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Abstract: There are multiple ways in which a stochastic system can be out of statistical equilibrium.
It might be subject to time-varying forcing; or be in a transient phase on its way towards equilibrium;
it might even be in equilibrium without us noticing it, due to insufficient observations; and it
even might be a system failing to admit an equilibrium distribution at all. We review some of
the approaches that model the effective statistical behavior of equilibrium and non-equilibrium
dynamical systems, and show that both cases can be considered under the unified framework of
optimal low-rank approximation of so-called transfer operators. Particular attention is given to the
connection between these methods, Markov state models, and the concept of metastability, further to
the estimation of such reduced order models from finite simulation data. All these topics bear an
important role in, e.g., molecular dynamics, where Markov state models are often and successfully
utilized, and which is the main motivating application in this paper. We illustrate our considerations
by numerical examples.

Keywords: Markov state model; non-equilibrium; metastability; coherent set; molecular dynamics;
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1. Introduction

Metastable molecular systems under non-equilibrium conditions have recently attracted
increasing interest. Examples include systems that evolve under an external force, such as a pulling
force generated by an optical tweezer or an atomic force microscope, an electrostatic force across a
biomembrane that drives ion through a channel protein, or the periodically changing force generated
by a spectroscopic electromagnetic field. Such non-equilibrium conditions can be built into molecular
dynamics (MD) simulations in order to probe their effects on the molecule. Despite the relevance of
non-equilibrium effects, reliable tools for the quantitative description of non-equilibrium phenomena
like the conformational dynamics of a molecular system under external forcing are still lacking.

In this paper, we say that a process is in “equilibrium”, if it is statistically reversible with respect
to its equilibrium distribution (see Table 1). For MD simulations under equilibrium conditions,
reliable analysis tools have been developed. For example, Markov state models (MSMs) allow for
an accurate description of the transitions between the main conformations of the molecular system
under investigation. MSMs for equilibrium MD have been well developed and established over
the past decade in theory [1,2], applications (see the recent book [3] for an overview), and software
implementations [4,5]. The principal idea of equilibrium MSMs is to approximate the long-timescale
and stationary properties of the MD system by a reduced Markovian dynamics over a finite number
of (macro-)states, i.e., in discrete state space. These states represent or at least separate the dominant
metastable sets of the system, i.e., sets in which typical MD trajectories stay substantially longer than
the system needs for a transition to another such set [1,6].
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Equilibrium Markovian processes are associated with real-valued eigenvalues and eigenfunctions
in their propagators—a property that methods for the approximation of equilibrium dynamics are
built upon. For example, the approximation error of MSMs and their slowest relaxation timescales
can be expressed in terms of how well the state space discretization approximates the dominant
eigenfunctions [7,8]. This has been formulated in the variational approach for conformation dynamics
(VAC), or Rayleigh–Ritz method, which provides an optimization method to systematically search
for best MSMs or other models of the equilibrium dynamics [9,10]. Perron-Cluster Cluster Analysis
(PCCA) [11,12] identify the metastable states of a molecule by conducting a spectral clustering in the
space spanned by the dominant eigenfunctions. Additionally, equilibrium MSMs are the foundation of
analyzing multi-ensemble simulations that help to sample the rare events [13,14].

In the non-equilibrium setting the above tools break down or are not defined. The purpose of
the present paper is to summarize and reconcile recently developed methods for the description of
non-equilibrium processes, and to merge them with their equilibrium counterparts into a unified
framework. Note that there are different possibilities to deviate from the “equilibrium” situation,
and this makes the term “non-equilibrium” ambiguous. To avoid confusion, we consider one of the
following cases when referring to the non-equilibrium setting (again, see Table 1 on terminology).

(i) Time-inhomogeneous dynamics, e.g., the system feels a time-dependent external force, for instance
due to an electromagnetic field or force probing.

(ii) Time-homogeneous non-reversible dynamics, i.e., where the governing laws of the system do not
change in time, but the system does not obey detailed balance, and, additionally we might want to
consider the system in a non-stationary regime.

(iii) Reversible dynamics but non-stationary data, i.e., the system possesses a stationary distribution with
respect to which it is in detailed balance, but the empirical distribution of the available data did
not converge to this stationary distribution.

Even though we consider genuinely stochastic systems here, the algorithm of Section 5 can be
used for deterministic systems as well—and indeed it is, see Remark 2 and references therein.

Note that with regard to the considered dynamics (i)–(iii) represent cases with decreasing
generality. For (i), time-dependent external fields act on the system, such that the energy landscape
depends on time, i.e., the main wells of the energy landscape can move in time. That is, there may
no longer be time-independent metastable sets in which the dynamics stays for long periods of time
before exiting. Instead, the potentially metastable sets will move in state space. Generally, moving
“metastable” sets cannot be considered metastable anymore. However, the so-called coherent sets, which
have been studied for non-autonomous flow fields in fluid dynamics [15,16], permit to give a meaning
to the concept of metastability [17]. For (iii), the full theory of equilibrium Markov state modeling is at
one’s disposal, but one needs to estimate certain required quantities from non-equilibrium data [18].
Case (ii) seems the most elusive, due to the fact that on the one hand it could be handled by the
time-inhomogeneous approach, but on the other hand it is a time-homogeneous system and some
structural properties could be carried over from the reversible equilibrium case that are out of reach
for a time-inhomogeneous analysis. For instance, if the dynamics shows cyclic behavior, it admits
structures that are well captured by tools from the analysis of time-homogeneous dynamical systems
(e.g., Floquet theory and Poincaré sections [19,20]), and a more general view as in (i) might miss them;
however, cyclic behavior is not present in reversible systems, such that the tools from (iii) are doomed
to failure in this respect. In order to avoid confusion, however, it should be emphasized that the three
cases distinguished above do not suffice to clarify the discussion about the definition of equilibrium or
non-equilibrium, e.g., see the literature on non-equilibrium steady state systems [21,22].

Apart from MSMs the literature on kinetic lumping schemes offers several other techniques for
finding a coarse-grained descriptions of systems [23–25]. These techniques are, however, not built on
the intuition of metastable behavior in state space. What we consider here can be seen in connection to
optimal prediction in the sense of the Mori–Zwanzig formalism [26–29], but we will try to choose the
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observables of the system such that projecting the dynamics on these keeps certain properties intact
without including memory terms.

In what follows, we will review and unify some of the theoretical and also data-driven algorithmic
approaches that attempt to model the effective statistical behavior of non-equilibrium systems. To this
end, a MSM—or, more precisely, a generalized MSM—is sought, i.e., a possibly small matrix T that
carries the properties of the actual system that are of physical relevance. In the equilibrium case,
for example, this includes the slowest timescales on which the system relaxes towards equilibrium
(Section 2). The difference of generalized to standard MSMs is that we do not strictly require the
former to be interpretable in terms of transition probabilities between some regions of the state
space (Section 3), however usually there is a strong connection between the matrix entries and
metastable sets. While heavily building upon recent results for MSMs of nonstationary MD [17] and a
nonequilibrium generalization of the variational principle [30], we will focus on a slightly different
characteristic of the approximate model, namely its “propagation error”. It turns out that this notion
permits a straightforward generalization from equilibrium (reversible) to all our non-equilibrium cases
(Section 4), and even retain the physical intuition behind true MSMs through the concept of coherent
sets. We will show in Section 5 how these considerations can be carried over to the case when only a
finite amount of simulation data is available. The above non-equilibrium cases (ii)–(iii) can be then
given as specific instances of the construction (Section 6). The theory is illustrated with examples
throughout the text. Bringing the formerly known equilibrium and time-inhomogeneous concepts into
a unified framework (Sections 3 and 4) can be seen as the main contribution of this paper, together
with the novel application of this framework to time-homogeneous non-equilibrium systems relying
on non-stationary data (Section 6).

