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Abstract: In this article, we present a protocol for generating a complete (genome-scale) metabolic
resource allocation model, as well as a proposal for how to represent such models in the systems
biology markup language (SBML). Such models are used to investigate enzyme levels and achievable
growth rates in large-scale metabolic networks. Although the idea of metabolic resource allocation
studies has been present in the field of systems biology for some years, no guidelines for generating
such a model have been published up to now. This paper presents step-by-step instructions for
building a (dynamic) resource allocation model, starting with prerequisites such as a genome-scale
metabolic reconstruction, through building protein and noncatalytic biomass synthesis reactions and
assigning turnover rates for each reaction. In addition, we explain how one can use SBML level 3 in
combination with the flux balance constraints and our resource allocation modeling annotation to
represent such models.
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1. Introduction

In recent years, the systems biology of metabolism has moved more and more from classical
metabolic network study towards the study of growth as a result of an optimized cellular economy.
This idea of studying growth strategies using resource allocation models has been initiated by
Molenaar et al. [1] in 2009. In their article, Molenaar et al. used a small dynamic model of a
self-replicating system to explain how overflow metabolism arises by means of tradeoffs between
different growth strategies. Further on, Goelzer et al. [2] introduced resource balance analysis (RBA),
as a means of predicting the cell composition of bacteria in a specific (constant) environment through a
convex optimization problem that includes the bioenergetic cost of producing the enzymes required in
a pathway. As a similar approach, Palsson and colleagues introduced the idea of an integrated model of
metabolism and gene expression (ME model) as a means to explore the relationship between genotype
and phenotype using biochemical representations of transcription and translation processes [3,4].
Their research group then continued with an ME model of Escherichia coli [5]. With the COBRAme
package [6], a computational framework for building and manipulating ME models is provided.
Also experimental studies focused on relating absolute protein abundances to how metabolic pathways
balance production costs and activity requirements [7].

These formalisms have then been taken a step forward, towards understanding how resources are
distributed in a dynamically changing environment by means of a dynamic enzyme-cost flux balance
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analysis (deFBA) [8] and conditional flux balance analysis (cFBA) [9]. This has then been taken to
the genome scale by studying the optimal glycogen and metabolite partitioning dynamics under a
day-night cycle in a cyanobacterium using a dynamic resource allocation model [10].

Such dynamic resource allocation models have a wide area of application. One such an example is
the study of microorganisms growing in industry-scale bioreactors. There, the organism has to balance
resources not only in order to grow optimally, but also in order to withstand transitions through local
heterogeneities of the reactor. The ability to take such transitions into account within metabolism
has been shown to be crucial for survival [11]. Moreover, an extension of the deFBA formalism has
been developed in order to predict the optimal resource allocation in an environment where such
uncertainties are present [12].

Given all these recent developments, we believe that there is a need to establish a protocol for
building a metabolic resource allocation model. However, to the best of our knowledge, there exists
no generic guideline that details how to proceed in the construction of large-scale metabolic resource
allocation models, together with possible sources of the relevant parameters. Moreover, there exists so
far no specification for defining and exchanging these models that would be similarly useful as the
current SBML standard for kinetic and metabolic flux balance models.

Therefore, we focus in this paper on a step-by-step guide towards constructing such a model,
summarized in Figure 1, with a focus on the deFBA formalism which is described in the Methods
section. Note however, that these guidelines can be used as well for building cFBA, RBA and ME
models. We detail here all the necessary information as well as which databases may be used to
retrieve it (Table 1). To facilitate exchange among researchers, we furthermore propose a new SBML
specification, called resource allocation modeling (RAM) [13]. This specification allows encoding such
models in the SBML format using the Flux Balance Constraints extension [14].

In addition to this protocol, we provide software in Python 2.7 (implementation can be found at:
https://bitbucket.org/hlindhor/defba-python-package) as well as MATLAB R2016a (implementation
is available at https://github.com/alexandra-m-reimers/deFBA) for reading and writing resource
allocation models using our SBML specification as well as for solving deFBA problems. We would
like to note that these models are strongly organism-dependent. Therefore, the modeler is still
required to decide which key processes are modeled and which level of detail is used for their
particular application.

