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Statistical mechanics approach to the electric polarization and dielectric constant of band insulators
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1Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Sud, F-91405 Orsay Cedex, France
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We develop a theory for the analytic computation of the free energy of band insulators in the presence of a
uniform and constant electric field. The two key ingredients are a perturbation-like expression of the Wannier-Stark
energy spectrum of electrons and a modified statistical mechanics approach involving a local chemical potential
in order to deal with the unbounded spectrum and impose the physically relevant electronic filling. At first order in
the field, we recover the result of King-Smith, Vanderbilt, and Resta for the electric polarization in terms of a Zak
phase—albeit at finite temperature—and, at second order, deduce a general formula for the electric susceptibility,
or equivalently for the dielectric constant. Advantages of our method are the validity of the formalism both at
zero and finite temperature and the easy computation of higher order derivatives of the free energy. We verify our
findings on two different one-dimensional tight-binding models.
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I. INTRODUCTION

From the classical point of view, a periodic distribution of
discrete charges—as found in a crystal—possesses a well-
defined polarization (i.e., an electric dipole moment) if it
is charge neutral. However, due to the periodicity of the
charge distribution, this polarization is only defined modulo
a Bravais vector, that is, an integer in the proper units. The
latter is misleadingly known as the quantum of polarization,
although unrelated to Planck’s constant. In addition to that, if
dynamics are specified for this charge distribution, then it also
possesses an electric susceptibility χ , related to the dielectric
constant ε by ε = 1 + χ . The classical picture (also known
as the Clausius-Mossoti approach) [1], however, fails when
the electrons are described at the quantum level, as extended
Bloch states lead to a continuous charge distribution rendering
the classical formula meaningless. Hence, one must use a
new approach to describe the polarization of a crystal. Since
the work of King-Smith, Vanderbilt, and Resta (KVR) [2–4],
tools needed to compute the electric polarization in crystals
are available. Their approach, named the modern theory of
polarization, is based on the understanding that a change of
polarization corresponds to an adiabatic flow of charges in an
insulator (for a pedagogical review of the modern theory of
polarization, see [5]). The current resulting from an adiabatic
deformation of the crystal can easily be computed from the
Bloch wave functions, and the resulting change in polarization
is proportional to the difference of the Zak phase [6] between
the initial and final states. In turn, the Zak phase corresponds to
the position of the Wannier center of a Bloch band inside a unit
cell. In light of this fact, we can use a localization prescription
for the delocalized Bloch wave functions of a band: if we
assume that the electrons (and therefore their whole charge) are
localized at their Wannier centers, then the classical formula
for discrete charge distribution gives the expected result for
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the polarization. From the Zak phase properties we gain the
insight that, at the quantum level, the polarization does not
depend on the density of charge (i.e., the modulus square of
the Bloch states), but on the phase of the Bloch states. In this
context, the quantum of polarization appears related to the Zak
phase being defined modulo 2π .

Despite the breakthrough of this approach, there are still dif-
ficulties with it. From a general point of view, the polarization
is an equilibrium quantity—that should be computable from
standard statistical mechanics—and not a transport property,
while the modern theory of polarization relies on adiabatic
currents. Also it is essentially restricted to zero temperature.
Here, we propose to adopt a statistical mechanics approach
similar to the one usually developed for the magnetic response
(see for example [7]). Using a scalar gauge, we start by
computing the energy spectrum of band electrons in an
electric field (the well-known Wannier-Stark ladder [8–11]) at
second order in the electric field. This spectrum is unbounded,
which constitutes a major difficulty for a standard statistical
mechanics approach. To circumvent this difficulty, we develop
a modified approach that takes into account the fact that the
band insulator in a weak electric field remains translationally
invariant in practice. The key ingredient is to introduce a local
chemical potential that forces the physical electronic filling in
each unit cell.

After the pioneering work of King-Smith and Vanderbilt [2]
and of Resta [3], there have been many further developments
in the computation of the dielectric properties of insulating
crystals. Here, we briefly review some of these. Nunes
and Vanderbilt have developed a real-space approach to the
computation of electric polarization and susceptibility [12]. It
is based on the KVR formula extended to treat the case of field-
induced polarization and not only spontaneous polarization.
Several authors have adapted density functional theory to
a finite electric field by introducing an energy functional
that depends on the electric polarization as computed using
the KVR formula [13–15]. In this way they can access the
dielectric susceptibility and higher order response functions;
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however the electric polarization is taken from KVR. Kirtman
and co-workers have developed a vector potential approach
that bypasses the difficulty related to the unbounded position
operator present in the scalar electric potential but has other
problems [16]. The same authors [17] have also attacked the
problem by replacing the true electric scalar potential by a
piecewise linear (such as sawtooth or continuous triangular)
potential that has the advantage of corresponding to a periodic
Hamiltonian. A drawback of this approach is that it does
not recover the KVR polarization. Recently, Nourafkan and
Kotliar have included correlation effects in the computation
of the electric polarization [18]. Swiecicki and Sipe use linear
response theory at finite frequency to obtain the dielectric
function [19].

In the following, we consider one-dimensional tight-
binding models of band insulators as the minimal models
capturing the physics at stake. The outline of the paper is
as follows. In Sec. II we give a general derivation of the
electric polarization and susceptibility at finite temperature.
The two crucial steps in the derivation are (i) a perturbation-like
expression (power series in the electric field) for the energy
spectrum of a tight-binding model in a constant electric
field, and (ii) modified statistical mechanics involving a local
chemical potential in order to properly handle the unbounded
energy spectrum. Then, in Sec. III, we check our results and
approximations on two toy models that can either be solved
analytically or numerically. Section IV contains a discussion
and a conclusion. In appendices, we give details on the deriva-
tions. Appendix A discusses the position operator. Appendix B
gives the chemical potential as a function of the electric field.
Appendix C shows that strong interactions between electrons
impose a local electronic filling. Appendix D presents an
alternative derivation of the finite-temperature polarization and
susceptibility based on the charge density.

II. GENERAL DERIVATION

We consider a one-dimensional tight-binding model for
electrons in a periodic crystal made of N unit cells, each
containing Nb sites/orbitals. Eventually, we are interested in
studying the thermodynamic limit in which N → ∞ at fixed
number of bands Nb. The ions are treated minimally; they form
a rigid lattice, have no dynamics, have no atomic polarizability,
but they do carry an electric charge so as to make the whole
system charge neutral. As the spin plays no essential role in
the presence of an electric field, we assume spinless electrons
that carry a charge −e = −1. The Fermi energy is set within
a band gap, such that the whole system is a charge-neutral
insulating crystal (a dielectric).

A. Free energy and its field derivatives:
Global chemical potential

As electric polarization and susceptibility are defined
for charge-neutral systems only, any statistical mechanics
approach must take place in the canonical ensemble where
the number of electrons is fixed. The polarization P and
susceptibility χ are defined as the first and second derivatives
of the free energy F with respect to the electric field E , at

vanishing electric field

P = − 1

L

∂

∂E F

∣∣∣∣
E=0

(1)

and

χ = − 1

L

∂2

∂E2
F

∣∣∣∣
E=0

, (2)

where L is the length of the crystal.
The total free energy F contains two contributions: one due

to the ions and one due to the electrons. As we wish to focus on
the electronic contribution we treat the ions as static charges
in a scalar potential. This choice leads to their contribution to
the free energy as

Fions =
∑

n

Nb∑
i=1

qi[−E(na + xi)] =
∑

n

−qEna, (3)

where the sum over n is a sum over the unit cells (n is a unit
cell index taking N values), q = ∑Nb

i=1 qi is the total ionic
charge in a unit cell, and the origin of position is taken as the
(charge-weighted) barycenter of the ions of the n = 0 unit cell
[20]:

x̄ = 1

q

Nb∑
i=1

qixi = 0. (4)

In the following, we set the lattice spacing a = 1.
For technical simplicity, we introduce a chemical potential

μ and compute the free energy of electrons

Fe−(Ne− ,E,β) = μNe− + �e− (μ,E,β) (5)

from the grand potential

�e− (μ,E,β) = − 1

β

∑
γ

ln(1 + e−β(Eγ −μ)), (6)

where β = 1/T is the inverse temperature. The chemical
potential μ is used to impose the overall (i.e., global) charge
neutrality of the system and γ is the set of quantum numbers
labeling the energy spectrum. For the moment, we assume that
we are able to compute the energy spectrum {Eγ } of a single
electron in the lattice in the presence of an electric field (this
energy spectrum is discussed in the next section). The total
number of electrons is

Ne− = −∂�e−

∂μ
=

∑
γ

nF (Eγ − μ), (7)

where

nF (E) = 1

eβE + 1
(8)

is the Fermi function at zero chemical potential. Charge
neutrality means that Ne− = qN . Inverting Eq. (7) gives the
chemical potential μ as a function of β, Ne−, and E .

