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Abstract

Recent years have seen an enormously revived interest in the study of thermodynamic notions in the
quantum regime. This applies both to the study of notions of work extraction in thermal machines in
the quantum regime, as well as to questions of equilibration and thermalisation of interacting
quantum many-body systems as such. In this work we bring together these two lines of research by
studying work extraction in a closed system that undergoes a sequence of quenches and equilibration
steps concomitant with free evolutions. In this way, we incorporate an important insight from the
study of the dynamics of quantum many body systems: the evolution of closed systems is expected to
be well described, for relevant observables and most times, by a suitable equilibrium state. We will
consider three kinds of equilibration, namely to (i) the time averaged state, (ii) the Gibbs ensemble and
(iii) the generalised Gibbs ensemble, reflecting further constants of motion in integrable models. For
each effective description, we investigate notions of entropy production, the validity of the minimal
work principle and properties of optimal work extraction protocols. While we keep the discussion
general, much room is dedicated to the discussion of paradigmatic non-interacting fermionic
quantum many-body systems, for which we identify significant differences with respect to the role of
the minimal work principle. Our work not only has implications for experiments with cold atoms, but
also can be viewed as suggesting a mindset for quantum thermodynamics where the role of the
external heat baths is instead played by the system itself, with its internal degrees of freedom bringing
coarse-grained observables to equilibrium.

1. Introduction

Thermodynamics is undoubtedly one of the most successful physical theories, accurately describing a vast
plethora of situations and phenomena. Until not too long ago, the study of thermodynamic state
transformations was mostly confined to the realm of classical physics, which constitutes a most meaningful
approach when considering macroscopic situations. Progress on the precisely controlled manipulation of
physical systems at the nano-scale or at the level of single atoms, however, has pushed the frontier of the
applicability of thermodynamic notions to the realm of quantum physics. Indeed, the emergent research field of
quantum thermodynamics is concerned with thermodynamics in the quantum regime, a regime in which
notions of coherence, strong interactions, and entanglement are expected to play a significant role.

Building upon a body of early work [ 1, 2], recent attempts of grasping the specifics emerging in the extreme
quantum regime have put particular emphasis on notions of thermodynamic state transformations for quantum
systems. A similar focus has been put on studying the rates of achievable work extraction of thermodynamic
machines [3—16]. In these new attempts, a resource-theoretic mindset is often applied, or single-shot notions of
work extraction [8, 17] are elaborated upon. These studies are motivated by foundational considerations—after
all, such thermodynamic state transformations are readily available in a number of quantum architectures—as
well as by technological desiderata: for example, novel techniques for cooling quantum systems close to the
ground state can be derived from quantum thermodynamical considerations [18, 19]. In these studies of

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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quantum heat engines, heat baths prepared in thermal states are usually still taken for granted: this is most
manifest in a resource-theoretic language, where such thermal baths in Gibbs states are considered a free
resource.

Concomitant with these recent studies of thermal machines, a second branch of quantum thermodynamics
is blossoming: this is the study of quantum many-body systems out of equilibrium and the question of
thermalisation as such [20-26]. In this context, thermal baths are by no means assumed to be available: instead it
is one of the key tasks of this field of research to find out under what precise conditions closed many-body
systems are expected to thermalise, following quenches out of equilibrium. This is hence the question in what
precise sense systems—as one often says— form their own heat bath’. Despite respectable progress in recent
years, many questions on many-body systems out of equilibrium remain open, even when it comes to
understanding whether non-integrable generic systems always thermalise at all [27]. Many-body localised
systems are expected to stubbornly refuse to thermalise, for retaining information of the initial condition over an
infinite amount of time. Another family of systems not equilibrating to Gibbs states is is constituted by integrable
models, which are expected to converge to generalised Gibbs ensembles (GGE) [21, 26, 28-35]. For
comprehensive reviews on the subject, see, e.g., [27, 36—38].

It is the purpose of this work to bring these two realms of study closer together and to attempt to formulate a
theory of quantum thermodynamics and notions of work extraction, taking into account these recent insights
into the mechanism of equilibration in many-body systems. More specifically, we consider work extraction from
aclosed system that undergoes a sequence of quenches and relaxations to a respective equilibrium state.
Importantly, our framework deviates from the standard realm of thermodynamics, where equilibration to
statistical ensembles after each quench occurs through weak coupling with an infinite thermal bath. In contrast,
we incorporate the equilibration to such ensembles as an effective description of the unitary evolution of a closed
system. This effective description is adequate to capture the system only for a restricted, although most relevant,
set of observables, e.g. local observables such as the energy or order-parameters. We will consider three kinds of
equilibrium states: the time averaged state, the Gibbs ensemble, and the GGE for a given set of constants of
motion. Entropy production and the minimal work principle will be studied for these three models.

The results presented here are expected to be of interest for both the study of thermal machines in the
quantum regime—since new insights for the equilibration of closed quantum many-body is taken into account
—as well as for the study of quantum many-body equilibration itself. Our work highlights the importance of
investigating not only the equilibration of systems after single quenches, but also the equilibration after
sequences of quenches which are the relevant paradigm within protocols of work extraction.

The structure of this work is as follows. In section 2 we introduce the three models of equilibration that will
be considered throughout this work and discuss its physical relevance as a description of the effective evolution
of closed many-body systems. In section 3 we turn to presenting our framework of work extraction based on
quenches and equilibrations. Section 4 discusses notions of entropy production in each of the models of
equilibration, where we introduce rigorous conditions for the absence of entropy production and carefully relate
these conditions to notions of reversible processes. In section 5 we discuss the minimal work principle and the
protocols for optimal work extraction for each of the models of equilibration. Lastly, in section 6 we study a
model of non-interacting fermionic systems, where many of the features throughout our theoretical analysis are
made concrete.

2. Equilibration models

When referring to equilibration of quantum many-body systems, we relate to finite but large systems. Such
closed quantum many-body systems cannot truly equilibrate due to their unitary evolution. What is generically
the case, however, is that expectation values of large restricted sets of observables equilibrate in time to the value
attained for the time average [21, 25, 39, 40], in the sense that they stay close to the time average for most times in
an overwhelming majority. This is particularly true for local observables [21, 25,27, 31, 34, 41].

2.1. Time average state or diagonal ensemble
We say that an observable A equilibrates if, after some relaxation time, its expectation value is for most times the
same (A (1)) ~ Tr(AQty) as the expectation value of the infinite time average

1 T . .
Qralp, H) :== lim — f e Ht  eifltdy, @)

T—oo T Jo

of an initial state p of a system described by a Hamiltonian H. A simple calculation shows that the time averaged
state corresponds to the de-phased state in the Hamiltonian eigenbasis and for this reason is often called diagonal
ensemble. More explicitly, given the distinct energies of the Hamiltonian { E; } and the projectors onto their
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corresponding eigenspaces Py, the time averaged state reads

Qralp, H) = ) _PipPy. (2)
k
The time averaged state corresponds to the maximum entropy state given all the conserved quantities [42]. This
observation turns the principle of maximum entropy introduced by Jaynes [43, 44] into a consequence of the
quantum dynamics. The principle of maximum entropy states that the probability distribution which best
represents the current state of knowledge of the system is the one with largest entropy given the conserved
quantities of the system; this principle will be crucial to define our equilibration models.

Although relaxation towards the time averaged state has been proven under very general and naturally
fulfilled conditions [23-25, 39], in practice, the diagonal ensemble cannot be used as an equilibration model due
to its inefficiency. The description of the equilibrium state by the diagonal ensemble requires the specification of
as many conserved quantities as the dimension of the Hilbert space, which scales exponentially in the system
size. Itis therefore in principle not even possible to save all the data in a computer for alarge interacting many-
body system, let alone compute the infinite time average efficiently.

2.2. Canonical or Gibbs ensemble
In practice, the characterisation of the equilibrium state can in many instances be done by specifying only a few
quantities, e.g., the temperature and the chemical potential. The most relevant and common such situation is the
canonical ensemble or the Gibbs state, for which only the temperature, or equivalently the energy per particle of
the initial state p, has to be specified,
e Pt
Qaivbs (0, H) = Z 3)

where p is the state of the system before undergoing the equilibration process, Z = Tr(e ") is the partition
function and the inverse temperature 3 > 0 is fixed by imposing that Tr(H2gipps) = Tr(Hp).

For generic, non-integrable models, the thermal state is expected to be indistinguishable from the time
averaged state under very mild assumptions which relate to conditions on eigenstates of the Hamiltonian
[22,27,45] and on the energy distribution of the initial state [46, 47]. While dynamical thermalisation in this
sense has not yet been rigorously proven, it is highly plausible, and it can be connected to typicality arguments
[48,49]. The generality of these conditions explains why the canonical ensemble is the corner-stone of the
standard thermodynamics. Nevertheless, there are known instances of systems that do not thermalise. One
central aim of this work is to study how thermodynamic protocols are modified when the Gibbs ensemble is not a good
equilibration model and does not satisfactorily describe the equilibrium state of the system.

2.3. Generalised Gibbs ensemble

Examples of systems which do not fully thermalise to Gibbs states are constituted by integrable systems. The
infinite-time averaged states are not well described by the Gibbs ensemble because of the existence of (quasi)
local integrals of motion, i.e. conserved quantities Q;, that retain information about the initial state over an

infinite amount of time. Instead, there is strong evidence that they can be well-described by the so-called GGE
defined as

Qace(ps H,y {Qi}) o e HFEL A, (4)

where the generalised chemical potential ); is a Lagrange multiplier associated with the specific conserved
quantity Q;, j = 1,...,4, such that its expectation value is the same as the one of the initial state

TT(QGGE(P> H7 {Q]}) Qk) = Tr(ka): (5)
foreach k = 1,...,q. The GGE can be understood as an interpolation between the diagonal and the canonical
ensembles. The diagonal ensemble maximises the von Neumann entropy S(p) = —Tr(p log p) given all the

conserved quantities (CQ). The Gibbs ensemble maximises the von Neumann entropy considering only the
energy as a conserved quantity. The GGE is situated in between. For a given state p and a set of operators
(conserved quantities) { Q;}, it is natural to define the set of states compatible with the values the conserved
quantities

E(p, {Qi}) = {a|Tr(pQi) = Tr(oQi) }. (6)

The GGE is the state that maximises the von Neumann entropy within £(p, {Q;}). From this perspective, the
ensembles introduced so far can be summarised as

Qrp = argmax, e, ca CQ})S(O'), (7)

Qcee(p, H, {Qi}) = argmaxagg(p,{H,Qi})S(U), (3

3
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Figure 1. Time evolution of the occupation of the first site of the lattice 7, = a, a, for a quadratic Hamiltonian of # fermions in a one
dimensional lattice. For the example we take n = 100, ¢; = 1, A = 0.15, § = 2,g = 0.1 and time is measured in units of 1/(10g).
An equilibration around the GGE is observed, even for this moderately sized quantum system.

