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In molecular dynamics, enhanced sampling methods enable the collection of better statistics of rare
events from a reference or target distribution. We show that a large class of these methods is based
on the idea of importance sampling from mathematical statistics. We illustrate this connection by
comparing the Hartmann-Schiitte method for rare event simulation (J. Stat. Mech. Theor. Exp. 2012,
P11004) and the Valsson-Parrinello method of variationally enhanced sampling [Phys. Rev. Lett.
113, 090601 (2014)]. We use this connection in order to discuss how recent results from the Monte
Carlo methods literature can guide the development of enhanced sampling methods. Published by

AIP Publishing. https://doi.org/10.1063/1.4989495

. INTRODUCTION

The sampling problem of molecular dynamics' (MD)
refers to the computational inefficiency of standard MD for
the statistical estimation of certain properties of large or com-
plex molecular systems. One cause of the sampling problem
is the presence of rare events, which are often associated with
high barriers on energy landscapes.

In this paper, by a “rare event,” we shall refer to the event
in which a molecule starting in some metastable state A tran-
sitions to another metastable state B within a period of time
that is accessible by standard MD. Such rare events can lead to
the sampling problem when a quantity of interest is given by
the expected value of some path functional f (i.e., f takes as
input a trajectory of the system originating from A and ending
in B and returns as output a scalar), where the values of f tend
to contribute less to the expected value as the duration of the
transition path increases. This is the case for exponential work
averages, which can be used in order to compute free energy
differences.> Since the probability of observing a value of f
that contributes significantly to the quantity of interest is small,
the number of standard MD trajectories needed in order to get
one such “good” sample value is high, and thus standard MD
is computationally inefficient in this setting.

Many enhanced sampling techniques, such as metady-
namics,> umbrella sampling,® replica exchange or parallel
tempering,”"'? and simulated annealing,'® have been devel-
oped to tackle the sampling problem. A large class of methods
tries to circumvent the sampling problem by increasing the
probability that a MD trajectory is also a transition path from
A to B. A subset of these methods is based on the fundamen-
tal principle that the energy landscape of a molecule plays
an important role in determining its dynamics. Such meth-
ods increase the probability that a MD trajectory of feasible
duration is also a transition path, by changing or “tilting”
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the energy landscape; the resulting dynamics are sometimes
referred to as “accelerated dynamics,”'* and the probability
distribution on the trajectories of the (enhanced) molecular
system is said to be “biased.” The crucial idea that we wish to
stress in this paper is that samples from the biased probability
distribution are used to estimate statistical properties of the
original, unbiased probability distribution.

In probability theory and mathematical statistics, the idea
of using a “proposal” probability distribution to estimate some
property of a “target” probability distribution is fundamen-
tal to the technique of importance sampling for Monte Carlo
methods. Importance sampling is made possible by the Radon-
Nikodym theorem, which states that if the target probability
distribution is well behaved (i.e., absolutely continuous) with
respect to the proposal distribution, then there exists a random
variable called the Radon-Nikodym derivative of the target
with respect to the proposal distribution, with which one can
statistically reweight sample values drawn from the proposal in
order to perform statistical estimation of properties of samples
drawn from the target.

In this article, we aim to present some basic mathematical
concepts that are frequently used in mathematical analyses of
importance sampling methods and to explain the significance
of these concepts for molecular dynamics. In particular, we
highlight the connection between importance sampling and the
class of enhanced sampling methods that are based on the idea
of tilting the energy landscape. We illustrate this connection
by comparing the rare event simulation method of Hartmann-
Schiitte'> and the variationally enhanced sampling method of
Valsson-Parrinello.!® We show that this connection is useful,
by discussing some recent results from the mathematical anal-
ysis of Monte Carlo methods and explaining their significance
to developers of enhanced sampling methods.

The structure of this paper is as follows. In Sec. II, we
describe the connections between enhanced sampling and
importance sampling; Sec. IT A provides a brief exposition of
the enhanced sampling methods that we consider in this paper;
Sec. I B provides an overview of importance sampling and
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describes how importance sampling and enhanced sampling
methods are connected. In Sec. 111, we illustrate the connection
by comparing the Valsson-Parrinello and Hartmann-Schiitte
methods. Finally, in Sec. IV, we indicate how this connection
may be significant for developers of enhanced sampling meth-
ods, by presenting some recent results from the mathematics
community regarding importance sampling and discussing
the implications of these results for developers of enhanced
sampling methods.

