IOPScience

Home

Search Collections Journals About Contactus My IOPscience

Dynamic mode locking in a driven colloidal system: experiments and theory

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2017 New J. Phys. 19 013010
(http://iopscience.iop.org/1367-2630/19/1/013010)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 87.77.118.212
This content was downloaded on 07/04/2017 at 09:47

Please note that terms and conditions apply.

You may also be interested in:

Non-equilibrium steady state of a driven levitated particle with feedback cooling
Jan Gieseler, Lukas Novotny, Clemens Moritz et al.

Noise-to-signal transition of a Brownian particle in the cubic potential: Il. optical trapping
geometry
Pavel Zemanek, Martin Siler, Oto Brzobohaty et al.

Non-monotonic temperature dependence of chaos-assisted diffusion in driven periodic systems
J Spiechowicz, P Talkner, P Hanggi et al.

Microrheology of colloidal systems
A M Puertas and T Voigtmann

Subharmonic Shapiro steps of sliding colloidal monolayers in optical lattices
Stella V Paronuzzi Ticco, Gabriele Fornasier, Nicola Manini et al.

Quantum impurities: from mobile Josephson junctions to depletons
Michael Schecter, Dimitri M Gangardt and Alex Kamenev

iopscience.iop.org

Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered

substrates: a review
C Reichhardt and C J Olson Reichhardt

Noise-to-signal transition of a Brownian particle in the cubic potential: | general theory
Radim Filip and Pavel Zemanek

Efficiency of the SQUID ratchet driven by external current
J Spiechowicz and J uczka



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/19/1
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1367-2630/17/4/045011
http://iopscience.iop.org/article/10.1088/2040-8978/18/6/065402
http://iopscience.iop.org/article/10.1088/2040-8978/18/6/065402
http://iopscience.iop.org/article/10.1088/1367-2630/aa529f
http://iopscience.iop.org/article/10.1088/0953-8984/26/24/243101
http://iopscience.iop.org/article/10.1088/0953-8984/28/13/134006
http://iopscience.iop.org/article/10.1088/1367-2630/18/6/065002
http://iopscience.iop.org/article/10.1088/1361-6633/80/2/026501
http://iopscience.iop.org/article/10.1088/1361-6633/80/2/026501
http://iopscience.iop.org/article/10.1088/2040-8978/18/6/065401
http://iopscience.iop.org/article/10.1088/1367-2630/17/2/023054

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
3 October 2016

REVISED
5December 2016

ACCEPTED FOR PUBLICATION
14 December 2016

PUBLISHED
12 January 2017

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

NewJ. Phys. 19 (2017) 013010 doi:10.1088/1367-2630/aa53cd

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER

Dynamic mode locking in a driven colloidal system: experiments and
theory

Michael P N Juniper"?, Urs Zimmermann’, Arthur V Straube’, Rut Besseling’, Dirk G A L Aarts’,
Hartmut Léwen’ and Roel P A Dullens

! Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, OX1 3QZ
Oxford, UK

2 The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK

* Institut fiir Theoretische Physik I[I—Soft Matter, Heinrich-Heine-Universitit Diisseldorf, Universititsstrale 1, D-40225 Diisseldorf,

Germany

Department of Mathematics and Computer Science, Freie Universitit Berlin, Arnimallee 6, D-14195 Berlin, Germany

> InProcess-LSP, Molenstraat 110, 5342 CC, Oss, The Netherlands

¢ Author to whom any correspondence should be addressed.

4

E-mail: roel.dullens@chem.ox.ac.uk

Keywords: dynamic mode locking, colloids, optical potential energy landscape, optical trapping, nonlinear dynamics

Abstract

In this article we examine the dynamics of a colloidal particle driven by a modulated force over a
sinusoidal optical potential energy landscape. Coupling between the competing frequencies of the
modulated drive and that of particle motion over the periodic landscape leads to synchronisation of
particle motion into discrete modes. This synchronisation manifests as steps in the average particle
velocity, with mode locked steps covering a range of average driving velocities. The amplitude and
frequency dependence of the steps are considered, and compared to results from analytic theory,
Langevin dynamics simulations, and dynamic density functional theory. Furthermore, the critical
driving velocity is studied, and simulation used to extend the range of conditions accessible in
experiments alone. Finally, state diagrams from experiment, simulation, and theory are used to show
the extent of the dynamically locked modes in two dimensions, as a function of both the amplitude
and frequency of the modulated drive.

1. Introduction

Synchronisation is one of the most diverse fundamental physical phenomena [1]. From Huygens’ pendulum
clocks 350 years ago [2, 3] to fireflies [4], applause [5, 6], and animals’ circadian rhythms [7], frequency
entrainment occurs all over the natural and technological world. The phenomenon occurs when weakly coupled
competing oscillators adjust their rhythms to match each other [4]. Synchronisation on the micro-scale is of
technological importance, as the decreasing size of electronic and mechanical systems demands ever-smaller
frequency references [8]. Recent developments include electromechanical [9, 10] and optomechanical
oscillators [11, 12], but such systems are limited in their scalability [12].