Qaivbs (0» H) = argmax(,eg(,,,{H})S(U)- 9

A relevant question in the construction of GGEs is how the conserved quantities have to be chosen, which is
discussed in appendix A. In general, there is a certain degree of ambiguity of what constants of motion to pick in
order to arrive at the appropriate GGE. This discussion is not relevant for the general study pursued in this work,
however. Itis the aim of this work to study the thermodynamical behaviour of the GGE in full generality, hence
we will not have to make any precise assumption about the conserved quantities, unless it is explicitly specified.

2.4. Example: Equilibration of a quadratic fermionic model
To illustrate the above considerations, let us consider a quadratic Hamiltonian of fermions in a one dimensional
lattice

n n—1
HO =%"cafa; + ¢ (afair) + af, a), (10)
i=1 i=1
where 1 is the total number of sites and a; (a f) are the creation (annihilation) operators at the i-site which satisfy
the fermionic anti-commutation relations

{ai, a]} = 6ij, {ai, aj} = {a], a]} = 0. an

We would like to study how an initially out of equilibrium state relaxes to equilibrium and see that the Gibbs
ensemble fails to describe the equilibrium state.

The initial state of the system is taken to be in thermal equilibrium, p© = e #H"”/Z. A quench is then
performed to a new Hamiltonian H®,

HO s HO, (12)

in which the energy of the first fermion is modified, H® = H©® + Ag,' a;. After the quench, the population of
the first fermion evolves in time ¢ > 0 as

m(t) = Tr(a] ap (1)) (13)
with p(t) = e Wt p(0)e! 't As the Hamiltonian is quadratic, itis a problem involving free fermions and can
be numerically simulated for very long times and system sizes (see appendix G.1).

In figure 1, we plot the time evolution of the occupation of the first site n; (¢). As expected, we see that after
some relaxation time ¢, #; (¢) equilibrates to the value predicted by the GGE—which is relatively far from the one
given by the Gibbs equilibration model. The situation described in this example, a quench and the
characterisation of the equilibrium state, is extensively studied in the literature, see for a recent review [27]. In
order to study thermodynamic processes in which many quenches and equilibrations are performed, it will be
necessary to promote the suitability of effective descriptions in terms of GGE states for equilibration processes
beyond a single quench.

3. Framework for thermodynamic protocols

In the previous section we have introduced the different equilibration models, given by equations (7)—(9), that
describe the equilibrium state that is reached when a system initially out of equilibrium in a state p evolves under

4
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a Hamiltonian H. One way to bring a system out of equilibrium is to quench its Hamiltonian. More explicitly, a
system initially at equilibrium with initial Hamiltonian H undergoes a quench H@ — H" and starts to
evolve non-trivially under the new Hamiltonian H™. The models of equilibration introduced above can be
used to describe the new equilibrium state that is reached after a single quench and a posterior sufficiently long
time evolution under H™, However, thermodynamic processes (for instance a protocol of work extraction)
often involve a series of quenches and equilibrations. We now extend our previous considerations to such
processes involving sequences of quenches and equilibrations.

3.1. Equilibration under repeated quenches

Consider a sequence of changes of the Hamiltonian, as defined by alist of N + 1 Hamiltonians, H™", where

m = 0, 1,...,N denotes the step in the protocol and H? is the initial Hamiltonian. These Hamiltonian
transformations H®~1 +— HU" are considered to be quenches, in the sense that they are performed sufficiently
fast such that the state of the system p is unchanged. Let us denote the time at which the quench H"~ D +— H™
is performed by t,,, with t,,, < t,,, for all m. After a quench, the system evolves under the Hamiltonian H™ for
atimet,,, — t,, untilanew quench H™ — H*D s performed at time t,, ; ;. This time interval is taken to be
much longer than the equilibration time such that the system can be considered to be in equilibrium. The exact
state of the system p (t) when m quenches have taken place (t,, < t < t,,41) is given by,

p(t) = e {mH™ p(p yelt—tnH™, (14)

where p (t,,) is the state of the system at t = t,, when the Hamiltonian H starts to dictate the evolution. The
state p (t,,) is given by the recursive expression

p(t) = e G VHE p gy yeltimn pHED) (15)

with p (¢) the initial stateand k= 1,...,m.

Now, our aim is to construct an effective description of the whole evolution of p, in such a way that the state
after the mth quench and its posterior equilibration, p (t), can be described by an appropriate equilibrium state.
We denote such equilibrium state that approximates the real state after m quenches, p (t), as wg@) where (--+)is
the place holder for one of the three models of equilibration: time-average (TA), GGE or Gibbs. The effective
description of (14) is then built in a recursive way as follows,

WY = Qra (WY, H™),
Wil = Qe (Wl H™, (Q™)),
W ibes = Qaibbs (Wkipps» H™). (16)
Here, wEQ,),) = p(tp) is the intial state, before any quench or evolution has taken place. Note that, when
constructing the GGE description, the set of conserved quantities { Q™ } changes for every Hamiltonian H™,
as well as the Lagrange multipliers { )\g’”) } ?: ,» or simply the inverse temperature 3™ in the case of equilibration
to the Gibbs ensemble.

In order to provide a motivation and interpretation of equation (16), together with the implicit assumptions
that come into play, let us illustrate it with a simple example. Suppose a system initially in state p (0) and with
Hamiltonian H©. At time t,, we perform a first quench H® ~— H and let the system evolve under H"; at
time t, we perform second quench H" +— H® and let the system evolve under H® until it equilibrates at time
t. For both evolutions, we now consider effective descriptions in terms of GGE states. After the evolution under
H® and immediately before performing the second quench, the system is exactly described by p (t,) as given by
equation (15). For a set of conserved quantities { Q{" }, the corresponding GGE equilibrium state is given by,

Wil = Qace (p (), HD, {QV}) ~ p(n), (17)

where the symbol ‘>’ means in this context that the average value of relevant observables is well approximated
by w(GléE, thatis

Tr(Ap(ty)) =~ Tr(Awllp). (18)

Now, when describing the equilibrium state after the second quench, one can simply apply the same recipe. That
is, the state p (+1)) is the initial state when the evolution under H® starts. Then, assuming that the new
conserved quantities { Q(® } ; are chosen appropriately and applying the same reasoning one obtains an
approximation by taking

Qcce (p (1), HD, (QP}) ~ p(1), (19)

with tlonger than the ¢, plus the subsequent equilibration time. Importantly, note that this effective description
is not efficient, in the sense that it requires keeping track of the exact state p (t,) to obtain the equilibrium state at
time t. If this is extended to N quenches, having to keep track of the exact evolution until the (N — 1)th quench
is as demanding as keeping track of the whole exact evolution over the process. It is here when the effective
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description (16) becomes handy, as it can be constructed by keeping track of the value of the conserved quantities
only. First of all, coming back to the first evolution, note that by applying (16) with m = 1 we recover (17),i.e.,
the standard result for single quenches. Now, in order to construct the GGE state corresponding to p (¢), we
assume that the conserved quantities { Qi(z) } are within the set of physically relevant observables A in (18). That
is, we assume that

Tr(Q¥ p(t)) ~ Tr(QPwlly (20)

for all i. In this way, in order to obtain the equilibrium GGE ensemble after the second quench, it is not necessary
to keep track of the exact state p (¢,), but one can simply use wgéE instead. Using (20) we then obtain,

2 2
wide = Qace (Wate H, {Q))

~ Qcae (p(t), H?, {QP})) 21
~ p (). (22)

Extending the same reasoning to the case of N quenches and other models of equilibration other than the GGE,
we arrive to an effective description of the form (16).

In the rest of this work we will always use the effective description (16) for the full process consisting on a
sequence of quenches and equilibrations. We do not claim by this that this model will accurately describe the real
dynamics of any system or protocol, and indeed we explicitly leave here as an open question to identify for which
Hamiltonians and conserved quantities condition (20) is satisfied for each quench. Nonetheless, and in exactly
the same way as equilibration to the Gibbs state is assumed in the usual scenario in thermodynamics, we will
assume that equilibration to statistical ensembles of the form (16) occurs over any protocol, so that we can tackle
questions about entropy production and work extraction.

To examine the validity of our model, we provide a numerical comparison in section 5.3 of the real exact
evolution and the model of equation (16) for different initial states and protocols, given a system of free
fermions. We will see for several examples that the model predicts with great accuracy the amount of work that is
extracted in a protocol involving a sequence of quenches.

Another interesting issue is to understand how the accuracy of our model decreases when perfect
equilibration is not reached, as a consequence of the time of equilibration being too short. In particular, a crucial
point is to understand whether the error scales badly with the number of quenches, so that the model (16)
becomes progressively worse as N increases. In section 6.3.4, we investigate the accuracy of our model for a free
fermionic system for increasing N and a constant time for the whole process. The results suggest that the error
becomes independent on the number of quenches that are implemented while it decreases with the total time of
the protocol, so that the model (16) remains a good description of free fermions for finite equilibration times and
any number of quenches.

3.2. Work cost of quenches

Concatenations of quenches and equilibrations constitute a framework to describe thermodynamic processes—
see, e.g., [12, 17, 50]. Within this framework, work is associated with the input energy under quenches, whereas
heat is associated with the exchange of energy under equilibration processes. At the level of average quantities,
the work cost of a single quench, H" =1 +— H™, reads

WO = Tt (p (£,) (H™ — HO=DY), (23)

where p (t,,) is given in (14). The main assumption of this study is precisely that the work cost of a quench is very
well approximated by the effective description of the equilibrium state, i.e.

W = Tr(w" D (H™ — Hm=Dy), (24)

where wgf’?_’ Dis its effective description (16). While we focus our attention on average quantities, primarily for

simplicity of the analysis, one could also conceive a study of work extraction under GGE for other work
quantifiers [10, 51, 52]. As the equilibration processes happen spontaneously and have no work cost, the total
work extracted in the entire protocol is simply given by the sum of the steps

N
W=y wm, (25)

m=1

3.3. The system-bath setting beyond the weak coupling and infinite bath limits

A particularly relevant scenario is the system-bath setting. We call system S to the part of the total system upon
which one has control and it is possible to quench its Hamiltonian Hs. The bath B contains the degrees of
freedom upon one has no control and it is the responsible for equilibrating the system S. In order for this
equilibration to happen, the dimension of the Hilbert-space of S, dim (), is considered to be much smaller
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than that of the bath,
dim(Hs) < dim(Hp) (26)
and the total Hamiltonian to be of the form®,
H™ = H{™ @ 1+ Is ® Hg + V, 27)

where the interaction Vis supported on S and B and couples the two subsystems. Unlike the standard
assumptions in thermodynamics, note that we do not assume that the interaction V'is weak or that bath size is
infinite. Let us be more explicit about what we mean by that.