Il. MOLECULAR DYNAMICS AND PROBABILITY
THEORY

A. The biasing function approach
to the sampling problem

In molecular dynamics (MD), the Boltzmann-Gibbs dis-
tribution of the molecule determines many quantities of inter-
est, such as mean first passage times and transition rates, in
the sense that these quantities can be formulated as expected
values of some function f of the trajectories of the molecule,

E, [f] = /X S Go:0) (o ),

where x(.. denotes a given trajectory of finite duration 7 > 0,
Xo.r denotes the set of all such trajectories, and u denotes the
“path measure,” i.e., the probability distribution on the set X{.,
of trajectories associated with the Boltzmann-Gibbs distribu-
tion. More details on the connection between the probability
distribution on state space and the distribution y on path space
can be found in Ref. 17. Since it is in practice impossible to cal-
culate these expectations analytically, one resorts to a Monte
Carlo approximation of the expected value by the empirical
mean or sample mean,

N
VPR
Bulfl > o DG Xip ~piid, (D
i=1

where Xé:T denotes the ith random trajectory of duration 7
out of N such trajectories, the notation X("):T ~ u emphasises
that these trajectories are drawn from the path measure y, and
“i.1.d.” means “independent and identically distributed.”

In many cases, the quantity of interest IE, [f] is defined in
terms of a rare event, such as the event in which the molecule
transitions between two distinct, metastable conformations A
and B in state space. By virtue of their rarity, for trajectories
of moderate duration—e.g., durations accessible to standard
MD methods—the probability of observing a transition from
A to B will be small. Therefore, one will have to increase either
the trajectory duration or the number of trajectories sampled,
in order to obtain a reasonable approximation of the quantity
of interest. Both these approaches are computationally expen-
sive. For this reason, many methods have been developed to
circumvent this sampling problem. The class of methods that
we focus on in this paper approach the sampling problem in
the following way:

1. Perturb the molecular system, by proposing a different
path measure v on the same set of trajectories Xp. such
that the v-probability of the event of interest is higher
than the p-probability of the same event.
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2. Draw independent, identically distributed (i.i.d.) trajec-
tories X(’;:T from the proposal distribution v.

3. Approximate the quantity of interest using the weighted
Monte Carlo approximation

N
1 , 4 : -
Eulfl % 5 D X wXp,). Koo ~v idd., @)
i=1

where w is a positive function on the set of trajectories
that assigns a weight to each value f (X ).

In molecular dynamics, the above approach is realized by
exploiting the known correspondences between the energy
function that determines the Boltzmann-Gibbs distribution and
the associated distribution u on path space (these correspon-
dences hold, whether one considers dynamics in full state
space or in the space determined by some collective variables).
The class of enhanced sampling methods that we shall consider
here are those that operate by changing the energy landscape
of the molecule. In many situations, the negative gradient of
the energy function dominates the other forces acting on the
molecule, and thus many enhanced sampling methods involve
adding a biasing term to the original energy function; this
process is sometimes referred to as “tilting” or “biasing” the
energy landscape. The idea is to change the energy landscape
so that the molecule is more likely to undergo the desired tran-
sition, with the result that the Monte Carlo step (step 2 above)
yields more occurrences of the desired event. However, since
the quantity of interest is a statistical quantity with respect to
u and not v, one needs to transform the empirical statistics of
random variables drawn from v, in order to estimate the corre-
sponding statistics of random variables drawn from p. In the
approach mentioned above, this transformation is described
by the statistical reweighting term w(-) in step 3.

Two significant challenges in developing enhanced sam-
pling methods are those of finding biasing functions that
increase the probability of observing the desired event and of
designing statistical reweighting schemes that are both accu-
rate and computationally efficient (in the sense of having low
computational cost). The task of designing good biasing func-
tions is known to be highly problem-specific, so we shall not
discuss it here. Instead, we will consider the problem of statis-
tical reweighting schemes since we can analyze this problem
using existing mathematical theory.

B. Connections between importance sampling
and enhanced sampling

The problem of importance sampling can be understood
as a constrained optimisation problem. The problem involves
estimating an expected value with respect to a target prob-
ability distribution, using samples drawn from an alternate
“proposal” probability distribution, subject to a constraint
involving statistically impossible events. We make this more
precise below.

