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We present the quantitative phase diagram of the bilayer bosonic fractional quantum Hall system on the torus
geometry at total filling factor ν = 1 in the lowest Landau level. We consider short-range interactions within and
between the two layers, as well as the interlayer tunneling. In the fully polarized regime, we provide an updated
detailed numerical analysis to establish the presence of the Moore-Read phase of both even and odd numbers
of particles. In the actual bilayer situation, we find that both interlayer interactions and tunneling can provide
the physical mechanism necessary for the low-energy physics to be driven by the fully polarized regime, thus
leading to the emergence of the Moore-Read phase. Interlayer interactions favor a ferromagnetic phase when the
system is SU(2) symmetric, while the interlayer tunneling acts as a Zeeman field polarizing the system. Besides
the Moore-Read phase, the (220) Halperin state and the coupled Moore-Read state are also realized in this model.
We study their stability against each other.
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I. INTRODUCTION

Elegant approaches to create topologically ordered quan-
tum states have been proposed starting from a given parent
one. These techniques could be useful to engineer a richer
topological order or to potentially inherit from the parent
state some nonuniversal properties such as a large gap. An
example that has recently drawn much attention is the anyon
condensation [1,2]. In this context, condensing some of the
bosonic excitations of a given topological phase leads to a
simpler (or equally rich) topological order. Conversely, the
projective construction [3–9] starts from multiple copies of a
simple topological phase hosting for example only Abelian
excitations, to generate a new one that could potentially have
a more complex topological order, involving non-Abelian
excitations.

The projective construction can be thought of as several
layers of a topological state that we symmetrize (or
antisymmetrize) over the layer degree of freedom. When the
topological order can be described by conformal theories
[such as for several fractional quantum Hall (FQH) model
wave functions], this construction is related to the so-called
coset/orbifold projections [3–6]. One simple example of
the coset projection is based on two copies of the bosonic
Laughlin ν = 1

2 state [10] leading to the Moore-Read (MR)
state [11] once symmetrized [12,13]. Another similar example,
known as orbifolding, is based on two copies of the fermionic
ν = 1

3 Laughlin state where antisymmetrization yields the Z4

Read-Rezayi state. While being mathematically well defined,
the symmetrization (or antisymmetrization for fermionic
systems) is not a physical process. Still, it was argued [13,14]
that tunneling between layers might play the same role.

In this article, we discuss the phase diagram of a bilayer
bosonic FQH system in the presence of interlayer interactions

and tunneling at total filling factor ν = 1
2 + 1

2 . For that purpose,
we use exact diagonalizations on the torus geometry. In each
layer the particles interact via a contact interaction. When the
two layers are decoupled, each of them is at filling factor ν = 1

2
leading to two copies of the ν = 1

2 Laughlin state. Applying
the projective construction would allow to recover the MR
state [9]. If all the bosons were located in the same layer thus
having effectively a single layer at filling factor ν = 1, strong
numerical evidence [15–19] has shown that the emerging phase
would also be described by the MR state.

Recent works have considered such a setup either on
different geometry and a slightly long-range interaction [20–
22] or using a lattice analog via two copies of fractional Chern
insulators [23,24]. Other studies have also considered such a
system at larger filling factors in the context of the non-Abelian
spin-singlet state [25] or the integer quantum Hall effect for
bosons [20,26,27]. A similar setup was also considered for
fermions to look for the emergence [28] of the fermionic
MR state starting from the (331) Halperin state [29] or more
recently to study the possible realization of theZ4 Read-Rezayi
[2,30,31] state out of two copies of the Laughlin ν = 1

3
state. These two cases are also instructive: neither features
their respective non-Abelian state under full polarization (i.e.,
when all the particles are in the same layer) for a short-range
interaction (or even the Coulomb interaction) projected onto
the lowest Landau level. Moreover, no signature was found
for these respective non-Abelian states in the bilayer setup.
However, this does not exclude the possibility to realize other
non-Abelian states such as the Fibonacci [32,33] or interlayer
Pfaffian [34,35] states.

The situation for the bosonic bilayer at ν = 1 is different.
At large tunneling between the two layers, the system is
effectively a single-component state [28] with an effective
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interaction equal to the average of the intralayer and the
interlayer interactions. Thus the physics of a single-layer
bosonic FQH system at ν = 1 guarantees that the bilayer
system hosts a MR phase at large tunneling. Similar arguments
can be made with respect to the role of the interlayer
interaction. Indeed, choosing the same strength for the contact
interaction within each layer and between layers, the bilayer
recovers a full SU(2) symmetry with respect to the layer index.
If the low-energy physics is “ferromagnetic,” it will be driven
once again by the single-layer physics at ν = 1. Therefore,
the aim of this article is not to check if the MR state might
emerge in the bosonic bilayer FQH system but rather to give
a quantitative phase diagram of this system, and look at the
stability of the MR state. Other topological phases could also
appear in such a bilayer system, such as the coupled MR
(cMR) state proposed in Ref. [36]. This state is akin to two
chiral p-wave superconductors of composite fermions with a
tunneling of Cooper pairs. While the cMR is the exact ground
state of a combination of three-body intralayer and two-body
inter-layer interactions, we will show that it can accurately
describe a region of the bilayer phase diagram.