Usually, within thermodynamics, it is assumed that the system S equilibrates, upon contact with a bath B,
according to

efﬂHé"‘)

Trp”) = Qy(H") = ——, (28)
where 3 > 0 1is fixed throughout all the protocol. In contrast, in the model that we consider, given by w(gfgbs in
(16), the inverse temperature changes along the protocol and the Gibbs states describe the whole compound SB.
Nonetheless, let us note that the model of equilibration {25 in (28) represents a particular case of our Gibbsian
model Qg;pps in the limit of weak coupling and infinite bath. In the limit of an infinite bath, the total energy of SB
in (16) will not be substantially affected by the energy pumped or subtracted in all the quenches H{y” — H{y ™"
and the parameter 3™ will remain constant throughout the protocol, 3 ~ (3 for all m. In the limit of weak
coupling V'between Sand B, then  5on (H, S(Z‘)) ~ Qg (H 5(”‘)) ® Qgem(H )y,

In sum, the model of equilibration w((;"fgbs should be regarded as a correction to the usual setup in
thermodynamics given by equation (28). This correction incorporates the fact that the bath is of finite size,
which introduces a dependence of the inverse temperature 3™ and also allows for strong couplings between S
and B.

4. Entropy production and reversible processes

An important quantity in thermodynamic processes is the entropy production on system and bath during the
protocol. Of course, the exact unitary dynamics on SB does not change the von Neumann entropy in the system.
However, we are using an effective description on SB, given by (16), and in this effective description the entropy
in the system SB might well change. Indeed, due to the fact the equilibration models can all be understood as a
maximisation of the entropy given some constraints, it follows that the entropy of the states w™ in (16) is non-
decreasing during a protocol

Sw™) = Sw™ D) ¥V m=1,...,N. (29)
where Sis the von Neumann entropy defined as
S(p) = —=Tr(plogp). (30)

Therefore, sequences of quenches followed by equilibrations are in general irreversible: if we start with the final
state of the protocol and then run the protocol backwards, we will in general not end up with the original initial
state.

From phenomenological thermodynamics we would expect that the protocols become reversible if they are
done in a quasi-static way. In the context of our set of operations, a quasi-static process is defined by considering
N — oo quenches H™ — H*D guch that H"*+D — H isof order 1/N, followed each by an equilibration
process as given by equation (16). In this limit of an infinite number of quenches we can simply describe the
quasi-static process by defining the continuous path of Hamiltonians as u — H (1) with u € [0, 1]. This
corresponds to the Hamiltonian H™ = H (u = m/N), and equivalently for the equilibrium state
w(u = m/N) = w™ in thelimit of N — oo (where wis an effective description of the equilibirum state given
by TA, GGE or Gibbs). Although thelimit of N — oo is unphysical, since it would require an infinite time, it
should be regarded as a limiting case describing the regime of large but finite N, which can always be performed
in finite, but possibly large time. This is similar to the situation of quasi-static processes in thermodynamics,
where the actual behaviour in time of thermalisation do not explicitly appear in the description.

We will be concerned with the von Neumann entropy of the equilibrium state along the trajectory

S(u) = —Tr(wu)logw (u)). (31)

We now discuss in detail under which conditions the entropy remains constant over the quasi-static process,
i.e. S(1) = 5(0), for the three models of equilibration. Importantly, note that we are concerned with the entropy

Strictly speaking, the later examples of fermionic systems do not have this tensor product structure, as they are defined on a fermionic
Fock-space. This poses no problems for our considerations, though.
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production in a given quasi-static process. Hence, as the quasi-static process requires an arbitrarily large number
of quenches and subsequent equilibrations, it is by definition an arbitrarily slow process. We will see that the fact
that the process is arbitrarily slow alone (by definition as it is a quasi-static process) does not guarantee that there
is no entropy production.

4.1. Entropy production for time averaged ensembles

We start by analysing the entropy production of a quasi-static process when all conserved quantities are taken
into account. In this case the equilibrium state is given by w4 (u). Our first result shows that there is no entropy
production in a quasi-static process if the trajectory of Hamiltonians u — H (u) is smooth.

Result 1 (Absence of entropy production within the TA model). Consider a Hamiltonian trajectory

u — H(u) = Y, Ex ()| Ex (u) XEx (1) |, and a quasi-static process along this trajectory which induces a family of
time-average states wra (#1). Then, if the trajectory is continuous and the eigenvectors |E; () ) are differentiable,
there is no entropy production in such a quasi-static process, thatis, S (0) = S(1) = 0.

The proof and discussion can be found in appendix B. Note that this result is independent of the state which
is evolving under H(u). In fact, for a given state, there exist quenches that are not quasi-static but preserve its
entropy, such as any quench to a Hamiltonian with the same eigenbasis as the state. This is for instance the case
of raising and lowering energy levels.

4.2. Entropy production for GGEs
Now, we consider the case of a generic GGE equilibration where not all the conserved quantities are taken into
account. In this case, the equilibration model (16) satisfies the relation,

Tr (wgde Q™) = Tr(Wigs" Q™) (32)

foralli=1,...,q. Here the { Q™ } correspond to the g conserved quantities of H", and equation (32)
determines the corresponding Lagrange multipliers \{"™ in (4). For such equilibrium states, we also identify
conditions so that there is no entropy production. More precisely, we find the following:

Result 2 (Absence of entropy production within the GGE model). Consider a quasi-static process alonga
Hamiltonian trajectory u — H (u) described by a family of equilibrium states wggg (1) . Then, the entropy of
wgag (1) is preserved in such a quasi-static process, provided that the Lagrange-multipliers as determined by
(32), formin thelimit N — oo aset of smooth functions u +— \;(u)forj=1,..., q.

This result is shown simply by taking the continuum limit of equation (32) which yields

Tr( dwgge (1)

Qj(u))zo, Vi=1,...,m (33)
du

which can be in turn used to show that the entropy production vanishes,

ds & ( dwege (1)
du

Z)\j(u)Tr
du

j=1

Qj(u)) =o. (34)

Hence, we see that, if the conditions of result 2 are satisfied, the entropy of the effective description in terms of
GGE states is also preserved in the limit of a quasi-static process.

Let us now discuss heuristically under which conditions the premise that {1 — \;(u) }{ are smooth
functions is expected to be fulfilled. This can be well illustrated by the following example:

Example 1 (Quasi-static process with entropy production within Gibbs and GGE). Consider the case of a two
dimensional system for which we take g = 1, that s, the only conserved quantity is the Hamiltonian Q; = H
itself (the Gibbs equilibration model). Consider initially a non-degenerate Hamiltonian H (0) = E|1) (1|andan
arbitrary initial state p (0) with an inverse temperature 5 (0) > 0 and thus the entropy is smaller than log(2).
Now suppose that the final Hamiltonian H (1) = 0 has degenerate energy levels. We now show that:

(i) thereisa quasi-static trajectory without a smooth behaviour of the Lagrange-multipliers (in this case 3 (1)),
(ii) this results in a positive entropy production, and

(iii) how this implies that taking only a single conserved quantity—in this case the energy—does not provide a
good approximation of the time-averaged state.
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To see the above points, take as Hamiltonian path H (u) = E(1 — u)|1){1| = H(0)(1 — u)and an initial
Gibbs state with inverse temperature (3 (0). Then the eigenbasis in the entire process does not change. Now note
that the condition (32) implies that the energy is preserved in every equilibration. But since we are dealing with a
two-dimensional system, as long as H(u) is non-degenerate, the state itself will remain constant w (1) = p (u)
forany u € [0, 1). This requires that the inverse temperature 5 (1) — ooasu — 1: Along the path, the inverse
temperature needs to fulfil 5 (1) = 3(0)/(1 — u) to keep the state constant. Therefore, it necessarily diverges
as u — 1.To show (ii), simply note that when one reaches H(1), the final state is a maximally mixed state with
entropy log(2), which is larger than the one of the initial state by assumption. To show (iii), observe that the time
averaged state would remain constant throughout the protocol, thus it differs from the GGE at u = 1. Similar
reasoning as for this example holds true for higher dimensional systems, where the ground state degeneracy of H
(1) is higher than that of H(0).

The previous example shows that in some cases the premise of result 2 is not fulfilled, however, these
pathological cases often imply that the chosen GGE description is not accurate. For example, in the case of
encountering a ground state degeneracy, any conserved quantity in the GGE that discerns the ground states
would be enough to fix the problem. However, we leave in general open whether one can find smooth
trajectories for u — A;(u) for a given set of conserved quantities and trajectory of Hamiltonians—this may well
depend on the specifics of the model and on the ambiguity of what constants of motion to pick in the first
place[27].

4.3. Entropy production for Gibbs ensembles

As discussed above in the case of the GGE ensemble, it is in general necessary to ensure that the Lagrange
multipliers u +— \;(u) follow a smooth trajectory in order to certify that there is no entropy production ina
quasi-static process. This requires to compute the Lagrange multipliers following the model of (16) and keeping
track of the conserved quantities. We will see now that the situation simplifies substantially for the case of the
Gibbs model of equilibration (where the energy is the only conserved quantity).

Result 3 (Absence of entropy production within Gibbs model). Consider an initial and final Hamiltonian H(0)
and H(1) and initial state weipps (0) = e #@H©) /7 with finite 3(0) > 0. There exist a quasi-static trajectory H
(u) so that there is no entropy production if and only if there exist 5* > 0 so that

S(waibhs (0)) = S(e FHM/7) (35)

Note that one of the implications is trivial. The final state is e #’H (1) / Z_ hence if there exist no 3 (1) = *so
that (35) is fulfilled, then it is clearly impossible to keep the entropy constant. This can happen if H(1) does not
admit any Gibbs state with the initial entropy. The non trivial implication of the previous result is that as long as
H(1) admits a Gibbs state with the initial entropy, one can always find a quasi-static trajectory that keeps the
entropy constant. Indeed, we find that the quasi-static trajectory achieving it does not need to be fine-tuned. We
discuss in appendix C, together with the proof of result 3, that any quasi-static process where the degeneracy of
the ground state does not increase along the protocol will indeed keep the entropy constant. This condition is
expected to be satisfied for trajectories of generic local Hamiltonians, which have non-degenerate ground spaces
for typical choices of the Hamiltonian parameters [53].