Dynamic mode locking is a synchronisation phenomenon that occurs when systems with a natural internal
frequency are driven by an external modulation. Competition between the two frequencies leads to coupling,
causing the system to synchronise into repeating modes of motion. Previous work has sought to understand
dynamic mode locking in superconductor vortex lattices [ 13—17], but the difficulty in visualising such systems
makes model systems necessary [18]. Other systems showing such resonance behaviour include driven adatoms
on atomic surfaces [19, 20], and Josephson junctions [21-23]. The AC Josephson effect occurs when the
tunneling electron pairs at an insulated superconductor junction are driven with an AC and DC current [24].
Regions appear where resistance does not increase with increasing DC current [23, 24], and the shape of the
resulting graph is known as ‘Shapiro steps’. Charge density waves are another technologically significant system
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demonstrating dynamic mode locking, and have been extensively studied experimentally and numerically
[25-27].

Model systems composed of colloidal particles in periodic potentials have been studied for a number of years
[28,29], from simple double well potentials [30-33] to directed motion [34—39], particle sorting [40], and kink
generation [41] in two-dimensional (2D) optical lattices. Colloidal systems are easy to manipulate, and have
accessible length and time scales, making them attractive models for the study of synchronisation at the micro-
scale. Noise in Brownian systems has been found in theory to induce anomalous diffusion [42] and stochastic
resonance [43—45], and rocking-ratchet like potentials have been used in optical and magnetic systems [46, 47].
The possibility of resonance has also been explored in systems with feedback [48] and random pinning potentials
[49]. Recent work studied the transport properties of a system of magnetically driven colloidal particles [50].
Recent theoretical work also examines the possibility of producing mode locking steps in 2D colloidal
monolayers [51, 52].

Here, a system of Brownian particles is driven over a sinusoidal optical potential energy landscape by a
driving force consisting of constant and modulated parts. The natural frequency of the particle driven over the
optical potential energy landscape by the DC component of the driving force couples to the frequency of the AC
component. As we have shown previously [53], this coupling leads to dynamic mode locking. This work
considers the frequency and amplitude dependence of the synchronisation, through experiments, Langevin
dynamics (LD) simulations and dynamic density functional theory (DDFT). The three complementary
approaches are used together to build a comprehensive picture of dynamic mode locking. Firstly, the theoretical
and simulation approaches are introduced in section 2, including an analytical approximation. The
experimental methods are described in section 3. Results from all of the approaches are described and discussed
in section 4, including mode locked steps, state diagrams, and critical driving forces.

2. Theory and computer simulations

2.1.Langevin dynamics
To describe a Brownian particle driven by the sum of a constant and a modulated force across a periodic optical
potential energy landscape, the overdamped Langevin equation is written as:

Cvie 1) = c% — Foc + Fnog (8) + Fr (o) + €0, )

where the particle velocity, v, at position x and time t depends on the force from the optical potential energy
landscape, Fr, the Brownian force, £ (¢) (modelled as Gaussian white noise with a mean of zero and variance of
2k T, where kg T is thermal energy), the constant driving force, Fpc, the friction coefficient, ¢, and the
oscillating driving force,

Frod (t) = Eyc cos (wt). (2)

Here, Fjc is the amplitude of the modulated driving force, and w = 27w is the angular frequency, where v is the
frequency of the applied oscillation. Note that in this paper, ‘DC’ and ‘AC’ are used only in analogy to direct- and
alternating-current, and refer to constant- and oscillating-velocity drives respectively.

The optical potential energy landscape, Uy (x), is taken to be sinusoidal, as described in [53-55]:

22r Vi 212V, 2
Ur(x) = _T/zo 3 + exp(— ;ko)cos(%x) , 3)

where k is the trap stiffness, Vj, is the trap strength, and A is the wavelength of the landscape. Equation (3) leads to
an optical force [55]:

oU. .2
Fr = fa—xT = —F¢ sm(%), 4)

where the amplitude of the landscape, Fc, is given by the following equation [55]:

42 (V)32 ( 27r2V0)
= ——exp| —|

Fe k172 Nk

®)

Thus, the full equation of motion for a particle driven by DC and AC driving forces over a sinusoidal optical
potential energy landscape is given by:
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Figure 1. Mode locked steps and state diagram. (a) Schematic of average particle velocity as a function of average driving velocity (see
equation (7); not to scale). Mode locked steps lie at rAv, between pairs of critical points. (b) State diagram calculated from equation (8),

for a periodic optical potential energy landscape with a trap spacing of A = 3.5 pum, and a frequency of v = % Hz. Critical points
defining a step in (a) become critical lines enclosing mode locked regions in the state diagram in (b).

dx (1)
dt

= Fpc + Eaccos 2mut) — Fc sin(z%) + £(1). (6)

Cvix )=¢

Note that the amplitude of the landscape, Fc, is equal to the DC critical driving force described in [55], for the
case of no temporal modulation and at zero temperature. In those conditions, the particle remains pinned to the
landscape for driving forces below this critical value. As the total driving force in equation (6) is a sum of the DC
and time dependent AC contributions, only an effective critical DC driving force, depending on the amplitude
and frequency of the modulated component of the driving force, may be measured.