Let u be a probability distribution on a set &, let f be
a real-valued function defined on A, and let the quantity of
interest be the expected value of f with respect to y,

Eulf1= /X S ) p(dx).
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Let v be another probability distribution on X. We define u to
be absolutely continuous with respect to v if, for every subset
A C Xsuch that v(A) =0, it also holds true that u(A) = 0. In the
mathematical literature, absolute continuity of u with respect
to v is written as y < v.

Absolute continuity of u with respect to v can be inter-
preted as the property that every event that is statistically
impossible with respect to v is also statistically impossible
with respect to . Note that the notion of absolute continu-
ity is not bidirectional, i.e., u < v does not also imply that
v < u. Indeed, if u < v, then the set of p-statistically impos-
sible events can be strictly larger than the set of v-statistically
impossible events. The following theorem establishes a sig-
nificant property of pairs of absolutely continuous probability
distributions.

Theorem 1 (Radon-Nikodym). Let u and v be proba-
bility distributions on X. If u is absolutely continuous with
respect to v, then there exists an almost everywhere strictly
positive function p on X such that for any function f for which
E.[f] exists and is finite,

Eu [f1=E[fpl 3)

where
E,[fpl = /Xf(x)P(x)V(dX).

The function p is called the “Radon-Nikodym derivative” of
w with respect to v and is denoted by ‘;—’:. For the purposes
of statistics, one can view the Radon-Nikodym derivative as
being unique. Note that the notation Z—"f does not mean that
the function p can be expressed as the ratio of two quantities.
However, the ratio notation does provide a mnemonic expla-
nation for why absolute continuity implies the existence of a
well-defined Radon-Nikodym derivative: since u(A) =0 when-
ever v(A) = 0, it never happens that the numerator of the ratio
H(A)/v(A) is nonzero while the denominator is zero.

Given two different probability distributions u and v
defined on a common set &, there exist many quantitative
descriptions that permit one to describe how different y is from
v. A large class of such descriptions is given by f-divergences.
Perhaps the most well-known divergence that one can com-
pute for a pair of probability distributions u and v satisfying
the property that y < v is the Kullback-Leibler divergence or
relative entropy,

d
Dy (ullv) = E, [— log ﬁ] )

If u is not absolutely continuous with respect to v, the cor-
responding Kullback-Leibler divergence is defined to be +co.
We will return to Kullback-Leibler divergences later.

To define the importance sampling problem, recall that
the variance of the function f with respect to u satisfies

Var[f1 = Bul(f ~ EulfD°] = Eulf*] - ™.
Define the importance sampling estimator of E,[f] with

respect to a proposal distribution v <« u of sample size N
by

T
1= 5 D SO, X ~viid. (9
i=1
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The similarity between the right-hand sides of (5) and the
approximation (2) in step 2 of the general scheme of enhanced
sampling methods establishes the connection between impor-
tance sampling and the class of enhanced sampling methods
that we consider here:

1. Animportance sampling method on path space yields an
enhanced sampling method because a Radon-Nikodym
derivative is strictly positive and hence is a suitable statis-
tical reweighting function. Moreover, by the law of large
numbers and by (3), the importance sampling estima-
tor Iy [f] converges almost surely to the desired quantity
E,[f] in the large sample size limit.

2. Enhanced sampling methods can also be viewed as
importance sampling methods if the strictly positive
statistical reweighting function w in (2) satisfies

Ev[w] =1,

and this can be seen by setting f to be the constant func-
tion equal to one everywhere on X in (3) and using that
E,[1] = 1 for any probability distribution u. In this
case, it follows that w is the Radon-Nikodym deriva-
tive of u with respect to v, and the random variable
on the right-hand side of (2) is an importance sampling
estimator.

Note that since X’ are i.i.d. draws from v, it follows that

E,[f1 = Ey[LIf 11, (6)

i.e., the importance sampling estimator /y[f] is an unbiased
estimator of the quantity of interest [, [f]. We can now for-
mulate the importance sampling problem as the constrained
optimization problem,

minimize Var, [f p] subject to u < v.

We do not consider the variance of the estimator Iy[f], but of
the basic random variable fp, because the fact that the sam-
ples are independent and identically distributed implies that
the v-variance of Iy[f] is simply the v-variance of fp divided
by N.