The structure of this article is as follows. In Sec. II,
we describe the bosonic bilayer model and briefly present
the coupled Moore-Read state. We provide in Sec. III a
full numerical analysis of the model when the system is
completely polarized, i.e., the emergence of the MR state at
filling factor ν = 1 for the bosonic fractional Hall effect with
a two-body hardcore interaction in the lowest Landau level.
Section IV describes the phase diagram when considering
the two shortest-range pseudopotentials for the interlayer
interaction. In particular, we discuss the emergence and the
stability of three distinct phases: the (220) Halperin state, the
MR state, and the cMR state. Finally we consider the effect of
a tunneling term between the two layers in Sec. V.

II. ν = 1
2 + 1

2 BOSONIC BILAYER

In this section, we first describe our model of bilayer bosons.
The MR state, the (220) Halperin state, and the coupled MR
(cMR) state [36] are three possible ground-state candidates.
Then we review the properties of the Halperin and cMR states,
but leave the details of the MR state for the following sections.

A. Model

We consider a bilayer FQH system at total filling ν = 1 on
the square torus with N bosons and Ns = N magnetic flux.
We label each “layer” by σ = ↑,↓. The notion of layer could
stand for physical layers but also any other internal degree
of freedom with two components. We consider that all the
particles are in the lowest Landau level and we neglect any
Landau level mixing. In that case, the effective Hamiltonian
is just the interaction projected onto the lowest Landau level.
For our purpose, we consider the following Hamiltonian:

H = V intra
0 + U0V inter

0 + U1V inter
1

−t

Ns−1∑
i=0

(a†
i,↑ai,↓ + a

†
i,↓ai,↑), (1)

where V intra
m (V inter

m ) is the two-body interaction corresponding
to the mth Haldane pseudopotential [37] within (between)
layers. The last term of Eq. (1) is the interlayer tunneling
with a

†
i,σ (ai,σ ) being the creation (annihilation) operator for a

boson in layer σ and in the lowest Landau level orbital i (with
0 � i < Ns). We normalize the V intra

m and V inter
m interaction

terms such that the energy scale of the two-particle problem is
of one for each of them.

The Hamiltonian of Eq. (1) possesses several symmetries.
The magnetic translation invariance on the torus leads to
a conserved two-dimensional momentum [38] k = (kx,ky)
(respectively related to the relative translation and the center
of mass translation) in the Brillouin zone kx ∈ [0,2π ),ky ∈
[0,2π ). Note that due to the total filling factor ν = 1 the
reduced Brillouin zone coincides with the Brillouin zone.

The layer index can be thought of as a pseudospin 1/2; thus
we can define the projections of the total pseudospin operator
Ŝ as

Ŝx = 1

2

Ns−1∑
i=0

(a†
i,↑ai,↓ + a

†
i,↓ai,↑), (2)

Ŝy = − i

2

Ns−1∑
i=0

(a†
i,↑ai,↓ − a

†
i,↓ai,↑), (3)

Ŝz = 1

2

Ns−1∑
i=0

(a†
i,↑ai,↑ − a

†
i,↓ai,↓). (4)

In this language, the tunneling term of Eq. (1) is the analog of a
Zeeman term along the fictitious x axis. Thus a large tunneling
amplitude t has the effect of polarizing the system along the x

axis. At zero interlayer tunneling t = 0, Ŝz is a good quantum
number with eigenvalues Sz = 1

2 (N↑ − N↓), where N↑ (N↓)
is the particle number in the up (down) layer. Furthermore, if
U0 = 1 and t = 0, the Hamiltonian of Eq. (1) exhibits a full
SU(2) symmetry irrespective of U1, since bosons with identical
spin cannot feel odd Haldane pseudopotentials. In that case,
not only Ŝz but also the total pseudospin Ŝ2 are conserved
quantities.

If we set U0 = U1 = t = 0, Eq. (1) becomes the model
Hamiltonian for the (220) Halperin state which is just two
decoupled copies of the ν = 1

2 Laughlin state. Indeed they are
the densest zero-energy eigenstates of the V intra

0 interaction,
i.e., the hardcore interaction projected onto the lowest Landau
level. The (220) Halperin state falls in the Sz = 0 sector
and is fourfold degenerate on the torus geometry. These four
states respectively carry the momentum quantum numbers k =
(0,0), (π,0), (0,π ), and (π,π ). The topological degeneracy is
the most practical signature of topological order since it can be
directly extracted from the energy spectrum. We will therefore
use it extensively in this paper to distinguish different phases.