We note in advance that in course of the (generalized) Markov state modeling we will consider
different instances of approximations to a certain linear operator T : S→ S mapping some space to
itself (and sometimes to a different one). On the one hand, there will be a projected operator Tk : S→ S,
where Tk = QT Q with a projection Q : S → V having a k-dimensional range V ⊂ S. On the other
hand, we will consider the restriction of the projected operator Tk to this k-dimensional subspace,
i.e., Tk : V→ V, also called V-restriction of Tk, which has a k× k matrix representation (with respect to
some chosen basis of V) that we will denote by Tk.

Table 1. Nomenclature used here for stochastic processes.

A Stochastic (Markov) Process Is Called

time-homogeneous if the transition probabilities from time s to time t depend only on t− s
(in analogy to the evolution of an autonomous ordinary differential equation).

stationary if the distribution of the process does not change in time (such a distribution
is also called invariant, cf. (2)).

reversible if it is stationary and the detailed balance condition (5) holds (reversibility means
that time series are statistically indistinguishable in forward and backward time).

2. Studying Dynamics with Functions

2.1. Transfer Operators

In what follows, P[ · | E] and E[ · | E] denote probability and expectation conditioned on the event
E. Furthermore, {xt}t≥0 is a stochastic process defined on a state space X ⊂ Rd. For instance, we can
think of xt being the solution of the stochastic differential equation

dxt = −∇W(xt)dt +
√

2β−1 dwt , (1)
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describing diffusion in the potential energy landscape given by W. Here, β is the non-dimensionalized
inverse temperature, and wt is a standard Wiener process (Brownian motion). The transition density
function pt : X×X→ R≥0 of a time-homogeneous stochastic process {xt}t≥0 is defined by

P[xt ∈ A | x0 = x] =
∫
A

pt(x, y)dy , A ⊆ X .

That is, pt(x, y) is the conditional probability density of xt = y given that x0 = x. We also
write xt ∼ pt(x0, ·) to indicate that xt has density pt(x0, ·).

With the aid of the transition density function, we will now define transfer operators, i.e., the action
of the process on functions of the state. Note, however, that the transition density is in general not
known explicitly, and thus we will need data-based approximations to estimate it. We assume
that there is a unique stationary density µ, such that {xt}t≥0 is stationary with respect to µ; that is,
it satisfies x0 ∼ µ and

µ(x) =
∫
X

µ(y) pt(y, x)dy for all t ≥ 0. (2)

Let now f be a probability density over X, u = f /µ a probability density with respect to µ

(meaning that µ is to be interpreted as a physical density), and g a scalar function of the state (an
“observable”). We define the following transfer operators, for a given lag time τ:

(a) The Perron–Frobenius operator (also called propagator),

Pτ f (x) =
∫
X

f (y) pτ(y, x)dy

evolves probability distributions.
(b) The Perron–Frobenius operator with respect to the equilibrium density (also called transfer operator,

simply),

T τu(x) =
1

µ(x)

∫
X

u(y)µ(y) pτ(y, x)dy .

evolves densities with respect to µ.
(c) The Koopman operator

Kτ g(x) =
∫
X

pτ(x, y) g(y)dy = E[g(xτ) | x0 = x] (3)

evolves observables.

We denote by Lq = Lq(X) the space (equivalence class) of q-integrable functions with respect
to the Lebesgue measure. Lq

ν denotes the same space of function, now integrable with respect to
the weight function ν. All our transfer operators are well-defined non-expanding operators on the
following Hilbert spaces:Pτ : L2

1/µ → L2
1/µ, T τ : L2

µ → L2
µ, andKτ : L2

µ → L2
µ [31–33]. The equilibrium

density µ satisfies Pτµ = µ, that is, µ is an eigenfunction of Pτ with associated eigenvalue λ0 = 1.
The definition of T τ relies on µ, we have

µ T τu = Pτ(uµ) , (4)

thus Pτµ = µ translates into T τ1 = 1, where 1 = 1X is the constant one function on X.

2.2. Reversible Equilibrium Dynamics and Spectral Decomposition

An important structural property of many systems used to model molecular dynamics is
reversibility. Reversibility means that the process is statistically indistinguishable from its time-reversed
counterpart, and it can be described by the detailed balance condition

µ(x) pt(x, y) = µ(y) pt(y, x) ∀x, y ∈ X, t ≥ 0 . (5)
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The process generated by (1) is reversible and ergodic, i.e., it has a unique positive equilibrium
density, given by µ(x) ∝ exp(−βW(x)), under mild conditions on the potential W [34,35]. The subsequent
considerations hold for all reversible and ergodic (with respect to a unique positive invariant density)
stochastic processes, and are not limited to the class of systems given by (1). Ref. [1] discusses a variety
of stochastic dynamical systems that have been considered in this context. Furthermore, if pt(·, ·) is a
continuous function in both its arguments for t > 0, then all the transfer operators above are compact,
which we also assume from now on. This implies that they have a discrete eigen- and singular spectrum
(the latter meaning it has a discrete set of singular values). For instance, the process generated by (1) has
continuous transition density function under mild growth and regularity assumptions on the potential W.

As a result of the detailed balance condition, the Koopman operator Kτ and the Perron–Frobenius
operator with respect to the equilibrium density T τ become identical and we obtain

〈Pτ f , g〉1/µ = 〈 f ,Pτ g〉1/µ and 〈T τ f , g〉µ = 〈 f , T τ g〉µ , (6)

i.e., all the transfer operators become self-adjoint on the respective Hilbert spaces from above. Here, 〈·, ·〉ν
denotes the natural scalar products on the weighted space L2

ν, i.e., 〈 f , g〉ν =
∫
X f (x)g(x)ν(x)dx;

the associated norm is denoted by ‖ · ‖ν. Due to the self-adjointness, the eigenvalues λτ
i of Pτ and

T τ are real-valued and the eigenfunctions form an orthogonal basis with respect to 〈·, ·〉1/µ and
〈·, ·〉µ, respectively.

Ergodicity implies that the dominant eigenvalue λ1 is the only eigenvalue with absolute value 1
and we can thus order the eigenvalues so that

1 = λτ
1 > λt

2 ≥ λt
3 ≥ . . . .

The eigenfunction of T τ corresponding to λ1 = 1 is the constant function φ1 = 1X. Let φi be the
normalized eigenfunctions of T τ , i.e., 〈φi, φj〉µ = δij, where δij denotes the Kronecker-delta. Then any
function f ∈ L2

µ can be written in terms of the eigenfunctions as f = ∑∞
i=1〈 f , φi〉µ φi. Applying T τ

thus results in

T τ f =
∞

∑
i=1

λτ
i 〈 f , φi〉µ φi.