2.2.The ‘high frequency’ theory

While the equation of motion in equation (6) is not analytically soluble, useful insight can be obtained in the
limit of high driving frequency (v > Fc /() in the absence of noise. Within this approximation, it is possible to
obtain an effective Adler equation [56, 57] similar to that found for the case of constant drive alone [55]. Thus an
expression for the average velocity may be written (see appendix A for full details):

A, i AFod < | Fel(22)
V= ()
1 2 p272 (Ec) fac
rAv £+ Z AFDC EgJz, , if |AFpc| > | FcJ-, e APFpc % 0,

G
where AFpc = Fpc — rAv(,r = 0, =1, £2, ...,and ], is the mth order Bessel function of the first kind. This
‘square root law’ expression is the AC driven counterpart to the simpler form found for the case of DC drive
alone [55]:

>

=}

, if Fpc < Fg;
1 .
Zw/Fgc — F&, if Fpc > Fe.

The condition for the approximation, v > F¢ /A( (see equation (19), appendix A), means that on a landscape
with a trap spacing of A = 3.5 um (Fc /¢ ~ 1.8 um s '), the high frequency regime is valid when v > 0.5 Hz.

The dependence of the average particle velocity, 7, on the driving velocity, Fpc /(, according to equation (7)
is shown schematically in figure 1(a). Equation (7) describes mean particle velocity ‘above’ and ‘below’ critical
points, with two critical points found for every absolute value of r, in contrast to the DC only case, which has only
asingle F.. Between each pair of critical points, a ‘subcritical’ regime exists, where the particle velocity is
constant, corresponding to mode locked steps. The form of this dependence is analogous to the Shapiro steps
seen in Josephson junctions [23], and also in charge density wave systems [25] and vortex lattices [15-17, 58].

The two critical points Fcryr at the ends of resonant step r are found by determining Fp at the condition
where the two different solutions in equation (7) coincide, AFpc = *+|Fc/)_, (Fac/(A/€))|, at which point the
square root vanishes. As a result, by recalling the definition of AFp¢ and by replacing Fpc with Fcpyr, the
following is obtained:

NIl
Il
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Ferir /¢ = rAv & —

Eyc
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The amplitude (Fyc) and frequency (v) dependence of Fcgir defines state diagrams, with regions containing
locked modes enclosed by pairs of critical lines. Figure 1(b) shows such a state diagram as a function of Fyc, fora
particle driven with a frequency of v = % Hzacross an optical landscape with a trap spacing of A = 3.5 um.
Each colour and value of r represents a single mode locked velocity. The state diagram is formed from twisted
‘Arnold Tongues’ [1], where each separated region of the same colour actually represents a different dynamic
mode with the same average velocity [53]. The second critical point of the zeroth’ step appears as the effective
critical driving velocity, Fc .f, below which the particle is pinned to the landscape and does not slide.

. ®)

2.3. Dynamic density functional theory
The Langevin picture is stochastically equivalent to the Smoluchowski picture, in which the temporal evolution
of the probability density distribution, p (x, t), of the particle position is studied rather than the stochastic
trajectories of individual particles. The Smoluchowski equation can be seen as a special case of the DDFT in the
absence of interparticle interactions [59—-61]. The governing equation for the probability density distribution is
given by

2
LD~ pTED 4 Lk 0ps 1) ©)
where D = kg T /( is the diffusion coefficientand F (x, t) = Fpc + Fac cos(Qmut) — Fcsin(2mx/\) is the
total force acting on the particle. Equation (9) is solved numerically using a finite volume partial differential
equation solver [62]. As an initial condition p(x, t = 0),a very narrow Gaussian distribution is chosen. See
appendix B for more details.

Within the Smoluchowski picture, averages of statistical quantities are defined by weighting these quantities
with the particle probability distribution p (x, t),1i.e. (a)(¢) = f_ o:cdx a(x)p (x, t). These averages are
stochastically equivalent to noise averages performed in the Langevin picture. Thus, the mean particle position is
(x) (¢). The mean velocity is further defined as the change in the mean particle position in time:

o d)

V= P (10)
where overbar denotes a time average. As a measure of the fluctuations around the mean particle trajectory, the
variance of the particle probability distribution is considered:

o2(1) = {[x — () P)(0). (11)

In the context of this work, if the standard deviation, o (¢), is much smaller than the trap spacing then almost all
possible particle trajectories end up in the same trap as the mean particle position after time ¢. If the standard
deviation is larger than A then possible particle trajectories end up distributed in potential wells surrounding the
mean. Particle fluctuations around the mean position may be quantified using an effective long-time diffusion
coefficient, defined from the variance:

2
Deg = lim g (t) (12)

t—oo 2t

3. Experimental methods

3.1. Colloidal model system

The colloidal system is composed of Dynabeads M-270 carboxylic acid (diameter 3 pim), in 20% EtOH .4, held
in a quartz glass sample cell (Hellma) with internal dimensions of 9 x 20 x 0.2 mm. Particles are much more
dense than the solvent, and sediment into a single layer near the bottom of the sample cell. The coefficient of
friction, ¢, is found from diffusion tobe 9.19 x 10~8kg s, slightly higher than expected from Stokes friction
(Cstokes = 6m™na with nthe viscosity), due to the proximity of the particles to the wall. Particle concentration is
low, so that only a single particle is visible in the field of view.