B. Generalities on the Wannier-Stark ladder energy
spectrum for an infinite system

In order to conduct a statistical mechanics approach, we
need to know what kind of energy spectrum we have to
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deal with. The case of an electric field in a tight-binding
Hamiltonian is delicate as the spectrum is unbounded: there are
states of infinite positive and negative energies. We consider a
one-dimensional tight-binding Hamiltonian H0 describing the
electrons in a crystal, in which we introduce the electric field E
using the scalar gauge A0 = −EX [21]. The full Hamiltonian
is then

H = H0 + EX, (9)

where X is the position operator (see Appendix A). As H0 is
invariant under translation of one unit cell, it commutes with
the translation operator Ta (a = 1 is the size of the unit cell)
such that T −n

a H0Ta
n = H0 for any integer n.

By contrast the position operator verifies the “ladder”
identity T −n

a XTa
n = X + n1. As a consequence, if |ψ〉 is

an eigenvector of H with eigenvalue E(E), then successive
application of the translation operator implies that T n

a |ψ〉 is
also an eigenvector of H with eigenvalue E(E) + nE . Defining
|E〉 as the eigenstate such that −1/2 � X(E) = 〈E|X|E〉 <

1/2 and E(E) the corresponding eigenenergy, we deduce that,
for any integer n, the translated state

|En〉 = T n
a |E〉 (10)

is an eigenstate of energy

En(E) = E(E) + En (11)

with a mean position

Xn(E) = 〈En|X|En〉 = X(E) + n (12)

translated by n unit cells. The integer n labels the unit cells (in a
finite system it takes N values). Equations (10), (11), and (12)
are the essential characteristics of the so-called Wannier-Stark
ladder (WSL) [8]. The eigenstates are called Wannier-Stark
(WS) states. A simple counting argument shows that if the
tight-binding spectrum at zero field comprises Nb bands, each
containing N states, then the full spectrum of the Hamiltonian
H is made by Nb such ladders that will be labeled by an index
α = 1, . . . ,Nb. This can be schematically written as∣∣Eα

n

〉 = T n
a |Eα〉,

Eα
n (E) = Eα(E) + En, (13)

Xα
n (E) = Xα(E) + n,

where hereafter the quantities |Eα〉, Eα(E), and −1/2 �
Xα(E) < 1/2 are referred to as respectively the center state,
the energy center, and the position center of the α ladder.

The validity of properties (13) necessarily implies that
the WS states |Eα

n 〉 are localized states such that we can
also associate a localization length ξα(E) to each WSL.
An estimation of this localization length ξα is obtained by
computing the mean-squared spreading of WS states around
their mean position Xα

n :

ξ 2
α = 〈

Eα
n

∣∣(X − Xn,α)2
∣∣Eα

n

〉
= 〈

Eα
n

∣∣(H0 − E0
α

)2∣∣Eα
n

〉/
E2, (14)

where

Eα
0 (E) ≡ 〈

Eα
n

∣∣H0

∣∣Eα
n

〉 = 〈Eα|H0|Eα〉, (15)

such that we can write

Eα(E) = Eα
0 (E) + EXα. (16)

The quantity Eα
0 = 〈Eα|H0|Eα〉 should not be mistaken for

Eα
n=0 = Eα = 〈Eα|H |Eα〉 (they only agree at E = 0). We

stress that for finite electric field E , the WSL states |Eα
n 〉 of

a given ladder α are a general linear combination that mixes
Bloch states |Eβ(k)〉 of different band indices β = 1, . . . ,Nb

[22]. The above expression of the localization length shows
that it can be estimated as ξα ∼ W/E , where W is the
bandwidth. This agrees with the usual semiclassical expression
for the size of Bloch oscillations; see, e.g., [23].

Next we will focus on the thermodynamics of the un-
bounded Wannier-Stark spectrum and come back later to the
exact expression of the energies Eα(E). For now, it is sufficient
to know that they exist and depend on the electric field: the
major difficulty of the statistical mechanics approach, namely
the unbounded spectrum, is what we focus on next.

C. Statistical mechanics of the Wannier-Stark ladder:
Local chemical potential

The presence of an energy spectrum with no lower bound
leads to an unstable ground state. In a large but finite system,
it means that all the electrons are on one side of the crystal.
Such a ground state is drastically different from the zero-field
ground state: the zero-field ground state is translationally
invariant and charge neutral at the scale of a unit cell. When
turning on the field, the zero-field ground state happens to be a
metastable state of the system: it is known that Zener tunneling
from this state to the finite-field ground state gives rise to a
finite lifetime of the metastable state. However this lifetime
happens to be large as the probability of Zener tunneling
∼ exp(−Cst × gap2/E) is exponentially suppressed when the
electric field goes to zero. From a statistical physics point of
view, this means that the ergodicity time is much larger than
the measurement time: the true ground state is not reached in
practice and the system only explores states that are closely
related to the zero-field ground state. On physical grounds,
the polarization and susceptibility of the insulating crystal are
related to how the zero-field ground state evolves into another
translationally invariant and charge-neutral (at the scale of the
unit cell) state when the field is turned on. See, for example,
the discussion in [14] and references therein.

Following this line, we ought to enforce translational
invariance when we compute the free energy of the electrons
in a small but finite electric field. Due to the structure of the
spectrum, which is a set of WSL Eα

n whose states within
a ladder are related by the translation operator, enforcing
translational invariance is simple: each rung n (taking N

values) of a given ladder α (fixed) should be equally populated.
While imposing this constraint is not an easy task when
working with the free energy, the grand-canonical ensemble
possesses a useful tool in order to do that: the chemical
potential. This quantity is a Lagrange multiplier that enforces
a specific average number of electrons. We now introduce one
such Lagrange multiplier μn(E) in each unit cell, tuned such
that all the rungs of a single ladder are equally populated, and
such that the total number of electrons still ensures the overall
charge neutrality. In other words, we impose charge neutrality
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not only globally, but also locally, in each unit cell. Within this
approach the grand potential (6) becomes

�({μn},E,β) = − 1

β

∑
n,α

ln
(
1 + e−β[Eα

n (E)−μn(E)]
)

(17)

and the constraint is realized for a local chemical potential

μn(E) = En + μ̃(E) = μ(0) + En + Eμ(1) + O(E2), (18)

where μ(0) is the value of the chemical potential that realizes
the charge neutrality at zero field. Upon translation of all the
energies, it can be set to 0 (choice in the zero of energy).
The term En enforces that all rungs of a single ladder are
populated equally, and μ(1) is the first-order correction to μ(0).
In Appendix B, we show that

μ(1) =
∑

α(∂EEα)n′
F (Eα)∑

α n′
F (Eα)

, (19)

where we have defined the average energy of the α Bloch
band as Eα ≡ ∫ π

−π
dk
2π

Eα(k) [it is also the zero-field limit of
the center of the α ladder Eα(E → 0)], ∂EEα ≡ ∂EE

α(E)|E=0.
Here we only derived the zeroth and first order in E of the
chemical potentials μn(E): the next orders are not needed if
we are only interested in the polarization and the susceptibility
as shown in Appendix B.

Once the constraint is imposed, the free energy of the
electrons is

Fe−(Ne− ,E,β) ≈
∑

n

qμn − 1

β

∑
n,α

ln
(
1 + e−β[Eα (E)−Eμ(1)]),

(20)

which replaces (5) in the case of a local chemical potential. In
the previous equation, we used that

∑
n q = qN = Ne− . We

then add the free energy of the ions (we recall that they are
taken as static charges in a scalar potential), see Eq. (3), to
obtain the total free energy of the system

F (E) ≈
∑

n

qEμ(1) − 1

β

∑
n,α

ln
(
1 + e−β[Eα (E)−Eμ(1)]

)
. (21)

Note that the contribution of ions cancels the En term coming
from μn in the total free energy F .