Now we consider how the condition of absolute continuity
in importance sampling may be related to enhanced sampling.
By the Radon-Nikodym theorem, the condition of absolute
continuity in importance sampling guarantees the existence of
a unique statistical reweighting function, namely, the Radon-
Nikodym derivative. In particular, if absolute continuity does
not hold, then there is no statistical reweighting function w
that one can use to transform sample statistics drawn from the
proposal v in order to estimate any expected value with respect
to u.

From the point of view of molecular dynamics, one can
give absolute continuity a concrete interpretation, in terms
of functions that perturb the energy landscape that defines
the path measure. Recall that the target path measure yu is a
probability distribution on the set of trajectories Xp.., that u
is defined by a canonical Boltzmann-Gibbs distribution, and
that this density is defined by an energy function and inverse
temperature (. If the proposal path measure v is defined by
perturbing the energy function—namely, by adding a bias-
ing term to the original energy function—and keeping all
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other factors such as temperature unchanged, and if the bias-
ing term does not assume infinite values anywhere on its
domain, then the resulting perturbed Boltzmann-Gibbs dis-
tribution is strictly positive at every point where the original
Boltzmann-Gibbs distribution is strictly positive. This implies
that the corresponding probability distributions—and hence
the corresponding path measures p and v—are absolutely
continuous with respect to each other. The significance of
the finite-energy interpretation of absolute continuity is that
any enhanced sampling method that biases the energy land-
scape by only finite amounts of energy will have a unique
statistical reweighting function w given by the appropriate
Radon-Nikodym derivative.

As is the case for enhanced sampling methods, the prob-
lem of designing an effective importance sampling bias is not
straightforward and highly depends on the considered prob-
lem. The latter observation is suggested by the following
well-known fact from the theory of importance sampling that
one can verify by direct substitution: when the function f in
the quantity of interest £, [f] is strictly positive, the Radon-
Nikodym derivative of u with respect to the optimal proposal
v" is given by 57 = [E,[f1/f. In other words, the optimal pro-
posal that yields a zero-variance estimator requires that one
should know the desired expected value.

In some cases, the problem of finding an optimal impor-
tance sampling bias is related to finding a low-dimensional
submanifold of X on which the function f contributes the
most to the quantity of interest E,[f]. In these cases, find-
ing good approximations of the coordinates that describe this
low-dimensional submanifold is a necessary prerequisite for
finding a good biasing function. The task of finding such
coordinates coincides with the prerequisite of finding good
collective variables for enhanced sampling methods.

We note that statistical reweighting in the context of
importance sampling is fully justified, provided that the condi-
tion of absolute continuity is fulfilled. Equivalently, provided
that the biasing function satisfies the finite-energy property,
importance sampling proceeds without any additional con-
ditions. In contrast, some enhanced sampling methods for
obtaining kinetics from biased sampling are presented with
the constraint that one should not apply a biasing function in
the transition region or equivalently that the biasing function
is zero in the transition region.”!8

lil. ILLUSTRATION: THE VALSSON-PARRINELLO
AND HARTMANN-SCHUTTE METHODS

The material in this section takes place in some finite-
dimensional space S of collective variables (CVs). We will
write s € S to denote a vector of CVs and sg.. to denote a
trajectory of duration 7 > 0 in CV space. We assume that the
reader is familiar with how CVs and free energy landscapes
are defined.

A. The Valsson-Parrinello method

The Valsson-Parrinello method!® involves a variational
approach to enhanced sampling for complex systems in CV
space, with the aim of computing the free energy landscape of
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the molecule in CV space. Some applications of the Valsson-
Parrinello method in MD are given in Refs. 19-22.

Suppose that the target distribution on S is given by
Z7! exp(~BF(s))ds, where F is an energy function on S and
Z = [sexp(—BF(s))ds, and suppose that one wishes to sample
from some proposal distribution A(s)ds, where h(s) is positive
everywhere on S. We assume that % is a proper probability
density so that [ h(s)ds = 1. The authors define the following
functional of a biasing function Fiys:

[ e BEOFiins(s) g
[ ePFO)ds

¢(Fblas) = E og

and show that the biasing function given by

/ h(s)Fyias(s)ds (7)

Fpis(8) = =F(s) - % log h(s) 8)
extremises the functional ¢. In particular, one can define an
optimization problem, where the objective function is given
by ¢, and the solution is given by Fy. . In Ref. 22, a formula is
given that expresses the functional ¢ as the difference of two
Kullback-Leibler divergences.