For more details, we refer to [33] and references therein.
For some k ∈ N, we call the k dominant eigenvalues λτ

1 , . . . , λτ
k of T τ the dominant spectrum of

T τ , i.e.,
λdom(T τ) = {λτ

1 , . . . , λτ
k}.

Usually, k is chosen in such a way that there is a spectral gap after λτ
k , i.e., 1− λτ

k � λτ
k − λτ

k+1.
The (implied) time scales on which the associated dominant eigenfunctions decay are given by

ti = −τ/ log(λτ
i ). (7)

If {T t}t≥0 is a semigroup of operators (which is the case for every time-homogeneous process,
as, e.g., the transfer operator associated with (1)), then there are κi ≤ 0 with λτ

i = exp(κiτ)

such that ti = −κ−1
i holds. Assuming there is a spectral gap, the dominant time scales satisfy

∞ = t1 > . . . ≥ tk � tk+1. These are the time scales of the slow dynamical processes, also called
rare events, which are of primary interest in applications. The other, fast processes are regarded
as fluctuations around the relative equilibria (or metastable states) between which the relevant slow
processes travel.

3. Markov State Models for Reversible Systems in Equilibrium

In the following, we will fix a lag time τ > 0, and drop the superscript τ from the transfer
operators for clarity of notation.
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3.1. Preliminaries on Equilibrium Markov State Models

Generally, in the equilibrium case, a generalized MSM (GMSM) is any matrix Tk ∈ Rnk×nk , nk ≥ k,
that approximates the k dominant time scales of T , i.e., its dominant eigenvalues;

λdom(Tk) ≈ λdom(T ) . (8)

It is natural to ask for some structural properties of T to be reproduced by Tk, such as:

• T is a positive operator←→ all entries of Tk are non-negative;
• T is probability-preserving←→ each column sum of Tk is 1.

These two properties together make Tk to a stochastic matrix, and in this case Tk is usually called
a MSM. We shall use the term Generalized MSM for a matrix Tk that violates these requirements but
still approximates the dominant spectral components of the underlying operator. Another structural
property that one would usually ask for is to have apart from the time scales/eigenvalues also some
approximation of the associated eigenvectors of T , as these are the dynamic observables related to the
slow dynamics. This is incorporated in the general approach, which we discuss next.

The question is now how to obtain a GMSM Tk for a given T . To connect these objects, a natural and
popular approach is to obtain the reduced model Tk via projection. To this end, let Q : L2

µ → V ⊂ L2
µ

be a projection onto a nk-dimensional subspace V. The GMSM is then defined by the projected
transfer operator

Tk = QT Q ; (9)

and Tk can now be taken as the matrix representation of the V-restriction of the projected operator Tk :
V→ V with respect to a chosen basis of V.

Is there a “best” choice for the projection? If we also ask for perfect approximation of the
time scales, i.e., λdom(Tk) = λdom(T ), the requirement of parsimony—such that the model size
is minimal, i.e., nk = k—leaves us with a unique choice for V, namely the space spanned by the
dominant (normalized) eigenfunctions φi of T , i = 1, . . . , k. This follows from the so-called variational
principle (or Rayleigh–Ritz method) [9,10]. In fact, it makes a stronger claim: every projection to a
k-dimensional space V′ yields a GMSM T ′k : V′ → V′ which underestimates the dominant time scales,
i.e., λi(T ′k ) ≤ λi(T ), i = 1, . . . , k; and equality holds only for the projections on the eigenspaces.

Note that the discussion about the time scales (equivalently, the eigenvalues) involves only the
range of the projection, the space V. However, there are multiple ways to project on the space V. It turns
out, that the µ-orthogonal projection given by

Q f =
k

∑
i=1
〈φi, f 〉µ φi (10)

is superior to all of them, if we consider a stronger condition than simply reproducing the dominant
time scales. This condition is the requirement of minimal propagation error, and it will be central to our
generalization of GMSMs for non-equilibrium, or even time-inhomogeneous systems. Let us define the
best k-dimensional approximation Tk to T , i.e., the best projection Q, as the rank-k operator satisfying

‖T − Tk‖ ≤ ‖T − T ′k ‖ , (11)

where ‖ · ‖ denotes the induced operator norm for operators mapping L2
µ to itself. The induced norm

of an operator A : X → Y is defined by ‖A‖ = max‖ f ‖X=1 ‖A f ‖Y, where ‖ · ‖X and ‖ · ‖Y are the
norms on the spaces X and Y, respectively.
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Equivalently, (11) can be viewed as a result stating that Tk is the k-dimensional approximation
of T yielding the smallest (worst-case) error in density propagation:

Tk = arg min
T ′k =Q

′T Q′
rankQ′=k

max
‖ f ‖µ=1

‖T f − T ′k f ‖µ , (12)

where x∗ = arg minx h(x) means that x∗ minimizes the function h, possibly subject to constraints that
are listed under arg min.

To summarize, the best GMSM (9) in terms of (11) (or, equivalently, (12)) is given by the
projection (10). This follows from the self-adjointness of T and the Eckard–Young theorem; details
can be found in [30] and in Appendix A. Caution is needed however, when interpreting Tk f as the
propagation of a given probability density f . The projection to the dominant eigenspace in general does
not respect positivity (i.e., f ≥ 0 ; Tk f ≥ 0), thus Tk f loses its probabilistic meaning. This is the price
to pay for the perfectly reproduced dominant time scales. We can retain a physical interpretation of a
MSM if we accept that the dominant time scales will be slightly off, as we discuss in the next section.

3.2. Metastable Sets

There is theoretical evidence [1] that the more pronounced the metastable behavior of system is
(in the sense that the size of the time scale gap t1 ≥ . . . ≥ tk � tk+1 is large), the more constant the
dominant eigenfunctions φi are on the metastable sets M1, . . . ,Md, given the lag time with respect
to which the transfer operator T = T τ is taken satisfies τ � tk+1. Assuming such a situation,
the eigenfunctions of T can approximately be combined from the characteristic functions over the
metastable sets, i.e., with the abbreviation 1i := 1Mi it holds that

φi ≈
k

∑
j=1

cij1j =: φ̂i , (13)

where the cij are components of the linear combination, such that the φ̂i are orthonormal. Using the
“approximate eigenfunctions” φ̂i defined in (13), the modified projection

Q̂ f =
k

∑
i=1
〈φ̂i, f 〉µφ̂i (14)

defines a new MSM T̂k := Q̂T Q̂. Since V = span{φi} ≈ span{φ̂i} = V̂, also Q̂ ≈ Q, and thus we
have T̂k ≈ Tk. This implies [36], Lemma 3.5 that also their dominant eigenvalues, hence time scales
are close. Further, we have that in the basis {1i/〈1i,1i〉µ}k

i=1 the matrix representation T̂k of the
V̂-restriction of the operator T̂k has the entries

T̂k,ij =
〈1i, T 1j〉µ
〈1j,1j〉µ

=
∫
Mi

T
(

1j

〈1j,1j〉µ

)
µ(x)dx

=
1

Pµ[x0 ∈Mj]

∫
Mi

∫
Mj

µ(x)pt(x, y) dx dy

= Pµ[xt ∈Mi
∣∣ x0 ∈Mj] ,

(15)

where Pµ[ · | x ∈M] denotes the probability measure that arises if x ∈M has distribution µ (restricted
to M). That is, T̂k has the transition probabilities between the metastable sets as entries, giving a
direct physical interpretation of the MSM. Note, however, that for this approximation to reproduce the



Computation 2018, 6, 22 8 of 23

dominant time scales well, i.e., to have ti ≈ t̂i, i = 1, . . . , k, we need a strong separation of time scales
in the sense that tk � tk+1 has to hold, and the lag time τ needs to be chosen sufficiently large [7].

