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Efficient conversion of photons into electrical current in two-dimensional semiconductors requires, as a
first step, the dissociation of the strongly bound excitons into free electrons and holes. Here we calculate the
dissociation rates and energy shift of excitons in monolayer MoS2 as a function of an applied in-plane electric field.
The dissociation rates are obtained as the inverse lifetime of the resonant states of a two-dimensional hydrogenic
Hamiltonian which describes the exciton within the Mott-Wannier model. The resonances are computed using
complex scaling, and the effective masses and screened electron-hole interaction defining the hydrogenic
Hamiltonian are computed from first principles. For field strengths above 0.1 V/nm the dissociation lifetime
is shorter than 1 ps, which is below the lifetime associated with competing decay mechanisms. Interestingly,
encapsulation of the MoS2 layer in just two layers of hexagonal boron nitride (hBN), enhances the dissociation
rate by around one order of magnitude due to the increased screening. This shows that dielectric engineering is
an effective way to control exciton lifetimes in two-dimensional materials.
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Two-dimensional (2D) semiconductors, such as single-
and few-layer transition-metal dichalcogenides, are presently
being intensively researched due to their extraordinary elec-
tronic and optical properties which include strong light-
matter interactions, spin-valley coupling, and easily tunable
electronic states [1–14]. One of the hallmarks of the 2D
semiconductors is the presence of strongly bound excitons
with binding energies reaching up to 30% of the band gap.
These large binding energies are mainly a result of the reduced
dielectric screening in two dimensions [15–19]. Although
such strongly bound excitons are highly interesting from
a fundamental point of view (for example, in the context
of Bose-Einstein condensates [20]) they are problematic for
many of the envisioned applications of 2D materials, such
as photodetectors and solar cells which rely on efficient
conversion of photons into electrical currents. This is because
the strong attraction between the electron and the hole makes
it difficult to dissociate the excitons into free carriers.

Photocurrent measurements on suspended MoS2 samples
have found that the photocurrent produced by below-band-gap
photons is strongly dependent on the applied voltage indicating
that the electric field plays an important role in the generation
of free carriers [21]. One way to increase the photoresponse
could be to embed the active 2D material into a van der Waals
heterostructure [22–24]. This embedding would enhance the
screening of the electron-hole interaction without altering the
overall shape of the band structure of the material. The effects
of this increased screening on the exciton dissociation are
studied in this Rapid Communication.

In general, rigorous calculations of exciton binding energies
require a many-body approach, such as the Bethe-Salpeter
equation (BSE) which directly finds the (real) poles of the
interacting response function, corresponding to the neutral
excitation energies of the system [25,26]. Such calculations are

computationally demanding and typically only used to study
excitations from the ground state, i.e., not in the presence of
external fields. We mention, however, that the BSE has been
used to study field-induced exciton dissociation in carbon nan-
otubes by fitting the BSE absorption spectrum to the Fano line
shape [27]. In this Rapid Communication we take a different
approach using that, under certain simplifying circumstances,
the calculation of the many-body excitonic state can be
reformulated as an effective hydrogenic Hamiltonian whose
eigenvalues and eigenstates represent the exciton binding
energies and the envelope wave function describing the relative
electron-hole motion. This is the so-called Mott-Wannier
model which has been instrumental in the description of
excitons in inorganic bulk semiconductors. A 2D version of the
Mott-Wannier model has recently been shown to yield exciton
binding energies in good agreement with BSE calculations
and experiments for both freestanding [15,16,18,19,28] and
supported [15,28,29] transition-metal dichalcogenide layers.
The dissociation rate of the exciton is then obtained by complex
scaling, which is a formally exact technique to compute
resonance energies and lifetimes. By employing a recently
developed quantum-classical method for calculating the di-
electric function of general van der Waals heterostructures,
we predict the effect of embedding the MoS2 in hBN on
the screened electron-hole interaction and exciton dissociation
rate.

When an in-plane constant electric field is applied to an
exciton, it will eventually decay into a free electron and hole.
This effect belongs to a class first studied by Keldysh [30]
and Franz [31], who examined how the optical properties of
semiconductors change in the presence of a static electric field.
The application of a constant electric field changes the exciton
from a bound state to a resonance with a finite lifetime equal
to the inverse dissociation rate.
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The literature on resonances in quantum physics is vast,
and we will not go into the topic here but simply mention a
few important facts. First, it should be understood that even
the definition of a resonance is nontrivial. The reason for this
can be understood from Howland’s razor which states that no
satisfactory definition of a resonance can depend only on the
structure of a single operator on an abstract Hilbert space [32].
To illustrate the content of the statement consider the Stark
effect in hydrogen: Let Ĥ (ε) = − 1

2� − 1/r + εx. It can be
shown that Ĥ (ε) is unitarily equivalent to Ĥ (ε′) for all nonzero
ε and ε′s. Since we expect the properties of the resonances and,
in particular, their lifetimes to depend on field strength ε, this
example shows that the resonance cannot be viewed only as a
property of the operator Ĥ (ε). Instead the notion of resonance
is only meaningful when the real-space geometry of the given
system and relevant boundary conditions on the wave functions
are considered.