3.2. Experimental setup and parameters

The experimental setup consists of an infra-red (1064 nm) laser, controlled using a pair of perpendicular
acousto-optical deflectors, and focused usinga 50 X, NA = 0.55 microscope objective [54]. The one-
dimensional periodic optical landscape, with trap spacing A = 3.5 um, is generated in Aresis Tweez software
controlled from a LabView interface. A landscape with this trap spacing may be treated as sinusoidal, as shown in
[55]. The traps are time-shared at 5 kHz, such that on the time scale of the particles (with a Brownian time of

4
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~50 s, and at least ~§ s to be driven one trap spacing ata given Fpc), the traps form a constant potential energy
landscape. The laser power and the total number of traps are held constant throughout the experiments, so that
the laser power per trap is consistent. A laser power of 350 mW is set and 46 traps are used, corresponding to
~0.75 mW per trap at the sample. This gives typical values of trap stiffness, k = 3.8 x 1077 kgs 2 and trap
strength, Vo = 90 kg T [54, 55].

The driving force is provided by a PI-542.2CD piezo-stage, controlled using the LabView interface, at driving
velocities of 0.05 < Fpc/¢ < 8 um s~ '. AC driving velocity is added to the DC drive, with an amplitude
04 < Fc/¢ < 14pums ' and afrequency of% Hz < v < 2 Hz.

Images are focused onto a Ximea CMOS camera using a40x, NA = 0.50 microscope objective, and the
particle position is recorded live at 40 Hz from the camera image.

3.3. Average velocity experiments

To obtain plots of average particle velocity against driving velocity, six repeats across the whole potential
landscape are made at each driving velocity for each amplitude and frequency of the AC drive. Average velocity,
¥, 1s found by linearly fitting the particle trajectory, x(¢), over an integer number of periods of the oscillation.

3.4. Critical driving velocity experiments
The critical DC driving velocity is defined as the DC driving velocity at which the particle starts to slide
irreversibly across the optical potential energy landscape. It is found by iterating the DC driving velocity, with a
maximum resolution of 0.05 ym s~ . A particle is said to be pinned if it still returns to its starting lattice position
after the stage has moved 100 psm, or three minutes has elapsed, whichever happens first. The region in which
the particle does not irreversibly slide is essentially the zeroth mode locked step, and the effective critical driving
velocity is therefore the second critical point of this step (see section 2.2).

The critical driving velocity found here is not the critical driving velocity found in our previous work [55],
Fc /(, because the total driving force in equation (6) is a sum of the DC and time dependent AC contributions.
Therefore the critical driving velocity measured here is an effective critical driving velocity, F .¢ /(, asitis not
purely a property of the landscape. However, clearly when Fyc = 0, Fger = Fe.

4. Results and discussion

Results are presented which show the amplitude and frequency dependence of the mode locked steps and state
diagrams illustrated in figure 1. Experimental results and DDFT computations are compared to LD simulations
and the analytic approximation for the high frequency limit (section 2.2) as appropriate. In general, good
quantitative agreement is found between the various approaches.

4.1. The mode locking steps

The effect of introducing the oscillating force term to the equation of motion (equation (6)) on ¥ as a function of
Fpc /¢ isshown in figure 2(a). Here, data with a modulated force of amplitude Fyc /¢ = 5.2 ums~ ' and
frequency v = Z Hz () is compared to the Fyc = 0 (), i.e. DC drive only) case for alandscape of trap spacing
A = 3.5 um (see [53, 55]). The case of Fyc = 0 follows the ‘Shapiro steps’ form illustrated in figure 1(a). The
effective critical driving velocity for the modulated case is almost zero, after which ¥ increases until it is
significantly larger than that expected for a free particle (grey line), implying that the particle is moving on
average more quickly than the piezo stage. The average velocity then plateaus on the first resonant step, at

7 = 1w = 2.625 ums~'. The step extends over a range of driving velocities, and then 7 increases after the
second critical point, to meet another step, at twice the average particle velocity of the first.

The solid and dashed lines on figure 2(a) show results from LD simulations, both with and without the noise
term. The steps found from the experiments are faithfully reproduced by the simulations, with the inclusion of
noise obviously important in this system of Brownian particles. The effect of noise is important in the vicinity of
the critical points, where it is seen to round the edges of the steps. Figure 2(b) compares results from DDFT
(upper panel), and the high frequency approximation (lower panel, see section 2.2) to the experimental data. The
DDFT lines here overlap with results from the LD simulations with the same intensity of thermal noise (i.e. the
same temperature and friction constant, as D = kg T'/ (). For this reason we only show one set of results (those
from LD simulations) on figures 4(a) and (b) and 8(a) and (b). The high frequency theory results, from
equation (7), are calculated with respect to each critical point, and it is notable that although the step positions
are largely captured, the results between steps, from adjacent critical points, do not necessarily agree.