B. Coupled Moore-Read state

Among the other possible phases that might emerge in a
bosonic bilayer at ν = 1, Ref. [36] introduced the coupled MR
(cMR) state. The physical picture of the cMR can be thought of
as two chiral p-wave superconductors of composite fermions
with a tunneling of Cooper pairs. In the Sz = 0 sector and
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on the plane geometry the wave function of the cMR state
possesses a simple and elegant expression

�cMR = Pf

(
1

z
↑
i − z

↑
j

)
Pf

(
1

z
↓
i − z

↓
j

)

×
∏

σ=↑,↓

∏
i<j

(
zσ
i − zσ

j

) ∏
i,j

(z↑
i − z

↓
j ). (5)

Here the z
↑
i ’s (z↓

i ’s) are the particle complex coordinate in the
upper (lower) layer. This wave function is the exact densest
zero energy state of the following model Hamiltonian [21]
(once projected onto the lowest Landau level):

H3−2 =
∑

σ=↑,↓

∑
i<j<k

δ(2)
(
zσ
i − zσ

j

)
δ(2)

(
zσ
j − zσ

k

)

+
∑
i,j

δ(2)(z↑
i − z

↓
j ). (6)

This Hamiltonian has two types of interaction: a three-body
hardcore interaction within each layer and a two-body hardcore
interaction between layers, i.e., aV inter

0 term. The degeneracy of
the cMR state is richer on the torus than on the plane geometry.
Indeed, the number of zero-energy states of the Hamiltonian
Eq. (6) at filling factor ν = 1 is the following.

(i) If N = 4m, m ∈ Z: three zero-energy states in the
even Sz sectors, respectively carrying the momenta k =
(0,0), (0,π ), and (π,0). One zero-energy state at (π,π ) in the
odd Sz sectors.

(ii) If N = 4m + 2, m ∈ Z: three zero-energy states in
the odd Sz sectors, respectively carrying the momenta k =
(0,0), (0,π ), and (π,0). One zero-energy state at (π,π ) in the
even Sz sectors.

(iii) If N = 2m + 1, m ∈ Z: only one zero-energy state in
the Sz = ±N/2 sector at momentum (0,0).

Note that in the fully polarized sector Sz = ±N/2, the
ground state is just the usual single-component MR state.
Thus the total degeneracy is 2N + 3 when N is even and 2
when N is odd. The extensive degeneracy stresses the gapless
nature of the Hamiltonian of Eq. (6). Nevertheless, Ref. [21]

has considered the addition of some Josephson coupling that
could be written as

HJ = tJV↑↑;↓↓
0 + H.c., (7)

whereV↑↑;↓↓
0 is a zeroth Haldane pseudopotential coupling two

spin-up to two spin-down bosons. They showed that a small
tJ between the two layers lifts the extensive degeneracy and
opens a gap of order tJ. This gapped phase has the same nature
as the Halperin (220) state. Interestingly, the ground state of the
Hamiltonian Eq. (6) at ν = 1 in the presence of an infinitesimal
(but nonzero) tunneling is nothing but the Halperin (220) state
in a rotated spin basis (with a π/2 rotation around the y spin
axis) and up to finite-size corrections that quickly vanish.

III. MOORE-READ STATE IN THE FULLY
POLARIZED REGIME

Using the analogy between the spin and the layer index,
the situation where all the particles are in one layer is called
the fully polarized regime, i.e., Sz = ±N/2. This situation is
relevant to our bilayer system in different cases. The system
can become polarized in a rotated basis due to a strong
tunneling term, as mentioned in Sec. II A. In the absence of
tunneling, and for an SU(2)-symmetric interaction, the system
can again be dominated by the single-layer physics if the
ground state is ferromagnetic (S = N/2).

In the fully polarized regime, our system is identical to a
problem of single-layer bosons with the contact interaction
V0 (dropping the intra label) at filling factor ν = 1. Previous
studies [15–19] have shown strong evidence that the emerging
phase would be described by the MR state when the number of
particles N is even. Here we provide more abundant numerical
data (Fig. 1) to establish the stability of the MR phase for both
even and odd N in the fully polarized regime, as the basis of
our discussion of the bilayer phase diagram.

When N is even, a straightforward hallmark of the bosonic
MR phase is the threefold ground-state topological degeneracy
on the torus geometry with one state in each momentum sector
k = (0,0), (π,0), and (0,π ). This degeneracy is exact when we

FIG. 1. (a) Finite-size scaling of the energy gap �MR for even N (solid line) and odd N (dotted line), and the ground-state splitting δMR