3.3. Example: Stationary Diffusion in Double-Well Potential

Let us consider the diffusion (1) in the potential landscape W(x) = (x2 − 1)2 with β = 5;
cf. Figure 1 (left). With the lag time τ = 10 we approximate the Perron–Frobenius operator P = P t and
compute its eigenvector µ at the eigenvalue λ1 = 1. Then, we compute the transfer operator T = T τ

with respect to the stationary distribution µ, and its dominant eigenvalues λ2, λ3, . . . and corresponding
eigenvectors φ2, φ3, . . . (Figure 1, right). While λ2 = 0.888, we have |λ3| < 10−12, hence we have a clear
time scale separation, t2 = 84.1� 0.35 = t3, cf. (7).
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Figure 1. Left: double-well potential. Right: invariant distribution µ (gray dashed) and second
eigenfunction φ2 (solid black) of the associated transfer operator T .

Thus, we expect a rank-2 MSM to recover the dominant time scales very well. Indeed, choosing
M1 = (−∞, 0] and M2 = [0, ∞) gives φ2 ≈ −1M1 + 1M2 , and we obtain by (15) that

T̂2 =

(
0.943 0.057
0.057 0.943

)
.

This is a stochastic matrix with eigenvalues λ̂1 = 1 and λ̂2 = 0.886, i.e., yielding an approximate
time scale t̂2 = 82.4.

4. Markov State Models for Time-Inhomogeneous Systems

As all our non-equilibrium cases will be special instances of the most general, time-inhomogeneous
case, we consider this next.

4.1. Minimal Propagation Error by Projections

4.1.1. Conceptual Changes

The above approach to Markov state modeling is relying on the existence of an stationary
distribution and reversibility. In the case of a time-inhomogeneous system there will not be, in general,
any stationary distribution µ. Additionally, we are lacking physical meaning, since it is unclear with
respect to which ensemble the dynamical fluctuations should be described. From a mathematical
perspective there is a problem as well, since the construction relies on the reversibility of the underlying
system, which gives the self-adjointness of the operator T with respect to the weighted scalar
product 〈·, ·〉µ. Time-inhomogeneous systems are not reversible in general.

Additionally to these structural properties, we might need to depart from some conceptional ones
as well. As time-inhomogeneity usually stems from an external forcing that might not be present or
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known for all times, we need a description of the system on a finite time interval. This disrupts the
concept of dominant time scales as they are considered in equilibrium systems, because there it relies
on self-similarity of observing an eigenmode over and over for arbitrary large times. It also forces us
to re-visit the concept of metastability for two reasons. First, many definitions of metastability rely
on statistics under the assumption that we observe the system for infinitely long times. Second, as an
external forcing may theoretically arbitrarily distort the energy landscape, it is a priori unclear what
could be a metastable set.

As a remedy, we aim at another property when trying to reproduce the effective behavior of the
full system by a reduced model; this will be minimizing the propagation error, as in (12). Remarkably,
this will also allow for a physical interpretation through so-called coherent sets; analogous to metastable
sets in the equilibrium case.

A prototypical time-inhomogeneous system can be given by

dxt = −∇W(t, xt)dt +
√

2β−1 dwt , (16)

where the potential W now depends explicitly on time t. In this case, a lag time τ is not sufficient
to parametrize the statistical evolution of the system, because we need to know when we start the
evolution. Thus, transition density functions need two time parameters, e.g., ps,t(x, ·) denotes the
distribution of xt conditional to xs = x. Similarly, the transfer operators P , T ,K are parametrized
by two times as well, e.g., P s,t propagates probability densities from initial time s to final time t
(alternatively, from initial time s for lag time τ = t− s). To simplify notation, we will settle for some
initial and final times, and drop these two time parameters, as they stay fixed.

4.1.2. Adapted Transfer Operators

Let us observe the system from initial time t0 to final time t1, such that its distribution at initial
time is given by µ0. Then, if P denotes the propagator of the system from t0 to t1, then we can express
the final distribution at time t1 by µ1 = Pµ0. As the transfer operator in equilibrium case was naturally
mapping L2

µ to itself (because µ was invariant), here it is natural to consider the transfer operator
mapping densities (functions) with respect to µ0 to densities with respect to µ1. Thus, we define the
transfer operator T : L2

µ0
→ L2

µ1
by

T u :=
1

µ1
P (uµ0) , (17)

which is the non-equilibrium analogue to (4). This operator naturally retains some properties of the
equilibrium transfer operator [37]:

• T 1 = 1, encoding the property that µ0 is mapped to µ1 by the propagator P .
• T is positive and integral-preserving, thus σmax(T ) = 1.
• Its adjoint is the Koopman operator K : L2

µ1
→ L2

µ0
, Kg(x) = E[g(xt) |x0 = x].

4.1.3. An Optimal Non-Stationary GMSM

As already mentioned above, it is not straightforward how to address the problem of Markov
state modeling in this time-inhomogeneous case via descriptions involving time scales or metastability.
Instead, our strategy will be to search for a rank-k projection Tk of the transfer operator T with minimal
propagation error, to be described below.

The main point is now that due to the non-stationarity the domain L2
µ0

(where T maps from) and
range L2

µ1
(where T maps to) of the transfer operator T are different spaces, hence it is natural to choose

different rank-k subspaces as domain and range of Tk too. In fact, it is necessary to choose domain
and range differently, since f ∈ L2

µ0
has a different meaning than f ∈ L2

µ1
. Thus, we will search for
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projectors Q0 : L2
µ0
→ V0 ⊂ L2

µ0
and Q1 : L2

µ1
→ V1 ⊂ L2

µ1
on different k-dimensional subspaces V0

and V1, respectively, such that the reduced operator

Tk := Q1T Q0 (18)

has essentially optimal propagation error. In quantitative terms, we seek to solve the optimization
problem

Tk = arg min
T ′k =Q

′
1T Q′0

rankQ′0=k
rankQ′1=k

max
‖ f ‖µ0=1

‖T f − T ′k f ‖µ1 or, equivalently Tk = arg min
T ′k =Q

′
1T Q′0

rankQ′0=k
rankQ′1=k

‖T − T ′k ‖ , (19)

where ‖ · ‖ denotes the induced operator norm of operators mapping L2
µ0

to L2
µ1

.
As an implication of the Eckart–Young theorem [38] Theorem 4.4.7, the solution of (19) can

explicitly be given through singular value decomposition of T ; yielding the variational approach
for Markov processes (VAMP) [30]. More precisely, the k largest singular values σ1 ≥ . . . ≥ σk
of T have right and left singular vectors φi, ψi satisfying 〈φi, φj〉µ0 = δij, 〈ψi, ψj〉µ1 = δij, respectively,
i.e., T φi = σiψi. Choosing

Q0 f =
k

∑
i=1
〈φi, f 〉µ0 φi and Q1g =

k

∑
i=1
〈ψi, g〉µ1 ψi (20)

solves (19), see Appendix A.