We can now express the polarization [from its thermody-
namic definition Eq. (1)] as

P = −
∑

α

nF (Eα)∂EE
α (22)

as well as the susceptibility as

χ = −
∑

α

[
nF (Eα)∂2

EE
α + n′

F (Eα)(∂EE
α)2

]

+
(∑

α

n′
F (Eα)∂EE

α

)2(∑
α

n′
F (Eα)

)−1

. (23)

Note that the above two formulas only require the knowledge
of the energy spectrum [more precisely the center of the WSL
Eα(E)] at finite electric field in the limit of vanishing field.
Eigenstates are not involved.

To summarize, the true ground state in the presence of
a weak electric field is not reached during an experimen-
tally accessible time due to exponentially suppressed Zener
tunneling from the zero-field ground state to the finite-field
ground state. We therefore made the assumption that instead
of exploring the full phase space, the system in the presence of
a weak electric field only explores the space of translationally
invariant configurations (which are the configurations that are
closest to the zero-field ground state). Using this assumption,
we derived the free energy and then obtained the polarization
and susceptibility.

In Appendix C, we explore a toy model in which we turn
back to a single global chemical potential and add interactions
between electrons in the form of an electrostatic cost for
charge inhomogeneity. While the derivation is model specific,
it shows that the polarization and the susceptibility obtained
with a global chemical potential and for strong interactions
agree with that obtained with a local chemical potential and
no interactions. In other words, the main effect of electrostatic
interactions is to enforce electroneutrality within each unit cell.

D. Perturbative-like expansion of the Wannier-Stark
ladder energies

The WSL are generated by the translation operator Ta . We
call |Eα

n 〉 a WS state belonging to the αth WSL and with center
position in the nth unit cell. This means that we can decompose
the Hilbert space in orthogonal subspaces (labeled by α)
which are spanned by the families {|Eα

n 〉,n}, with Ta|Eα
n 〉 =

|Eα
n+1〉 and H |Eα

n 〉 = [Eα(E) + En]|Eα
n 〉. Such families are

stable under the translation operator, span subspaces that are
orthogonal to one another, and hence block-diagonalize the
Hamiltonian. Reciprocally, if we find sufficiently many such
subspaces (that is, as many subspaces as there are ladders
in the finite-field spectrum, or Bloch bands in the zero-field
spectrum) then each subspace is the subspace spanned by a
single WSL: the Hamiltonian is block-diagonal and every
block is part of a single ladder. Using the properties of the
WSL spectrum, and taking a normalized |ψα〉 that verifies
〈ψα|Taψ

α〉 = 0 (it does not necessarily need to be a WS state)
in one of these subspaces, we have that the center of the α

ladder is

lim
N→∞

1

N

(N−1)/2∑
n=−(N−1)/2

〈
T n

a ψα
∣∣H ∣∣T n

a ψα
〉 = Eα(E), (24)

where N , assumed to be odd, is the number of unit cells in
the crystal. We assume here that the state |ψα〉 is localized in
the n = 0 unit cell, i.e., − 1

2 � 〈ψα|X|ψα〉 < 1
2 . If it is not the

case, we apply the translation operator Ta sufficiently many
times to translate the state back to the n = 0 unit cell.

To build a perturbative-like treatment, we use the Wannier
states (or “Wannier functions”) |wα

n 〉 defined at zero electric
field and which constitute a basis of the Hilbert space. For
isolated bands, they are defined as

|wα
n

〉 =
∫

BZ

dk√
2π

e−ikn|Eα(k)〉, (25)

where |Eα(k)〉 are the Bloch states for the band α of the zero-
field Hamiltonian [H0|Eα(k)〉 = Eα(k)|Eα(k)〉]. The Wannier
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functions have several interesting properties: (i) they block-
diagonalize the zero-field Hamiltonian, and there are as many
blocks as there are bands; (ii) for fixed α, the family {|wα

n 〉,n}
is invariant under translation, i.e., Ta|wα

n 〉 = |wα
n+1〉; (iii) for

suitable choices of the phase of the Bloch eigenvectors [24],
they are localized and as such, the matrix elements of the
position operator are well defined in the Wannier basis. Despite
their name, the Wannier functions are not the WS states (they
are not eigenstates of the Hamiltonian in the presence of an
electric field). However their properties match those required
by the presence of a WSL; hence we will use them as the
starting point of our perturbative expansion. In a loose sense,
Wannier functions |wα

n 〉 are the E → 0 limit of WS states |Eα
n 〉.

We look for orthonormalized vectors |n,α,E〉 such that
(i) |n,α,E = 0〉 ≡ |wα

n 〉 the Wannier functions; (ii) for any
given value of the field, Ta|n,α,E〉 = |n + 1,α,E〉 so as to
enforce the translational invariance of the family; and (iii)
〈m,α,E |H |n,β,E〉 = 0 for all α �= β which ensures that the
Hamiltonian is block-diagonalized. We do not require that the
|n,α,E〉 are eigenstates of the Hamiltonian in the presence of a
field (i.e., WS states), as this is not needed in order to recover
the value of Eα(E).

Due the the translational invariance requirement, we can
generically write the |n,α,E〉 as

|n,α,E〉 = ∣∣wα
n

〉 + EMd (E)βα
∣∣wβ

n+d

〉
, (26)

where a sum over repeated indices β and d is assumed. We
can interpret the matrices Md (E) as the Fourier coefficients of
a periodic function M(k,E), where k can be thought of as a
reciprocal vector in the first Brillouin zone (BZ). The states
|n,α,E〉 need to be normalized and orthogonal to one another,
and this conditions is given by

[1 + EM(k,E)]†[1 + EM(k,E)] = 1, (27)

and for α �= β, they must be orthogonal for the Hamiltonian,
which is a condition expressed by

[1 + EM(k,E)]†H (k)[1 + EM(k,E)] = 0

with H (k) =
[
E(k) + eEA(k) + eE i

2
(
←−
∂k − −→

∂k )

]
, (28)

where E(k) is the matrix of the Bloch energies Eαβ (k) =
δαβEα(k),

←−
∂k (resp.

−→
∂k ) acts as a derivative on all the terms

that are to its left (resp. right), and A(k) is the matrix of Berry
connection

Aαβ(k) = Im

〈
uα(k)

∣∣∣∣ ∂

∂k
uβ(k)

〉
. (29)

The cell-periodic Bloch state |uα(k)〉 [eigenstate of the zero-
field Bloch Hamiltonian H0(k) = e−ikXH0e

ikX] is related to
the Bloch eigenvector |Eα(k)〉 by

〈n,i|Eα(k)〉 = eik(n+xi )uα
i (k), (30)

where 〈n,i|Eα(k)〉 is the amplitude of the Bloch eigenvector
on the site i of the unit cell n. The position operator (see
Appendix A) is such that X = ∑

n,i(n + xi)|n,i〉〈n,i|, where
n is the position of the unit cell (n takes N values) and xi is
the position within the unit cell (or intracell position, with i

taking Nb values).

These two constraints allow us to find M(k,E) order-by-
order in the electric field, and the knowledge of M(k,E) allows
us to take the trace on a single block of the Hamiltonian to get

Eα(E) =
∫

BZ

dk

2π

⎡
⎣Eα(k) + EAαα(k)

− E2
∑
β �=α

Aαβ(k)Aβα(k)

Eβ(k) − Eα(k)
+ · · ·

⎤
⎦

= Eα + EAαα − E2
∑
β �=α

∫
BZ

AαβAβα

Eβ − Eα
. (31)

We indicate an average over the BZ by f ≡ ∫
BZ f ≡∫

BZ
dk
2π

f (k), where f (k) is any function of k.
In the zeroth order, one recognizes the mean value Eα of

the energy of the αth Bloch band, a result already found in
[8]. This is also the average energy of the n = 0 Wannier state
〈wα

0 |H0|wα
0 〉 in the absence of an electric field.

The first-order term Aαα = Zα

2π
is proportional to the Zak

phase Zα [6] of the band and first appeared in [9]. It is also
related to the position of the n = 0 Wannier state (also known
as the Wannier center) 〈wα

0 |X|wα
0 〉 = Zα/(2π ). In other words

the two first terms are simply the expectation value of the total
energy in the Wannier state Eα(E) = 〈wα

0 |(H0 + EX)|wα
0 〉 +

O(E2). Although this is strongly reminiscent of first-order
perturbation theory, below we argue that this is actually not
the case.

These two first terms of the WSL can also be obtained by
the semiclassical quantization of Bloch oscillations; see for
instance [10,11].