4.4. Entropy production and reversibility

We now connect entropy production to reversibility of processes. First, let us note that for the GGE equilibration
model (similarly for the Gibbs model since it is a particular case of the former), condition (33) is invariant if one
reverses the process. More specifically, given H(u) and wggg (0) as initial state, condition (33) determines the
trajectory of states (if the premises of result 2 are met) wggg (), with 1 from 0 to 1. Now, we can consider the
trajectory H (ii) with initial state wggg (# = 0) with i = 1 — u. One can easily verify that

Tr(@@@) —0, Vi=1..m. (36)
u

Hence, the equilibrium state for the trajectory H (i) is given exactly by wggg (f = 1 — u) and thus, the protocol
is reversible. In other words, we have seen that for the GGE equilibration model reversible protocols correspond
to arbitrarily slow protocols where no entropy is produced on the system and bath together, exactly as is the case
for phenomenological thermodynamics.

A well-known feature of phenomenological thermodynamics is that reversible transformations are always
beneficial in work-extraction protocols, a phenomenon which is referred to as the minimum work principle. We
will later see that this principle naturally holds when the model of equilibration is given by Gibbs states, but its
range of applicability is considerably reduced when the equilibrium states are described by GGE. Indeed, we will
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see explicitly that when the equilibration model is given by a GGE ensemble of free fermions, it can well be
beneficial to go through a given protocol quickly and thereby producing entropy.

Before we go on to discuss explicit work extraction protocols, let us stress that the entropy in SB, which can
only increase or remain constant, is not simply the sum of the entropies of S and B. This happens because we are
considering interacting quantum systems that show correlations between Sand B. This is true both in the exact
and the effective description. Indeed, in general the von Neumann entropy in SBis smaller than or equal to the
sum oflocal entropies

S(W) < S(Trp(w)) + S(Trs(w)), (37)

with equality ifand only if w = Trg(w) ® Tr(w),i.e., when Sand B are completely uncorrelated. Thus,
entropy-production in our set-up does not always mean that entropy is locally produced in the system and the
bath. The generation of entropy is not always associated with the generation of correlations, as in [54], but rather
to the mixing induced by equilibration processes. The global entropy may, for example, increase due to a
decrease of correlations, but entirely without changing the local states of the system.

As a final remark, note that in the so-called isothermal reversible process the entropy of the system S does not
remain constant, while the entropy of the whole compound SB does, as we discuss in examples 1 and 2 in
appendix C).

5. The minimum work principle and work extraction

In order to study work extraction, we first focus on the minimum work principle, which is intimately related to
work extraction and other tasks in thermodynamics such as, e.g., the erasure of information (Landauer’s
Principle). We take as the definition of the minimum work principle that, given an initial equilibrium state and a
path of Hamiltonians, the work performed on the system is minimal for the slowest realisation of the process [55].
More precisely, we consider a trajectory of Hamiltonians u — H (1) with u € [0, 1]. Consider now protocols
with N quenches (each followed by an equilibration). That is, we choose N values (i, ..., uN), so that the
protocol is determined by H™ = H (4™) and wgf’ﬁ)) as determined by (16). The minimal work principle states
that the optimal protocol maximising Win (25) is the one where N — oo and 4™ = m/N. Note that here, as we
generically take the convention that work is extracted from the system, minimising the work cost corresponds to
maximising Win (25).

We note that, while being the most relevant notion of the minimum work principle for our set-up (see also
[55]), this definition differs from the one usually found in thermodynamics text-books, where the content of the
minimal work principle reads: among all the possible paths between two fixed equilibrium states, reversible
protocols are optimal. Here, we fix instead a given trajectory between an initial and final Hamiltonian and
question whether the quasi-static realisation is also the optimal. Note that both notions—where the initial and
final states are fixed or where the trajectory is fixed instead—coincide in the model of equilibration of
equation (28), which is the standard one in text-book thermodynamics. The reason is that in the model (28)
Hamiltonians and states are in one to one correspondence and all the quasi-static trajectories between two
Hamiltonians provide the same work. However, when other models of equilibration are considered (w...yin
(16)) the equivalence breaks down since Hamiltonians and states are not in one-to-one correspondence: the final
state depends on the specific trajectory.

It seems then natural to ask what justifies our definition of the minimal work principle. The answer lies in the
fact that the notion of the minimal work principle considered here can be easily connected with the second law of
thermodynamics, formulated as: no positive work can be extracted in a cyclic process from states initially in
thermal equilibrium (a Gibbs state), or more generally, in a passive state. In this context cyclic refers to the fact
that the initial and final Hamiltonian coincide, which does not imply that the initial and final state coincide,
unless we would be using the model of equilibration (28). This relation with the minimal work principle and the
second law will be made explicit in the following sections where we study the Gibbs and the time-average
ensembles.

5.1. The minimum work principle and work extraction for Gibbs ensembles

Let us consider the same setup as the one laid out in section 3.1, with an initial state w(%), anda protocol that
performs N quenches according to a certain trajectory u — H (1), where H® := H (m/N). Let us stress that
here we do not take the limit of N — oo and we keep it general by considering finite N. Let us recall from
equation (25) that the total work performed is given by the sum of the individual work W in the mth step,
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N N
W= W= Trwl Y(H"D - Hm))
m=1 m=1

=Tr (W(Goi)bbsH ©) — Tr (wg\i]gbﬁ ™)
N
+ 27 Tr((Wie — wWiitn) H™), (38)
m=2

where in equation (38) we have simply reorganised the terms and added and subtracted the quantity
Tr (wg\i’ngH (N)). We can now use our model of equilibration, as given by equation (16) that we recall here for
completeness,
— 3(m) gy (m)
m (m-1) _ &

Wé’;bbs = QGibbs (wé?bbs , Hm) = () (39)
forall m > 1,where Z(™ = Tr(e #""H")and ™ > 0 is determined by the conservation of average energy:
Tr (w((;"fb’b.sl) Hm) = Tr(wgi’gbsH (M), One can easily check that energy conservation implies that the last sum in
(38) vanishes, which implies that

W = Tr(wQ, H®) — Tr (W, HN), (40)

where w), depends on Nand the trajectory H().

From equation (40) we see that given a fixed final Hamiltonian H(1), the protocol that costs the minimum
amount of work (and maximises the extracted work W) is given by the one that leaves the final state with the least
average energy. Since the average energy is monotonic with the entropy for Gibbs states of positive temperature,
we conclude that the optimal protocol is the one minimising the entropy of the final state wg\i]gbs. Furthermore,
as the entropy can only increase throughout the protocol (see section 4), a protocol creating no entropy is
optimal.

It has to be stressed that this holds true only as long as the final temperature of the Gibbs state is positive,
which happens if

Tr(w HY) < %Tr(H(N)), (41)

where dis the dimension of the Hilbert space. Note that the right hand side of the equation typically (e.g., for
many body systems with short range interactions) grows linearly with the number of particles. Therefore, if the
total system is big enough, we expect condition (41) to be satisfied, and thus the minimum work principle

to hold.

Taking together the facts that a protocol creating no entropy is optimal and the results of appendix C—
which show conditions so that the quasi-static entropy has no entropy production—one can conclude that the
minimal work principle is satisfied for any trajectory so that dg (H (0)) > d, (H (1)) > d,(H (1)) (seeresult 5).
As mentioned in section 4.3, this condition is satisfied for trajectories of generic Hamiltonians, which have non-
degenerate ground spaces.

Let us now comment on the relation between the minimal work principle and the second law of
thermodynamics. First, note that if we fix a trajectory H(u) so that H (0) = H (1), then the final state is a Gibbs
state (25, (H (0)). The inverse temperature 3V at the end of the protocol certainly depends on the particular
trajectory and the number of quenches performed. However, it is clear by the discussion of section 4 that
S(Qp,(H(0))) = S(w(0)). Hence, since the final state is a Gibbs state with respect to H(0) and with more
entropy than the initial Gibbs state and the energy is monotonic with the entropy for Gibbs state, the extracted
work is negative. Note that this depends crucially on having Gibbs states as equilibrium states and it will not be
reproduced by time-average or GGE models of equilibration as we discuss in the next sections.

Also, the minimum work principle can be used to study work-extraction protocols from non-equilibrium
states. As an example, consider as initial conditions a pair of state and Hamiltonian p® and H® respectively.
The goal is to extract work from p(® by performing a cyclic protocol, where H®) = H©®, Note that here the
initial state is not in a Gibbs state with respect to the initial Hamiltonian, H®. Nevertheless, after the first
quench, it does thermalise to Wi, = Qaipps (0¥, HD). From that moment onwards, the minimum work
principle can be used, implying that it is always optimal to come back to H® by a protocol that does not create
entropy. The only remaining question is in fact to which Hamiltonian the first quench is performed, an issue that
is discussed in appendix D.

5.2. Work extraction and the minimum work principle for time averaged states

We now discuss the minimum work principle for protocols of work extraction when the model of equilibration
that is used is the time-average (), . Let us assume a smooth trajectory of Hamiltonians H(1) and some initial
equilibrium state w4 (0). Since the trajectory of Hamiltonians is smooth we know that the final state in the
quasi-static protocol wi3(1) has the same entropy as the initial state wr, (0), indeed even the same eigenvalues
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as wra (0) (see appendix B). The question is, whether this also implies that the quasi-static protocol is optimal in
terms of the average work-cost. We will show that this is in general only true if this final state in the quasi-static
protocol is also a passive state, meaning that it is diagonal in the energy-eigenbasis and the energy-populations
decrease with increasing energy:

Tr(H (Dwi(D) = > (@i (D)LE (D), (42)
k

where (wra (1))} is the vector of eigenvalues of wr, (1), ordered such that (wr, (1))i > (wra (1))ll
if B (1) < E(1).

Result 4 (Passiveness of optimal protocols). Given an initial state and a smooth trajectory of Hamiltonians, if
the final state in the quasi-static realisation of the protocol is passive, then the the quasi-static realisation of the
protocol is optimal.

This result follows, because passive states can only increase their average energy under any unitary
transformation [56, 57]:

Tr(Hp) < Tr(HUpU),  p passive w.r.t. H. (43)

In particular the final state of the quasi-static protocol w{:(1) is related to the initial state by some unitary
transformation U” since their spectra are identical. To see that the quasi-static realisation of the protocol is
optimal in this case, let us now consider any realisation of the protocol with only a finite number of quenches N
and let us denote the final state in a protocol with N quenches as w?, . Since the time-average equilibration
model can be thought of as applying a mixture of unitaries (evolving the system for some random time) in any
finite realisation including N quenches, the final state wY, is related to the initial state by:

whiy = Zpi Uiwra (O U = Zpi(Ui U wra (D)(U; U,

where p;is some probability distributions of unitaries. But since w$3(1) is passive, we henceforth have
Tr(H (Dwhy) > Tr(H (Dwra (1), (44)

which proves the claim.