4.2. Coherent Sets

Similarly to the reversible equilibrium case with pronounced metastability in Section 3.2, it is
also possible in the time-inhomogeneous case to give our GMSM (18) from Section 4.1 a physical
interpretation—under some circumstances.

In the reversible equilibrium situation, recall from (13) that in the case of sufficient time scale
separation the eigenfunctions are almost constant on metastable sets. In the time-inhomogeneous
situation, considered now, we have just shown that the role played before by the eigenfunctions is
taken by left- and right singular functions. Thus, let us assume for now that there are two collections of
sets, M0,1, . . . ,M0,k at initial time, and M1,1, . . . ,M1,k at final time, such that

φi ≈
k

∑
j=1

cij10,j =: φ̂i and ψi ≈
k

∑
j=1

dij11,j =: ψ̂i (21)

holds with appropriate scalars cij and dij, where we used the abbreviation 10,i = 1M0,i and 11,i = 1M1,i .
That means, dominant right singular functions φi are almost constant on the sets M0,j, and dominant
left singular functions ψi are almost constant on the sets M1,j. In analogy to (14), we modify the
projections Q0,Q1 from (20) to Q̂0 : L2

µ0
→ V̂0, Q̂1 : L2

µ1
→ V̂1 by using φ̂i and ψ̂i instead of φi

and ψi, respectively, and define the modified GMSM by T̂k = Q̂1T Q̂0. An analogous computation
to (15) yields for the matrix representation T̂k of the restriction T̂k : V̂0 → V̂1 with respect to the
bases {10,i/〈10,i,10,i〉µ0}k

i=1 and {11,i/〈11,i,11,i〉µ1}k
i=1 that

T̂k,ij = Pµ0

[
xt1 ∈M1,i | xt0 ∈M0,j

]
. (22)

In other words, the entries of T̂k contain the transition probabilities from the sets M0,i (at initial
time) into the sets M1,j (at final time). Thus, T̂k has the physical interpretation of a MSM, with the only
difference to the reversible stationary situation being that the “metastable” sets at initial and final time
are different. This can be seen as a natural reaction to the fact that in the time-inhomogeneous case the
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dynamical environment (e.g., the potential energy landscape governing the dynamics of a molecule)
can change in time.

It remains to discuss when does (21) actually hold true. It is comprehensively discussed in [17]
that a sufficient condition for (21) is if

Pµ0 [xt1 ∈M1,i | xt0 ∈M0,i] ≈ 1 and Pµ1 [xt0 ∈M0,i | xt1 ∈M1,i] ≈ 1 (23)

holds for i = 1, . . . , k. Equation (23) says that if the process starts in M0,i, it ends up at final time with
high probability in M1,i, and that if the process ended up in M1,i at final time, in started with high
probability in M0,i; see Figure 2. This can be seen as a generalization of the metastability condition
from Section 3.2 that allows for an efficient low-rank Markov modeling in the time-homogeneous
case. The pairs of sets M0,i,M1,i are called coherent (set) pair, and they have been shown to be very
effective tools identifying time-dependent regions in non-autonomous flow fields that do not mix
with their surrounding (this is, effectively, what (23) says), e.g., moving vortices in atmospheric
and oceanographic applications [15,16,39,40]. More details on the generalization of the concept of
metastability by coherent sets, and on subsequent Markov state modeling can be found in [17].

µ0

M0,i

10,iµ0

initial time

µ1

M1,i

P(10,iµ0)

final time

Figure 2. Cartoon representation of (23) with a coherent pair M0,i,M1,i, which are represented by the
thick horizontal lines left and right, respectively. Condition (23) can be translated into T 10,i ≈ 11,i,
or equivalently P(10,iµ0) ≈ 11,iµ1. In other words, the part of the ensemble µ0 supported on the set
M0,i (dark gray region on the left) is mapped by the propagator to an ensemble (dark gray region on
the right) that is almost equal to the part of the ensemble µ1 supported on M1,i. Note that little of
P(10,iµ0) is supported outside of M1,i, and little of 11,iµ1 came from outside M0,i.

4.3. Example: Diffusion in Shifting Triple-Well Potential

Let us consider the diffusion (1) in the time-dependent potential landscape

W(t, x) = 7 ((x− t/10)(x− 1− t/10)(x + 1− t/10))2

with β = 5 and on the time interval [t0, t1] = [0, 10]; cf. Figure 3 (left). Taking the initial distribution
µ0 ∝ exp(−βW(0, ·)), we build the transfer operator (17), and consider its dominant singular values:

σ1 = 1.000, σ2 = 0.734, σ3 = 0.536, σ4 ≈ 0 .

This indicates that a rank-3 GMSM is sufficient to approximate the system, and that we have three
coherent sets. We observe the characteristic almost constant behavior (21) of the left and right singular
vectors over the respective coherent sets; Figure 3 (middle and right). Recall that right singular vectors
show coherent sets at initial time, and left singular vectors the associated coherent sets at final time.
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Figure 3. Left: shifting triple-well potential. All three wells are coherent sets, as the plateaus of the
singular vectors indicate. Middle: second right (initial) and left (final) singular vectors of the transfer
operator (solid black and gray dashed lines, respectively). Right: third right (initial) and left (final)
singular vectors of the transfer operator (solid black and gray dashed lines, respectively). The singular
vectors are for reasons of numerical stability only computed in regions where µ0 and µ1 are, respectively,
larger than machine precision.

We can identify the three wells as three coherent sets. Figure 4 shows that they are coherent indeed:
the respective parts of the initial ensemble µ0 is to a large extent mapped onto the corresponding part
of the final ensemble µ1, cf. Figure 2 and (23).
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Figure 4. Top: initial ensemble µ0 (black solid) and its respective parts in the three coherent sets (gray
shading). Bottom: final ensemble µ1 (black solid) and the image of the corresponding gray ensembles
from the top row (gray shading).

Computing the MSM from the transition probabilities between the coherent sets as in (22) gives
the stochastic matrix

T̂3 =

0.794 0.150 0.026
0.196 0.767 0.274
0.010 0.083 0.701

 .
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The initial distribution µ̂0 of this MSM is given by the probability that µ0 assigns to the respective
coherent sets at initial time. Analogously, collecting the probabilities from µ1 in the coherent sets at
final time gives the final distribution µ̂1 of the MSM. We have

µ̂0 =

0.250
0.500
0.250

 and µ̂1 =

0.280
0.500
0.219

 .

The singular values of T̂k as mapping from the µ̂0-weighted R3 to the µ̂1-weighted R3 are

σ̂1 = 1.000, σ̂2 = 0.733, σ̂3 = 0.534 ;

they are in good agreement with the true singular values of T .
We repeat the computation with a different initial distribution µ0, where only the left and right

well are initially populated, as shown in Figure 5.
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Figure 5. The same as Figure 4, for a different initial distribution µ0.