There are generally two approaches used to compute res-
onances. The so-called indirect methods identify resonances
as the poles of the scattering amplitude analytically extended
to the complex energy plane [33], whereas the direct methods
obtain the resonance states directly as eigenstates of a complex
scaled non-Hermitian Hamiltonian [34,35]. In this Rapid
Communication we will use the latter approach.

To describe excitons in a 2D semiconductor we use a Mott-
Wannier model of the form

[
− ∇2

2D

2μex
+ W (r)

]
F (r) = EbF (r), (1)

where μex is the exciton effective mass μ−1
ex = m−1

e + m−1
h ,

W is the screened electron-hole interaction, r is an in-plane
position vector, and Eb denotes the exciton binding energy. In
principle there should be an exchange term included here, but a
full ab initio solution of the BSE has shown that the exchange
term decreases the binding energy of the lowest exciton in

MoS2 by less than 4% [15], and the term can therefore be
neglected.

The screened electron-hole interaction is obtained as the
inverse Fourier transform of [ε2D(q)q]−1, where ε2D(q) is
the static dielectric function of the 2D material and 1/q is
the in-plane 2D Fourier transform of 1/r . In the small-q limit,
we can approximate ε as a linear function of q [16–19] so that

ε2D(q) = 1 + 2παq, (2)

with α being the polarizability of the material. An analytic
expression can then be obtained for the screened electron-hole
interaction [17],

W (r) = 1

4α
[Y0(x) − H0(x)]x=r/2πα, (3)

where Y0 is a Bessel function of the second kind and H0 is
a Struve function. For later use we note that both of these
functions are analytic on the entire complex plane away from
z = 0.

The expression (3) for the screened interaction relies on
a first-order expansion of ε2D(q) around q = 0; the validity
of this approximation has been demonstrated for a number of
freestanding 2D semiconductors [16,18,19] and recently for
MoS2 embedded in a few layers of hBN [15]. As a rule of
thumb, the linear screening approximation [Eq. (2)] remains
valid for intralayer excitons in van der Waals heterostructures
as long as the in-plane exciton radius is large compared to
the thickness of the heterostructure [15]. For thicker slabs, the
linear approximation breaks down, and the fully q-dependent
ε2D(q) must be used to obtain W (r). We follow the common
practice of using the static dielectric function for evaluating the
screened interaction of the Mott-Wannier model. For details
on how we calculate the dielectric functions of 2D layers and
heterostructures we refer to Ref. [29]. Using these methods,
the static dielectric function ε2D(q) can be calculated, and the
slope at q = 0 can be determined.
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FIG. 1. (a)–(c) The three different structures considered in this Rapid Communication: isolated MoS2, MoS2 on a single layer of hBN, and
MoS2 sandwiched between two hBN layers. (d) Illustration of the Mott-Wannier model for monolayer MoS2 in the absence (left) and presence
(right) of an in-plane constant electric field. The exciton potential is shown in blue, the exciton wave function is sketched in green, and the
energy is shown in red. When an electric field is applied, the energy of the exciton shifts down, and the sharp energy peak is broadened due to
the coupling to the continuum of states.
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Here we have considered a MoS2 layer in three different
configurations: isolated, placed on a single layer of hBN,
and sandwiched between two hBN layers. The systems are
sketched in Figs. 1(a)–1(c). The distance between the MoS2

base plane and the hBN sheets was 5.1 Å and was chosen as
the mean of the interlayer distance in pure MoS2 and hBN.
Sensitivity testing showed that varying this distance by 20%
results in a variation in the slope of ε2D(q) of less than 2%.

The lattices of MoS2 and hBN are incommensurable, but
the quantum-electrostatic heterostructure model introduced
in Ref. [29] allows us to obtain the dielectric function of
the heterostructure by electrostatic coupling of the response
of the individual layers thus avoiding the issue of in-plane
lattice mismatch. Table I shows the obtained polarizabilities
and corresponding exciton binding energies. As expected,
embedding the MoS2 in hBN leads to an increase in screening
and a reduction in the binding energy with the calculated results
for the binding energy being in good agreement with ab initio
calculations [15].