To solve the optimization problem, Valsson and Parrinello
used the fact that the functional ¢ is midpoint convex in order
to find Fy, , by parametrizing the biasing function and using
an optimization scheme to find the optimal parameters. The
parametrization is done by an expansion of Fy,s into a lin-
ear set of basis functions, and the optimization is done by
stochastic gradient descent.

From the point of view of probability theory and impor-
tance sampling, it follows from the two equations above that
if the function 4 is strictly positive everywhere on S, then the
target distribution Z~! exp(— BF(s))ds is absolutely continuous
with respect to the proposal A(s)ds since exp(—BF) is strictly
positive on S. Therefore, by the Radon-Nikodym theorem, the
corresponding Radon-Nikodym derivative exists and is given
by (i(s))~'Z"1e™AF () since we have

e BFG) —,BF(s)
/lﬁ( )h() Z h(s)ds—/w(s)

in agreement with (3).

B. Hartmann-Schiitte method
In Ref. 15, the Hartmann-Schiitte method considered the
overdamped Langevin or Brownian dynamics,

§(t) = =VF(s()) +J2871&(), 0<t<Tt. )

Some applications of the Hartmann-Schiitte method are given
in Refs. 23-26.In (9), £(t) = (£1(¢), . .., &5(2)) is the Brownian
motion in &, which implies E[£;(#)&;(s)] = 6(i —j)d(¢ —s)t. Let
u denote the target probability distribution of solutions of (9)
associated with F. The quantity of interest in the Hartmann-
Schiitte method is the graph of the function

g(B:50) = =B log E,[exp(— BW)]s(0) = so]

as a function of the initial state sy € S. If W is the work done
along the trajectory so.r, then g(f8; so) is the logarithm of
the exponential work average at the inverse temperature }3,
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conditioned on the initial distribution being the Dirac distri-
bution at sg. Hartmann and Schiitte considered W to be the
path functional that assigns to any solution of (9) the value
W(so.r) = fOT ¢1(s())dt + ¢2(s¢), for some functions ¢; and
¢> on CV space that are bounded from below. Thus, g(-; sg) is
the conditional cumulant generating function of W.

The Hartmann-Schiitte method involves replacing F with
F + Fhias in (9) in order to obtain a proposal probability distri-
bution v on path space determined by Fy,,s and constructing a
constrained optimization problem where the objective is given
by

d(Fvias) = E, [W]+E,[-57" log %]
=By [W]+ B~ D (llv), (10)

where Dgy (u||v) is the Kullback-Leibler divergence given in
(4). Under the stated conditions, the objective ¢ is strictly con-
vex”’ so that there exists a unique Fy,, that minimises ¢. The
connection between the constrained optimization problem and
variance minimization is as follows: for any initial condition
50, W(so.7) is a zero-variance estimator of g(3; so) whenever
so:7 solves (9) with F replaced by F + ngaS.IS

Like the Valsson-Parrinello method, the Hartmann-
Schiitte method finds the best approximation to Fy. = within
the set of all linear combinations of a predefined collection of
basis functions; it uses stochastic gradient descent to find the
best parametrization. Since the basis functions are assumed
to be finite on their domains, u is absolutely continuous with
respect to v, and the Radon-Nikodym derivative ‘é—’j in (10)
exists and is well defined. Thus the Hartmann-Schiitte method
is an importance sampling method, in the sense that it searches
from a suitable class of proposal distributions for an optimal,

variance-minimizing one.

C. Comparing the methods

As described in Secs. III A and III B, the Valsson-
Parrinello and Hartmann-Schiitte methods share some com-
mon features. Both methods

1. useaproposal distribution—obtained by adding a biasing
function to some energy landscape—in order to estimate
an expected value with respect to the target distribution,

2. use the correspondence between the proposal distribu-
tion and the energy function in order to set up convex
optimization problems defined on the space of biasing
functions,

3. search for the best biasing function in a parametric class
of biasing functions, and

4. are related to the minimization of the Kullback-Leibler
divergence of the target distribution with respect to the
proposal distribution.