The largest singular values of T ,

σ1 = 1.000, σ2 = 0.643, σ3 = 0.030, σ4 ≈ 0 ,

already show that there are only two coherent sets, as the third singular value is significantly smaller
than the second one. The left well forms one coherent set, and the union of the middle and right ones
form the second coherent set.

5. Data-Based Approximation

5.1. Setting and Auxiliary Objects

We would like to estimate the GMSM (18) from trajectory data. In the time-inhomogeneous
setting, let us assume that we have m data points x1, . . . , xm at time t0, and their (random) images
y1, . . . , ym at time t1, meaning that yi is a random sample of the underlying process at time t1, given it
started in xi at time t0. We can think of the empirical distribution of the xi and yi being estimates of µ0

and µ1, respectively.
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Let us further define two sets of basis functions χ0,1, . . . , χ0,n and χ1,1, . . . , χ1,n, which we would
like to use to approximate the GMSM. If we would like to estimate the first k dominant modes, the least
requirement is n ≥ k; in general we have n� k. The vector-valued functions

χ0 =

χ0,1
...

χ0,n

 , χ1 =

χ1,1
...

χ1,n


are basis functions at initial and final times, respectively. One can take χ0 and χ1 to have different
lengths too, we just chose them to have the same lengths for convenience. Now we can define the
data matrices

χ0 =

 | |
χ0(x1) . . . χ0(xm)

| |

 , χ1 =

 | |
χ1(y1) . . . χ1(ym)

| |

 .

The following n× n correlation matrices C00, C01, C11 will be needed later:

C00,ij = 〈χ0,i, χ0,j〉µ0 , C01,ij = 〈χ1,i, T χ0,j〉µ1 , C11,ij = 〈χ1,i, χ1,j〉µ1 .

Their Monte Carlo estimates from the trajectory data are given by products of the data-matrices, as

C00 ≈
1
m

χ0χT
0 , C01 ≈

1
m

χ1χT
0 , C11 ≈

1
m

χ1χT
1 . (24)

Note that the approximations in (24) become exact if we take µ0, µ1 to be the empirical
distributions µ0 = 1

m ∑i δ(· − xi) and µ1 = 1
m ∑i δ(· − yi), where δ(·) denotes the Dirac delta.

We assume that C00, C11, just as their data-based approximations in (24) are invertible. If they are not,
all the occurrences of their inverses below need to be replaced by their Moore–Penrose pseudoinverses.
Alternatively, one can also discard basis functions that yield redundant information, until C00, C11 are
invertible. Further strategies to deal with the situation where the correlation matrices are singular or
ill-conditioned can be found in [18].

5.2. Projection on the Basis Functions

To find the best GMSM representable with the bases χ0 and χ1, we would like to solve (19) under
the constraint that the ranges of Q0 and Q1 are in W0 := span(χ0) and W1 := span(χ1), respectively.
To the knowledge of the authors it is unknown whether this problem has an explicitly computable
solution, because it involves a non-trivial interaction of W0,W1 and T .

Instead, we will proceed in two steps. First, we compute the projected transfer operator
Tn = Π1T Π0, where Π0 and Π1 are the µ0- and µ1-orthogonal projections on W0 and W1, respectively.
Second, we reduce Tn to its best rank-k approximation Tk (best in the sense of density propagation).

Thus, the restriction Tn to W0 →W1 is simply the µ1-orthogonal projection of T on W1, giving
the characterization

〈χ1,j, T χ0,i − Tnχ0,i〉µ1 = 0, ∀i, j . (25)

It is straightforward to compute that with respect to the bases χ0 and χ1 the matrix
representation Tn of Tn : W0 →W1 is given by

Tn = C−1
11 C01 , (26)

see [30].
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5.3. Best Low-Rank Approximation

To find the best rank-k projection of Tn, let us now switch to the bases χ̃0 = C−1/2
00 χ0 and

χ̃1 = C−1/2
11 χ1. We can switch between representations with respect the these bases by

f =
n

∑
k=1

ckχ0,k ⇐⇒ f =
n

∑
k=1

c̃kχ̃0,k, where c̃ = C1/2
00 c ,

and similarly for χ1 and χ̃1. Again, a direct calculation shows that χ̃0 and χ̃1 build orthonormal bases,
i.e., 〈χ̃0,i, χ̃0,j〉µ0 = δij and 〈χ̃1,i, χ̃1,j〉µ1 = δij. This has the advantage, that for any operator Sn : W0 →W1

having matrix representation Sn with respect to the bases χ̃0 and χ̃1 we have

‖Sn‖ = ‖Sn‖2, (27)

where ‖ · ‖2 denotes the spectral norm of a matrix (i.e., the matrix norm induced by the Euclidean
vector norm). The matrix representation of Tn in the new bases is

T̃n = C−1/2
11 C01C−1/2

00 . (28)

However, finding now the best rank-k approximation Tk of Tn amounts, written in these new
bases, to

‖Tn − Tk‖ = ‖T̃n − T̃k‖2 → min
rank(T̃k)=k

.

Again, by the Eckart–Young theorem [38] Theorem 4.4.7, the solution to this problem is given by

T̃k = ṼΣ̃ŨT , (29)

where Ũ, Ṽ ∈ Rn×k are the matrices with columns being the right and left singular vectors of T̃n to the
largest k singular values σ1 ≥ . . . ≥ σk, and Σ̃ is the diagonal matrix with these singular values on its
diagonal. Thus, the best GMSM in terms of propagation error is given with respect to the bases χ0

and χ1 by
Tk = C−1/2

11 ṼΣ̃ŨTC1/2
00 . (30)

The resulting algorithm to estimate the optimal GMSM is now identical to the time-lagged
canonical correlation algorithm (TCCA) that results from VAMP and is described in [30].

Algorithm 1 TCCA algorithm to estimate a rank-k GMSM.

1. Choose bases χ0 and χ1.
2. Estimate the correlation matrices C00, C01, C11 from data, as in (24).
3. Build the projection T̃n of the transfer operator with respect to the modified bases χ̃0 = C−1/2

00 χ0

and χ̃1 = C−1/2
11 χ1, i.e., T̃n = C−1/2

11 C01C−1/2
00 , cf. (28).

4. Compute the k largest singular values and corresponding right and left singular vectors of T̃n,
collected into the matrices Σ̃ and Ũ, Ṽ, respectively.

5. The optimal rank-k GMSM has with respect to the original bases χ0 and χ1 the matrix
representation C−1/2

11 ṼΣ̃ŨTC1/2
00 ; cf. (30).

Remark 1 (Reversible system with equilibrium data). If the system in consideration is reversible, the data
samples its equilibrium distribution, i.e., µ0 = µ1 = µ, and also χ0 = χ1, then C00 = C11, and by the
self-adjointness of T from (6) we have C01 = CT

01. Thus, T̃n in (28) is a symmetric matrix, and as such,
its singular value and eigenvalue decompositions coincide. Hence, the construction for the best GMSM in this
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section (disregarding the projection on the basis functions) coincides with the one from Section 3. This is not
surprising, as both give the best model in terms of propagation error.

