is well known that macrophages invade the fracture site and are essential for
bone regeneration [18]. The higher number of them found in the IR-group is probably due to increased
concentrations of chemokines like MIP-1α and RANTES (CCL3/5) which facilitate the immigration of
monocytes/macrophages [19]. The overall increased inflammatory level within FH and SBM obtained
from immunologically restricted patients presumably also leads to the high numbers observed for
hematopoietic stem and progenitor cells, as well as NKT cells. The concentration of Eotaxin (CCL11) is
high which could be responsible for the high number of CD34+ hematopoietic stem and progenitor
cells (HSPC) which we saw [20]. In turn, monocytes, NKT cells but also HSPC become activated,
proliferate, and then contribute to the inflammation via production of cytokines/chemokines. We
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could clearly demonstrate that the pronounced inflammatory situation within the fracture site in
IR-patients leads to the activation of T helper cells as evidenced by the fact that CD25 is up-regulated,
and CD45RA is down-regulated in this population. One possible explanation might be the relative lack
of regulatory T cells as we could show lower numbers of CD25+CD127− regulatory T cells especially
within the SBM of IR patients when compared to controls. We previously showed the activation of
cytotoxic T cells at fracture sites in control patients [12]. Within the IR-group it seems to be the T helper
cells which are being significantly more activated. This facilitates the production of pro-inflammatory
cytokines, and we found these at higher concentrations within FH/SBM of the immunologically
restricted patients when compared to controls.

3.2. Pro-Inflammatory and Regulatory Cytokines at the Fracture Site of Immunologically Restricted Patients

Also the concentration of IL-1β was significantly higher within the FH and SBM of
immunologically restricted patients when compared to the controls. On the one hand, IL-1β contributes
to the proliferation of osteoblasts and thus to bone regeneration [21,22], but on the other hand, a long
exposure to IL-1β inhibits osteoblast migration and contributes to delayed healing [23]. We showed
higher numbers of macrophages in the IR group which could be the source for the significantly
increased concentrations of IL-6 and TNFα. IL-6 and TNFα together with the increased concentration
of IL-1β could trigger increased osteoclastogenesis leading to increased resorption [24].

T helper cells (activated at fracture sites of IR-patients) produce IL-9 which is found at significantly
higher concentrations in the IR-patients compared to controls, and this could lead to the observed
higher number of hematopoietic stem and progenitor cells [25]. Mice lacking IL-12 and IL-23 show
increased bone formation [26]. We demonstrated significantly higher concentrations of IL-12 within the
immunologically restricted patients than those seen in the controls. IL-12 stimulates T helper cells to
produce IFNγ which we have also shown to be significantly increased within the IR-patients. In turn,
high IFNγ can inhibit the differentiation of mesenchymal stem cells and thus contribute to impaired
fracture healing [26]. Mesenchymal stem cells are essential for fracture healing [27]. They migrate
to the fracture site and are important progenitors of osteoblasts and bone lining cells [28]. However,
they are also assumed to contribute to the termination of the initial inflammation in fracture healing
via their immunomodulatory properties such as the secretion of IL-10 [29]. Thus, the significantly
increased concentration of IL-10 could point to the higher activity of mesenchymal stem cells which
might attempt to counter-regulate the profound inflammation in IR-patients. IL-13 is a regulatory
cytokine closely related to IL-4 [30]. Activated T cells like those which we have shown to be present at
fracture sites do secrete IL-13 and modulate monocyte and B cell function through IL-13 for example
via the suppression of pro-inflammatory cytokine production [30,31]. At the fracture site we showed a
significantly increased concentration of IL-13 which might be secreted in order to counter-regulate the
elevated inflammation in the IR-patients.

3.3. Chemokines at Fracture Sites of Immunologically Restricted Patients

We showed an accumulation of monocytes/macrophages, NKT cells and activated T helper cells
at fracture sites in immunologically restricted patients in comparison with the controls. These cells are
able to secrete diverse chemokines but are also factors regulating vascularization [32–35]. Furthermore,
the significantly increased concentration of Eotaxin probably explains the accumulation of CD34+
hematopoietic stem and progenitor cells within the immunologically restricted patients [20]. IP-10
might be up-regulated as a consequence of the increased concentration of IFNγ [36]. The increased
amount of MIP-1α might contribute to disturbed osteoblast function, as MIP-1α is able to inhibit
osteoblast differentiation [37]. RANTES is an important chemokine in bone homeostasis. It promotes
chemo-attraction of osteoblasts and osteoblast survival [38]. Thus, RANTES is certainly important for
bone regeneration and we also showed that secretion of RANTES in FH and SBM is present in the
controls [12]. However, it is also osteoclasts which express the RANTES receptor CCR1 and thus the
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very high amount of RANTES might contribute to insufficient fracture healing in the immunologically
restricted patients [38].