The minimum work principle for cyclic unitary processes was studied in [55] where it was shown that the
minimum work-principle holds if: (i) the initial state is passive with respect to the initial Hamiltonian H(0) and
(ii) the trajectory of Hamiltonians is such that the initial and final Hamiltonians H(0) and H(1), respectively, do
not have alevel-crossing w.r.t to each other. Here, by an absence of level-crossing we mean that if E;(0) > E;(0),
thenalso E;(1) > E;(1) (note that the labelling of the energy-basis is fixed since we require the Hamiltonian
trajectory to be smooth). It is now easy to see that under the premise that the initial state is passive, the condition
that the final state in the quasi-static realisation is also passive is indeed equivalent to the absence of such a level-
crossings. Thus, our result naturally generalises that of [55].

Finally, let us note that given two Hamiltonians H(0) and H(1) and an initial equilibrium state, it is always
possible to construct a smooth trajectory of Hamiltonians that connects the two Hamiltonians and such that the
final state in the quasi-static protocol is passive and has the same spectrum as it had initially. This can be done
with the protocol presented in appendix F. However, note that this protocol requires global control over the
Hamiltonians. Once we can only control some part of the Hamiltonian, all the available smooth trajectories
might lead to a non-passive final state in the quasi-static realisation, so that it can become beneficial to use a
protocol with a finite number of quenches which results in entropy-production.

As in the case of the Gibbs equilibration model, one can easily relate the analysis above to discuss the second
law of thermodynamics. First, note that the optimal protocol between H(0) and H(1) is such the final state has
the same spectrum and it is passive. Hence, if H (0) = H (1) we conclude that one can extract positive work
from the initial equilibrium state wr, (0) if and only if it is not passive. Of course this fact is well-known if we
consider protocols of work extraction that just apply a unitary transformation to the initial state. Here, we are
deriving a similar behaviour with families of protocols that are instead quenches and equilibrations to the time-
average state.

In summary, we have identified conditions that ensure that the quasi-static realisation of a given protocol is
optimal. This condition generalise the ones found in [55]. Also, we have shown that any state can be brought to
its passive form—Lkeeping the same spectrum—Dby applying a quasi-static protocol over a specific trajectory of
Hamiltonians. Altogether, this show that quasi-static protocols are as powerful for work extraction as they can
conceivably be.
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5.3. Work extraction and the minimum work principle for GGE states

In this section we briefly analyse notions of work extraction in the case of GGE models of equilibration.
Although it is difficult to provide general results for the case of the GGE, without having specified the particular
form of the conserved quantities, we do include here a general formulation of the problem at hand as an
introduction to particular example of free fermions that we study later. In this situation, the equilibrated states
are maximum entropy states

QGGE (p» H(m)> { Q](m) } ) = argmax E(p, {H('"),Q)("’) } )S (U) (45)

for a collection of constants of motion { Q}m) } that are relevant at a given step m of the protocol. For a given
protocol, the work extracted is again

N N
W= 3w = 37 Tr(wiee (H" D = HO™), (46)
m=1 m=1
so thatin order to compute the extracted work for a given protocol, one has to keep track of the Lagrange
multipliers along that protocol. The optimal work extraction is attained as the supremum of this expression over
such protocols. In agreement with our considerations for time-averaged states, here we will find that the
minimum work principle is in general not satisfied for many-body models that equilibrate to a GGE. Ultimately,
this result is linked to the fact that for GGEs there is in general no direct link between entropy and energy, in strong
contrast to the case of Gibbs states. We show this statement by considering specific classes of models for which
the GGE is relevant, namely the class of physical systems described by free fermions, a most relevant type of
systems that are known to be well described by the GGE. In particular we will show an example where a fast
protocol outperforms a slow protocol despite the fact that an effective description by Gibbs states would suggest
the opposite.

6. Free fermionic systems

On top of showing the validity of the above result, the reason for largely focusing on quadratic fermionic models
is three-fold. First, they can be efficiently simulated, allowing us to test how well the effective description of the
system approximates its real (exact) dynamics. Also, they are integrable, which implies that a GGE description is
in general necessary to capture their equilibration behaviour [27, 37]. Finally, they can be simulated with ultra-
cold atoms in optical lattices in and out of equilibrium [58—61]. While the discussion presented here is focused
on non-interacting fermionic systems, it should be clear that their bosonic lattice instances [60, 62, 63] and even
bosonic continuous systems [64, 65] can be captured in an analogous framework with very similar predictions.
The latter situation is specifically interesting as modelling the physics of ultra-cold atoms on atom chips that is
expected to provide an experimental platform probing the situation explored here where a GGE description is
relevant.

6.1. Hamiltonian, covariance matrix and GGE construction
We consider quadratic fermionic Hamiltonians of the form

n
H= Zci,jaiTaj, (47)
Q=1

where 7 is the number of different modes and the fermionic operators satisfy the anti-commutation relations
{a;, a} = 0ij» {ai aj} = {a], a]T} = 0. The Hamiltonian H can be transformed into

n
H= Zek nznk, (48)
k=1
where nf) is the annihilation (creation) operator corresponding to the kth eigenmode of the Hamiltonian.

Itis well known that equilibrium states of Hamiltonians of the form (48) are not well described by Gibbs
states, but rather by GGEs, with the conserved quantities being the occupations of the energy modes Q; = 17; Me>
k=1,...,n[27]. Notice that the number of conserved quantities used for the construction of the GGE is the
number of distinct modes # and, hence, is linear (and not exponential) in the system size.

We define the correlation matrix v (p) of a state p as the symmetric matrix having entries

% (p) = Tr(rm;p). (49)

If the state p is Gaussian, then ~ (p) contains all information about p, and its time evolution under Hamiltonians
of the type (48) keeps it Gaussian. In other words, the full density matrix p can be reconstructed from just
knowing the correlation matrix.
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The correlation matrix of the GGE Qg (p, H, {nz 7,}) is found by maximising the entropy while
preservingall Q; = 172 7> which simply reduces to dephasing the correlation matrix defined in (49) to the
diagonal (see appendix G.1 for details). This provides a simple method for obtaining v (Qggg (p, H, {nl M)

Note that these GGE descriptions are also Gaussian states. Hence, in the following we can always restrict to
Gaussian states. Even when the initial state is not Gaussian, all the results are unchanged if the initial state is
replaced by a Gaussian state that has the same correlation matrix. Consequently, in the following, the discussion
is reduced to the level of correlation matrices instead of the full density matrices. This allows us to perform
numerical simulations of the real time-evolution as well as the effective description of large systems, since they
have dimensionn X ninstead of the 2" x 2" needed to describe the full density matrix.

6.2. Work extraction and minimum work principle for free fermions
First we consider optimal protocols for work extraction in a scenario where the Hamiltonian can be transformed
to any quadratic Hamiltonian of the form (48). The discussion is similar to that of section 5.2, but in the context
of GGE equilibrium states. As in the previous sections, the optimal protocol is the one minimising the final
energy, Tr(wigeH®) = 3, ™ €¥), where we assume the process to be cyclicand n") = Tr(n}co)Tngco)w(é\]G)E).
In appendix G.2, we show that this minimisation yields Tr(W\2;H®) > Tr(wigeH®), with
n
Tr(wigeH®) = > @) ()}, (50)
k=1

where d{?) are the eigenvalues of  (p”)) and the symbols  and ! indicate that the lists are ordered in increasing
and decreasing order, respectively. An explicit protocol saturating this bound is constructed in appendix G.2.
The optimal protocol is found to be reversible, so that no entropy is generated, and one needs to perform an
arbitrarily large amount of quenches to reach optimality.

In the optimal final state iy, the diagonal elements of the correlation matrix, corresponding to the
population of the energy modes, decay as the energy of the modes increases. This form is reminiscent of the
passive states previously introduced. However, in general, states of the form wi; do not need to be passive:
While in passive states the occupation probabilities of the energy eigenstates are decreasing with increasing
energy, here only the occupations of the different fermionic modes decrease with the energy of the mode. The
total energies are however obtained by combinations of different modes. An example of a state that is non-
passive, but where the mode-populations are decreasing with increasing mode-energy is provided in
appendix G.2.

Regarding the minimum work principle, one can use a similar line of reasoning as in section 5.2. For a fixed
process, the minimum work principle is guaranteed to hold true as long as the possible final states—which are
realised by implementing the process at different speeds—have the form (50), i.e., their populations decrease
with the energy of the modes. If this condition is not satisfied, the minimum work principle does not hold in
general.

6.3. Numerical results: comparison between exact dynamics and effective descriptions

In this section we compute the work extracted in different scenarios by (i) a numerical simulation of the exact
unitary evolution of the system, (ii) using the effective description in terms of Gibbs states, and (iii) in terms of
GGE states. As physical system we consider a chain of fermions, taking as an initial Hamiltonian,

n n—1
HO =>Y"cala; + ¢> (aais1 + a], ,a)). (51)

i=1 i=1
First we study the optimal protocol for the case unrestricted Hamiltonian case derived in appendix 5.3, and next
we consider the case of local changes of the Hamiltonian. In all cases we find a very good agreement between the
real dynamics and the GGE effective description.

Besides comparing the effective descriptions with the real dynamics, we also study the applicability of the

minimum work principle. We give an explicit example of a process in which producing entropy is beneficial for
work extraction, hence showing that the minimum work principle is violated in this example.

6.3.1. Work extraction with unrestricted Hamiltonians and free fermions

Here, we take as the initial state p(*) a GGE state whose populations v (p©);; € (0, 1)in (49) are chosen i.i.d.
from a Gaussian distribution. Again, note that this state is Gaussian. We then apply the protocol described in
appendix G.2 for maximal work extraction, and compare the results obtained by the exact dynamics and the
GGE model of equilibration. The exact dynamics are computed by, after the the i-th quench, letting the system
unitarily evolve under the Hamiltonian H® for a time much longer than the time scale of equilibration. Figure 2
shows the results obtained using both approaches. It shows a very good agreement, as long as the number of
fermions is sufficiently large (in the figure # = 100). Yet small discrepancies are observed, which is due to the
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Figure 2. Extracted work in the optimal protocol with unrestricted Hamiltonians. As an initial state, we take a diagonal state in the
basis H®, with the populations { p)fo)} chosen at random between 0 and 1. We take e = 1, ¢ = 0.8 and N = 100. In order to simulate
the real dynamics, after every quench, we let the system evolve for a time chosen at random between 20/¢ and 100/g. In green, we
show the results using the actual unitary dynamics, in yellow our effective description in terms of GGE states, and in dashed lines the
analytical result leading to equation (50). The inset figure shows the entropy generated in the effective description using GGE states. As
the number of quenches increases (i.e., the process becomes slower), the generated entropy tends to zero and the extracted work tends
to the upper bound.
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Figure 3. Extracted work with only local transformations on the state of the system. The different points correspond to the exact
unitary evolution (in green), to the effective evolution in terms GGE states (in yellow), and the effective evolution using Gibbs states (in
blue). The continuous lines correspond to transformations with N — 0. As an initial state we take, 3 = 1/2, Tr (ulT a;pg) = 0.1,

n = 100. For the initial Hamiltonian, ¢y = 0.1, ¢; = 1 Vi = 1,g = 0.5. Asa protocol we perform a first quench to ¢; = 4.3, followed
by N — 1equidistant quenches back to the original Hamiltonian. As in figure 2, the exact evolution is obtained by letting system and
bath interact for a time much larger than the equilibration time (f5q o 1/g).

fact that we implement global quenches, for which the state may not equilibrate. Note that, when performing
local quenches and starting with a Gibbs state, as in figure 3, equilibration of local observables is expected (see
section 2) and the agreement is indeed excellent.