Surprisingly, the second-order term in (31) is not simply

a second-order perturbation formula like
∑

β �=α

|〈wα
n |X|wβ

n 〉|2
Eα−Eβ

because the number and position of BZ integrals are not
matching.

It is important to realize that the expansion of the WSL in
powers of the field is not perturbative in the usual sense. Indeed,
at zeroth order, the energy is the mean value of the energy of
the Bloch band, which is not an eigenvalue of the Hamiltonian
in the absence of the electric field. Also, the WS states do not
coincide with the Bloch eigenstates in the zero-field limit. A
crucial point is therefore to realize that in order to obtain the
electric response of the crystal even in the low-field limit, one
has to use limE→0 Eα

n (E) = Eα instead of Eα(k) as the energy
spectrum suffers from a discontinuity at E = 0.

When choosing the Wannier functions |wα
n 〉, we mentioned

a phase (or gauge) choice: the Bloch eigenvectors |Eα(k)〉
may be multiplied by an arbitrary phase eiφα (k). Besides
the fact that eiφα (k) has to be smooth and periodic over the
Brillouin zone, there are no other restrictions. Indeed, if the
aforementioned phase factor were not periodic or smooth, we
would lose the localization properties of the Wannier functions.
On the one hand, upon a gauge change, the off-diagonal
Berry connection Aαβ(k) is modified by the phase factor
e−i[φα (k)−φβ (k)]; hence the product Aαβ(k)Aβα(k) is gauge
invariant, and so is the second order of the WSL energies.
On the other hand, the diagonal Berry connection Aαα(k) is
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modified by the total derivative ∂kφ
α whose integral over the

Brillouin zone is quantized to an integer (which counts how
many times the phase winds around the origin). But remember
that we have previously required that the vector |n = 0,α,E〉
is located in the n = 0 unit cell, which in turn imposes that
the Wannier function |wα

0 〉 has its center in the zeroth unit
cell. Transforming to a gauge where eiφα (k) winds one extra
time around the origin amounts to translation by one unit
cell all the Wannier functions of the band α. The spectrum
being unbounded by both above and below, an unambiguous
definition of the WSL imposes that |wα

0 〉 must be situated in
the zeroth unit cell. Translating it back amounts to effectively
canceling the extra winding of the phase. The above expression
is hence gauge invariant. It is actually well known that the
Zak phase is gauge-invariant despite its being an open-path
geometric phase; see, for example, the nice discussion in
Ref. [10]. Note, however, that the Zak phase depends on the
choice of position origin. Here, we have made the choice that
the charge-weighted barycenter of the ions x̄ = 0 in the n = 0
unit cell.

E. Full expression of the polarization and the susceptibility

Before giving the full expressions of the polarization and
of the susceptibility—i.e., essentially inserting (31) in (22)
and (23)—we recall the hypotheses we have used in their
derivation: (i) we restrict ourselves to uniform filling of the
WSL states, which is a valid approximation at low electric
field (suppressed Zener tunneling) and low temperature (both
with respect to the gap and to the electrostatic interaction
energy, i.e., costly charge inhomogeneities); (ii) the origin of
position is taken as the charge-weighted barycenter of the ions
in the n = 0 unit cell; (iii) the phases of the Bloch eigenvectors
are such that the Wannier functions |wα

0 〉 are localized in the
zeroth unit cell.

With these hypotheses, using the perturbative expression of
the WSL energies found in the previous section and restoring
all constants that were previously set to 1, we reach

P = − e

a

∑
α

nF (Eα)Aαα = −e
∑

α

nF (Eα)
Zα

2π
(32)

and

χ = e2

a

∑
α,β �=α

nF (Eα)
∫

BZ

AαβAβα

Eβ − Eα

− e2

a

∑
α

n′
F (Eα)Aαα

2 + e2

a

[ ∑
α n′

F (Eα)Aαα
]2∑

α n′
F (Eα)

, (33)

where f̄ ≡ a
∫

BZ
dk
2π

f (k). At zero temperature, we recover
the well-known formula of King-Smith, Vanderbilt, and Resta
[2,4] for the polarization

P = − e

a

∑
α occ.

Aαα = −e
∑
α occ.

Zα

2π
(34)

and a recent result of Swiecicki and Sipe [19] for the
susceptibility

χ = e2

a

∑
α occ.

∑
β �=α

∫
BZ

AαβAβα

Eβ − Eα
� 0. (35)

The susceptibility is positive, in agreement with a general
argument [25]. In the above formula, the sum over α is
restricted to occupied bands.

F. Quantum of polarization

At zero temperature, the electric polarization of a bulk
crystal is defined up to a quantum of polarization, which is
an integer in the proper units [4]. The quantum of polarization
means that from the bulk point of view, the polarization cannot
be defined in an absolute manner: as long as the surface of
the crystal is not specified, we can only get the difference
of polarization between two configurations of the crystal.
For instance one can access unambiguously the change of
polarization upon a change of the applied stress by only
looking at the bulk. Then an adiabatic pumping argument
shows that two identical configurations in the bulk can have
a difference of polarization which is an integer. Hence an
absolute value of the bulk polarization has to be defined up to
an integer.

In the above formula for the polarization (32), the quantities
which are defined up to an integer are the Wannier centersAαα ,
meaning that the finite-temperature formula we give does not
obviously possess this quantum of polarization. To recover it,
we need to recall that the spectrum is made of several WSL
of the form Eα(E) + En, and that each rung corresponds to
a localized eigenstate. To unambiguously define the different
energies Eα(E), we have imposed that the n = 0 eigenstates
of the different ladders belong to the same unit cell: it would
make no sense to compare the energy of a state that is located
in the mth unit cell to the energy of one other located in the
nth unit cell, as the latter would feel an extra electric potential
E(m − n), hence have its energy shifted by E(m − n) with
respect to the former eigenstate. Now, to change the value of
the Wannier center Aαα by one, we need to make a gauge
choice in which the phase of the Bloch eigenvectors winds an
extra time around the origin when we go from one side of the
Brillouin zone to the other. But this extra winding amounts to
moving the WS states of the ladder α by one unit cell, which
we cannot do unless we also move the other ladders, as we
would then compare the energies of the different ladders by
comparing the energy of states in different unit cells.

So if we change the Wannier center of one band Aαα by
the integer p, then we must change it for all the bands at once,
and the change of polarization we get would then be∑

α

p nF (Eα) = p (36)

and we therefore recover the quantum of polarization also at
finite temperature. This fact also lead to the gauge invariance of
the susceptibility χ at finite temperature. Indeed, the quantity

−
∑

α

n′
F (Eα)Aαα

2 +
[ ∑

α n′
F (Eα)Aαα

]2∑
α n′

F (Eα)
(37)

does not change when we shift simultaneously the Wannier
centers Aαα .

Along with the presence of a quantum of polarization, the
polarization and susceptibility should be invariant both under a
change of the origin of position and under a change of the unit
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cell. The former invariance is a direct consequence of charge
neutrality and is easily checked. The latter is harder to verify
because the Berry connection does not trivially change under
a change of the unit cell. We did check it for every example
we considered, however.

III. TOY MODELS: ANALYTICS VERSUS NUMERICS

To check our analytical predictions, we now consider two
toy models that can be solved exactly either analytically or
numerically.

A. Chain of uncoupled dimers

The first model is an infinite chain of uncoupled dimers,
i.e., a chain of molecules made of two different atoms A

and B, each with a single orbital. Atoms are located at
xA + n and xB + n, where n is an integer (we set the lattice
spacing a = 1). Each dimer is characterized by an intradimer
hopping amplitude t = 1 and on-site energies ±� for the
two sites forming the dimer. There are no interdimer hopping
amplitudes, which greatly simplifies the problem. In this case,
it is obvious that the electric response of the crystal is identical
to that of a single dimer, which is easily computed. For the nth
dimer [and taking the mean ion position in the n = 0 unit cell
as the origin (xA + xB)/2 = 0] the Hamiltonian in an electric
field reads

HE =
(

� + xA−xB

2 E 1
1 −� − xA−xB

2 E

)
+ nE . (38)

The model depends on two parameters (� and xA − xB) and
on the applied electric field E . The eigenenergies are

E±
n (E) = E±(E) + nE = ±

√(
� + xA − xB

2
E
)2

+ 1 +nE,

(39)

which are indeed two WSL labeled by α = ±. Expanding to
second order in the electric field, we find that the WSL centers
are

Eα(E) ≈ α
√

�2 + 1 + α
(xA − xB)�

2
√

�2 + 1
E+α

(xA − xB)2

8(�2 + 1)3/2
E2.