for even N (solid line). The data from N = 6 to N = 20 are included. (b) The ground-state overlap with exact MR states for even N (solid
line) and odd N (dotted line) from N = 5 to N = 20. The overlap in the k = (0,π ) sector is the same as that in the k = (π,0) sector due to
the C4 symmetry of the square torus. For N = 19, the exact MR state cannot be built; thus we have used the very accurate approximation on
the torus involving one Laughlin quasihole and one Laughlin quasiparticle [9]. (c) The finite-size scaling of the entanglement gap �ξ in the
NA = 4, NA = 5, and NA = 6 sectors for even N (solid line) and odd N (dotted line). The data are included only from N = 8 to N = 16 due
to numerical limitations in the full diagonalization of reduced density matrices.
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consider the three-body contact interaction for which the MR
states are the exact densest zero-energy eigenstates. For more
realistic two-body interactions such as the two-body contact
interaction, this degeneracy is expected to be recovered only in
the thermodynamic limit except if it is enforced by a discrete
symmetry. Indeed using a square torus implies a C4 symmetry,
such that the energy levels are identical in the (π,0) and (0,π )
momentum sectors. In our numerical data, we indeed observe
three almost degenerate states in the expected k sectors. In
Fig. 1(a), we show the energy gap �MR between the highest
energy state of the threefold low-energy manifold associated
to the MR state and the first excited state (irrespective of
its momentum) as well as the low-energy manifold energy
splitting δMR. The data are given for various system sizes,
up to N = 20 bosons. The topological degeneracy is not
that clear for small system sizes due to the strong finite-size
effects, but it is greatly improved for N � 12, suggesting a
recovery of the exact degeneracy in the thermodynamic limit.
We can see that the energy gap �MR still has some finite size
effects, much more than the equivalent quantity obtained with
the model three-body interaction [9]. We then compute the
ground-state overlap (defined as the square norm of the scalar
product) with the exact MR state obtained by diagonalizing the
three-body contact interaction or by projective construction on
the torus [9] (especially for the largest systems). While the
overlap unavoidably decreases with the system size, it is still
convincingly high even for the largest samples [see Fig. 1(b)].

The MR state usually implies an even number of particles.
However, compared to geometries with zero genus (such as the
disk or the sphere), the torus geometry allows the existence of
a single MR state at filling factor ν = 1 with an odd number of
particles in the k = (0,0) sector. Thus we have also computed
the energy gap and the ground-state overlap for the odd N

case. These data are shown together with the even N case in
Fig. 1. The calculations have been done up to N = 19. As
can be observed, the gap has slightly more important finite-
size effects than the even N case (but the overlaps are a bit
larger). Still these results convincingly support the emergence
of the MR phase in the odd N sector. It is expected that the
energy gap for both even N and odd N will converge to the
same value in the thermodynamic limit. Indeed each N sector
should exhibit on the torus two types of neutral excitation
modes: a magnetoroton mode [39,40] and a neutral fermion
mode [9,40,41]. Their respective dispersion relation should not
depend on the particle number parity (as can be seen in Ref. [9]
for the three-body model interaction). For the two-body contact
interaction, our results are compatible with such a property up
to more important finite-size effects.

Beyond energetics and overlap calculations, we can use the
particle-cut entanglement spectrum (PES) [42] to probe the
topological order of the phase. We divide the whole system
into two parts A and B with NA and NB = N − NA bosons,
respectively. The reduced density matrix ρA is obtained by
tracing out the B part of the density matrix (ρA = TrBρ). For an
even number of particles, the density matrix of the ground-state
manifold writes ρ = 1

3

∑3
α=1 |�α〉〈�α|, where |�α〉 represents

the αth ground state [for an odd number of particles ρ is
just the projector on the single ground state at k = (0,0)].
Diagonalizing the reduced density matrix gives access to the
PES, whose levels are ξi = − ln λi (λi is the ith eigenvalue of

the reduced density matrix). When the low-energy manifold
is in the MR phase, we expect to observe an entanglement
gap separating the low-lying levels from the high nonuniversal
levels. We also expect the number of low-lying level d to
be the same as the number of MR quasihole excitations in a
system with NA particles and the same number of orbitals.
This number can be predicted by the generalized exclusion
rule [43] of the MR state, i.e., no more than two bosons in
two consecutive orbitals. The entanglement gap between the
low-lying levels and the first excited level is then defined as
�ξ ≡ ξd+1 − ξd (the PES levels are sorted in increasing order).
We have performed this calculation for systems with both
parities of N . We find that the entanglement gap is indeed
finite, and does not vanish with the increase of the system size
[Fig. 1(c)], meaning the ground state has the same quasihole
excitation properties as the MR state.

IV. INTERLAYER INTERACTION EFFECT

In this section, we assume zero interlayer tunneling t = 0,
and study the phase diagram in the U0 − U1 space.

A. SU(2) symmetric regime

We start our exploration by focusing on the SU(2) invariant
line at U0 = 1 as discussed in Sec. II A. In that case, each
eigenstate of the Hamiltonian (1) can be labeled by both
S and Sz, where 0 � S � N/2 and −S � Sz � S. We are
particularly interested in those ferromagnetic states with
maximal S = N/2. The spatial part of these eigenstates
coincides with the one of the fully polarized regime in the
S = Sz = ±N/2 sector. As shown by the extensive numerical
study of the previous section, the fully polarized system hosts a
robust MR phase. Thus the MR phase is guaranteed to emerge
as the ground-state manifold of the ferromagnetic states. If
these ferromagnetic states dominate the low-lying spectrum of
the Hamiltonian (1), then the low-energy physics of the system
will be driven by the single-layer picture and captured by the
MR phase.

