Appendix B-Lists and directories

List of abbreviations

AEC	anion exchange chromatography
APBS	adaptive Poisson-Boltzmann solver
$B C$-Csp	Bacillus caldolyticus Csp
$B s$ - CspB	Bacillus subtilis Csp
calc.	calculated
CD	circular dichroism
Csp / CSP	a specific cold shock protein / cold shock protein(s) (in general)
CSD	cold shock domain(s)
DEAE sepharose	diethyl-amino-ethyl sepharose (a column material for anion exchange chromatography)
diglycerides	diacylphosphatidylglycerides
$\mathrm{dT}_{6}, \mathrm{dC}_{6}$	deoxyribo hexathymidine, deoxyribo hexacytidine
$\mathrm{dT}_{7}, \mathrm{dC}_{7}$	deoxyribo heptathymidine, deoxyribo heptacytidine
DNA	deoxyribonucleic acid
dNTP	deoxyribonucleoside triphosphate
Ec-CspA	Escherichia coli CspA
EDTA	ethylene-diamine-tetraacetate
FPLC	fast phase liquid chromatography
GFC	gel filtration chromatography
HCOH	formaldehyde
HIC	hydrophobic interaction chromatography
IPTG	isopropyl thiogalactoside
$K_{\text {A }}, K_{\text {D }}$	equilibrium association and dissociation constants (see Equation 2.6 \& Equation 2.7)
$k_{\text {on }}, k_{\text {off }}$	association and dissociation rate constants
$k_{\text {obs }}$	observed quasi first-order rate constant in stopped-flow analyses (see Equation 2.10)
LB	Luria-Bertani medium for bacterial cell culture
mRNA	messenger RNA
mol.	molecular
MPD	2-methyl-2,4-pentanediol
MR	molecular replacement
OB-fold	oligonucleotide / oligosaccharide binding fold
PCR	polymerase chain reaction
pH	potentia hydrogenii $\left(\log c_{\mathrm{H}_{3} \mathrm{O}^{+}}\right)$, measure for acidity in aqueous solutions
pI	isolelectric point (pH at which a molecule has a net charge of 0)
PDB	Protein Data Bank, see [111]

RMSD	root mean square deviation
RNA	ribonucleic acid
RNP	ribonucleoprotein
rpm	rotations per minute
rxn.	reaction
PAGE	poly-acrylamide gel electrophoresis
PEG	polyethylene glycol
SDS	sodium dodecyl sulfate
ssDNA	single-stranded DNA
ssRNA	single-stranded RNA
TBE	TRIS-borate-EDTA buffer
TCA	tri chlorine acetate
TEMED	N,N,N',N'-tetramethylethylenediamine
TLS	translational, librational, \& screw [parameters]
T_{M}	melting temperature
$T m$-Csp	Thermotoga maritima Csp
TRIS	tris(hydroxymethyl)-aminomethan
UV / vis	ultraviolet / visible (light)
$v s$.	versus $(=$ in comparison to)

physical units

${ }^{\circ} \mathrm{C}$	temperature unit, degrees Celsius
\AA	distance unit, Angstroem $\left(10^{-10} \mathrm{~m}\right)$
A	electrical currency unit, Ampère
Da	molecular weight unit , Dalton, $\sim \mathrm{g} / \mathrm{mol}$
g	mass unit, gram
h	time unit, equal 60 minutes
1	volume unit, liter
m	distance unit, meter
mol	molecular unit, mole, equals 6.02310^{23} particles of a substance
M	concentration unit, molar, moles per liter
min	time unit, minute, equals 60 seconds
psi	pressure unit, 1 psi = 6894.8 Pa
Pa	pressure unit, Pascal (pressure unit)
s	time unit, second
u	(biological) activity unit, describes the activity of an enzyme
V	electrical voltage unit, Volt

prefixes defining orders of magnitude

p	pico, 10^{-12}	k	kilo, 10^{3}
n	nano, 10^{-9}	M	mega, 10^{6}
μ	micro, 10^{-6}	G	giga, 10^{9}
m	milli, 10^{-3}		

