Appendix B - Lists and directories

List of abbreviations

APBSadaptive Poisson-Boltzmann solverBc-CspBacillus caldolyticus Csp	
Bc-Csp Bacillus caldolyticus Csp	
Bs-CspB Bacillus subtilis Csp	
calc. calculated	
CD circular dichroism	
Csp / CSP a specific cold shock protein / cold shock protein(s) (in general)	
CSD cold shock domain(s)	
DEAE sepharose diethyl-amino-ethyl sepharose (a column material for anion excharacter chromatography)	ange
diglycerides diacylphosphatidylglycerides	
dT_6 , dC_6 deoxyribo hexathymidine, deoxyribo hexacytidine	
dT ₇ , dC ₇ deoxyribo heptathymidine, deoxyribo heptacytidine	
DNA deoxyribonucleic acid	
dNTP deoxyribonucleoside triphosphate	
Ec-CspA Escherichia coli CspA	
EDTA ethylene-diamine-tetraacetate	
FPLC fast phase liquid chromatography	
GFC gel filtration chromatography	
HCOH formaldehyde	
HIC hydrophobic interaction chromatography	
IPTG isopropyl thiogalactoside	
<i>K</i> _A , <i>K</i> _D equilibrium association and dissociation constants (see Equation 2 Equation 2.7)	.6 &
$k_{\rm on}, k_{\rm off}$, association and dissociation rate constants	
k_{obs} observed quasi first-order rate constant in stopped-flow analyses Equation 2.10)	(see
LB Luria-Bertani medium for bacterial cell culture	
mRNA messenger RNA	
mol. molecular	
MPD 2-methyl-2,4-pentanediol	
MR molecular replacement	
OB-fold oligonucleotide / oligosaccharide binding fold	
PCR polymerase chain reaction	
pH potentia hydrogenii $(\log c_{H,O^+})$, measure for acidity in aqueous s	olu-
tions	
pI isolelectric point (pH at which a molecule has a net charge of 0)	
PDB Protein Data Bank, see [111]	

RMSD	reat mean square deviation
	root mean square deviation
RNA	ribonucleic acid
RNP	ribonucleoprotein
rpm	rotations per minute
rxn.	reaction
PAGE	poly-acrylamide gel electrophoresis
PEG	polyethylene glycol
SDS	sodium dodecyl sulfate
ssDNA	single-stranded DNA
ssRNA	single-stranded RNA
TBE	TRIS-borate-EDTA buffer
TCA	tri chlorine acetate
TEMED	N,N,N',N'-tetramethylethylenediamine
TLS	translational, librational, & screw [parameters]
T_{M}	melting temperature
<i>Tm</i> -Csp	Thermotoga maritima Csp
TRIS	tris(hydroxymethyl)-aminomethan
UV / vis	ultraviolet / visible (light)
VS.	<i>versus</i> (= in comparison to)

physical units

°C	temperature unit, degrees Celsius
Å	distance unit, Ångstroem (10^{-10} m)
А	electrical currency unit, Ampère
Da	molecular weight unit, Dalton, ~ g / mol
g	mass unit, gram
h	time unit, equal 60 minutes
1	volume unit, liter
m	distance unit, meter
mol	molecular unit, mole, equals $6.023 \ 10^{23}$ particles of a substance
М	concentration unit, molar, moles per liter
min	time unit, minute, equals 60 seconds
psi	pressure unit, 1 psi = 6894.8 Pa
Pa	pressure unit, Pascal (pressure unit)
S	time unit, second
u	(biological) activity unit, describes the activity of an enzyme
V	electrical voltage unit, Volt

prefixes defining orders of magnitude

р	pico, 10^{-12}		kilo, 10^3
n	nano, 10 ⁻⁹	М	mega, 10^6
μ m	micro, 10 ⁻⁶ milli, 10 ⁻³	G	giga, 10 ⁹