We track the evolution of the low-lying spectrum of the
Hamiltonian (1) with U1. A typical example of the low-energy
spectrum for an even number of particles is shown in Fig. 2.
At U1 = 0, the low-lying levels have small S values such
as S = 0 and S = 1 [Fig. 2(a)], and the ferromagnetic states
are still high in energy. However, the energy levels with S <

N/2 ascend with the increase of U1. When U1 is increased
up to a critical value, ferromagnetic states [Fig. 2(b)] begin
to have a lower energy than other S < N/2 levels. Beyond
this critical point the low-energy physics is dominated by the
(ferromagnetic) MR states. We have studied this critical value
of U1 for various system sizes with both even and odd N (up
to N = 14; see Fig. 3). An extrapolation to 1/N → 0 suggests
U1 = Uc

1 ≈ 0.2–0.3 in the thermodynamic limit.
The situation of the excited states is more complex. Indeed,

in the regime where the ferromagnetic MR manifold has the
lowest energy, the low-energy excited states may still have
S < N/2, corresponding to spinful excitations. However, if
we further increase U1 (U1 ≈ 0.6–0.7 in the thermodynamic
limit), not only the ground manifold but also the first excited
level belong to the ferromagnetic states [Fig. 2(c)]. In that case,
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FIG. 2. Energy spectra of N = 12 bosons as a function of momentum |k| =
√

k2
x + k2

y at U0 = 1 and (a) U1 = 0, (b) U1 = 0.4, and
(c) U1 = 1. The spin eigenvalues S of some low-lying states as well as their degeneracy (the spin degeneracy has been excluded) are indicated.
One can see that the ferromagnetic levels dominate the low-energy spectrum from the bottom with the increase of U1. The states below the
blue lines are the three quasidegenerate ferromagnetic MR states appearing at k = (0,0), (π,0), and (0,π ).

the energy gap is the same as the one of the fully polarized
regime. Note that the spinful excitations of the MR states have
been studied both numerically [44] and analytically [45] in the
context of the fermionic ν = 5

2 FQHE. But to our knowledge,
no study has considered the bosonic case.

B. U0 − U1 phase diagram

The SU(2) invariance is broken if U0 is tuned away from
1. Consequently the total pseudospin S is no longer a good
quantum number. We first focus on the Sz = 0 (Sz = 1

2 ) sector
for even (odd) number of particles to explore the phase diagram
which is summarized in Fig. 4. For N even, there are two
obvious candidate phases that we might consider: the MR state
and the Halperin (220) state. The former should at least appear
along the SU(2) invariant line U0 = 1 and beyond the critical
value U1 > Uc

1 . The later should be present around the point
U0 = U1 = 0 for which the (220) state is the exact ground
state. We also know that this latest state cannot be a correct
description of the low-energy physics at U0 = 1 irrespective
of U1 since it explicitly breaks the SU(2) symmetry.

We compute the ground-state overlap with the respective
exact model states and the energy gap above the MR or

FIG. 3. Critical value of U1 at which the ferromagnetic MR
manifold and its first ferromagnetic excitation dominate the low-
energy spectrum for even N (solid line) and odd N (dotted line). The
data from N = 6 to N = 14 are included.

the (220) state to determine the range of these two phases.
The overlap is set to zero if the whole manifold of the
ground states is not in the same momentum sector as the
model states. The exact MR states in the Sz = 0 sector are
generated by consecutively applying the spin ladder operator
S− = ∑Ns−1

i=0 a
†
i,↓ai,↑ on the fully polarized version in the

Sz = N/2 sector. When computing the energy gap above the
(220) (MR) state, we pick up the lowest four (three) energy
states irrespective of their momenta. If they are in the same
k sectors as the (220) (MR) state, we define the gap as the
difference between the highest energy in this manifold and the
first excited level above it; otherwise the gap is set to zero.
We find that the numerical data are qualitatively identical for

0

0.3

0.8

(220)

Moore-Read

SU(2) invariant

coupled MR

0.6
0.1

0.4

1

FIG. 4. Schematic U0 − U1 phase diagram for even N in the
Sz = 0 sector. As discussed in the text, we observe three phases: (220)
Halperin, Moore-Read, and coupled Moore-Read state. The rough
ranges of these phases are indicated in the figure. The shadowed areas
between the three phases are transition regions, whose properties are
difficult to be identified based on our present numerical data and
could be compressible. It is also difficult to tell if a direct transition
between the (220) Halperin and MR (or between the cMR and MR)
could occur.
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FIG. 5. Nature of the low-energy manifold as a function of U0 and U1 for a system of N = 12 bosons in the Sz = 0 sector. (a),(b) The
ground-state overlap with the exact MR state in (a) k = (0,0) and (b) k = (π,0) sector. (c)–(e) The ground-state overlap with the exact (220)
state in (c) k = (0,0), (d) k = (π,0), and (e) k = (π,π ) sector. The overlap in the k = (0,π ) sector is identical to that in the k = (π,0) sector
due to the C4 symmetry of the square torus.

N = 8, N = 10, and N = 12, implying the finite-size effects
on the phase boundaries are small. Note that this relative
independence to the system size has also been observed for
a lattice realization of this bilayer [23] along the U1 = 0 line.