3.4. Angiogenic Factors in Fracture Hematomas of Immunologically Restricted Patients

The pronounced inflammatory activity within the FH/SBM of immunologically restricted
patients is a high energy-consuming process [39]. Thus, the demand for revascularization is huge.
Vascularization of course is essential for bone regeneration [40,41]. As we have shown before, there
are high concentrations of factors mediating angiogenesis present at fracture sites of controls [12].
However, the pronounced inflammation within the immunologically restricted group might lead to an
even significantly higher production of pro-angiogenic factors in IR-patients as we showed for IL-8,
MIF, PDGF, and G-CSF.

4. Materials and Methods

4.1. Patients

We analyzed patients with closed fractures undergoing a surgery within 72 h post injury. All
patients gave their written informed consent. The local ethical committee approved the study.

Patients meeting the inclusion and exclusion criteria summarized in Table 1 were defined as
controls (n = 42) [12].

Table 1. Inclusion and exclusion criteria for patients defined as controls.

Inclusion Criteria Exclusion Criteria (at Present or in the Past)

Patients with closed fractures
Surgery within 72 h post injury

Autoimmune diseases
Immunosuppressive drugs (such as MTX, glucocorticoids,
cyclosporine, tacrolimus, sirolimus, biologics)
Osteoporosis
Bone metabolism-relevant drugs (such as bisphosphonates,
glucocorticoids, denosumab, teriparatid)
Chronic infections (e.g., HIV, HBV, HCV, Tbc)
Cancer
Diabetes mellitus
Chronic kidney disease

Patients with autoimmune diseases, cancer, diabetes mellitus, osteoporosis, or alcoholism were
defined as immunologically restricted patients (n = 20) (see Table 2). These risk factors are known to
be associated with prolonged or ineffective fracture healing [7,9,42–45]. Patients with the following
autoimmune diseases were included: rheumatoid arthritis, cryoglobulinemic vasculitis, systemic lupus
erythematosus, and giant cell arteritis. Patients with the following cancer diseases were included:
non-Hodgkin lymphoma, 2 mamma carcinoma, and bronchial carcinoma.

Table 2. Inclusion and exclusion criteria for patients defined as immunologically restricted patients,
the number of patients matching the inclusion criteria is given.

Inclusion Criteria Exclusion Criteria (at Present or in the Past)

Patients with closed fractures

Chronic infections (such as HIV, HBV, HCV, Tbc)

Surgery within 72 h post injury
AND one or more of the following conditions:
Autoimmune diseases (n = 4)
Osteoporosis (n = 6)
Cancer (n = 4)
Alcoholism (n = 4)
Diabetes mellitus (n = 4)
Chronic kidney disease (n = 3)

The patient characteristics are given in Table 3.
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Table 3. Patient characteristics.

Patients Groups Years ± Standard
Deviation

Age: Min–Max
(years) Male (%) Female (%)

Healthy donors 53 ± 18.8 26–93 52.4 47.6
Immunologically restricted

patients 70.1 ± 10.8 38–87 50 50

4.2. Tissue Samples

Fracture hematoma (FH) and bone marrow surrounding the fracture hematoma (surrounding
bone marrow, SBM): FH and SBM were obtained from patients (controls and immunologically restricted
patients) with a closed fracture undergoing an osteosynthesis <72 h after fracture. The samples were
kept in heparinized tubes to prevent coagulation of the SBM (Figure S1A), the FH was already
coagulated when removed ex vivo. Thus, FH and SBM could be separated via filtration of the
liquid SBM (70 µm cell strainer, BD Biosciences, Heidelberg, Germany) (Figure S1B) as described
previously [12]. After separation of FH and SBM the coagulated FH was pressed through the cell
strainer to prepare single cells (Figure S1C). All samples were centrifuged to separate cells and
supernatant (Figure S1D). The cell-free supernatant was used for cytokine/chemokine analysis. The cell
pellet was used for cytometric analysis.