(40)

This should be compared to the perturbative-like result given in
Eq. (31) and involving the dispersion relation and the diagonal
and off-diagonal Berry connections. In order to compute the
latter, we need the zero-field Bloch Hamiltonian:

H0(k) = e−ikXH0e
ikX =

(
� e−ik(xA−xB )

eik(xA−xB ) −�

)
. (41)

The energy bands have a flat dispersion relation Eα(k) =
α
√

�2 + 1 and therefore Eα = α
√

�2 + 1 which matches the
zeroth order in the WSL ladder (40). The cell-periodic parts
of the Bloch states are

|u+(k)〉 =
(

cos θ
2 e

−i
φ

2 , sin θ
2 e

i
φ

2

)
,

|u−(k)〉 =
(

− sin θ
2 e

−i
φ

2 , sin θ
2 e

i
φ

2

)
(42)

[in the periodic gauge where |Eα(k + 2π )〉 = |Eα(k)〉 ⇒
uα

i (k + 2π ) = e−2iπxi uα
i (k)], and

cos θ = �√
�2 + 1

, sin θ = 1√
�2 + 1

, φ = k(xA − xB).

(43)

The diagonal Berry connection is also independent of k:

Aαα = Aαα = α 1
2 (∂kφ) cos θ = α 1

2 (xA − xB)
�√

�2 + 1
,

(44)

and we recognize the first order of the WSL ladder of (40).
Finally, the off-diagonal Berry connection is

A−+ = A+− = − 1
2 (∂kφ) sin θ, (45)

so that the second order of the perturbative expansion is

∑
β �=α

AαβAβα

Eα(k) − Eβ(k)
= α

(xA − xB)2

8(�2 + 1)3/2
, (46)

recovering the second order of Eq. (40). The perturbative-
like expansion of the WSL energies is therefore correct
for the chain of dimers. Thus it can be safely used in the
thermodynamic derivation of the electric polarization and
susceptibility. Note also that in the case of a chain of decoupled
dimers, the use of a local chemical potential is clearly justified
as each dimer is independently half filled even in the presence
of an electric field.

B. Rice-Mele chain

In order to study solitons in polymer chains such as
polyacetylene, Rice and Mele proposed a tight-binding model
of a dimerized chain with staggered on-site potential [26]. It
is a standard toy model in the study of the electric polarization
of crystals [2,11].

The chain is made of an alternating succession of sites A

and B occupied by cations and carrying each half an electron
charge e/2 (this is related to considering spinless electrons).
The sites are equally spaced so that xA − xB = 1

2 + n, where
n is an integer. The Bloch Hamiltonian is given by

H0(k) =
(

� 2t
(
cos k

2 − iδ sin k
2

)
2t

(
cos k

2 + iδ sin k
2

) −�

)
, (47)

where ±� are the on-site energies on the two sublattices and
the two hopping amplitudes are t(1 ± δ). In the following
we set t = 1 in addition to a = 1 and e = 1. The chain of
uncoupled dimers studied in the previous section corresponds
to δ = 1 and t = 1

2 while � �= 0 and xA − xB should not be
restricted to 1

2 + n. The energy spectrum at zero electric field
is

E±(k) = ±
√

�2 + 4 cos2
k

2
+ 4δ2 sin2

k

2
. (48)

For simplicity and following [2], we set � = �0 cos θ and
δ = δ0 sin θ and use the single angular parameter θ to tune the
model by choosing �0 = δ0 = 0.6 as an example.
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FIG. 1. Inset: Spectrum of the Rice-Mele chain for θ = 3
4 π , in the

presence of an electric field. For readability, the spectrum corresponds
to a small chain of 20 unit cells. At zero field, the chain is a two-
band insulator, while at finite field, the bands evolve into a WSL
with energies E±

n (E) = E± + En + EA±± + · · · ; see Eq. (31). Main
panel: Standard deviation of the numerical energy levels with respect
to the analytical levels of an infinite chain [up to second order; see

Eq. (31)], i.e.,
√

1
N

∑
n(E−

n,numeric − E−
n,analytic)2, for N = 20 (highest

deviation), 40, 80, and 160 (lowest deviation) unit cells. The initial
decrease of the deviation is exponential e−E/Ec and characterized by
the field Ec ∼ W

N
where W is the bandwidth. High-field decrease of

the deviation with respect to the Wannier-Stark ladder of the infinite
system is governed by a second characteristic value of the field. Units
are such that e = 1, � = 1, t = 1 and a = 1.

1. WSL: Numerics on finite versus analytics for infinite chain

In the case of the Rice-Mele chain, in contrast to the
dimer chain, it is not possible to analytically obtain the energy
spectrum of an infinite chain in the presence of an electric field.
However, we can numerically obtain the spectrum for a finite
chain with an electric field and compare it with Eq. (31), which
gives the perturbative-like expansion in powers of the electric
field in the thermodynamic limit; see Fig. 1. The agreement
becomes very good when the electric field is sufficiently large
that finite-size effects are negligible (i.e., E � W

N
where W is

the bandwidth) and sufficiently small to be in the weak-field
regime (i.e., E � W ) and also that the order E2 expansion
of the WSL is valid (corresponding to an even larger electric
field). These inequalities are equivalent to requiring that the
WS localization length ξ ∼ W

E be smaller than the system size
Na = N and larger than the lattice spacing a = 1. In summary,
the WSL regime of a bulk crystal exists in a finite system
provided that E � W

N
. In addition, one explores the weak-field

limit provided that E � W . Figure 1 also shows that the first
level crossing between levels coming from different bands
occurs at an electric field ∼ gap

N
. This is similar to W

N
as the gap

and the bandwidth are taken to be of the same order.
A convenient way of identifying this WSL regime is to

plot the “energy center” Eα
n − EXα

n , where Eα
n (E) is the

energy of a numerically obtained eigenstate and Xα
n (E) is

its average position, as a function of Xα
n for a given band

α (see Fig. 2). Indeed, in the WSL regime, the energy
spectrum should be given by Eq. (31), which shows that

FIG. 2. Energy center Eα
n − EXα

n as a function of the average
position Xα

n for eigenstates of a finite chain with N = 320 unit cells
in an electric field. n is the unit cell index and α is the index labeling
the two bands. At weak electric field, E � W/N , the energy center
spans the zero-field bandwidth and the average position is the chain
center for all eigenstates (the two bands are visible in red in the
figure). When increasing the electric field and once the WSL regime
is reached (green), bulk eigenstates form a plateau and all have the
same energy center. Edge effects are seen on the two ends of the chain
and tend to disappear with increasing field (blue and magenta). The
curves in different colors are shifted vertically for clarity; the typical
(vertical) distance between curves of the same color is of the order of
the band gap. Units are such that e = 1, � = 1, t = 1 and a = 1.

Eα
n − EXα

n ≈ Eα + O(E2) is almost field independent. When
the electric field is smaller than W

N
and negligible, almost all

eigenstates have the same average position at the center of
the chain and eigenenergies that vary continuously between
the bottom and the top of the zero-field band (see the red
points in Fig. 2). Then, when the field becomes larger than
∼W

N
, eigenstates become localized in different unit cells

(Xα
n+1 − Xα

n ≈ 1), but all have the same Eα
n − EXα

n forming
a plateau as a function of the average position (see the green
curve). The plateau is electric field independent and given by
Eα

n − EXα
n ≈ Eα until the electric field becomes larger than

∼W . Then the plateau starts to depend on the electric field in
a quadratic manner Eα

n − EXα
n ≈ Eα + O(E2) revealing the

electric susceptibility. The only deviations from this typical
behavior are found near the edges of the finite chain.

2. Polarization and susceptibility

The first-order term in E of the trace of HE = H0 + EX

on the WSL emerging from the lower band is presented in
Fig. 3 (see the red crosses) as a function of the parameter θ

for a finite Rice-Mele chain with 80 sites. This is essentially
the zero-temperature polarization. It is compared with the
Wannier center (or Zak phase divided by 2π ) for the lower
band computed for the infinite system (see the blue full line).