In Figs. 5 and 6, we provide a typical example of numerical
results for a system with N = 12. As already mentioned in
Sec. II A, the (220) state is the exact ground state of the
Hamiltonian at U0 = U1 = 0. We thus find the (220) phase
around this point. It becomes unstable with the moderate
increase of either U0 or U1. In the U1 direction, the (220) phase
collapses at U1 ≈ 0.3 with almost no dependence on U0. A
smooth transition to the MR phase occurs in k = (0,0), (π,0),
and (0,π ) sectors. Note that in finite size the MR and (220)
have a small but nonzero overlap [for N = 12, these overlaps
are ≈0.027 for the (0,0) momentum sector and ≈0.023 for
the (0,π ) and (π,0) momentum sectors for an Hilbert space
dimension of �106]. In the k = (π,π ) sector, there is a clear
level crossing signature because the overlap suddenly drops
to zero [Fig. 5(e)], implying that the (220) state in this k
sector goes up and finally mixes in the excited states. In the
U0 direction, the (220) phase can survive up to U0 ≈ 0.6 for
U1 = 0 (consistent with the result in Ref. [23]), and a larger
value of U0 ≈ 0.8 for U1 ≈ 0.3. Beyond this point, a transition
to another phase occurs. The critical U1 value for the MR
phase is about 0.3 around U0 = 1, but increases fast when U0

is tuned away from 1. At the largest U0 that we study (U0 = 2),
the system enters the MR phase at U1 ≈ 1.5.

Looking more carefully at Fig. 6(a), we observed another
region around U0 = 2, U1 = 0.3, where there is a reentrant
energy gap above the k = (0,0), (π,0), and (0,π ) sectors. By
examining the energy spectra in all Sz sectors, we observe
a low-energy degeneracy pattern consistent with the coupled

FIG. 6. Energy gap relative to (a) the MR manifold and (b) the
(220) manifold for N = 12 bosons in the Sz = 0 sector.

Moore-Read state introduced in Sec. II B. We then compute
the ground-state overlap with the model cMR state. Indeed,
the overlap becomes high when the gap reopens (Fig. 7),
confirming the presence of the cMR phase in this region.
Note that this phase collapses when U1 � 0.4 with almost
no dependence on U0.

Beyond the Sz = 0 sector, we can wonder if the system
exhibits some regions with a spontaneous polarization in part
of the phase diagram. For that purpose, we compute the z

polarization Pz = 〈Ŝz〉/(N/2) of the absolute ground state
(without focusing on a specific quantum number sector). Note
that here we simply have 〈Ŝz〉 = Sz. As can be observed in
Fig. 8, the system is fully polarized when U0 > 1 and U1 > Uc

1 .
Clearly the low-energy physics in that region is governed by the
MR state. In the rest of the diagram, the system is unpolarized
leading to the different phases described previously for Sz = 0.

We now turn to the odd N sector. The Halperin (220) state
cannot be realized in that case since it requires an equal number
of particles in each layer. Still there is a single MR state in the
k = (0,0) sector as mentioned in Sec. III. Figure 9 gives both
the overlap between the ground state of the bilayer system
and the odd particle MR state, and the gap relative to the
MR state (in the Sz = 1

2 sector). As shown, the situation is
almost identical to the N even case. This is also true for the z

polarization (not shown here).
We can summarize the different phases observed in this

setup via the schematic phase diagram given in Fig. 4. We have
clear evidence for three phases related to the following states:
the Halperin (220) state, the MR state, and the cMR state.
Unfortunately, exact diagonalizations (ED) do not allow one

FIG. 7. Ground-state overlap with the exact cMR state for N =
12 bosons in the Sz = 0 sector at (a) k = (0,0) and (b) k = (π,0).
In the U0 − U1 region shown here, the overlap in both momentum
sectors is maximum around the point U0 ≈ 2.0 and U1 ≈ 0.35 (up to
0.91).
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FIG. 8. Polarization Pz along the z spin axis for the absolute
ground state and N = 12 bosons. Sz being a good quantum number,
the Pz has only a discrete number of values. The purple region is
unpolarized (Sz = 0) while the red region is fully polarized (Sz =
N/2 = 6). This latest corresponds to U0 > 1.0 and U1 � 0.3.

to probe the transition between these phases. For instance, we
cannot rule out a compressible phase that would lie between,
e.g., the Halperin (220) phase and the MR phase. There is also
a small region around the SU(2) symmetric point U0 = 1 and
U1 = 0 with no clear gap structure [see Fig. 2(a)] and its nature
might be compressible. Actually, some clues of composite
fermion sea were observed in Ref. [22] at this point. Moreover,
the results obtained by Ref. [20] allows one to rule out a
candidate such as the Jain spin singlet [46].

C. Deeper look at the coupled MR state

The ground-state overlap with the exact cMR state is
maximal close to U0 = 2.0 and U1 = 0.35 for N = 12 (see
Fig. 7). While the overlaps are high there, we would like to
look for additional signature of the cMR state, to probe the
topological order in this region of the phase diagram. Here
we consider several system sizes from N = 8 to N = 14 and
we will focus on the U0 = 2.0 and U1 = 0.35 as a typical
candidate of the phase near this point.