Remark 2 (Other data-based methods). The approximation (26) of the transfer operator has natural
connections to other data-based approximation methods. It can be seen as a problem-adapted generalization of the
so-called Extended Dynamic Mode Decomposition (EDMD) [41,42]. Strictly speaking, however, EDMD uses an
orthogonal projection with respect to the distribution µ0 of the initial data {xi}, and so approximation (32) below
is equivalent to it [43]. EDMD has been shown in [33] to be strongly connected to other established analytic
tools for (molecular) dynamical data, such as time-lagged independent component analysis (TICA) [44,45], blind
source separation [46], and the variational approach to conformation analysis [9].

Remark 3 (Sampling the correlation matrices). Our point of view in (24) and in the discussion following it is
that without further knowledge of the system the empirical distributions are the best estimates of the actual system
distributions µ0, µ1; and they are considered to be the same for a given finite set of data. The question how to
approximate the correlation matrices efficiently if we are allowed to generate arbitrary amount of simulation data
is an important and hard one. The reason for this is that in high dimensions these quantities can only be accessed
via (Markov chain) Monte Carlo methods, the convergence speed of which, however, suffers immensely from the
rareness of transitions between metastable regions. There are different approaches to circumvent this problem,
like importance sampling, where driving the system out of equilibrium accelerates sampling, and fluctuation
theorems are used to determine the original quantity of interest [47–53].

6. Time-Homogeneous Systems and Non-Stationary Data

In this final section, we illustrate how the above methods can be used to construct a GMSM for
and assess properties of a stationary system, even if the simulation data at our disposal does not
sample the stationary distribution of the system. In the first example we reconstruct the equilibrium
distribution of a reversible system—hence we are able to build an equilibrium GMSM. In the second
example we approximate a non-reversible stationary system (i.e., detailed balance does not hold) by a
(G)MSM, again from non-stationary data.

Of course, all the examples presented so far can also be computed by the data-based algorithm of
Section 5.

6.1. Equilibrium MSM from Non-Equilibrium Data

When working with simulation data, we need to take into account that this data might not be in
equilibrium. Then, obviously, the empirical distribution does not reflect the stationary distribution of
the system. In general, any empirical statistical analysis (e.g., counting transitions between a priori
known metastable states) will be biased in such a case.

Let us consider a reversible system with equilibrium distribution µ, and let the available
trajectory data be µref-distributed. Then, it is natural to describe the system by its transfer operator
Tref : L2

µref
→ L2

µref
with respect to the reference distribution [18,42]; given explicitly by

Tref u(x) =
1

µref(x)

∫
X

u(y)µref(y) pt(y, x)dy . (31)

Note that µcorr := µ/µref is the stationary distribution of this transfer operator, hence we
can retrieve the equilibrium distribution of the system by correcting the reference distribution,
µ = µcorrµref.

In the data-based context, we choose the same basis χ0 = χ1 for initial and final times, since
the system is time-homogeneous. In complete analogy to (26) above, the µref-orthogonal projection
of Tref : L2

µref
→ L2

µref
to V0 is given by the matrix

Tref,n = C−1
00 C01 . (32)



Computation 2018, 6, 22 17 of 23

We will now apply this procedure to the double-well system from Section 3.3 with initial
points x1, . . . , xm distributed as shown in Figure 6 (gray histogram). We chose the number of points
to be m = 105, the basis functions χ0,i to be indicator functions of subintervals of an equipartition
of the interval [−2, 2] into n = 100 subintervals, and the lag time τ = 10. In a preprocessing step
we discard all basis functions that do not have any of the points xi in their support, thus obtaining a
non-singular C00, and use the remaining 77 to compute Tn,ref ∈ R77×77.

We obtain λ2 = 0.894 giving a time scale t2 = 89.6, and the corrected equilibrium
distribution—µ = µcorrµref, where µcorr is the right eigenvector of Tref,n at eigenvalue 1—is shown
in Figure 6 (left) by the black curve. The right-hand side of this figure shows the results of the same
computations, but for a sample size m = 104. Then, we obtain an eigenvalue 0.890 and corresponding
time scale 85.9.
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Figure 6. The empirical initial distribution of the simulation data, i.e., the reference distribution µref

(gray histogram), and the corrected equilibrium distribution computed from this data (solid black
line). Left: sample size m = 105, right: sample size m = 104.

It is now simple to reconstruct the approximation Tn of T , the transfer operator with respect to
the equilibrium density. Let Dcorr denote the diagonal matrix with the elements of µcorr as diagonal
entries. Then, Tn = D−1

corrTn,refDcorr approximates the matrix representation of Tn with respect to our
basis of step functions.

Remark 4 (Koopman reweighting). One can make use of the knowledge that the system that one estimates is
reversible, even though due to the finite sample size m this is not necessarily valid for Tref,n. In [18], the authors
add for each sample pair (xi, yi) also the pair (xi+m = yi, yi+m = xi) to the sample set, thus numerically forcing
the estimate to be reversible. In practice, one defines the diagonal matrix W with diagonal χTµcorr, builds the
reweighted correlation matrices C̄00 = 1

2 (χ0WχT
0 + χ1WχT

1 ) and C̄01 = 1
2 (χ1WχT

0 + χ0WχT
1 ), and uses

them instead of C00, C01.

6.2. A Non-Reversible System with Non-Stationary Data

Reversible dynamics gives rise to self-adjoint transfer operators, and their theory of Markov state
modeling is well developed. However, transfer operators of non-reversible systems are not self-adjoint,
hence their spectrum is in general not purely real-valued. Thus, the definition of time scales, and in
general the approximation by GMSMs is not fully evolved. Complex eigenvalues indicate cyclic
behavior of the process. As this topic is beyond the scope of this paper, we refer the reader to [20,54,55]
and to [25,56] for Markov state modeling with cycles.

We will consider a non-reversible system here, and show that restricting its behavior to the
dominant singular modes of its transfer operator is able to reproduce its dominant long-time behavior,
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and even allows for a good, few-state MSM. Note that the best rank-k GMSM (18) maps to the
k-dimensional subspace V1 of left singular vectors, thus its eigenvectors also fall into this subspace.

The system in consideration consists of two driving “forces”, one is a reversible part
Fr(x) = −∇W(x) coming from the potential

W(x) = cos(7ϕ) + 10(r− 1)2, where x =

(
r cos(ϕ)

r sin(ϕ)

)
,

and the other is a circular driving given by

Fc(x) = e−βW(x)

(
0 1
−1 0

)
x ,

where β = 2 is the inverse temperature, as in (1). The dynamics now is governed by the SDE
dxt = (Fr + Fc)(xt)dt +

√
2β−1 dwt. It is a diffusion in a 7-well potential (the wells are positioned

uniformly on the unit circle) with an additional clockwise driving that is strongest along the unit circle
and decreases exponentially in the radial distance from this circle.

For our data-based analysis we simulate a trajectory of this system of length 500 and sample it
every 0.01 time instances to obtain an initial set of 5× 104 points. Every point herein is taken as initial
condition of 100 independent simulations of the SDE for lag time τ = 1, thus obtaining 5× 106 point
pairs (xi, yi).