We argue that these similarities are natural to enhanced sam-
pling methods. The first common feature is a significant com-
ponent of importance sampling, as we showed in Sec. II. The
second common feature is relevant because it is well known
that convex optimization problems are easier to solve than
nonconvex ones. The third common feature makes the con-
vex optimization problem easier to solve computationally. We
shall discuss the fourth common feature in Sec. IV A.
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We also note that in Ref. 15, Hartmann and Schiitte sug-
gested that the biasing function be a sum of suitably scaled
Gaussians that are chosen to “fill” the basins in the energy
landscape that are associated with metastable conformations.
This is fundamentally the same idea as that of metadynamics.’
Several different aspects of the Hartmann-Schiitte approach
have been studied, e.g., the question of whether Gaussians
are a good choice of ansatz function,* a method for placing
such ansatz functions automatically,”® and the convergence of
the gradient descent approach.?’ Analyses of similar questions
have also been done for metadynamics.?3!

With regards to the connection between importance sam-
pling and enhanced sampling, the two methods are similar
in the following way. In traditional MD, one can perform
reweighting using standard umbrella sampling and importance
sampling techniques to obtain the free energy landscape for
arbitrary collections of CVs, regardless of whether or not the
CVs in these collections are involved in the biased dynam-
ics. A significant feature of the Valsson-Parrinello method is
that one can use the optimal biasing term from (8) in order to
directly obtain the free energy landscape using the Valsson-
Parrinello method, without a need for reweighting. Likewise,
the Hartmann-Schiitte method does not perform statistical
reweighting in order to calculate the landscape of the function
g over S for a fixed B, although one can perform statistical
reweighting using Girsanov’s theorem (see Sec. III D) for any
path functional W’, even if W’ differs from the functional W
that defines the quantity of interest g.

The Hartmann-Schiitte and Valsson-Parrinello methods
also differ in certain ways, the most prominent difference being
that the quantity of interest in the Valsson-Parrinello method
is the free energy landscape over some CV space S, while
the quantity of interest in the Hartmann-Schiitte method is
the conditional cumulant generating function g of some path
functional W.

D. Girsanov’s theorem

Recall that one of the stated aims of this article is to present
some basic mathematical concepts that are frequently used
in mathematical analyses of importance sampling methods.
In this section, we present Girsanov’s theorem, a mathemati-
cal result that is often used for statistical reweighting of path
functionals, whenever these paths are solutions of the over-
damped Langevin dynamics equation (9). Girsanov’s theorem
provides an explicit formula for the Radon-Nikodym deriva-
tive Z—"; of the target probability distribution ¢ on path space
with respect to the proposal v in terms of the biasing function
Fbias.

Theorem 2 (Girsanov). Let u be the probability distri-
bution of solutions of (9) and v be the probability distribution
of solutions of (9) for F replaced by F + F pigs. If F pigs is finite

on S, then the Radon-Nikodym derivative Z—"; on the space of
paths of duration T satisfies

ap _ Bl aen - B [(F. 2
E = exp(\/;/o—’Fbms(s(t)) dé(n) 4/0 |[Fpias(s(2))] dt)-

(1)
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For a complete statement and proof of Girsanov’s theorem, see
Theorem 7.2 of Ref. 32. Girsanov’s theorem is particularly
useful for two reasons. First, we can use it to interpret the
Kullback-Leibler divergence term on the right-hand side of
(10): given the properties of the Brownian motion process &,
we have

E, [~ log %] = E, [1 i ' |Fbias(s<r))|2dr]
4 Jo

so that the Kullback-Leibler divergence is proportional to the
average energy dissipated along the overdamped Langevin
trajectories so.-. Second, the Radon-Nikodym derivative Z—fj
can be computed on the fly along any one trajectory because
it is expressed in terms of quantities that are computed at
every step in the dynamics. We note that, while Girsanov’s
formula (11) may appear similar to certain expressions in
stochastic path integral hyperdynamics®3-* [see, e.g., Egs. (5)
and (6) in Ref. 34], the latter expressions differ from (11)
because they do not contain a stochastic integral term of the
form [ F(s(2)) - d&(z). Thus statistical reweighting based on
Girsanov’s theorem and the reweighting described in path
integral hyperdynamics are different. A statistical reweight-
ing scheme based on Girsanov’s theorem has only very
recently been applied in the MD context, e.g., for Markov state
models.!”

IV. DISCUSSION

In this section, we show the significance of the connec-
tions between the class of enhanced sampling methods that
we consider in this paper and importance sampling methods,
by presenting some results from the mathematical analysis of
Monte Carlo and importance sampling methods and describ-
ing their significance to the development of enhanced sampling
methods.