5
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bars represent the standard deviation of the repeats); solid lines: Langevin dynamics results; dashed lines: Langevin dynamics results
with no noise term; grey line: no traps calibration; horizontal dashed lines: step positions # = nAv. Includes experimental data from
[53, 55]. (b) Comparison of experimental data with DDFT results (upper panel), and high frequency theory (lower panel). Insets
highlight the second critical point of the first step.
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logarithmic plot of variance versus time for various drives Fpc. The black dashed line refers to a Brownian particle in the absence of an
external potential. The inset shows the location of the respective state points on the locked steps for the lines in the main panel. (b)
Effective long-time diffusion coefficient as a function of average driving velocity. Dark line shows D, pale line shows the mode
locked staircase calculated from DDFT for comparison, and does not match the y-axis scale. Step extents are highlighted by the
coloured bands, and the dotted line indicates the diffusion coefficient of a free particle. (c) Des for the first step, plotted on alogscale.

4.1.1. Variance and diffusion

Next, we perform DDFT calculations and consider fluctuations around the mean particle position, which
strongly depend on whether or not the system is mode locked. In figure 3(a) the variance is shown as a function
of time for the conditions considered above (Fyc /¢ = 5.2 pums™ ', v = % Hz). The displayed numerical data
correspond to states on the mode locked steps around the first step (see inset). For unlocked states

1.0 < Fpc/¢ < 2.0 pm s~ ") thevariance grows rapidly, corresponding to an effective diffusion much larger
than the free diffusion (dashed line). In the mode locked states (2.5 < Fpc/¢ < 3.25 um s~ ') the variance
reaches along-lived plateau where the diffusion is (nearly) zero, before eventually crossing over. Similar
intermediate plateaus have also been observed in underdamped systems [63—65] and static systems

(Fyc = 0)[66,67].

The effective long-time diffusion coefficient (equation (12)) is the limit of 0% (t) /2t as t — oo. Plotting D¢
as a function of average driving velocity offers additional insight into the mode locked steps. Figure 3(b) shows
that effective diffusion is close to zero at the mode locked steps, and much higher between. The typical double-
peak signature for D.g, as described in [44], is recovered. The low D, values in the locked regions result from a

6
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Figure 4. Average particle velocity as a function of average driving velocity, at constant AC frequency of (a) % Hzand (b) i Hz.
Symbols show experimental data, solid lines show results of Langevin dynamics simulations. Dashed lines indicate step positions nAv.
Dark grey circles and line indicate case for no oscillation [55], light grey line indicates case for no traps. (c) Results for high frequency

theory (solid lines), for each of the cases in panel (a) for v = % Hz, compared to LD simulations (dashed lines) and experiments
(symbols).

vanishing influence of thermal noise which can also be found in related systems [68, 69]. This is a symptom of
the predictability of the locked state: when the particle is locked into a particular mode of motion, its position on
the periodic landscape after a certain time depends purely on the driving conditions. D, is highest in unlocked
states on the cusp of synchronisation conditions, as a small perturbation may cause the particle to jump to the
next potential well, or stay in the present one. This corresponds to the discontinuities at the critical points in the
schematic in figure 1(a). Figure 3(c) shows D.¢ for the first step on alog scale, showing that it decreases by ~8
orders of magnitude between the unlocked and locked states. To put this into context, the lowest effective long-
time diffusion coefficient D.g &~ 2.1 x 10~° um* s~ corresponds to the particle being one lattice spacing away
from the predicted position after approximately 45 years.

4.2. Dependence on the amplitude

As the synchronisation condition depends only on the trap spacing and the modulation frequency, changing the
modulation amplitude alone does not alter the step velocities. Figure 4(a) shows mode locking steps obtained
from both experiment and LD simulations for four different amplitudes, at a frequency of v = % Hz. This shows
that there is, however, a strong dependence of the width of the locked step on the oscillation amplitude. For very
low amplitude there is a small visible first step, giving a deviation from the zero oscillation data, but no second
step is observed; the points lie on top of the Fyc = 0 line. As amplitude increases, the first step increases in width,
and a second step appears and widens. The first step then appears to narrow. There is generally a good agreement
between the experimental data and the LD simulations, with small deviations possibly due to experimental
uncertainties such as the variability of the laser power during the experiment.

Figure 4(b) shows data at alower frequency of v = i Hz, for four amplitudes. The lower frequency means
thatalarger number of steps appear in the same range of particle velocities. Four steps are visible in the range
shown (which is smaller than that in figure 4(a)), with step width varying widely. Notably, the
Eic/¢ = 5.2 um s~ 'line has three stepsat # = 1,3 and 4, but no step is visibleat n = 2.

Itis pertinent at this juncture to compare the results for v = % Hz to the high frequency theory
(equation (7)). Figure 4(c) shows each of the four sets of conditions in panel (a), with the results for each critical
point from equation (7) (solid lines) compared to the LD results (dashed lines) and experimental results
(symbols) from panel (a). The first observation is that the high frequency approximation appears to better match
the data at higher amplitudes. The most likely reason for this is that the Bessel function in equation (7) gets
smaller as the argument, which is proportional to Fy¢, increases (see equation (19) in appendix A). This means
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the same net forward particle motion. Coloured regions in the background represent locked states determined from DDFT; white
regions are unlocked. Solid lines show critical lines calculated from LD simulations in the absence of noise. (b) Colour scale represents
the effective diffusion coefficient, D¢, calculated from DDFT, solid lines are critical lines found from LD simulations as in (a).
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driving velocities. (a) Coloured regions represent locked states as determined from DDFT, white regions are unlocked. Locked states
are numbered by an integer 7, the net number of steps taken by the particle. Solid lines show critical lines calculated from equation (8),
and represent theoretical state boundaries. (b) Colour scale represents the effective diffusion coefficient, D, calculated from DDFT,
solid lines are again calculated from equation (8). Locked states appear as dark blue.