As mentioned in Sec. II B, the cMR has a ground-state
degeneracy that depends on the parity of N/2 and the Sz sector.
Focusing on the even values of N , there is an alternation
of a threefold degenerate ground state and a nondegenerate
ground state depending on the parity of Sz. Away from the

FIG. 9. (a) Ground-state overlap with the exact MR state in the
k = (0,0) sector. (b) The energy gap relative to the MR manifold.
Here we consider N = 11 bosons in the Sz = 1

2 sector.

FIG. 10. Low-energy spectrum as a function of Sz for N = 14
bosons at U0 = 2.0 and U1 = 0.35. The red symbols correspond to
the cMR like states. We see the alternation of the degeneracy: a unique
state when Sz is even and threefold (with one exact degeneracy due
to the C4 symmetry) when Sz is odd. The black symbols stand for
the lowest-energy states in each momentum sector or the first excited
state of the cMR momentum sectors. We clearly observe the important
dispersion of the (red) low-energy states.

model interaction, we expect this degeneracy to be lifted while
preserving this alternation and the correct momenta. This is
indeed what is observed, the degeneracy being split into two
different ways: within each Sz sector and between the different
Sz sectors. This latest statement means that the low-energy
manifold acquires a dispersion relation with respect to the spin
projection along z. We show in Fig. 10 the energy spectrum for
the largest system size that we have been able to reach (namely
N = 14) and in Table I the corresponding overlaps with the
exact cMR states in each Sz sector. We have also checked that
the PES provides the same phase identification (up to minor
size effects) for the various system sizes. Note that due to
the small number of system sizes that can be evaluated and
to the parity effect over N/2, we cannot make any reliable
extrapolation of the gap. In particular, it is not possible to see
if the phase will become gapless.

As can be observed in Fig. 10, the dispersion with Sz can
be rather important. If we want to be closer to the model
cMR case, it might be desirable for this dispersion to be as

TABLE I. Overlaps for N = 14 bosons between the cMR and the
ground state of Eq. (1) in the different momentum and Sz sectors for
U0 = 2.0 and U1 = 0.35. A dash symbol is used when the momentum
sector is not compatible with a given Sz.

Sz (0,0) (π,0) or (0,π ) (π,π )

0 – – 0.891
1 0.877 0.885 –
2 – – 0.898
3 0.882 0.887 –
4 – – 0.889
5 0.820 0.875 –
6 – – 0.880
7 0.781 0.832 –
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FIG. 11. Nature of the low-energy manifold as a function of U0 and t for a system of N = 10 bosons with U1 = 0. The ground-state overlap
with the exact MR state in (a) k = (0,0) and (b) k = (π,0) sector. (c)–(e) The ground-state overlap with the exact (220) state in (c) k = (0,0),
(d) k = (π,0), and (e) k = (π,π ) sector.

flat as possible. Such a situation occurs in particular near
the transition between the unpolarized regime and the fully
polarized regime (see Fig. 8) which is also a region of high
overlaps [see Figs. 7(a) and 7(b)]. A lower value of U1 while
keeping U0 = 2.0 roughly offers such a situation. We can
wonder if adding the Josephson coupling term of Eq. (7)
would also drive the system into the π/2 rotated Halperin
(220) state discussed in Sec. II B. We have checked that this
is indeed the case with a major difference: in our model, it
requires a much larger value of tJ (typically around tJ � 1)
compared to the cMR model Hamiltonian of Eq. (6). We can
actually make a stronger statement: as shown in Ref. [21], with
the proper amount of interlayer interaction (U0 = 2.0) and
Josephson coupling (tJ = 1), and setting U1 = 0, the resulting
Hamiltonian is nothing but the model Hamiltonian for the
π/2 rotated Halperin (220) state. Adding some small U1 or
changing a little bit either U0 or tJ does not change this picture.

V. TUNNELING EFFECT

We now consider the effect of tunneling between the two
layers. As mentioned in Sec. II A, the tunneling term acts as
a Zeeman field along the fictitious x axis. We thus expect that
for a critical value of t , the system is polarized in this direction
leading to an effective single-layer picture for the low-energy
physics. As a consequence, the MR phase emerges beyond
that critical tunneling amplitude. Beyond the determination of
this critical value of t , we can wonder how it will be modified
by the presence of the interlayer interaction. Here we only
consider the role of U0 and we set U1 = 0. We already know
from Sec. IV B that in the absence of tunneling, a moderate
amount of U1 drives the system into the MR phase, whereas
this phase does not appear along the U1 = 0 line. Our choice

allows one to have more readable figures while capturing the
relevant situations.