Once an in-plane constant electric field is applied to the
system, the bound states of the Mott-Wannier Hamiltonian
become metastable. The situation is illustrated in Fig. 1(d). In
the model we have used, we assume that the band structure
and, in particular, the effective mass of the exciton are not
altered by the electric field.

Within the so-called direct methods, a resonance is defined
as an eigenstate of the Hamiltonian under the boundary
condition that only outgoing waves exist outside the scattering
region. Such an eigenstate must necessarily have a complex
eigenvalue E = ε0 − iγ and a wave function that adopts
the asymptotic form e±iKx for x → ±∞ (focusing on the
one-dimensional case for simplicity) where K = k − iκ with
k > 0 (an outgoing wave) and κ > 0. The latter condition
implies that the wave function increases exponentially away
from the scattering region. The decay rate of the resonance
state, evaluated as the rate of decay of the probability for
finding the particle in any finite region of space, is given by
γ = kκ . It can be shown that the resonance eigenvalue E is a
pole of the analytically continued scattering matrix [36].

To compute the resonance, one could in principle solve the
Schrödinger equation with the appropriate boundary condi-
tions. In practice, however, it is more convenient to perform a
“complex scaling” of the Hamiltonian, whereby the coordinate
r → eiθ r and ∇ → e−iθ∇, and then solve for the eigenstates
of the resulting (non-Hermitian) operator Ĥθ with the more
standard zero boundary conditions. For θ > tan−1(γ /k), the
complex scaled resonance wave function (that is the wave
function evaluated on the line reiθ after analytic continuation)
is an eigenstate of Ĥθ with eigenvalue E but now decaying

TABLE I. Calculated values for the polarizability (α) and exciton
binding energy (Eb) for single-layer MoS2 in the three configurations
shown in Figs. 2(a)–2(c).

Material α (a.u.) Eb (eV)

MoS2 11.1 0.62
MoS2-hBN 13.0 0.55
hBN-MoS2-hBN 16.1 0.47

exponentially as r → ±∞. The resonances thus appear as
isolated complex eigenvalues of Ĥθ with energy independent
of θ and a square integrable wave function [37]. The complex
scaled wave function of the bound states remain exponentially
decaying eigenstates of Ĥθ with real eigenvalues [34].

The unbound continuum states have a different behavior: If
the potentials involved are localized, the asymptotic form of
these states as r → ∞ is eikr with k,r ∈ R. They are thus finite
at infinity but non-normalizable. If this is to remain true after
the complex scaling is performed, the transformation r → reiθ

must be accompanied by the transformation k → ke−iθ . As
the energy of a plane wave is proportional to k2, the complex
scaling operation results in the energy of the continuum states
rotating into the complex plane at an angle of 2θ .

We mention that the complex scaling procedure cannot be
applied to any potential V (r) [35], but the class of potentials
for which the procedure works is large enough to include the
bare and the screened Coulomb potential [38] as well as a
constant electric field [39].

In Fig. 2 we show an example of the spectrum of the
complex-scaled exciton Hamiltonian for isolated MoS2 in
zero field for different values of the scaling parameter θ .
The two classes of states, bound and unbound, can clearly
be distinguished; for zero field there are no resonances.

For the systems shown in Figs. 2(a)– 2(c) we compute the
screened interaction between charges located in the MoS2 layer
using the random phase approximation (RPA) and the local
density approximation (LDA) as implemented in the GPAW

code [40,41]. The response calculations were done with a 60 ×
60 k-point grid and a 150-eV energy cutoff for G and G′.
The bandstructure obtained from the LDA calculations gives
an effective exciton mass for MoS2 of 0.27me. Once α and
μex are known, the 2D eigenvalue problem for the complex-
scaled Hamiltonian is solved on a real-space grid using radial
coordinates. In order to converge the exciton energies, a large
simulation cell is needed—significantly larger than the exciton
radius, which is around 10 Å for all of the systems considered.
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FIG. 2. The different behaviors of bound and continuum states
under the complex scaling operation for the potential corresponding
to isolated MoS2. The black dashed lines start at −0.15 eV and have
been rotated into the complex plane by −2θ for each of the complex
scaling angles. Note that the continuum starts at −0.15 eV and not 0
because of the finite size of the simulation box.
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FIG. 3. The dissociation rate of an exciton in the MoS2 layer as
a function of in-plane field strength for the three different structures.
The intrinsic decay rate spans between the defect-assisted fast decay
of the excitons of 2–5 ps (upper limit) and the much slower radiative
recombination of the excitons at room temperature (lower limit).