that at a given frequency the condition setting the validity of the high frequency approximation is fulfilled better
for higher Fyc. Note also that the theory consistently overestimates the step width, as it is deterministic, whereas
the critical points in experiments and simulations are somewhat rounded by noise. Finally, it may be seen that as
in figure 2(b), the lines between steps determined from different critical points do not overlap, as the ‘square-
root law’ sections are only valid in the close vicinity of their critical points.

4.2.1. State diagram: low frequency regime

Aswas shown in figure 1(b), state diagrams may be constructed which show the extent of dynamic mode locking
asafunction of Fyc /¢ and Fpc /(. In our previous work [53], we used such a plot to locate numerous dynamic
modes for a driving frequency of i Hz. In figure 5(a) we compare these prior experimental results (circles
coloured according to the integer step number, 1) with locked regions from DDFT (background colour) and
critical lines from LD simulations in the absence of noise. Note that points corresponding to unlocked states are
not shown, for ease of interpretation. There is very good agreement between the DDFT and the deterministic LD
results, with the only difference being that the regions calculated from DDFT are smaller, due to the presence of
the noise that is incorporated into the DDFT. Both are in good agreement with the experimental data, except
thatlocked states appear to be found at a slightly higher range of driving velocities in the simulations.
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Figure 5(b) again shows critical lines from LD simulations, plotted over the effective diffusion coefficient,
D¢, obtained from DDFT. Locked states appear as dark blue regions, with fairly broad boundaries where step
edges are smoothed by noise. Between the locked states the effective diffusion is higher, as was seen in
figure 3(b). D.g is particularly high between closely spaced locked modes, as a small perturbation may lead to the
particle becoming temporarily trapped in one mode or the other. The related enhanced increase in variance
manifests in the experimental data as wider error bars between the modes in figure 4(b). That the diffusion is so
high in these regions probably contributes to the mismatch between the experimental and simulation data in
panel (a)—a small change in the experimental conditions could cause the particle to cross mode boundaries.

Itis nice to observe in figure 5 that the mode boundary lines oscillate, with the first and second critical lines
crossing and swapping identity between the modes. The upshot of this oscillation is that there are conditions in
which certain locked modes do not appear, for example it is clear that Fyc /¢ = 5.2 um s~ ' lies between two
regions with n = 2, which corresponds exactly to the missing step observed in figure 4(b). This effect is of course
mirrored in the critical driving velocity line, being the upper mode boundary of the zeroth step, resulting in
some conditions where the critical driving velocity is zero, for example Fyc /¢ = 5.2 um s ' again.

4.2.2. State diagram: high frequency regime

In section 2.2, an analytical expression (equation (8)) was obtained which could predict the locations of the first
and second critical points for each mode locked step. It was found that this expression should be valid in the
region where v > 0.5 Hz. Itis not possible to probe this region in detail in the experiments, as at higher
frequencies, increased particle velocities are required to obtain higher modes, with a resulting loss in resolution.
However, using DDFT it is possible to examine this regime, and obtain a state diagram similar to that from
experiment. Figure 6(a) shows a state diagram calculated via DDFT for v = % Hz, with the mode locked regions
being represented by colours, as in figure 5(a). Also plotted on figure 6(a) are lines calculated from equation (8).
There is a remarkably good agreement between the DDFT results and the analytical prediction, showing that the
approximation is valid to surprisingly low frequencies. The main deviation occurs at lower amplitudes, as was
seen in figure 4(c). As in figure 5(a), the locked regions from DDFT are slightly smaller than the space between
the critical lines, due to the noise term which must necessarily be ommited from the theory.

The mode locking footprint can also be seen in the effective diffusion coefficient: figure 6(b) shows the same
calculated lines as panel (a), overlayed on D, represented by a colour scale. The locked states are clearly visible
as the dark blue regions on the state diagram, where the effective diffusion coefficient drops dramatically as seen
in figure 3(c). The unlocked states range from blue, where the particle position is largely predictable, to the
yellow and red regions between the mode locked steps. An interesting observation may be made in the region
between the zeroth and first modes, where the theory predicts no gap between the second critical line of the
zeroth mode and the first critical line of the first mode. The effective diffusion in this region is especially high,
indicating that in the stochastic system the particle trajectory is highly unpredictable. It is probable that in this
region, the particle rapidly jumps between periods of being pinned to the landscape, and being in the first mode.

4.2.3. Critical driving velocity

The state diagrams in figures 5 and 6 show that the critical driving velocity, Fc ., oscillates as a function of
modulation amplitude. In figure 7 the critical driving velocities are shown in isolation, and experimental results
are compared to LD simulations and the high frequency theory. Both sets of data, for v = i Hzandv = % Hz
show a Bessel-function-like form, with the range of the oscillations determined by the frequency. Each peak
actually represents a different pinned mode [53], and regions occur between the modes where the critical force is
close to zero and thermal motion is sufficient to overcome the barriers. The theoretical prediction for the high
frequency regime (equation (8)) predicts the shape of the experimental data reasonably well, but the LD
simulations provide a somewhat better quantitative fit.