Erythrocyte lysis was performed with cell pellets for 6 min at 4 ◦C (erythrocyte lysis buffer: 0.01 M
KHCO3, 0.155 M NH4Cl, 0.1mM EDTA, pH 7.5). The samples were washed with phosphate buffered
saline supplemented with 0.5% (w/v) bovine serum albumin (137 mM NaCl + 2.7 mM KCl + 1.5 mM
KH2PO4 + 7.9 mM Na2HPO4·xH2O, pH 7.2 + 30 mM bovine serum albumin).

4.3. Flow Cytometry

Leukocytes were filtered (MACS pre-separation filter 30 µm, Miltenyi Biotech, Bergisch Gladbach,
Germany) and incubated in a solution containing 5 mg/mL human IgG (IgG1 66.6%, IgG2 28.5%, IgG3
2.7% & IgG4 2.2%; Flebogamma, Grifols, Frankfurt, Germany) to block unspecific binding. Cells were
stained with for 10 min at 4 ◦C with αCD3 (UCHT1), αCD56 (B159), αCD127 (hIL-7R-M21), αCCR7
(3D12), αCD4 (RPA-T4), αCD25 (M-A251), αCD19 (HIB19), αCD34 (581), αCD14 (M5E2), αCD16 (3G8),
αCD69 (FN50), αIgD (IA6-2) (all from BD Biosciences, Heidelberg, Germany); αCD45RA (MEM-56)
and αCD8 (3B5) (both from Caltag Laboratories, Hamburg, Germany) conjugated to Pacific blue,
Pacific orange, PE-Cy7, PE, PE-Cy5, APC, APC-Cy7, APC-Alexa750 or FITC. Analysis was performed
using a LSR II cytometer (BD Biosciences, Heidelberg, Germany) and FlowJo software (Tree Star,
Ashland, OR, USA). Significantly different populations were presented when compared controls and
immunologically restricted patients. Gating strategy is presented in Figure S2: granulocytes were
defined according to scatter and via CD16 expression. Monocytes and macrophages were analyzed
in scatter and via CD14 expression. Lymphocytes subpopulations were analyzed via expression of
CD3, CD4, CD8, CD19, CD56, and their combinations. The activation and further differentiation
was analyzed via the expression of CD25, CD69, CD45RA, CCR7, CD127, IgD. Only those results
significantly different between controls and IR-patients are presented. Hematopoietic stem and
progenitor cells were analyzed via the expression of CD34 within the mononuclear cell population
defined in the scatter dot plot

4.4. Cytokines, Chemokines and Growth Factors

The concentrations of cytokines, chemokines and growth factors were measured by a Bioplex
system (Bio-Rad Laboratories, Munich, Germany) according to the manufacturer’s instructions.
The following cytokines and chemokines were quantified: interleukin (IL)-1β, IL-2, IL-5, IL-6,
IL-7, IL-8, IL-9, IL-13, IL-15, IL-17, interferon-gamma (IFNγ), interferon-gamma-induced protein 10
(CXCL10, IP-10), tumor necrosis factor-alpha (TNFα), IL-1 receptor antagonist (IL-1ra), IL-4, IL-10,
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monocyte chemotactic protein-1 (MCP-1, CCL2), macrophage inflammatory protein 1α (MIP-1α,
CCL3), MIP-1β (CCL4), Eotaxin (CCL11), basic fibroblast growth factor (FGF basic), platelet-derived
growth factor (PDGF), vascular endothelial growth factor (VEGF), granulocyte colony-stimulating
factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), CCL5 (regulated on
activation normal T-cell expressed and secreted, RANTES), and MIF (macrophage migration inhibitory
factor). Significantly different concentrations were presented when controls' and immunologically
restricted patients' values were compared.

4.5. Statistical Analysis

Statistical tests were performed using Graph Pad Prism Software (Graph Pad, San Diego, CA,
USA). Data are shown as box and whiskers using the Tukey method. Intra-individual differences
between FH and the corresponding SBM were analyzed using the Wilcoxon t-test for paired samples.
The differences between different patients groups (controls and immunologically restricted patients)
were analyzed using the Mann-Whitney U test for independent groups. Probability values of p < 0.05
were considered to be statistically significant; the p-values are presented within the Figures.

5. Conclusions

There is a pronounced inflammatory activity on cellular and humoral levels at the fracture site
of immunologically restricted patients which significantly exceeds the normal inflammatory level of
controls (Figure 6). The initial inflammatory phase differs between these patients and is probably one
of the reasons for the prolonged or insufficient fracture healing often occurring within immunologically
restricted patients.
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