A. Bounds on error in terms
of Kullback-Leibler divergence

Chatterjee and Diaconis® considered the question of the

sample size n required in order to obtain a good estimate of
some quantity of interest [E,[f], under the assumption that
E, [£*]is finite. The first case they consider is as follows: Let u
and v be probability distributions on some set &, and suppose
that u is absolutely continuous to v, so that the Kullback-
Leibler divergence Dgz (u||v) of u with respect to v given by
(4) exists and is finite. Chatterjee and Diaconis showed that,
for the importance sampling estimator /y[f] defined by (5),
the number of samples required such that Iy[f] is close to
the quantity of interest with high probability is approximately
equal to exp(Dgz(u||v)). In particular, if s € R is such that the
standard deviation of log Z—’V‘ about its mean is O(10%), then
a sample of size exp(Dgz(u||v) + O(10%)) is sufficient, and a
sample of size exp(Dgz(u||v) — O(10%)) is necessary, for the
error of the importance sampling estimator to be close to zero
with high probability.

The preceding result applies to the additive error |E,[f]
— Iy[f1] and hence is not useful when the quantity of inter-
est itself is small, e.g., when E,[f] = u(A) is a rare event
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probability. In the latter case, the multiplicative error
In(f)/u(A) is more appropriate, and the analogous result
asserts that the required sample size is exponential in the
Kullback-Leibler divergence Dgp(u4llv), where uy denotes
the target measure u conditioned on the event A.

The results of the work by Chatterjee and Diaconis show
that the sample size needed for accurate importance sam-
pling scales exponentially in the Kullback-Leibler divergence,
provided that the Kullback-Leibler divergence term domi-
nates the fluctuations in the logarithm of the Radon-Nikodym
derivative. Their result also provides theoretical support to the
convex optimization problems of the Valsson-Parrinello and
Hartmann-Schiitte methods since these convex optimization
problems can be reformulated as problems of minimizing the
Kullback-Leibler divergence of the target with respect to the
proposal.

A caveat that Chatterjee and Diaconis noted is that,
although one can use a sample mean estimate of the Kullback-
Leibler divergence as a diagnostic for convergence, there
is a fundamental flaw in using sample mean estimates of
the Kullback-Leibler divergence in doing so. They sug-
gest another scalar quantity as a diagnostic for convergence
but also provide an example in which this diagnostic fails.
Their work suggests that any convergence diagnostic will
have a weakness that renders it uninformative under certain
conditions.

We note that, in general, one might not have a priori infor-
mation on the order of magnitude of the fluctuations in log j—’;,
asis required for the result of the work by Chatterjee and Diaco-
nis. Fortunately, their analysis is complemented by the analy-
sis30 of Agapiou et al., which shows that, under the assumption
of bounded random variables, the sample size required for
a wide class of importance sampling methods to yield an
accurate estimate scales linearly with the y? divergence,

du 1 2

()]

Agapiou et al. showed that the worst-case bias and mean-
square error in a particle approximation of the target distri-
bution with N particles for bounded quantities of interest are
bounded from above by a constant times N (D 2( vy +1).
The analysis of Agapiou et al. confirms that the exponen-
tial scaling in the Kullback-Leibler divergence is correct
because the y>-divergence is related to the Kullback-Leibler
divergence according to

D (ullv) = E,

exp (Dgr(ullv)) < D2 (ullv) + 1.

Thus, the fact that the required sample size scales linearly with
respect to the y? divergence is consistent with the results of
the work by Chatterjee and Diaconis that require the required
sample size to scale exponentially with respect to the Kullback-
Leibler divergence. While the assumption of boundedness
mentioned above is rigorously met for some quantities of inter-
est, e.g., rare event probabilities, it might not be for others, e.g.,
first passage times. Therefore, as in the case of the Chatterjee-
Diaconis result, the theoretical results of Agapiou et al. must
be applied with care.
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B. The curse of dimension via concentration
of measure

Many methods for enhanced sampling are built around
the assumption that one has identified a low-dimensional col-
lective variable space that accurately captures much of the
dynamics in the full state space. Using the connection between
enhanced sampling and importance sampling methods in this
article, we can shed some light on this assumption.