4.3. Dependence on the frequency
The frequency dependence of the step velocities is expressed in the synchronisation condition, ¥ = nAv.
Figure 8(a) shows ¥ as a function of Fpc /( at three different frequencies, for an amplitude of Fy¢ /(=
2.0 um s~ '. Atalower frequency more steps are seen over the same range of particle velocities as more
harmonics are attainable. Indeed at the lowest frequency, v = % Hz, the mean particle velocity shows three steps
corresponding to the first three integer multiples of #A. The second and third steps at this frequency therefore
coincide with the first steps for the other two frequencies, of v = % Hzandv = % Hz. As was seen in figures 4(a)
and (b), there is generally a good agreement between the LD simulations and the experiments.

Figure 8(b) shows the frequency dependence of the average particle velocity for an amplitude of
Eic/C¢ = 5.2 um s~ ', for frequencies ranging from v = i Hztov = % Hz. Itis worth noting that, as was seen in

figure 4(b), not all possible steps appear; for example there is no visible stepat ¥ = %)\ s 'forv = i Hz. Both
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Figure 8. Average particle velocity as a function of average driving velocity, at constant AC amplitude of (a) Fyc /¢ = 2.0 um s~ ' and
(b) Fac/¢ =52 pums .. Symbols show experimental data, solid lines show results of Langevin dynamics simulations. Dashed lines
indicate the position of the first step for each frequency, and some higher # steps for completeness. Dark grey circles and line indicate
case for no oscillation [55], light grey line indicates case for no traps.

figures 8(a) and (b) show that step width is frequency dependent, in addition to the amplitude dependence
shown above. Furthermore, the effective critical driving velocity clearly depends on the frequency: in both cases

it is seen to increase with v, approaching the oscillation-free critical driving velocity of F /¢ ~ 1.8 um s~ .

4.3.1. State diagrams and critical driving velocity
DDFT computation is used to produce frequency-dependence state diagrams, which are not feasable
experimentally as very low frequencies require extremely long run times. Figure 9(a) shows four such state
diagrams, at a range of amplitudes from Fyc < Fcto Fxc > Fc. Also included on two of the state diagrams are
effective critical driving velocity lines determined from LD simulations. As with the experiments, the run times
required to produce further LD data, particularly at low frequencies, are prohibitively long. From the data
presented, however, the origin of the increasing effective critical driving velocity seen in figures 8(a) and (b) is
clear, although the LD line on the Fy¢ /¢ = 5.2 um s~ ' plot in particular highlights that the picture is more
complex. At Fyc > Fc (where F¢ is the DC critical driving velocity), a series of bumps appear at low frequency,
which are too fine to be resolved by the DDFT data. Below Fc, however (i.e. at Fyc /¢ = 1.7 um s~ '), these
bumps disappear, and the depinning transition is defined as a single monotonic increase. This effect has been
noted previously for the Frenkel Kontorova model, for a chain of interacting particles [39, 45, 70].

Figure 9(b) shows the frequency dependent effective critical driving velocity for Fyc > Fc in more detail.
Experimentally determined values for F are shown, along with the LD simulation result. The experimental data
shows a single smaller bump similar to that seen in the DDFT data, as it is also unable to resolve the numerous
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simulation result for Fyc/¢ = 1.7 ym s~ .

smaller bumps shown by the LD data. The large bump at higher frequency, which plateaus at the DC-only
critical driving velocity F¢, represents the truly pinned state, where the particle does not move at all during a
cycle of the oscillation, whereas the smaller bumps at lower frequency represent states where the net particle
motion is zero, as it moves but returns to the same potential well at the end of every cycle. Also presented in
figure 9(b) is the prediction of the high frequency approximation, which captures the form of the experimental
data, but has a higher magnitude due to the absence of a noise term in equation (8), and the LD line for

Fic/¢ = 1.7 pm s~ ', for comparison.

5. Conclusions

Colloidal particles driven by the sum of constant and oscillating forces through a quasi-one-dimensional
periodic optical potential energy landscape have been shown to exhibit rich nonlinear dynamical behaviour.
Experiments showed that when an oscillating drive is applied, the average particle velocity has a staircase-like
dependence on the average driving velocity, where the steps represent states of synchronisation between the
particle motion and the substrate potential. These results could be faithfuly reproduced using LD simulations
and DDFT, and in conditions of a high driving frequency the data mapped surprisingly well to an analytic
approximation. Probing the variance in the particle position and the trajectory diffusion using DDFT showed
that the effective diffusion coefficient drops dramatically at the resonant mode-locked steps, explaining why the
analytic theory (calculated at ‘zero temperature’ with no fluctuations) is so successful.