We observe in Figure 7 (left) that the empirical distribution of the xi did not yet converge to the
invariant distribution of the system, which would populate every well evenly.
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Figure 7. Left: empirical distribution of the xi (histogram with 40 × 40 bins). Middle: corrected
invariant distribution. Right: clustering of the populated partition elements based on the 7 dominant
eigenfunctions of the low-rank GMSM.

To approximate the transfer operator we use χ = χ0 = χ1 consisting of the characteristic functions
of a uniform 40× 40 partition of [−2, 2] × [−2, 2], and restrict this basis set to those 683 partition
elements that contain at least one xi and yj. The associated projected transfer operator, Tn from (26) is
then used to compute T̃n from (28), and its singular values

σ1 = 1.000, σ2 = 0.872, σ3 = 0.588, . . . , σ7 = 0.383, σ8 = 0.052,

indicating a gap after seven singular values. Thus, we assemble a rank-7 GMSM Tk via (30).
This GMSM maps L2

µ0
to L2

µ1
, thus to make sense of its eigenmodes, we need to transform its range to

densities with respect to µ0 instead of µ1. As a density u with respect to µ1 is made by µ1u
µ0

to a density
with respect to µ0,

T′k = C−1
00 C11Tn
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rescales the GMSM to map L2
µ0

to itself. Note here that since the basis functions are characteristic
functions with disjoint support, the correlation matrices C00, C11 are diagonal, having exactly the
empirical distributions as diagonal entries—i.e., the number of data point falling into the associated
partition element.

We are also interested in the system’s invariant distribution. As in Section 6.1, we can correct
the reference distribution µref = µ0 by the first eigenfunction µcorr of T′k to yield the invariant
distribution µ = µcorrµref, cf. Figure 7 (middle). The dominant eigenvalues of T′k are

λ′k,1 = 0.998 + 0.000i, λ′k,2/3 = 0.803± 0.261i,

λ′k,4/5 = 0.511± 0.230i, λ′k,6/7 = 0.378± 0.077i ,

Note that λ′k,1 < 1. This is due to our restriction of the computation to certain partition elements,
as specified above. This set of partition elements is not closed under the process dynamics, and this
“leakage of probability mass” (about 0.2%) is reflected by the dominant eigenvalue. All eigenvalues of
T′k are within 0.5% error from the dominant eigenvalues of the transfer operator T′n with respect to the
stationary distribution (projected on the same basis set, and computed with higher accuracy), which is
a surprisingly good agreement.

The 8-th eigenvalue of T′n is smaller in magnitude than 0.03. As indicated by this spectral gap,
we may obtain a few-state MSM T̂k here as well. To this end we need to find “metastable sets” (although
in the case of this cyclically driven system the term metastability is ambiguous) on which we can
project the system’s behavior. Let vi = (vi,1, . . . , vi,n)

T denote the i-th eigenvector of T′k. As in the
reversible case, where eigenvectors are close to constant on metastable sets, we will seek also here
for regions that are characterized by almost constant behavior of the eigenvectors. More precisely,
if the p-th and q-th partition elements belong to the same metastable set, then we expect vi,p ≈ vi,q
for i = 1, . . . , 7. Thus, we embed the p-th partition element into C7 ≡ R14 (i.e., a complex number is
represented by two coordinates: its real and imaginary parts) by p 7→ (v1,p, . . . , v7,p)

T , and cluster the
hence arising point cloud into 7 clusters by the k-means clustering algorithm. The result is shown in
Figure 7 (right). Taking these sets we can assemble the MSM T̂k ∈ R7×7 via (15). We obtain a MSM
that maps a Markov state (i.e., a cluster) with probability 0.62 to itself, with probability 0.29 to the
clockwise next cluster, and with probability 0.06 to the second next cluster in clockwise direction.
The probability to jump one cluster in the counterclockwise direction is below 0.001. The eigenvalues
of T̂k,

λ̂1 = 0.998 + 0.000i, λ̂2/3 = 0.800± 0.260i,

λ̂4/5 = 0.507± 0.227i, λ̂6/7 = 0.374 + 0.076i ,

are also close to those of T′n (below 1% error), justifying this MSM.

Remark 5. The k-means algorithm provides a hard clustering; i.e., every point belongs entirely to exactly one
of the clusters. An automated way to find fuzzy metastable sets from a set of eigenvectors is given by the PCCA+
algorithm [12]. A fuzzy clustering assigns to each point a set of non-negative numbers adding up to 1, indicating
the affiliations of that point to each cluster.
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EDMD extended dynamic mode decomposition
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SDE stochastic differential equation
TCCA time-lagged canonical correlation algorithm
VAMP variational approach for Markov processes

Appendix A. Optimal Low-Rank Approximation of Compact Operators

For completeness, we include a proof of the Eckart–Young–Mirsky theorem for compact operators
between separable Hilbert spaces. A space is separable if it has a countable basis. The Lebesgue
space L2

µ(Rd) of µ-weighted square-integrable functions is separable for bounded and integrable µ. This
is the case we consider here. In particular, the theorem shows that the optimal low-rank approximation
of such an operator is obtained by an orthogonal projection on its subspace of dominant singular vectors;
cf. (A1).

Theorem A1. Let A : H0 → H1 be a compact linear operator between the separable Hilbert spaces H0 and
H1, with inner products 〈·, ·〉0 and 〈·, ·〉1, respectively. Then, the optimal rank-k approximation Ak of A in the
sense that

‖A−Ak‖ → min
rankAk=k

,

where ‖ · ‖ denotes the induced operator norm, is given by

Ak =
k

∑
i=1

σiψi〈φi, ·〉0 , (A1)

where σi, ψi, φi are the singular values (in non-increasing order), left and right normalized singular vectors of A,
respectively. The optimum is unique iff σk > σk+1.

Proof. Let Ak be defined as in (A1). Since A = ∑∞
i=1 σiψi〈φi, ·〉0, we have

‖A−Ak‖ = ‖
∞

∑
i=k+1

σiψi〈φi, ·〉0‖ = σk+1 . (A2)

Let now Bk be any rank-k operator from H0 to H1. Then, there exist linear functionals ci : H0 → R and
vectors vi ∈ H1, i = 1, . . . , k, such that

Bk =
k

∑
i=1

ci(·)vi .

For every i, since ci has one-dimensional range, its kernel has co-dimension 1, thus the intersection
of the kernels of all the ci has co-dimension at most k. Thus, any (k + 1)-dimensional space has a
non-zero element w with ci(w) = 0 for i = 1, . . . , k.

By this, we can find scalars γ1, . . . , γk+1 such that ∑k+1
i=1 γ2

i = 1 and w = γ1φ1 + . . . + γk+1φk+1
satisfies ci(w) = 0 for i = 1, . . . , k. By construction ‖w‖0 holds. It follows that

‖A− Bk‖2 ≥ ‖(A−Bk)w‖2
1 = ‖Aw‖2

1 =
k+1

∑
i=1

σ2
i γ2

i ≥ σ2
k+1

k+1

∑
i=1

γ2
i︸ ︷︷ ︸

=1

.
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This with (A2) proves the claim.

As a corollary, if A : H → H is a self-adjoint operator, then its eigenvalue and singular
value decompositions coincide, giving ψi = φi, and thus Ak in (A1) is the projection on the
dominant eigenmodes.
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