Directory of figures

Figure	Title	Page
1.1	Folding can be multi-state.	8
1.2	Energy diagram of a protein, which folds according to a two-state mechanism.	8
1.3	Temperature denaturation curves for histidines of ribonuclease A.	9
1.4	Nucleic-acid building blocks and Watson-Crick basepairing	11
1.5	Two conformations of the DNA double helix.	12
1.6	Cold-inducible genes of Bacillus subtilis and Escherichia coli.	15
1.7	Model for the function of cold shock proteins as RNA chaperones.	19
2.1	Anion-exchange chromatography of protein variant Bs-CspB R56A	32
2.2	Hydrophobic interaction chromatography of Bs-CspB R56A.	33
2.3	Gel-filtration chromatography of Bs-CspB R56A.	34
2.4	UV / vis spectra of single components and purified $CSP \cdot dT_6 complexes$.	35
2.5	Principles of analytical equilibrium ultracentrifugation.	44
2.7	Mass determination of the Bs -Csp·dT ₆ complex in solution.	44
2.8	Phase diagram of protein crystallization.	45
2.9	Protein crystallization setups using the hanging and the sitting drop method.	46
2.10	Bragg's law visualized schematically.	48
3.1	Protein crystallization of the Bs -CspB·dT ₆ complex.	63
3.2	X-ray diffraction data collection of a Bs -CspB·dT ₆ complex crystal.	64
3.3	Refinement progress of a Bs -CspB·dT ₆ complex crystal structure.	65
3.4	Unit cell content of the Bs -CspB·dT ₆ and Bc -Csp·dT ₆ crystal structures.	66
3.5	Superposition of ligand-free and dT ₆ -complexed CSP.	66
3.6	Trp8 forms a hydrophobic contact with its equivalent from a symmetry- related molecule in the Bs -CspB·dT ₆ structure.	67
3.7	The ligand nucleobases interact with an extended hydrophobic platform and surrounding polar groups on the CSP surface.	69
3.8	DNA single strands adopt an irregular conformation upon binding to CSP	71
3.9	A continuous arrangement is formed by <i>Bs</i> -CspB and dT ₆ molecules.	71
3.10	Melting curves of Bs-CspB mutants determined by CD spectroscopy.	73
3.11	Determination of kinetic rates (k_{on} , k_{off}) describing dissociation and association of <i>Bs</i> -CspB·oligonucleotide complexes by stopped-flow.	75
3.12	Determination of equilibrium dissociation constants (K_D) of <i>Bs</i> -CspB·oligonucleotide complexes using fluorescence titrations.	75
3.13	Temperature dependence on preferential binding of heptapyrimidines by CSP.	79

Figure	Title	Page
3.14	Nucleobase headgroups interact with protein groups from subsite 2 through hydrogen bonds reminiscent of Watson-Crick basepairs.	81
3.15	Intermolecular interactions between CSP and hexathymidine.	82
3.16	Schematic overview of CSP oligonucleotide interactions.	84
3.17	Two examples of predicted terminator sites which contain heptanucleotide sequences in agreement with presumed binding preferences of CspB	85
3.18	Superimposition of Bacillus CSP crystal structures from the PDB.	89
3.19	The binding site for nucleic acids is conserved throughout the CSP and Y-box proteins.	89
4.1	Protein crystallization of the Bc -Csp·dT ₆ complex.	93
4.2	X-ray diffraction data collection of a crystal featuring the Bc -Csp dT ₆ complex.	94
4.3	Refinement progress of the Bc -Csp·dT ₆ complex crystal structure.	94
4.5	Initial and optimized molecular replacement solutions for Bc -Csp·dT ₆ in space group P2 ₁ .	96
4.4	Formation of domain-swapped tetramers in the Bc -Csp·dT ₆ crystal.	96
4.6	Symmetry elements parallel to b and c axes indicate a higher-symmetry space group than P2 _{1.}	97
4.7	Zero-layer and first-layer precession images calculated from diffraction data from a Bc -Csp·dT ₆ dataset processed in P1.	98
4.8	Molecular replacement solutions for Bc -Csp·dT ₆ in the space group P2 ₁ 2 ₁ 2.	99
4.9	Region of the domain swap in the Bc -Csp·dT ₆ structure revealed by its difference electron density.	100
4.10	Comparison of open (domain-swapped) and closed states of Bc-Csp.	102
4.11	Topology plot of the Bc-Csp architecture.	103
5.1	Crystallization of the Bs-CspB variant M1R/E3K/K65I.	107
5.2	Crystallization of the Bs-CspB variant A46K/S48R.	108
5.3	Diffraction images of stabilized Bs-CspB variants.	109
5.4	Refinement progress of stabilized Bs-CspB variants.	109
5.5	Electrostatic surface potential of Bs-CspB wildtype and mutants.	113
5.6	Stabilizing effects associated with individual amino acid changes in <i>Bs</i> -CspB variant M1R/E3K/K65I.	114
5.7	Stabilizing effects associated with individual amino acid changes in <i>Bs</i> -CspB variant A46K/S48R.	117
5.8	Frequency plot based on an alignment of 250 CSP sequences.	119