Directory of figures

Figure Title Page
1.1 Folding can be multi-state. 8
1.2 Energy diagram of a protein, which folds according to a two-state mecha- 8 nism.
1.3 Temperature denaturation curves for histidines of ribonuclease A. 9
1.4 Nucleic-acid building blocks and Watson-Crick basepairing 11
1.5 Two conformations of the DNA double helix. 12
1.6 Cold-inducible genes of Bacillus subtilis and Escherichia coli. 15
1.7 Model for the function of cold shock proteins as RNA chaperones. 19
2.1 Anion-exchange chromatography of protein variant $B s$-CspB R56A 32
2.2 Hydrophobic interaction chromatography of $B s$-CspB R56A. 33
2.3 Gel-filtration chromatography of $B s$-CspB R56A. 34
2.4 UV / vis spectra of single components and purified CSP $\cdot \mathrm{dT}_{6}$ complexes. 35
2.5 Principles of analytical equilibrium ultracentrifugation. 44
2.7 Mass determination of the $B s$ - $\mathrm{Csp} \cdot \mathrm{dT}_{6}$ complex in solution. 44
2.8 Phase diagram of protein crystallization. 45
2.9 Protein crystallization setups using the hanging and the sitting drop method. 46
2.10 Bragg's law visualized schematically. 48
3.1 Protein crystallization of the $B s$ - $\mathrm{CspB} \cdot \mathrm{dT}_{6}$ complex. 63
3.2 X-ray diffraction data collection of a $B s$ - $\mathrm{CspB} \cdot \mathrm{dT}_{6}$ complex crystal. 64
3.3 Refinement progress of a $B s$ - $\mathrm{CspB} \cdot \mathrm{dT}_{6}$ complex crystal structure. 65
3.4 Unit cell content of the $B s$-CspB• dT_{6} and $B c$-Csp• dT_{6} crystal structures. 66
3.5 Superposition of ligand-free and dT_{6}-complexed CSP. 66
3.6 Trp8 forms a hydrophobic contact with its equivalent from a symmetry- 67 related molecule in the $B s-\mathrm{CspB} \cdot \mathrm{dT}_{6}$ structure.
3.7 The ligand nucleobases interact with an extended hydrophobic platform and 69 surrounding polar groups on the CSP surface.
3.8 DNA single strands adopt an irregular conformation upon binding to CSP 71
3.9 A continuous arrangement is formed by $B s-\mathrm{CspB}$ and dT_{6} molecules. 71
3.10 Melting curves of $B s$ - CspB mutants determined by CD spectroscopy. 73
3.11 Determination of kinetic rates ($k_{\mathrm{on}}, k_{\mathrm{off}}$) describing dissociation and asso- 75 ciation of $B s$-CspB-oligonucleotide complexes by stopped-flow.
3.12 Determination of equilibrium dissociation constants (K_{D}) of $B s$-CspB•oli- 75 gonucleotide complexes using fluorescence titrations.
3.13 Temperature dependence on preferential binding of heptapyrimidines by 79CSP.
Figure Title
Page
3.14 Nucleobase headgroups interact with protein groups from subsite 2 through 81 hydrogen bonds reminiscent of Watson-Crick basepairs.
3.15 Intermolecular interactions between CSP and hexathymidine. 82
3.16 Schematic overview of CSP•oligonucleotide interactions. 84
3.17 Two examples of predicted terminator sites which contain heptanucleotide 85 sequences in agreement with presumed binding preferences of CspB
3.18 Superimposition of Bacillus CSP crystal structures from the PDB. 89
3.19 The binding site for nucleic acids is conserved throughout the CSP and Y- 89 box proteins.
4.1 Protein crystallization of the $B c-\mathrm{Csp} \cdot \mathrm{dT}_{6}$ complex. 93
4.2 X-ray diffraction data collection of a crystal featuring the $B c$ - $\mathrm{Csp} \mathrm{dT}_{6}$ com- 94 plex.
4.3 Refinement progress of the $B c-\mathrm{Csp} \cdot \mathrm{dT}_{6}$ complex crystal structure. 94
4.5 Initial and optimized molecular replacement solutions for $B c-\mathrm{Csp}^{-} \cdot \mathrm{dT}_{6}$ in 96 space group $\mathrm{P} 2{ }_{1}$.
4.4 Formation of domain-swapped tetramers in the $B c$ - $\mathrm{Csp} \cdot \mathrm{dT}_{6}$ crystal. 96
4.6 Symmetry elements parallel to b and c axes indicate a higher-symmetry 97 space group than $\mathrm{P} 2_{1}$.
4.7 Zero-layer and first-layer precession images calculated from diffraction 98 data from a $B c-C s p \cdot \mathrm{dT}_{6}$ dataset processed in P1.
4.8 Molecular replacement solutions for $B c-C s p \cdot \mathrm{dT}_{6}$ in the space group $\mathrm{P} 2_{1} 2_{1} 2$. 99
4.9 Region of the domain swap in the $B c$ - $\mathrm{Csp} \cdot \mathrm{dT}_{6}$ structure revealed by its dif- 100 ference electron density.
4.10 Comparison of open (domain-swapped) and closed states of $B c$-Csp. 102
4.11 Topology plot of the $B c$-Csp architecture. 103
5.1 Crystallization of the $B s$-CspB variant M1R/E3K/K65I. 107
5.2 Crystallization of the $B s$ - CspB variant A46K/S48R. 108
5.3 Diffraction images of stabilized $B s-\mathrm{CspB}$ variants. 109
5.4 Refinement progress of stabilized $B s-\mathrm{CspB}$ variants. 109
5.5 Electrostatic surface potential of $B s$ - CspB wildtype and mutants. 113
5.6 Stabilizing effects associated with individual amino acid changes in 114 $B s$-CspB variant M1R/E3K/K65I.
5.7 Stabilizing effects associated with individual amino acid changes in 117 $B s$-CspB variant A46K/S48R.
5.8 Frequency plot based on an alignment of 250 CSP sequences. 119