The use of simulation and computation in addition to experimental results allowed a full exploration of the
amplitude and frequency dependence of dynamic mode locking. State diagrams showing both the amplitude
and frequency dependence of the extent of the locked modes exposed the oscillating nature of the critical lines
which define the mode locked steps. These critical lines enclose regions which have been previously shown to
represent different dynamic modes with the same net particle motion. Finally, the effective critical driving
velocity below which a particle is pinned to the potential landscape has been studied, and it has been shown to
have an oscillating dependence on the modulation amplitude, with some conditions having no effective critical
driving velocity. The frequency dependence has been shown to be more complex, depending on whether the
amplitude of the oscillation is above or below the critical driving velocity defined by the landscape.

By using a combination of experiments, computation, and analytic theory, it has been possible to explore the
effect of a very wide range of conditions on dynamic mode locking, thereby giving a solid experimental and
theoretical foundation to this dynamic synchronisation phenomenon.
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Appendix

Appendix A. High frequency theory—further details

In order to solve equation (6) for a certain range of driving frequencies, the work of Cotteverte et al [71], Chow
etal[72], and Reichhardt et al [58] is followed. Ideas developed in these previous works are used to draw an
analytical approximation in this work. The first step in solving equation (6) is to neglect noise and split the
particle trajectory, x(#), into a part due to the terms independent of x(¢) and a deviation from it, caused by terms
dependent on x(t):

x(£) = xo(t) + 6(1). (13)
Accordingly, the equation for x, (t) is taken to contain the DC and AC parts of the driving force,
¢ % = Fpc + Fac cos (wt), (14)
which can be integrated to yield
¢ xo(t) = Fpct + % sin (wt). (15)

For the second part, 6 (¢), we obtain from equation (6):

(L0 g sin[%”(xo(t) + 6(t))]
_ Foc, | Ec
=— Fc sm[ 3 ( c t 4+ 2 sin (wt) + (5(1‘))], (16)

where we have accounted for equations (14) and (15). Using the identity: sin [A sin (wt) + B]=
S oo Jm(A)sin(B + muwt), where J,,, is the mth order Bessel function of the firstkind, A = 27Fyc/ (Cw)
and B = 27n/A)(Fpct/C + 6),equation (16) becomes:

d(S(t) 21 Fxc ) . 21 Fpc 21
R s o

Equation (17) is difficult to solve, so an approximation is made that only the leading term of the sum is retained,
where

27F
mw = —r1w =~ — ULiivle (r=0, 1, £2, ...), (18)
AC
determines the mode locking. This approximation is valid at high enough frequencies. Indeed, the variation with
time of the leading term with m = —r given by equation (18) is the slowest relative to wt, 2wt, ... of the next to

leading terms with m = r + 1, r & 2, .... Provided that the dependence on 6 (¢) can be neglected in all next to
leading terms, their averages over a period of the external modulation vanish. The scale of 6 () can be estimated
by noticing from equation (17) that d6 (¢t) /dt ~ Fc /¢ (see [72]) or, more accurately, dé (t) /dt ~ J_,(A)Fc /¢

and hence 6 (t) ~ J_, (A)Fct/(. By considering the term with the next to slowest variation, m = —r £ 1, we
require that wt > § (¢) to arrive at the condition for the validity of our high-frequency approximation:
27 F, 27 F E
w>» Ly RG] oy —I A (19)
A ¢ A Cw AC ¢ )

Equation (17) therefore becomes:

O | 2n (AR
s o5 (25100

where AFpc = Fpc — rAv(€ isasmall change in the constant part of the driving force, Fpc. Introducing a
variable g (t) = (AFpc/{)t + 6 (¢) further reduces equation (20) to the form of an Adler equation [56, 57],
equivalent to that found for the case of constant drive alone [55]:
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dq (1) Fac [ ]
= AFpc — FcJ-, sin| —q (¢t 21
(—— ” pe = Felr| 30+ q(t) 21
The expression for the average velocity may then be written, by noting that ¥ = < d);?) > pc/C+
< di(tt) > rav + < 440 >, as the oscillating force term (the modulated part of the driving velocity) becomes zero
after time averaging:
. FAC
AV, if |AFpc| < | FcJ-,
/\ug
V= (22)
Pt L \/ AF2. — B2, (E) L if |AFpd > | Fol, FAC AFpe = 0,
é‘ ¢ )‘VC

forr =0, +1, £2,

Appendix B. DDFT—further details

Implementation details: The finite volume partial differential equation solver FiPy 3.1 [62] is used to perform the
integration of the Smoluchowski equation. The grid of the computer system consists of 10 000 cells and has a
total length of 50 pm (=214 potential wells) with periodic boundary conditions. The computations were
terminated whenever the probability distribution was so widely spread that effects of periodicity could not be
neglected.

Initial conditions: The mean particle trajectory enters in general a short transient state before sychronising
with the external AC driving force. This synchronised state is characterised by a periodic phase that modulates
the linear drift of the mean trajectory. In order to suppress effects of the transient state we first estimate the mean
position in the synchronised state of the respective system. Then we start the computation with a very narrow
Gaussian function located in the determined position as the initial probability density p (x, t = 0).

Effective diffusion coefficient: In the mode locked states the limit of equation (12) could not be reached within
the time span of our computations due to intermediate plateaus as shown in figure 3(a). In these cases the linear
increase of the plateaus for 500 oscillations was calculated and used to determine Deg.
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