Recent work®’ of Polyak and Shcherbakov showed that
Monte Carlo methods fail for simple high-dimensional opti-
mization problems involving linear objective functions defined
over regular domains such as hypercubes and balls. They show
that this failure arises due to the concentration of measure phe-
nomenon. Roughly speaking, the concentration of measure
phenomenon refers to the situation when probabilities of fixed
sets in a space of dimension n decrease exponentially with the
dimension.

The intuition for the results of the work by Polyak and
Shcherbakov is that, as the dimension of the space increases,
the probability of the set containing the solution of the opti-
mization problem decreases exponentially so that the prob-
ability that a Monte Carlo method will draw samples from
this set becomes extremely small. Polyak and Shcherbakov
demonstrated that this phenomenon occurs even if one does
not perform random sampling but uses instead quasirandom
sampling, e.g., Sobol sequences. For more sophisticated par-
ticle filter-based importance sampling schemes, Bengtsson,
Bickel, and Li showed?8 a decade earlier that the concentra-
tion of measure phenomenon is responsible for the failure of
such importance sampling methods in the context of numerical
weather prediction, where the dimension of the state space in
question is frequently on the order of 10° or higher.

We note that the work of Polyak and Shcherbakov is sig-
nificant in light of the suggestion of Chatterjee and Diaconis
that importance sampling methods can be designed with a
view to minimizing the Kullback-Leibler divergence. In the
context of enhanced sampling methods, the work of Polyak
and Shcherbakov suggests that if one formulates an enhanced
sampling method that seeks to solve a high-dimensional opti-
mization problem where the objective function involves the
Kullback-Leibler divergence, then the probability that a naive
Monte Carlo method will yield a good approximation of the
optimizer decreases exponentially with the dimension of the
constraint set.

Given that it is ideal to search for optimal biasing func-
tions in a structured manner and given that such structured
search methods are built around the idea that an optimal bias-
ing function solves some constrained optimization problem,
the work of Polyak and Shcherbakov provides rigorous sup-
port for the notion that dimension reduction plays an essential
role in enhanced sampling.

C. The active subspaces method

In order to emphasise that the connection between impor-
tance sampling methods (more broadly, Monte Carlo meth-
ods) and enhanced sampling methods is significant in the
context of molecular dynamics, we now briefly describe the
method of active subspaces,’® which has gained traction in a
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wide range of applications; we refer the interested reader to
activesubspaces.org/applications.

Active subspaces were developed for the purpose of study-
ing the dependence of a function defined on a high-dimensional
space on its parameters. In such studies, a common goal is to
find those parameters which have the largest influence on the
values on the function or in other words, to perform sensitivity
analysis of the output of the function with respect to its inputs.

The main idea of active subspaces is to replace an exper-
iment whose computational cost renders it unfeasible, with
surrogate experiments whose computational cost is sufficiently
low as to guarantee feasibility. The idea is to encode the
derivatives of the input-to-output function into a symmetric,
positive semidefinite matrix and then to study the eigenvalue-
eigenvector pairs of this matrix. Relevant parameters—i.e.,
those inputs for which the corresponding derivatives assume
large values—will be encoded by the dominant eigenvectors
of this matrix. If the input-to-output map depends only on
a few relevant parameters, then there will be a spectral gap
in the matrix encoding the derivatives, and thus, the num-
ber of dominant eigenvectors will be much smaller than the
dimension of the space over which the function is defined.
An active subspace method uses Monte Carlo to approximate
the eigenpairs and approximates the otherwise prohibitively
expensive experiment by investing computational effort to
perform expensive experiments on the low-dimensional span
of the dominant eigenvectors and using cheaper simulation
techniques to sample from the higher-dimensional subspace
spanned by the non-dominant eigenvectors.

To the best of our knowledge, active subspace methods
have not been applied in the context of molecular dynamics.
The method based on spectral gap optimization of order param-
eters (SGOOP)*’ and a method based on time-lagged indepen-
dent component analysis (TICA)*! tackled a similar problem
but in the context of Markov state models. These methods find
a spectral gap in certain transition probability matrices in order
to identify a small number of “slow” variables. Although the
inherently linear nature of the active subspaces method may
appear to limit its applicability to molecular dynamics (since
many collective variables are nonlinear functions of the state),
we believe that active subspaces may be useful. Indeed, the
successful application of active subspace methods to a wide
range of applications in engineering indicates that the problem
of finding suitable “dominant” variables remains a significant
challenge in many areas of applied mathematics and suggests
that there is scope for cooperation between mathematicians
and chemical physicists.
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