Directory of tables

Table	Title	Page
2.1	A short protocol for silver staining of polyacrylamide gels.	28
2.2	A protocol for site-directed mutagenesis of bacterial plasmids.	30
2.3	Primers used for the generation of mutant <i>Bs</i> -CspB variants by site-directed mutagenesis.	30
2.4	Molar extinction coefficients of proteins.	37
2.5	Molar extinction coefficients of oligonucleotides.	38
3.1	Building, refinement and evaluation of the atomic model based on diffraction data from Bs -CspB·dT ₆ .	65
3.2	Equilibrium dissociation constants (K_D) of <i>Bs</i> -CspB and mutant variants in complex with dT ₇ .	74
3.3	Equilibrium dissociation constants (K_D) and kinetic association (k_{on}) and dissociation (k_{off}) rate constants of <i>Bs</i> -CspB·heptapyrimidine complexes.	76
3.4	Dissociation constants (K_D) of <i>Bc</i> -Csp·heptapyrimidine complexes.	76
3.5	Binding preferences of <i>Bs</i> -CspB and <i>Bc</i> -Csp for heptanucleotides containing thymine and cytosine at individual positions.	77
3.6	Binding preferences of <i>Bs</i> -CspB for heptanucleotides containing pyrimidines and purines at individual positions.	78
4.1	Building, refinement and evaluation of the atomic model based on diffraction data from Bc -Csp·dT ₆ .	95
5.1	Data collection of Bs-CspB M1R/E3K/K65I and Bs-CspB A46K/S48R.	108
5.2	Building, refinement and evaluation of the atomic models of <i>Bs</i> -CspB variants M1R/E3K/K65I and A46K/S48R	110
5.3	Stability data for variants of Bs-CspB.	112

Directory of equations

Equation	Title	Page
1.1	The Gibbs-Helmholtz equation - definition of the Gibbs free energy.	14
1.2	The Arrhenius equation - definition of reaction rate constants (k) .	14
2.1	Lambert-Beer's law - dependence of UV $\!/$ vis absorbance on concentration.	37
2.2	Definition of difference in circular polarized absorbance ΔA .	38
2.3	Dependence of ΔA on concentration.	38
2.4	Definition of the molar dichroism $\Delta \varepsilon_{\lambda}$	38
2.5	Definition of the molar ellipticity θ .	38
2.6	Definition of the equilibrium dissociation constant (K_D) .	39
2.7	Definition of the equilibrium association constant (K_A) .	39

Equation	Title	Page
2.8	Definition of the quench (Q) in fluorescence titration experiments.	40
2.9	Calculation of $K_{\rm D}$ by nonlinear fitting of data from fluorescence titrations.	41
2.10	Definition of a quasi first-order rate constant describing pre-equilibrium complex formation by stopped-flow analyses.	42
2.11	Determination of association (k_{on}) and dissociation (k_{off}) rate constants by nonlinear fitting of data from stopped-flow analyses.	42
2.12	Calculation of dissociation rate constants (k_{off}) using K_D and k_{on}	42
2.13	Determination of molecular masses from absorbance data by analytical ultracentrifugation.	43
2.14	Dependence of the exponential coefficient F on biophysical properties of system and molecular sample in analytical ultracentrifugation.	43
2.15	Bragg's law – dependence of positive interference of diffracted X-rays on wavelength, distance and difference in pathlength.	49
2.16	Definition the phase shift of a diffracted X-ray beam caused by a single atom.	49
2.17	Definition of the structure factor $\vec{F}(h,k,l)$ based on diffraction data.	50
2.18	Definition of the structure factor $\vec{F}(h,k,l)$ based on atomic models.	50
2.19	Correlation of structure-factor amplitudes based on diffraction intensities	50
2.20	Definition of R_{sym} , a factor that describes the accuracy of diffraction data by comparing intensities of equivalent reflections.	51
2.21	The Patterson function – a function based on structure factor amplitudes which reveals interatomic distance vectors in a crystal.	52
2.22	A scoring function involving Patterson functions in the search for orien- tational parameters of a structural model in molecular replacement.	53
2.23	Calculation of electron density maps from structure factors by Fourier transformation.	54
2.24	Calculation of structure factors from electron density maps by performing a Fourier backtransform.	54
2.25	Calculation of a $2F_{o}$ - F_{c} difference electron density map.	54
2.26	Calculation of a F_{o} - F_{c} difference electron density map.	54
2.27	Definition of crystallographic <i>R</i> -factors, which describe levels of agreement between structural models and diffraction data.	55
2.28	Principles of restraint refinement involving stereochemical parameters and X-ray diffraction data.	56
2.29	Introduction of the Debye-Waller factor, a measure of atomic displace- ment, into the structure factor equation.	56
2.30	Determination of the radius of displacement from a Debye-Waller factor.	56