For the infinite system, the polarization is defined modulo
1 and P → −P under inversion. Inversion symmetry is only
present at particular values of θ , implying that P = −P
modulo 1. These remarkable values of the parameters are
θ = 0 or π corresponding to a charge density wave (CDW)
like chain, with site-centered inversion symmetry resulting in
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FIG. 3. Zero-temperature spontaneous polarization P (in units
such that e = 1) as a function of the Rice-Mele parameter θ : θ = 0
and π correspond to a CDW chain and θ = π/2 and 3π/2 to an SSH
chain. The numerically computed first order of the WSL −∂EE

−|E=0

emerging from the valence band of a finite Rice-Mele chain with
80 unit cells is shown with red crosses. The analytical prediction
of Eq. (31) for the infinite system P = −X− is shown as a blue
line, where X− is the Wannier center of the lower band (in units
such that a = 1). For the infinite system (blue line), the polarization
is defined modulo the quantum of polarization, which is 1 here,
such that −1/2 � P < 1/2. For the finite chain, the polarization
has an absolute meaning and is not defined modulo a quantum of
polarization. When π < θ < 2π , the finite chain has two edge states
with opposite energies inside the bulk gap. Units are such that e = 1,
� = 1, t = 1 and a = 1.

a quantized spontaneous polarization P = ± 1
2 , and θ = π

2 or
3π
2 corresponding to a Su-Schrieffer-Heeger (SSH) chain [27],

with bond-centered inversion symmetry leading to a vanishing
spontaneous polarization P = 0. Note that from a bulk
perspective, the two SSH phases θ = π

2 and 3π
2 are identical

and cannot be distinguished. Their difference of behavior is
only revealed upon introducing an edge. In particular, the bulk
polarization cannot be used to characterize the SSH as a 1D
topological insulator as it vanishes in both phases [28].

However, for a finite chain, the polarization can be given
an absolute meaning (i.e., without the modulo inherent to the
quantum of polarization) because once the edges are specified,
the polarization becomes a well-defined quantity. In the θ ∈
[π,2π ] range, the chain with an even number of sites possesses
one localized state at each end of the chain with opposite
energies within the bulk gap. The jump in polarization at θ =
3π/2 happens when both edge states cross zero energy. For
the finite chain, there is now a clear difference in polarization
between the SSH chain at θ = π/2 for which the polarization
vanishes and θ = 3π/2 for which the polarization jumps from
1 to −1. The first phase is considered to be trivial and the
second to be topological.

Figure 4 presents the second-order term in E of the trace of
HE = H0 + EX on the WSL emerging from the lower band.
This is essentially the zero-temperature susceptibility. Small
finite-size effects can be noted at the second order around
θ = 0 and θ = π . This behavior of the susceptibility as a

FIG. 4. Numerically computed second order of the energy of the
WSL −2∂2

EE
−|E=0 emerging from the lowest band of the Rice-Mele

model as a function of the angular parameter θ (red crosses) compared
with the analytical value of Eq. (31) (blue line). This is essentially the
susceptibility χ at zero temperature. The calculation was done using
80 unit cells; finite-size effects explain the small difference between
the numerical and analytical curves around θ = 0,π . Units are such
that e = 1, � = 1, t = 1 and a = 1.

function of θ qualitatively follows that of the square of the
localization length of the maximally localized Wannier state.

Breaking particle-hole symmetry by adding a term E0(k)σ0

(where σ0 is the 2×2 identity matrix) to the Hamiltonian of
the Rice-Mele model changes the energy spectrum but not the
wave functions. Therefore it does not change the polarization
and the susceptibility as the WSL—i.e., the energy levels given
in Eq. (31)– -are left unchanged.

IV. CONCLUSION

In the present work, we have devised a statistical me-
chanics approach to the electric properties—polarization and
susceptibility—of a band insulator at finite temperature. The
key steps consist in, first, computing the Wannier-Stark
ladder energy spectrum in a perturbative-like fashion at
second order in the electric field and, second, in obtaining
a relevant thermodynamical potential by imposing a local
electroneutrality within each unit cell in the presence of the
electric field. Our main results are Eq. (31) for the WSL energy
spectrum at second order in the electric field, Eq. (32) for the
electric polarization at finite temperature, and Eq. (33) for the
electric susceptibility at finite temperature. The correctness of
the perturbative WSL energy spectrum (31) was checked by
comparing it with exact calculations in the case of two different
toy models (a chain of uncoupled dimers and a Rice-Mele
chain). One advantage is that the same method can be used
to compute response functions at first and second order (and
actually also at higher orders).

Qualitatively, at zero temperature and in the simplest
two-band model, the spontaneous polarization is essentially
given by the Wannier center, i.e., the average position of
the Wannier function (which is gauge independent), as found
by King-Smith, Vanderbilt, and Resta using a quite different
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approach. For the susceptibility, the physical interpretation
is more complicated. At zero temperature, it is qualitatively
given by the square of the localization length of the maximally
localized Wannier function [29,31], divided by an energy gap
which is the energy difference between the average energies
of the two bands. Indeed

χ =
∑
α occ.

∑
β �=α

∫
BZ

AαβAβα

Eβ − Eα
∼ 〈w−

n |(�X)2|w−
n 〉

E+ − E− , (49)

where
√

〈w−
n |(�X)2|w−

n 〉 is the localization length of the
maximally localized Wannier function of the band α = − and
�X = X − 〈X〉.

Eventually, we mention the difficulty of using a gauge-
invariant perturbative approach based on Green’s functions to
compute the density of states in the presence of an electric
field (the polarization is related to the first derivative of the
density of states with respect to the field and the susceptibility
to the second derivative). Such an approach was, for example,
proposed in [32] for both the electric and magnetic responses.
Whereas it works well for the magnetic field, allowing
us to compute the magnetization and the orbital magnetic
susceptibility [7], it encounters severe difficulties in the case
of an electric field. In particular, the authors of Ref. [32]
have to assume that the finite-field polarization is given by
the Zak phase in order to use their method but cannot derive
this fundamental relation.

Apart from the present approach, we are aware of two others
that amount to imposing a local electronic filling within each
unit cell. First, one can directly replace the linearly rising
electric potential in the Hamiltonian by a piecewise linear
potential (such as sawtooth or continuous triangular) with
either the periodicity of the Bravais lattice or a supercell
periodicity (see for example [17] for a discussion). Then
the energy spectrum remains that of a periodic system and
the usual thermodynamics can be employed automatically
resulting in electroneutrality within each cell. The drawback
of this approach is that it does not recover the correct Zak
phase formula for the electric polarization, although it has been
used to compute higher order responses such as the electric
susceptibility. A second approach would consist in defining
a local density of states (involving not only the WSL energy
spectrum but also the WS states) in order to impose the local
electronic filling by a local chemical potential. We tried this
approach—which we find physically quite appealing—and
were surprised to realize that it also does not recover the KVR
formula for the electric polarization [33].
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APPENDIX A: POSITION OPERATOR

In this appendix, we discuss more precisely the position
operator and its action on the WS states. The position operator

X =
∑

n

Nb∑
i=1

Xi |n,i〉〈n,i| (A1)

can be split into two distinct parts X = x + R. The contribu-
tion x—the intracell position operator—is defined by

x =
∑

n

Nb∑
i=1

xi |n,i〉〈n,i|, (A2)

and is translationally invariant x = T −n
a xT n

a . As a conse-
quence we can write

xα = 〈
Eα

n

∣∣x∣∣Eα
n

〉 = 〈Eα|x|Eα〉. (A3)

By contrast, the contribution R—the Bravais lattice position
operator—is defined by

R =
∑

n

Nb∑
i=1

n|n,i〉〈n,i| (A4)

and verifies the ladder identity T −n
a RT n

a = R + n1. Note that
in each unit cell, it is simply proportional to the identity. For
this contribution we can write

Rα = 〈
Eα

n

∣∣R∣∣Eα
n

〉 = 〈Eα|R|Eα〉 + n = rα + n. (A5)

For each ladder, the previously defined position center is
thus the sum of two distinct contributions Xα = xα + rα .
On the one side the contribution xα measures the intracell
asymmetry of the probability of WS states |Eα

n 〉; on the other
side the contribution rα measures the intercell asymmetry of
the probability of WS states |Eα

n 〉.