We can also see in figure 2 how work increases as the process becomes slower, becoming maximal in the
limit N — oo, when reversibility is achieved. This is in agreement with our considerations in section 6.2.

6.3.2. Work extraction with restricted free fermionic Hamiltonians with a Gibbs initial state

Let us now assume that the Hamiltonian can only be locally modified, as discussed in section 3. The Hamiltonian
(51)is splitin three components. Hy = ¢; alT a; (Sisasingle fermion), V = g (a]+ a, + a; a;)and

Hg = H — V — Hg. Our capability to change the Hamiltonian is thus reduced to a single parameter: the local
energy ¢;. Note that the coupling between the S and the Bis not assumed to be weak. The initial state takes the
form,

0 efﬂHB
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Figure 4. The extracted work achieved with onlylocal transformations on the state of the system. As an initial state we take the one
specified by K = 32, Tr(afk a;pg) = 0.1,and n = 150. For the initial Hamiltonian, we take €p = 0.1, ; = 1 Vi = 1,g = 0.5. Asa
protocol we perform a first quench to ¢, = 1.6, followed by N — 1 equidistant quenches back to the original Hamiltonian. The
different points correspond to the exact unitary evolution (in green), to the effective evolution in terms GGE states (in yellow), and to
infinitesimally slow protocol (N — ©0). Asin 2, the real evolution is obtained by letting system and bath interact for a sufficiently long
time (chosen at random).

where p; is initially out of thermal equilibrium; for example, in figure 3, it is set to alower temperature than the
bath. As discussed before, we do not need to assume that the initial state pg (and hence p) is Gaussian, but the
work extracted will only depend on its correlation matrix and not on the full density matrix, since the energyisa
sum of second moments of the fermionic creation and annihilation operators and all the GGE states constructed
in the process are Gaussian automatically.

Figure 3 shows the extracted work from pg as a function of the number of quenches N, which is computed
using the real exact unitary evolution, and the effective description in terms of both GGE and Gibbs states. The
agreement between the unitary dynamics and the GGE description is excellent, for any value of N and the
parameters, but the Gibbs states fail to describe the process. Even if the bath is initially in a Gibbs state, see
equation (52), the posterior evolution of SB can not be correctly described by them. Although the description in
terms of Gibbs ensembles is quantitatively incorrect, it is fair to say that it describes some qualitative features of
the results. In particular, the exact dynamics satisfies the minimum work principle, and so does the effective
description with Gibbs states. This follows because condition (41) is satisfied during the process. However, as we
show in the next section, condition (41) can fail to predict the applicability of the minimum work principle.

6.3.3. Work extraction with free fermionic restricted Hamiltonians with a GGE initial state
Equilibrium states when dealing with Hamiltonians of the type (48) are well described by GGE states, it is
therefore natural to generalise the initial state (52) to

Py = Ps @ W (53)

where W, is a GGE state with respect to the local Hamiltonian of B, Hy = Y°;_, €' 7). Let us now pick a
very particular initial state given by

Tr(wgdeny i) = {; iig (54)
for some K < n.Thatis, only the K most energetic modes are populated. No actual thermal state with positive
temperature would have such properties due to the population inversion of the fermionic modes. It is important
to acknowledge, however, that if we would chose an effective description as a Gibbs state for such initial states,
we would nevertheless obtain a positive effective temperature provided that condition (41) is satisfied. This will
be the case as long as the number of populated energy-levels K is small enough. Indeed, for any finite K, but large
n, the energy-density in the state is much lower than the critical energy-density needed for negative effective
temperatures.

The work extracted in a particular protocol with initial state (53) is plotted in figure 4. The results clearly
show how the extracted work decreases with the time spent in the process. Therefore, more work is extracted
when more entropy is produced, and the minimum work principle does not apply in this situation. In fact, this is
to be expected because both the initial and the final state of the protocol are highly non-passive, and thus the
conditions described in section 6.2 are not satisfied. However, when using an effective description in terms
Gibbs states, we would have predicted that it is always beneficial to use a quasi-static, reversible protocol since
condition (41) is satisfied for the case described in figure 4.
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Figure 5. Accuracy of the model for finite times of equilibration as a function of the number of quenches and different total times T.
We again use the model (51), and take for H® the following parameters: n = 70, ¢; = 0.1, ¢; = 1 Vi = 1,g = 0.5,and the same
parameters for H) except for ¢; = 6. The initial state is a Gibbs state at temperature 3 = 1,/2.
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Figure 6. Accuracy of the model for the population of the first fermion, n = Tr(a, a; p ()) in (51), for finite times of equilibration as a
function of the number of quenches and different total times T. We take the same parameters as in figure 5.

6.3.4. Work extraction under imperfect equilibrations

To conclude, we study the accuracy of the model (16) in protocols of work extraction where equilibration is not
guaranteed, because the system does not evolve for a sufficiently long time after every quench. In order to study
this situation, we consider a state initially in thermal equilibrium with a Hamiltonian H ) which is modified by
asequence of quenches until the Hamiltonian H) = H®™ is reached. The main difference with respect to our
previous calculations is that we let the total time T of the process be fixed, and take for the equilibration time T/
N. Clearly, the accuracy of model (16) is expected to get worse and worse as T decreases. It is less obvious,
however, how the accuracy depends on the number of quenches N. On the one hand, as we increase N, the time
of equilibration of each quench reduces and hence errors might become larger, and can also accumulate. On the
other hand, the distance between subsequents Hamiltonians becomes shorter, so that less time is expected to be
needed to reach equilibration.

The results are presented in figure 5. They show that the error, as quantified by |W — Wgg| where Wis the
extracted work from the real exact dynamics, remains constant for large N, but decreases with the total time 7.
These results suggest that quasi-static processes can be well described by the model of equilibration (16), in the
sense that one does not require an unphysically large time to become arbitrarily close to a quasi-static evolution.

As a final remark, we would like to stress that, whereas we have focus our attention in work extraction, the
model of equilibration (16) is general and can be applied to other physical quantities—see figure 6 for an
example, where we compute the population of one fermion. It is to be expected that the model (16) will give
better predictions for local quantities, which are expected to equilibrate in many-body systems.
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7. Conclusions

In this work, we have brought together the fields of research on equilibration and quantum heat engines. The
main contribution of this work is to go beyond the usual paradigm of thermodynamics where work is extracted
from a system in weak thermal contact with an infinite heat bath at a given fixed temperature. Instead, we
consider closed quantum many-body systems of finite size and with strong coupling between its constituents.
We make use of recent insights into the study of states out of equilibrium: closed many body systems do not
equilibrate, but can be effectively described as if they had equilibrated when looking at a restricted, although
most relevant, class of observables. The effective equilibrium state that describes the system for these observables
is, however, not necessarily given by a Gibbs state; and even if so, its temperature will not remain constant under
repeated quenches. In this case the effective equilibrium state is given by the time averaged state, the GGE or the
Gibbs state, depending on the particular kind of system considered, as well as the family of observables that are
taken into account.

With this in mind, we have put forward a framework that studies work extraction of closed many body
systems, incorporating Hamiltonian quenches as well as equilibrations according to the three models mentioned
before. We do not only assume that effective equilibrium state is a good description of the state evolving after a
single quench, but also that such an equilibrium state can be taken as the initial state to describe further
evolutions under subsequent quenches. This model, which is successfully tested for the model of free fermions,
is what allows us to describe a closed system similarly to the way open systems (in contact with baths) are
described in conventional thermodynamics. Thus, we can formulate similar questions regarding work and
entropy production and indeed recover many of the phenomena present for open systems.

In particular, we provide stringent conditions for the absence of entropy production in quasi-static
protocols. This turns out to be intimately related to the optimal protocols for work extraction and the minimum
work principle, which roughly speaking states that the work performed on the system is minimal for the slowest
realisation of a given process. We find that the minimum-work principle can break down in the presence of a
large number of conserved quantities, while it remains intact if system and bath together can be well described by
a Gibbs ensemble, even in the strongly interacting regime. This is shown numerically with the paradigmatic
example of free fermions for which the extracted work decreases with the time spent in the process if we consider
the GGE as equilibration model, but the minimum work principle still applies when the Gibbs description is
assumed. It is the hope that the present work stimulates further studies at the intersection of the theory of
quantum thermal machines and quantum many-body systems.
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Note added in proof. Upon completion of this work, three manuscripts appeared that address topics of
thermodynamics of quantum systems with multiple conserved quantities [66—68]. While there is no actual
overlap in content of the present work with that body of work—in which a resource-theoretic mindset is
advocated—and the four manuscripts complement each other, the flurry of interest still can be seen as a
manifestation of the excitement about studying how quantum thermodynamic have to be altered in the situation
of anumber of conserved quantities being present.

Appendix A. Conserved quantities on the GGE

Here we discuss which are the physical arguments that justify the choice of a given set of conserved quantities
that lead to a GGE. This question can be argued from two different approaches. On the one hand, one can argue
that the relevant conserved quantities are the ones that are experimentally accessible and, hence, must be given
beforehand. This was the spirit of the seminal work of Jaynes [43, 44]. The objection against this approach is that
itis subjective, in the sense that the set of experimentally accessible observables depends on the experimentalist.
On the other hand, one could take an objective perspective and think that the relevant conserved quantities are
precisely the ones that make the GGE as close as possible to the diagonal ensemble independently of the
capabilities of the experimentalist [69]. Within this approach, the notion of physically relevant is provided by
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how much an observable is able to reduce the distance between the GGE and the diagonal ensemble by being
added into the set of conserved quantities that defines the GGE. More specifically, in [69] the distance between
the time averaged state and the GGE is taken by the Kullback-Leibler (KL) distance (relative entropy) leading to

D (Qra(H), Qcce(H, {Qi})) = SQcce(H, {Qi})) — S(Qra(H)),

which is always positive and where we have omitted the initial state p for brevity.