Directory of tables

Table Title Page
2.1 A short protocol for silver staining of polyacrylamide gels. 28
2.2 A protocol for site-directed mutagenesis of bacterial plasmids. 30
2.3 Primers used for the generation of mutant $B s$ - CspB variants by site-directed 30 mutagenesis.
2.4 Molar extinction coefficients of proteins. 37
2.5 Molar extinction coefficients of oligonucleotides. 38
3.1 Building, refinement and evaluation of the atomic model based on diffrac- 65tion data from $B s-\mathrm{CspB} \cdot \mathrm{dT}_{6}$.
3.2 Equilibrium dissociation constants (K_{D}) of $B s-\mathrm{CspB}$ and mutant variants in 74 complex with dT_{7}.
3.3 Equilibrium dissociation constants $\left(K_{\mathrm{D}}\right)$ and kinetic association $\left(k_{\mathrm{on}}\right)$ and 76 dissociation (k_{off}) rate constants of $B s$ - CspB -heptapyrimidine complexes.
3.4 Dissociation constants (K_{D}) of $B c$-Csp-heptapyrimidine complexes. 76
3.5 Binding preferences of $B s$ - CspB and $B c$-Csp for heptanucleotides contain- 77 ing thymine and cytosine at individual positions.
3.6 Binding preferences of $B s$ - CspB for heptanucleotides containing pyrimidi- 78 nes and purines at individual positions.
4.1 Building, refinement and evaluation of the atomic model based on diffrac- 95 tion data from $B c$-Csp $\cdot \mathrm{dT}_{6}$.
5.1 Data collection of $B s$-CspB M1R/E3K/K65I and $B s$-CspB A46K/S48R. 108
5.2 Building, refinement and evaluation of the atomic models of $B s$ - CspB vari- 110 ants M1R/E3K/K65I and A46K/S48R
5.3 Stability data for variants of $B s-\mathrm{CspB}$. 112
Directory of equations
Equation Title Page
1.1 The Gibbs-Helmholtz equation - definition of the Gibbs free energy. 14
1.2 The Arrhenius equation - definition of reaction rate constants (k). 14
2.1 Lambert-Beer's law - dependence of UV / vis absorbance on concentra- 37 tion.
2.2 Definition of difference in circular polarized absorbance ΔA. 38
2.3 Dependence of ΔA on concentration. 38
2.4 Definition of the molar dichroism $\Delta \varepsilon_{\lambda}$ 38
2.5 Definition of the molar ellipticity θ. 38
2.6 Definition of the equilibrium dissociation constant $\left(K_{\mathrm{D}}\right)$. 39
2.7 Definition of the equilibrium association constant $\left(K_{\mathrm{A}}\right)$. 39
Equation Title Page
2.8 Definition of the quench (Q) in fluorescence titration experiments. 40
2.9 Calculation of K_{D} by nonlinear fitting of data from fluorescence titra- 41 tions.
2.10 Definition of a quasi first-order rate constant describing pre-equilibrium 42 complex formation by stopped-flow analyses.
2.11 Determination of association ($k_{\text {on }}$) and dissociation ($k_{\text {off }}$) rate constants 42 by nonlinear fitting of data from stopped-flow analyses.
2.12 Calculation of dissociation rate constants ($k_{\text {off }}$) using K_{D} and $k_{\text {on }}$ 42
2.13 Determination of molecular masses from absorbance data by analytical 43 ultracentrifugation.
2.14 Dependence of the exponential coefficient F on biophysical properties of 43 system and molecular sample in analytical ultracentrifugation.
2.15 Bragg's law - dependence of positive interference of diffracted X-rays 49 on wavelength, distance and difference in pathlength.
2.16 Definition the phase shift of a diffracted X-ray beam caused by a single 49 atom.
2.17 Definition of the structure factor $\vec{F}(h, k, l)$ based on diffraction data. 50
2.18 Definition of the structure factor $\vec{F}(h, k, l)$ based on atomic models. 50
2.19 Correlation of structure-factor amplitudes based on diffraction intensities 50
2.20 Definition of $R_{s y m}$, a factor that describes the accuracy of diffraction data 51 by comparing intensities of equivalent reflections.
2.21 The Patterson function - a function based on structure factor amplitudes 52 which reveals interatomic distance vectors in a crystal.
2.22 A scoring function involving Patterson functions in the search for orien- 53 tational parameters of a structural model in molecular replacement.
2.23 Calculation of electron density maps from structure factors by Fourier 54 transformation.
2.24 Calculation of structure factors from electron density maps by perfor- 54 ming a Fourier backtransform.
2.25 Calculation of a $2 F_{\mathrm{o}}-F_{\mathrm{c}}$ difference electron density map. 54
2.26 Calculation of a $F_{0}-F_{\mathrm{c}}$ difference electron density map. 54
2.27 Definition of crystallographic R-factors, which describe levels of agree- 55 ment between structural models and diffraction data.
2.28 Principles of restraint refinement involving stereochemical parameters 56 and X-ray diffraction data.
2.29 Introduction of the Debye-Waller factor, a measure of atomic displace- 56 ment, into the structure factor equation.
2.30 Determination of the radius of displacement from a Debye-Waller factor.56