APPENDIX B: CHEMICAL POTENTIAL
AS A FUNCTION OF THE FIELD

In this appendix, we show that we only need the dependence
of the chemical potential on the electric field at first order in
order to obtain the susceptibility. The total free energy is

F =
∑
n,α

μn − 1

β

∑
n,α

ln
(
1 + e−β[Eα

n (E)−μn]
) −

∑
n

qEn,

(B1)

where Eα
n (E) = Eα(E) + En and in the local chemical

potential approach, μn = μ̃(E) + En, with μ̃(E) = μ(0) +
Eμ(1) + · · · . The free energy per unit cell is therefore

F

N
= qμ̃(E) − 1

β

∑
α

ln
(
1 + e−β[Eα (E)−μ̃(E)]

)
. (B2)

Taking a derivative with respect to the field, we find that the
polarization at finite electric field is

P(E) = −
∑

α

∂EE
α(E)nF [Eα(E) − μ̃(E)]. (B3)

We used that the number of electron in each unit cell is fixed
by the requirement of local electroneutrality so that

q =
∑

α

nF [Eα(E) − μ̃(E)]. (B4)

Taking a second derivative with respect to the field, we find
that the polarizability is

χ =
∑

α

[
nF (Eα)∂2

EE
α + n′

F (Eα)∂EE
α(∂EE

α − ∂E μ̃)
]
. (B5)
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At zero electric field, only μ̃ → μ(0) and ∂E μ̃ → μ(1) appear
in the expression of the polarization and susceptibility. As
μ(0) can conveniently be set to 0 (by a choice of the origin
of energy), we only need to know the first derivative of the
chemical potential with respect to the field in order to obtain
the polarization and the susceptibility. This quantity is obtained
from the fact that the number of electron in each unit cell, q

in Eq. (B4), should not depend on the electric field. Therefore
∂Eq = 0 so that

μ(1) =
∑

α(∂EEα)n′
F (Eα)∑

α n′
F (Eα)

∣∣∣∣
E=0

. (B6)

Using this result in the above expression for the susceptibility,
we recover Eq. (23). More generally, ∂Eq = 0 gives ∂E μ̃(E) =∑

α [∂EEα (E)]n′
F [Eα(E)−μ̃(E)]∑

α n′
F [Eα(E)−μ̃(E)] .

APPENDIX C: ELECTRON INTERACTIONS
AND GLOBAL VERSUS LOCAL FILLING

In this appendix, we justify the assumption of a charge
distribution that retains the Bravais lattice periodicity even in
the presence of an electric field. We therefore relax the local
chemical potential hypothesis [which states that the chemical
potential depends on the unit cell n through μn = μ̃(E) + En]
and turn back to a unique global chemical potential μ. The
latter serves to impose overall charge neutrality (global) but not
necessarily electroneutrality in each unit cell (local). The new
ingredient is to add interactions between charges (electrons
and ions) giving a cost to charge inhomogeneities. The goal is
to show that a local electroneutrality within each unit cell nat-
urally emerges in the limit of strong electrostatic interactions.

The WSL spectrum is not bounded from below, and as
so, when we write the partition function, we sum over
configurations of infinitely negative energy. Such configu-
rations correspond to charge distributions that are highly
inhomogeneous: most of the electrons are on one side of
the crystal. However, such an electronic filling should have
a cost. What would be the influence on the polarization and
susceptibility of such an electrostatic cost? Below, we propose
a toy model of interacting electrons. It is exactly solvable as it
can be seen as a model of independent unit cells.

We consider spinless electrons in a one-dimensional two-
band system, whose two WSL are E+(E) + En = E(E) + En

and E−(E) + En = −E(E) + En (our toy model is assumed to
possess a particle-hole symmetry). As WS states are localized,
we may associate each state to a unit cell through its center.
Every unit cell can then have four states: either empty, or
occupied by one electron in either the E− or the E+ ladder,
or doubly occupied. For the sake of simplicity, we set an
extra cost 2U to a doubly occupied unit cell. Hence, the 4
possible “grand-canonical energy levels,” including the ionic
contribution, are

− En, E− − μ, E+ − μ, E− + E+ + En + 2U − 2μ.

(C1)

The grand-canonical partition function is therefore

� =
∏
n

(eβEn + eβ[E(E)+μ] + e−β[E(E)−μ] + e−β[En+2U−2μ]).

(C2)

The unit cells range from n = −(N − 1)/2 to +(N − 1)/2
with N odd, the system contains N electrons, and from
β−1∂μ ln � = N , we find that the chemical potential is μ = U

at all orders in the field (due to particle-hole symmetry, which
is best seen if the electrostatic cost of 2U is shared equally by
the empty and doubly occupied states). We therefore obtain a
simple expression for the free energy F = β−1 ln � + μN :

F = −N ln 2

β
− 1

β

∑
n

ln{e−βU cosh(βEn) + cosh[βE(E)]}.

(C3)

From this we are able to compute the polarization as

P = ∂EE
sinh(βE)

e−βU + cosh(βE)
. (C4)

If the limit of weak interactions U � T , we can rewrite the
polarization as

P = ∂EE
sinh(βE)

1 + cosh(βE)
= −

∑
α=±

(∂EE
α)nF (Eα), (C5)

which agrees with Eq. (22), whereas in the limit of strong
interactions U � T , we find

P = ∂EE tanh(βE). (C6)

At first sight, this is puzzling. We have devised a model in order
to show that the local chemical potential hypothesis is valid
in the strong-interaction limit, and we recover our previous
results—obtained using local chemical potentials—in the
opposite limit of weak interactions. The reason is twofold.
First, the local chemical potential hypothesis does not play
a role at first order in the field (i.e., for the polarization) and
only appears at the second order (i.e., for the susceptibility; see
below). This is the reason why the polarization at U = 0 is the
same whether one uses a global chemical potential μ or local
chemical potentials {μn}. Second, in the strong-interaction
limit, our model freezes so strongly the charge fluctuations
that it is actually equivalent to a local canonical ensemble
(exactly one electron in each unit cell) rather than a local
grand-canonical ensemble (one electron on average per unit
cell). Indeed, the partition function for a single unit cell at
n = 0 occupied by one electron is Z1 = 2 cosh[βE(E)] giving
a polarization T ∂E ln Z1 = ∂EE tanh(βE). In the main part of
the paper, we developed a local grand-canonical approach.
However, in the remaining of this appendix, we continue
the investigation of the interacting model that resembles a
local canonical (rather than grand-canonical) ensemble in the
strong-interaction limit. The aim is to see whether a strong-
interaction limit is equivalent to imposing a local electronic
filling (either in a local canonical or a local grand-canonical
ensemble).
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Taking another derivative, we access the susceptibility

χ = −∂2
EE

sinh(βE)

e−βU + cosh(βE)

− (∂EE)2β
1 + e−βU cosh(βE)

[e−βU + cosh(βE)]2

−β
e−βU

e−βU + cosh(βE)

N2

12
, (C7)

where we used that
∑(N−1)/2

n=−(N−1)/2 n2/N ≈ N2/12 when N �
1. On the one hand, in the weak-interaction limit βU � 1, we
find

χ = −
∑

α

[
∂2
EE

αnF (Eα) + (∂EE
α)2n′

F (Eα) + N2

12
n′

F (Eα)

]
.

(C8)

The two first terms are expected [compare with Eq. (33)
when μ(1) = 0, as here μ̃(E) = μ = U is field independent]
but not the last term (proportional to N2). It is not intensive
and diverges in the thermodynamic limit. It reflects the fact
that imposing a global electronic filling in the presence of
an electric field and in the absence of a repulsion between
electrons, the system does not remain a band insulator but
contains partially filled bands due to inter-band tunneling.
Such a conducting system does not have a finite electric
susceptibility in the thermodynamic limit. This is a signature of
a metallic behavior (usually best captured at finite frequency).
On the other hand, in the strong-interaction limit βU � 1, we
find

χ = ∂2
EE tanh(βE) + (∂EE)2βsech2(βE)

+ N2

12
e−βUβsech(βE). (C9)

We now see that the term which depends on the size of
the crystal is proportional to N2e−βU and that is is linked
to the configurations which present charge inhomogeneity.
It can still be controlled in a more stringent limit of strong
interactions involving the size of the system. The temperature
should only be lower than U/ ln N in order for the last
term to be negligible. Typically U ∼ e2

4πεa
is of the order

of 10 eV, i.e., of 105 K. Therefore even for N ∼ 1023, the
temperature should be lower than U/ ln N ∼ 103 K. When
the last term is negligible, the result for the susceptibility
is the same as the one that would be obtained from a local
canonical ensemble in the absence of interactions. Indeed
T ∂2

E ln Z1|E=0 = ∂2
EE tanh(βE) + (∂EE)2βsech2(βE).