In practice, givenan € > 0, the conserved quantities are successively added to the set of conserved
quantities, until D (Q14 (p, H), Q6ce(p> H, {Q;})) < €. By the Pinsker’s inequality, this guarantees the
physical indistinguishability between the two ensembles, i.e.,

STITr(Be (Qra — Qar)l < V2e, (AD)
¢
for any positive operator valued measure B. The addition of operators to the set of conserved quantities is done as
follows. Given a set of j conserved quantities, the new conserved quantity j + 1isintroduced such that reduces
as much as possible the entropy
min S (Qece (o> Hy { Q1)) (A2)
i1

In the subsequent sections we will study what are differences between the thermodynamics given the Gibbs

and the GGE as equilibration models.

Appendix B. Time-average equilibration model—dissipation and reversibility

In this section we show that it is possible to have dissipation, i.e., entropy-production, in an infinitely slow
process within the time average equilibration model. Let us introduce the following example. We consider the
Hamiltonians given by

H()\x, Az) = )\xe + )\zUz (B1)

and the continuous trajectory for —1 < u < 1

AW = (), Ae(u) = {Eo O o™ (82)
starting from an eigenstate of o;.

For —1 < u < 0, the equilibration processes do not do anything to the state since the eigenbasis of the
Hamiltonian is the eigenbasis of o, and the system is left in its initial state with zero entropy. But then, from
u = 0 on, the system is de-phased in the eigenbasis of o, which is mutually orthogonal to the one of o, and the
entropy suddenly jumps to log 2. The reason for that is that although the Hamiltonians H (¢, 0) and H (0, ¢),
with € > 0 arbitrarily small, are very close in the Hamiltonian space, their eigenbasis are totally different.

To avoid such effects, it is sufficient that not only the Hamiltonian trajectory is continuous, but also that the
eigenvectors can be chosen in a smooth manner, i.e., so that each eigenvector |E; (1)) is a smooth curve
parametrised by u. More explicitly, the eigenvalues p, (1 + 6u) of the density matrix at parameter u + éu can
be written in terms of the eigenvalues of the density matrix w (1) at time u, as

Py (u 4 8u) = (Ex(u + 6u)|Qra () |Ex(u + 6u))
= "pp (W] (Ex () |Ex(u + Su))?, (B3)
k!

where we have used that the eigenvalues of 214 (u + 6u) are simply the diagonal elements of {214 (1) in the basis
given by |E (u + 6u)). Let us now assume differentiability of the eigenbasis, i.e.,

|Ex(u + 6u)) = |Ex(w)) + | Xe(w))ou + O(bu?), (B4)
with Re (Ep (u)| Xy (1)) = 0 due to ortho-normalisation. Then we get
P+ 6u) = pp () Sk + 6u 2Re (Epr ()| Xk (1))
k/

+ 6u> pp () [ (B () | Xic () |?
k!

= p () + O(6u?). (B5)

This implies that the populations of the density matrix of the system are constant in the slow process
limit éu — 0.
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A natural way to guarantee that the Hamiltonian eigenbasis changes continuously along the Hamiltonian
trajectory is to restrict ourselves to smooth trajectories, in the sense that the tangent vectors to the curve in the
Hamiltonian space are also continuous.

Appendix C. Physically relevant situation of quasi-static processes for the Gibbs ensemble

In this appendix we discuss the entropy production of quasi-static processes with the model of equilibration
given by wgiphs- In particular we show result 3 and provide other lemmas that are used in the proof and that are
interesting on its own.

Lemma 2 (General condition for entropy production within Gibbs model). Consider a quasi-static process
along a trajectory of Hamiltonians H (u) and an initial state p (0) = e~ ©OH©) /7 if there exists any smooth

functionu — f (1) = 0 Yuwith £ (0) = 5(0) such that
oS WH W)
S(T] = S(p(0)) (CDH

then the quasi-static process along u — H (u) has no entropy production.

Proof. Defining the family of states

) e—f WHw ©
u) = ——.
d z
Lemma 2 can be shown by noting that equation (C1) implies that
ds dQ
—d(wf .y (u)Tr( ! (“)H(m) =0. (€3)
u u

Taking the equality at the r.h.s., one sees that the state wy () fulfils condition (33) and hence, Qs (1) = w(u)and
inturn, S(w(0)) = S(w(u)). In other words, any function f (1) that—playing the role of the inverse
temperature 3 (u)—keeps the entropy constant, will also fulfil the energy conservation condition given by (33),
sothat f (u) = G (u). O

Lemma 2 can be used to answer whether there is entropy production given a quasi-static process defined by
H(u)with 0 < u < 1and initial state wgjpps (0). We provide now two examples.

Result 5. Let us refer to the ground state degeneracy of a Hamiltonian H as d, (H). Consider an initial and final
Hamiltonian H(0) and H(1) such that d, (H (0)) > d, (H (1)) and initial state wgips (0) = e 7 OH©® /7 (H (0))
with 3(0) > 0. Then, any quasi-static trajectory H(u) that satisfies dy (H (0)) > dg (H (1)) > dg(H (1)) forall
u € [0, 1]willkeep the entropy constant.

Proof. First, let us invoke the fact I that for any Hamiltonian H and any entropy S € (logd,, log D), thereisa
finite 3 such that the Gibbs state of inverse temperature 35 has entropy S. Now, let us consider the premise
given above of a trajectory u — H (1), so that the ground state degeneracy satisfies
dy(H(0)) = dg(H (1)) > dg(H (1)) forall u € [0, 1]. This implies that can choose a function u +— f (u) such
that S (Qr (1)) = S(w(0)gibbs) forall u € [0, 1]. That this is the case can be seen at u = 0 just using that
B(0) > 0and hence, the entropy of the initial state is at least log (d, (H (0)). Hence, it lies within the limits where
factI) applies. For any other u > 0 we just apply the same reasoning and the premise that
dy(H(0)) > dg(H (u)) = dg(H (1)) forallu € [0, 1]. Since the path of Hamiltonians is smooth, it follows that
the function fis also smooth.

Lastly, by lemma 3 this function satisfies f (1) = (3 (u), where (3 () is the inverse temperature of the quasi-
static process. Hence, such a process keeps the entropy constant. O

Result 6 (Formal version of result 3 in the main text). Consider an initial and final Hamiltonian H(0) and H(1)
and initial state wgipps (0) = e P OHO) /7 with finite 3 (0) > 0. Ifthere exist finite 3* > 0 so that

S (Waibhs (0)) = S(e7"H M/ 7), then any quasi-static trajectory H(u) with dy(H (u)) = 1forall uinthe open
interval u € (0, 1),is such there is no entropy production.

Proof. Using the same argument as in the proof of example 5, we find that thermal states of non-degenerate
Hamiltonians can take any entropy between 0 and log d. This implies that we can then find a smooth function
f(u)such that S(€ ) = S(wWaipbs (0)) forall u < 1. But since we assume that a suitable 5* exists we can
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smoothly rescale the Hamiltonians along the trajectory to make sure that f (1) = 3%, obtaining
S wy) = S(Waibbs (0) forall u € [0, 1]. This ensures by lemma 2 that such quasi-static processes exhibit no
entropy production. O

Appendix D. Optimal protocols for work extraction with Gibbs ensembles

D.1. The case of unrestricted Hamiltonians

First we consider an idealised scenario where one has full control over the global Hamiltonian H. That is, the
Hamiltonians H at the ith step of the protocol can be chosen to be any Hamiltonian. Given this maximal level
of control, we would like to identify the optimal protocol for work extraction.

We have initial conditions described by a pair of state and Hamiltonian p® and H® respectively. The goal is
to extract work by performing a cyclic protocol, where HY) = H(©_ Importantly, we will no longer assume that
the initial state is in a Gibbs state with respect to the initial Hamiltonian H®. After the first quench, the state
thermalises to wi,. = Qgibbs (0@, HD). Hence, from that moment onwards, the minimum work principle
can be applied implying that it is optimal to come back to H® by a protocol that does not create entropy.

The only remaining question concerning the optimal protocol is to which Hamiltonian H the first quench
is to be performed. This can be straightforwardly answered by expressing the total work, as in (40),

W= Tr((p® — W VHO), (D1)

where by equation (39), we see that wY), is a Gibbs state with inverse temperature 3. Arguing in the same

way as in the minimum work principle, we obtain that the optimal protocol is the one which has no entropy
production. Note that a protocol creating zero entropy is only possible for initial states p(® such that

S(p©@) = S(e#""H"” /Z) for some BN) > 0, as discussed in result 3. Here we provide the steps of a protocol
that achieves zero entropy production if that condition is met, which is, as discussed above, the protocol that
extracts the maximum amount of work. This protocol reads:

(1) Apply firsta quench from H® to HV = kIn(p®) forany k € R".

(2) Let the system equilibrate to wly, = Qainps (0¥, HD) given by (39). The condition of average energy
conservation implies that 3 = —1/k, and thus, w(Gli)bbs = p©,

(3) Apply a quasi-static process (a sequence of infinitesimal quenches and equilibrations) from H® to H®,
Such process keeps the entropy constant S (p(") = S(p™), as discussed in section 4.

This protocol resembles the optimal protocol of work extraction for the model of equilibration of
equation (28) [17, 70]; however, the first quench is chosen to a different Hamiltonian HV.

D.2. Work extraction with restricted Hamiltonians and Gibbs ensembles

We now consider the restricted case where H) € H and ‘H is a given set of Hamiltonians. While we will later be
interested in the case where restriction are such that we can only change the initial Hamiltonian locally on the
subsystem S, so that

HLocal = {H | H=H© + Hs® RB}) (D2)

we will keep the discussion completely general.

In the same way as in the case of unrestricted Hamiltonians, a maximum amount of work will be extracted if
we minimise the final energy, as expressed by equation (40). Since the final state is by assumption a Gibbs state, it
is therefore optimal to end up with a Gibbs state with minimal possible positive temperature (every state with
negative temperature has higher energy than all states with positive temperature). This is clearly possible if the
initial state already has an effective positive temperature with respect to any Hamiltonian in H. We will assume
from now on that this is the case.