As the screened potential has a logarithmic singularity at r = 0
while being virtually flat at the edge of the simulation cell, a
nonlinear grid is used, which allows us to perform simulations
in a disk of radius 250 Å. The Laplacian is represented by a
finite-difference stencil. In order to avoid diagonalization of
the full Hamiltonian, we used the iterative eigensolver ARPACK.

Figure 3 shows the MoS2 exciton dissociation rate as a
function of in-plane field strength for three different structures.
As expected, larger fields lead to shorter lifetimes, and the
rate is seen to depend roughly exponentially on 1/E for
the considered field strengths. It can also be seen that the
dissociation rate can be tuned to a high degree by changing
the environment of the MoS2. When MoS2 is placed on a single
layer of boron nitride, the extra screening greatly increases the
dissociation rate, and similarly, when the MoS2 is sandwiched
between two layers of BN, the rate is even larger. This is as
expected since larger screening results in more weakly bound
excitons, which should in turn dissociate more readily. Adding
more hBN layers on either side is expected to further enhance
the screening and hence the dissociation rates, but this has not
been pursued here as the linear screening model breaks down
in this regime [15].

Along with information about the lifetime of the resonant
states, the complex eigenvalue can provide information on
the Stark shift of the resonance energy, an effect which
is directly observable in optical absorption measurements.
Figure 4 shows how the real part of the eigenvalue varies with
field strength, and as expected, for small fields we observe
a parabolic shift. The breakdown of this parabolic behavior
occurs at smallest fields for the most screened excitons.

Recently, it has been shown that excitons in 2D materials
can be described by a 2D hydrogen model with an effective di-
electric constant [28], which for the linear screening described
by Eq. (2) is given by εeff = 1

2 + 1
2

√
1 + 32παμ/3. Based on

this model and second-order perturbation theory, the shift can
be predicted to be

�E = −21

64

ε4
eff

μ3
E2. (4)

Figure 4 shows that this prediction fits well with our calcula-
tions for small fields.
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FIG. 4. The Stark shift in the MoS2 heterostructures. The inset
shows the shift for small fields, along with the shift predicted for a 2D
hydrogen atom with an effective dielectric constant εeff ; see Eq. (4).

In a real device, the field-induced dissociation of excitons
described here is in competition with other decay mechanisms,
such as direct radiative recombination [42], defect-assisted
recombination [43], and exciton-exciton annihilation [44]. The
relative importance of these effects is highly dependent on the
temperature of the MoS2, the presence and concentration of
defects, and the exciton density.

At very low temperatures, the direct radiative decay of
zero momentum excitons dominates with a characteristic
lifetime of ∼200 fs [42,45,46]. At room temperature, most
of the excitons have nonvanishing momenta, and the radiative
recombination lifetime is ∼1 ns [42,43]. For these systems,
defect-assisted recombination therefore becomes an important
mechanism with a characteristic lifetime of 2–5 ps [43,47,48].
Exciton-exciton annihilations become important only when
the density of excitons in a sample is large; equivalently when
the average distance between excitons is small. At a density of
1 × 1012 cm−2, the effective lifetime from annihilation is on
the order of 10 ps [44].

The calculations performed here indicate that for field
strengths larger than 0.1 V/nm, the dissociation lifetime is
shorter than 1 ps in all the systems considered. A potential
gradient of this size (0.1 V/nm) over the extent of the
exciton (around 2 nm) is realistic to achieve close to the
metal-MoS2 contact region where charge transfer and interface
dipole formation driven by Fermi-level mismatch can lead to
significant variation of the potential and band energies even in
the absence of an applied bias voltage. Under such conditions,
the field-induced dissociation is faster than any other decay
channel and should therefore dominate as indicated by the fact
that in Fig. 3, the data points all lie above the shaded region.

To summarize we have used complex scaling to compute the
lifetime of excitons in two-dimensional MoS2 and MoS2/hBN
structures under an applied static electric field. The exciton was
simulated using a 2D Mott-Wannier model which has previ-
ously been found to yield a reliable description of the lowest-
lying excitonic states in transition-metal dichalcogenides. We
found that for field strengths around 0.1 V/nm, the exciton
dissociation is larger than the intrinsic exciton decay rate in
MoS2. Moreover, encapsulation in a few layers of hBN was
found to increase the dissociation rate by an order of magnitude
for fixed field strength due to the increased screening provided
by the electrons in the hBN.
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