To summarize, we find that, for both the polarization and
the susceptibility, one may consider noninteracting electrons
provided the charge neutrality is imposed locally in each unit
cell rather than globally over the whole crystal. We also see
that there is a slight difference between imposing this local
electronic filling per unit cell in the canonical or in the grand-
canonical ensemble (the difference in 1 dimension is due to the
small number of electrons involved). In the main part of the
article, we assumed a local chemical potential and therefore
used a local grand-canonical ensemble.

This simple toy model can be extended to the two-
dimensional case. Again, we assume a band insulator coming

from a two-band tight-binding model on a lattice. We also
assume that the electric field lies along one of the Bravais
vectors (we call this direction the parallel direction). In this
particular case, the crystal retains its translational invariance in
the perpendicular direction without having to change the unit
cell, so we still have two bands in the perpendicular direction.
As we assumed two bands in the parallel direction without
electric field, we now have two WSL whose energies are
E±(k⊥,E) + En‖. Given a unit cell n‖, all the WS states located
in that unit cell are Bloch plane waves in the perpendicular
direction and confined in the parallel direction, so we set the
interaction cost to U (Nn‖ − N0)2, where Nn‖ is the number of
electrons on the rung and N0 is the number of electrons needed
to realize charge neutrality.

In the analytically tractable case of flat bands, and in
the N0 → ∞ (thermodynamic limit in the perpendicular
direction), we note the following facts: (i) when the interaction
is set to U = 0, as soon as the chemical potential reaches the
upper band energy, the net charge of each rung diverges as
expected; (ii) as soon as we consider U > 0, whatever the
value of the chemical potential, the net charge of the rung
remains finite even in the thermodynamic limit; that is, each
rung remains very close to charge neutrality.

Hence, this (overly simplified) two-dimensional toy model
tells us that interactions are likely to enforce local neutrality in
the crystal, and supports our approach of neglecting Zener tun-
neling and enforcing local neutrality at the scale of the unit cell.

APPENDIX D: FINITE-TEMPERATURE POLARIZATION
AND SUSCEPTIBILITY FROM CHARGE DENSITY

In this appendix, we propose an alternative derivation of
the finite-temperature polarization and susceptibility starting
from the charge density. We consider a finite crystalline chain
in the presence of an electric field. The energy spectrum
{Eγ (E)} (with γ representing quantum numbers) is bounded
and the eigenstates {|ψγ (E)〉} are well localized (in particular
their average position is well defined). In such a case, the
polarization can be computed from the charge density in the
familiar Clausius-Mossoti approach

P = − 1

N

∫
dxxρ(x) (D1)

(with a = 1, e = 1), where ρ(x) is the total electric charge
density (we get rid of the ionic contribution by taking
the average ion position as the spatial origin). At finite
temperature—and in a grand-canonical picture with global
filling fixed by the chemical potential μ—it is given by

ρ(x) =
∑

γ

nF [Eγ (E) − μ(E)]|ψγ (E,x)|2 (D2)

with Ne− = ∑
γ nF [Eγ (E) − μ(E)], so the finite-field polar-

ization is

P(E) = − 1

N

∑
γ

nF [Eγ (E) − μ(E)]〈ψγ (E)|X|ψγ (E)〉. (D3)

According to the Hellmann-Feynman theorem
〈ψγ (E)|X|ψγ (E)〉 = 〈ψγ (E)|∂EH |ψγ (E)〉 = ∂EEγ (E) and the
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finite-field polarization becomes

P(E) = − 1

N

∑
γ

nF [Eγ (E) − μ(E)]∂EEγ (E). (D4)

For a finite system, the spontaneous polarization is therefore

P = − 1

N

∑
γ

nF (Eγ − μ)∂EEγ (D5)

and the susceptibility is

χ = − 1

N

∑
γ

[
n′

F (Eγ − μ)(∂EEγ − ∂Eμ)∂EEγ

+ nF (Eγ − μ)∂2
EEγ

]
(D6)

with ∂Eμ = [
∑

γ n′
F (Eγ − μ)]−1 ∑

γ n′
F (Eγ − μ)∂EEγ . We

use the convention that Eγ ≡ Eγ (E = 0) and similarly for
∂EEγ , ∂2

EEγ , and μ. Note also that ∂EEγ = 〈ψγ |X|ψγ 〉
and ∂2

EEγ = 〈∂Eψγ |X|ψγ 〉 + 〈ψγ |X|∂Eψγ 〉. If nondegenerate
perturbation theory is applicable (which is certainly not
the case in the thermodynamic limit and at finite field as
there are level crossings), we can further show that ∂2

EEγ =
2
∑

δ �=γ

|〈ψγ |X|ψδ〉|2
Eγ −Eδ

.
We now would like to take the limit of an infinite chain

using our knowledge of the WSL spectrum, Eq. (31). An
important point is that the zero-field limit should be taken after
the thermodynamic limit and that there is a discontinuity of the
spectrum at zero field. This is due to level crossing when EN

becomes larger than the band gap, which always occurs in the
thermodynamic limit N → ∞ at any finite field. Therefore, we
cannot use (D5) and (D6) but rather go back to the finite-field
polarization (D4) and replace γ → (α,n), Eγ (E) → Eα

n (E) =
nE + Eα(E) so that ∂EEγ → ∂EE

α
n = n + ∂EE

α and ∂2
EEγ →

∂2
EE

α
n = ∂2

EE
α , leading to

P = −
∑

α

nF (Eα − μ)∂EE
α (D7)

and
χ = −

∑
α

[
n′

F (Eα − μ)(∂EE
α − ∂Eμ)∂EE

α

+ nF (Eα − μ)∂2
EE

α
] − N2

12

∑
α

n′
F (Eα − μ), (D8)

where we used that N−1 ∑(N−1)/2
n=−(N−1)/2 = 1, N−1 ∑

n n = 0,

and N−1 ∑
n n2 ≈ N2/12, and where ∂Eμ = [

∑
α n′

F (Eα −
μ)]−1 ∑

α n′
F (Eα − μ)∂EEα . The last term in (D8) (propor-

tional to N2) is present because we only imposed a global
electronic filling and not a local one. It is a signal that if
one waits long enough, a band insulator in a finite field
does not remain insulating but becomes a conductor due to
interband tunneling. This term should therefore be ignored
when computing the susceptibility of an insulator. See the
corresponding discussion in Appendix C, which shows how
this term is killed by electrostatic interactions.

If the above replacements γ → (α,n), etc., are made in
(D5) and (D6), the first derivative becomes

∂EEγ =→ ∂EE
α
n = 〈

wα
n

∣∣X∣∣wα
n

〉 = n + Zα

2π
, (D9)

which is the correct value, while for the second order

1

2
∂2
EEγ →

∑
β �=α

∣∣〈wα
n

∣∣X∣∣wβ
n

〉∣∣2

Eα − Eβ

�= 1

2
∂2
EE

α
n =

∑
β �=α

∫
BZ

Aαβ(k)Aβα(k)

Eα(k) − Eβ(k)
. (D10)

The first derivative is correct but not the second. This
illustrates the failure of nondegenerate perturbation theory in
the case of an infinite crystal. Also we see that if we use
the correct expression for the WSL given in Eq. (31), it is
possible to compute the polarization and susceptibility in the
thermodynamic limit starting from the charge density.
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[33] F. Piéchon (unpublished).

155109-14

http://dx.doi.org/10.1088/0268-1242/13/3/003
http://dx.doi.org/10.1088/0268-1242/13/3/003
http://dx.doi.org/10.1088/0268-1242/13/3/003
http://dx.doi.org/10.1088/0268-1242/13/3/003
http://dx.doi.org/10.1103/PhysRevLett.49.1455
http://dx.doi.org/10.1103/PhysRevLett.49.1455
http://dx.doi.org/10.1103/PhysRevLett.49.1455
http://dx.doi.org/10.1103/PhysRevLett.49.1455
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevB.84.113111
http://dx.doi.org/10.1103/PhysRevB.84.113111
http://dx.doi.org/10.1103/PhysRevB.84.113111
http://dx.doi.org/10.1103/PhysRevB.84.113111
http://dx.doi.org/10.1103/PhysRevB.26.4269
http://dx.doi.org/10.1103/PhysRevB.26.4269
http://dx.doi.org/10.1103/PhysRevB.26.4269
http://dx.doi.org/10.1103/PhysRevB.26.4269
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/PhysRevB.84.205137
http://dx.doi.org/10.1103/PhysRevB.84.205137
http://dx.doi.org/10.1103/PhysRevB.84.205137
http://dx.doi.org/10.1103/PhysRevB.84.205137