Considering steps (1)—(3) of protocol in section D.1, one can easily see that step (1) cannot be applied if
kIn(p®) ¢ ‘H.Instead, we will make a quench H® +— H® with

H®W = argming_;, S(QGibbs(p®, 1)) (D3)

while steps (2)—(3) are not modified by the restrictions on H.
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Appendix E. Optimal protocol of work extraction for time average equilibration and
unrestricted Hamiltonians

We now construct an explicit protocol that saturates the bound
W < Tr(p@H®) — Tr(wi,H®) (E1)

in the limit of N — oo, where Nis the number of quenches performed. Here, w, is a state with the following
properties: (i) it has the same eigenvalues as p?, (ii) it is diagonal in the basis of H(©, (iii) it is passive, i.e., its
eigenvalues are ordered in non-increasing order with increasing energy. Given the initial state p(¥), let us denote
by U the unitary that diagonalises the initial state, such that Up® U™ = D. The first step of the protocol is to
make a quench HO — H® with HY = UTHOU. Since p© is diagonal in the eigenbasis of HV, it follows that
the first equilibration process to the time averaged state will not alter the state, that is, w{} = p®. The second
step is to perform N /2 quenches (followed each by an equilibration process) in a given trajectory from H® back
to the initial Hamiltonian H®. Note that in the limit of N — oo this is a quasi-static process, thus the state
WN/? is diagonal with respect to H® and with the same eigenvalues as D. The next step is to find some unitary V

that orders the eigenvalues of w{?, in such a way that we have

VY2V = Wy =S (0 @) PO, (E2)
k

where (p(©); denotes the list of eigenvalues of p® ordered in a non-increasing manner with increasing energy
and the P,go) are the energy-eigenprojectors of H®. As in the previous step, now first perform a quench to
HWN/2+D — yTHOV and returnto HN) = H© in a quasi-static process, so that in the limit of N — oo we
obtain Wi, = why.

Appendix F. Work extraction with time-average equilibration

In this section we present the optimal protocol of work extraction between an initial and final Hamiltonian H(0)
and H(1) respectively, from an initial state w4 (0). This protocol consists on the quasi-static realisation of the
following trajectory H(u): let us denote the initial Hamiltonian as H (0) = Y=, E; (0)|E;(0)) (E; (0)| and
equivalently for the final H(1). Let us assume no degenerate eigenspaces for simplicity (the generalisation to the
case with degenerate subspaces is straightforward) so that the initial state is simply given by

wra (0) = 2, p|Ei(0)) (E; (0)|. Then, the quasi-static realisation of the following trajectory of Hamiltonian
leaves the final state w1} with the same spectrum and passive with respect to H(1):

(1) Change the eigenvalues smoothly from { E; (0) }; to { E; (1) }; while leaving the eigenstates invariant. Note that
in this part of the protocol the state remains also invariant, so that wrs (#1) = wra (0). The final eigenvalues
E; (w) are chosen so that wra (1) is passive with respect to H (1) = Y, E; (1) |E; (0)) (E; (0)| and that the
spectrum of H (u;) coincides with the one of H(1).

(2) Given the conditions on the spectrum of H (1) and H(1), one can identify E;(1) = E;(u). In this second
part of the protocol we define a smooth trajectory from u, to u, where only the eigenvectors are changed as
|Ei(u)) — |Ei(12)) = |Ej(u)). By definition, after this second step the final Hamiltonian H (1,) is indeed
the desired final Hamiltonian so that H (1) = H (1). Also, this second step from u; to u, keeps the state
passive, so that the final state wr, (1) is passive with respect to the desired final Hamiltonian.

However, note that this protocol requires global control over the Hamiltonians. Once we can only control
some part of the Hamiltonian, all the available smooth trajectories might lead to a non-passive final state in the
quasi-static realisation, so that it can become beneficial to use a protocol with a finite number of quenches which
results in entropy-production.

Appendix G. Free fermionic systems

G.1. Correlation matrices, time evolution, and entropy
We consider Hamiltonians of the type

H = Zci,jaiTaj, (Gl)
ij
where the operators a;, a; satisfy the fermionic anti-commutation relations,

{ai, af} = 6 (G2)
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{ai, aj} = {a], a]T} = 0. (G3)

Since the matrix cin (G1) is Hermitian, it can be diagonalised by a unitary operator, ¢ = ADAT, where AAT =1
and D = diag{e¢), ..., ¢,}. The Hamiltonian then can be expressed as,

H=Yanne (G4)
k
with
= > Alaj, (G5)
j
M= 2 Ak (G6)
)

The fermionic operators ni, 7, are usually referred to as normal modes. The unitarity of A ensures that the
transformation preserves the commutation relations,

Mo M} = KiAri{ai, al} = 6.

(o mj} = D AkiAfi{ai al} = 6 (G7)
5]

where we used (G3).

In the following, we will describe states within the framework of correlation matrices. Define the entries of
the correlation matrix 7y (p) corresponding to p as

% (pij = Tr(afajp). (G8)
Notice that the diagonal elements represent the occupation probabilities, or populations, of each physical
fermion. The correlation matrix in the diagonal basis ~, (p);; = Tr (77} n;p) is related to ~, through

Y, = AT~ A*. The diagonal elements of Y corresponding to the populations of the normal modes, play an
important role, and we denote them by py,

P = Tr(ngp). (G9)
The time evolution of y (p) under H, p (t) = e~Hpeitl’, can be easily computed in the Heisenberg picture,
N = i[H, nk] = *iEknk, (G10)
n (1) = e By, (G11)
where we have used {7, n}} = ¢;;and ni = 0. Therefore, on the one hand, it follows that
W(p (1) = &Py, (p)e P (G12)
with D = diag{E, ...,E,}. In the original basis it reads,
Y%(p () = Un(p)U' (G13)
with U = A*e!PAT, On the other, the time averaged state, which is defined as,
. 1 T
(o = lim — [ p(o), (G14)
T—oo T Jo
is represented simply by
71}(<p>t) = <77;(P)>r - F[%/(p(t))]) (GlS)

where I' corresponds to a de-phasing operation. In fact, this correlation matrix is the same as the one of the GGE
where the conserved quantities are the normal modes 77; N> 1845

v Qe (ps Hy {mim})) = v (o)) (G16)

Note however, that this does not imply that the full quantum state of the GGE is the same as the time-averaged
state.

A particularly important class of fermionic states is given by Gaussian states. In this situation of fixed particle
number, such Gaussian states are completely determined from the correlation matrix. In particular, eigenstates
and thermal states of free fermionic Hamiltonians are Gaussian states, but clearly also the GGEs given above, as
they are obtained by maximizing the entropy given the expectation values of the operators nz M-

Ifastate p is Gaussian, the entropy of p can be calculated as

S(p) =D _H(dp), (G17)
k

where d are the eigenvalues of v (p),and H(p) = —plnp — (1 — p)In(1 — p). This fact allows us to study
entropy-production numerically for large systems.
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G.2. Work extraction for free fermions

Here we find a bound for work extraction protocols, which, as discussed in the main text, is equivalent to finding
alower bound on the final energy, Tr(w{Z:H®), with HO = 37, €1/ n©). From our considerations in
section G.1, it follows that under the joint operation of a quench,

H — Zci(,?a;aj — gD — Zci(yl)aifaj (G18)
i,j i,j

followed by an equilibration process, our effective description in terms of GGE states takes the form
Ya (w((%}]s)) = A(T+ nl’ [A(IT+ 1) Va (W%)GE)A(T+ 1)]A(1T‘+ 1> (G19)

where I is a de-phasing operation, and ¢+ = A;, DA}, |, with Da diagonal matrix. Let {d{'""} and {d" } be

the eigenvalues of -y, (wiEY)and Y% (wp), respectively. Under (G19), they are related through a doubly

stochastic matrix,
At =3"Cyd? (G20)

with 37, Gy = 3, G,; = 1. Therefore, the eigenvalues of the final state ~, (w(GNG)E) can also be expressed as a

stochastic combination of the eigenvalues of y, (p®), {d,go) }. It now follows from basic notions of the theory of
majorisation that,

n
TrWleH®) = Y @) (M) = Tr(wceH™) (G21)
k=1
where Tand ! reflect lists ordered in increasing (decreasing) order. This provides the bound (50).
We now construct an explicit protocol that achieves this bound in the limit N — oo, where Nis the number
of quenches performed. Let -, (p”) be the correlation matrix of p”) as in (G8). First, find some U that
diagonalises 7 (p©),

Uy(p) U = D, (G22)
and make a quench to

HO = yTHOU*, (G23)
Since v (p©) is diagonal in the new basis, it follows that wi). = p(@, i.e., the state is not changed during the
equilibration process. Now, slowly rotate back to the original Hamiltonian, by performing N /2 quenches
(followed by equilibration processes) until H( is reached. At the end the state, pN/? is (approximately)

diagonal with respect to the original Hamiltonian, H®. Next, find some V that order the populations of
7 (pN/), s0 that Voy (pN/2) VT satisfies (50). As before, perform a quench to

HO = VTHOV*, (G24)
and slowly come back to the original Hamiltonian by performing N /2 quenches. This process give rise to the
desired final state wy, in the limit of infinitesimally slow transformations, i.e., in the limit N — co. The
optimal protocol is therefore reversible, and it agrees with our intuition that slow processes are better for work
extraction.

Importantly, note that these results for the free fermions are completely analogue to the case of time average
equilibrium state, as detailed in section 5.1. Indeed, the optimal final state resembles a passive state, which is the
optimal final state for work extracting protocols using time-averaged states. However, it should be stressed that
the GGE equilibration model considered for free fermions does not coincide in general with the time averaged
state. Indeed, this difference can be highlighted by looking at the final state obtained for the time average model
in comparison with the final state of the GGE equilibration for free fermions. In the former, one ends up with a
passive state. This implies, for n fermions, 2" energy populations decrease with the energy. On the other hand,
for the GGE model of equilibration considered here, the final state Wi is such only the # populations of the
normal modes need to be in decreasing order. These two states are in general not the same.

For example, consider a three-fermion system with Hamiltonian

H = anln + ey, + e, (G25)
and a state p with Tr(nj n;p) = p;withi = 1, 2, 3. The quantum state p and H can be written as
H = diag{0, €, €, €3, €1 + €2, €2 + €3, €1 + €3, €61 + €, + €3}
p = diag{(1 — p)(A — p)(1 = p3), py(1 — p,)(1 — p3),
p, (1 = p)(1 = ps), ps(1 — p)(1 = p,), p,py (1 — ps3),
P2P3(1 - Pl), p1p3(1 - Pz)r p1p2p3}- (G26)

Ifwenow choose €, = 1, ¢, = 2, €3 = 2.55and p; = 0.4, p, = 0.3,and p, = 0.1; we obtain that p is not passive
but has the form of wg.
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The origin of the difference is the set of operations in which every state is defined. Passive states arise as
optimal states for work extraction protocols if any unitary operation can be performed to the system, or,
equivalently, every cyclic process in which the system remains thermally isolated. On the other hand, states wi gy
become optimal when the set of operations corresponds to (arbitrary) quenches to quadratic Hamiltonians,
which is in general more constraint that the set of unitary operations. Within this constrained set of operations,
they become optimal.
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