Due to the (generic) absence of any SU(2) quantum number,
the system sizes that can be simulated are smaller than those in
Sec. IV (here up to N = 10). At large tunneling, each orbital
of the effective single layer is made of the antisymmetric (or
symmetric depending on the sign of t) combination of an
up layer and a down layer orbital. Away from this limit, the
low-energy physics might still be described by a single-layer
picture with a polarization axis that is still in the x-z plane but
that does not have to be along x (see Ref. [47] for a detailed
discussion). As a consequence, checking the nature of the
low-energy states by computing overlaps with a single-layer
model state (here the MR state) requires one to rotate this latest
in the x-z plane and to find the angle θ ∈ [0,π/2] between the
z axis and the polarization axis that maximizes the overlap.
This can be achieved by applying the spin rotation operator
Ry(θ ) = ∏N

j=1 ei θ
2 σ

j
y , which is the product of single-particle

spin rotation operators, on the usual single-layer MR states
to get the model MR states |�MR(θ )〉 with rotation angle θ .
Then we search the optimal value of θ that maximizes the total
overlap between the model MR state and the ground state of
our system over momentum sectors (0,0), (π,0), and (0,π ) for
even number of particles N .

We show in Figs. 11(a) and 11(b) the maximal overlap that
can be reached for N = 10 with the optimal rotation angle,
which is almost always π/2 except at a few (U0,t) points.
There is a large region of high overlap with the model MR state.
Interestingly the interlayer U0 interaction enhances the overlap
around the U0 = 1 line by requiring a lower strength of t to
obtain a high overlap: t ≈ 0.6 is enough to reach overlap �0.9
for U0 = 1, while the overlap is still less at t = 2 for U0 = 0.
Along the U0 = 1 line, the interaction recovers its SU(2)
symmetry that is only partially broken by the tunneling term.

FIG. 12. Properties of the low-energy manifold as a function of U0 and t for a system of N = 10 bosons with U1 = 0. (a) The energy gap
relative to the MR manifold. (b) The energy gap relative to the (220) manifold. (c) The x polarization Px of the absolute ground state.
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FIG. 13. Properties of the low-energy manifold as a function of U0 and t for a system of N = 9 bosons with U1 = 0. (a) The ground-state
overlap with the exact MR state in the k = (0,0) sector. (b) The energy gap relative to the MR state. (c) The x polarization Px of the absolute
ground state.

In order to make sure the ground states (irrespective of their
momenta) are in the MR momentum sectors, we also compute
the energy gap (with the same definition as in Sec. IV B)
relative to the MR manifold [Fig. 12(a)]. The region with
nonzero energy gap is consistent with that of high overlap. We
can also look at the case where we have an odd number of
particles. In Fig. 13(a), we show the maximal overlap in the
(0,0) momentum sector between the ground state and the exact
MR state obtained by spin rotation. The results are similar to
those for an even particle number—a similar large region of
high overlap exists and the interlayer interaction can further
enhance the MR phase.

We have performed a similar study for the Halperin (220)
state. The overlaps with respect to this model state are given
in Figs. 11(c)–11(e). The optimal rotation angle to reach the
maximal overlap is almost zero everywhere. Compared with
Figs. 5(c)–5(e), the region with high overlap shrinks in the t

direction, suggesting that the (220) phase is more fragile under
interlayer tunneling t than under the interlayer V1 interaction.
We have also checked the energy gap relative to the (220) phase
[Fig. 12(b)], which gives consistent result with the overlap
calculations. In a similar line of thought, we have looked at a
possible realization of the cMR phase. Unfortunately, we did
not find any strong signature of the cMR with a maximum
overlap of ≈0.5 around U0 ≈ 2.0 and t ≈ 0.1.

It is also instructive to compute the polarization along the
x axis for this system. For that purpose, we compute the x

polarizationPx = 〈Ŝx〉/(N/2) of the system’s absolute ground
state (without focusing on specific quantum number sector)
[Fig. 12(c)]. As opposed to the polarization Pz studied in the
Sec. IV B, the ground state is not an eigenstate of Ŝx . The
results show that once the system enters the MR phase, the x

polarization is close to 1 as expected.

VI. CONCLUSION

In this paper, we explore the phase diagram of a bilayer
bosonic FQH system at total filling factor ν = 1 with Haldane’s
zero-order U0 and first-order U1 pseudopotential interactions
and interlayer tunneling. In the absence of tunneling, we
have found strong signature of three phases: the Halperin
(220) state, the coupled Moore-Read state, and a Moore-Read
state. When the system is SU(2) invariant, the MR phase
becomes ferromagnetic for an interlayer U1 interaction larger
than Uc

1 ≈ 0.2–0.3, thus guaranteeing the MR phase in all Sz

sectors. Away from the SU(2) invariant line U0 = 1, there is
still a very wide region of robust MR phase in the Sz = 0 sector,
and the system can fully polarize to a single-layer MR phase
for U0 > 1 and an interlayer U1 interaction larger than Uc

1 . The
presence of a region where the low-energy physics corresponds
to the coupled Moore-Read state offers a simpler realization of
this phase involving only two-body interactions. The interlayer
tunneling drives the bosons into a single-component system
polarized in the fictitious spin x direction. For large enough
tunneling, we observe the MR phase, while the interlayer
interaction can further enhance these phases.
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