https://bitbucket.org/hlindhor/defba-python-package
https://github.com/alexandra-m-reimers/deFBA
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Figure 1. Protocol for generating a deFBA model. From an annotated genome sequence (a) of
the organism of interest the metabolic network (b) is reconstructed following instructions in [15].
Given the gene-reaction mapping and the annotated genome sequence, the enzymes and ribosomes (c);
and their synthesis reactions are added to the stoichiometric matrix (see Section 4). Next, the biomass
composition constraints (d) should be set up using information from the biomass objective function of
the metabolic network model (see Section 5). Then reaction turnover rates (e) sourced from literature
and online databases should be added (see Section 6). Lastly but most importantly, the deFBA model
should be fine tuned to match experimental growth rates (f) obtained in the laboratory (see Section 7).
Images retrieved from: (a) http://goo.gl/aBNfPz [16,17]; (b) http://www.genome.jp/kegg-bin/show_
pathway?map01100 [18]; (c) http://www.genome.jp/kegg-bin/show_pathway?map01100 [18], http:
//pdb101.rcsb.org/motm/10 [19], https://swissmodel.expasy.org/repository/uniprot/P04806 [20].

2. Methods

The dynamic enzyme-cost flux balance analysis models a metabolic reaction network coupled with
gene expression as a dynamic optimization problem. By assuming the system to be self-optimizing
for growth, regulatory features of the network, which are often not known in detail, need not be
explicitly included in the model. Instead, the reaction fluxes are used as decision variables for the
optimization problem. We present very shortly the mathematical notation of deFBA, so that the reader
can understand the problems we face when building these models.

We will use sets of indices to denote submatrices and subvectors. For instance, SA,∗ denotes the
submatrix of S corresponding to the rows in the set A and all columns, while vRx denotes the subvector
of v with the entries at the indices inRx. Furthermore, we use |A| to denote the number of elements of
a set A.

The model consists of n species divided into four different groups:

• the set of external species Y , present in the environment (e.g., carbon sources, oxygen, nitrogen),
with corresponding molar amounts y(t) ∈ R|Y|≥0 , ∀t ≥ 0,

http://goo.gl/aBNfPz
http://www.genome.jp/kegg-bin/show_pathway?map01100
http://www.genome.jp/kegg-bin/show_pathway?map01100
http://www.genome.jp/kegg-bin/show_pathway?map01100
http://pdb101.rcsb.org/motm/10
http://pdb101.rcsb.org/motm/10
https://swissmodel.expasy.org/repository/uniprot/P04806
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• the set of internal metabolic species X acting as precursors for the production of biomass (e.g., ATP,
NADH, amino acids), with corresponding molar amounts x(t) ∈ R|X |≥0 , ∀t ≥ 0,

• the set of storage species C, which save energy for later usage (e.g., starch, glycogen),
with corresponding molar amounts c(t) ∈ R|C|≥0, ∀t ≥ 0,

• the set of macromolecules P , which are catalytic enzymes or necessary cellular building blocks,
with corresponding molar amounts p(t) ∈ R|P|≥0 , ∀t ≥ 0,

with n = |Y|+ |X |+ |C|+ |P|, [y] = [x] = [c] = [p] = mmol.
The deFBA model is a dynamic model and hence, all variables described above are considered as

functions of time. As in most constraint-based modeling frameworks for metabolism, deFBA assumes
that the cell has evolved to maximize its growth in the form of maximizing total biomass at each time
point in the simulation period. Thus, we use the objective weights bi, which are typically identical to the
molecular weights wi, [bi] = [wi] = g/mmol, for all macromolecules P to define the objective biomass
Bo until end-time Tend, [Tend] = h, as

∫ Tend

0
Bo(t) dt =

∫ Tend

0
bT
P p(t) dt. (1)

Additionally, we define the total biomass Bt(t) by adding the weight of the storage

Bt(t) = Bo(t) + wT
C c(t). (2)

The optimization problem is constructed with the assumption that reaction rates (fluxes) vi(t),
[vi(t)] = mmol/h, which are also time-dependent, are chosen to maximize the biomass accumulation
over the simulation time [0, Tend] given the initial macromolecule amounts p0. The objective function is
thus constructed as the biomass integral

max
v(t)

B(p0, Tend) = max
v(t)

∫ Tend

0
bT
P p(t) dt, (3)

in which we use the objective biomass Equation (1).
Note that, although in our formulation storage species are not part of the objective biomass,

the deFBA formalism does not strictly prohibit this. This means that, if for the modeled organism the
storage should be part of the objective biomass, this can be incorporated. Furthermore, note that we
allow some of the objective weights bi to be zero, in order to account, e.g., for the possibility that the
modeled organism secretes enzymes that then catalyze external reactions.

As with the species we differentiate the r reactions into four groups

• the set of exchange and external reactionsRy, which transport matter between the cell and the
environment or convert external species into each other, with corresponding fluxes vRy(t) ∈ R|Ry |,
∀t ≥ 0,

• the set of internal metabolic reactions Rx, which convert internal metabolites into each other,
with corresponding fluxes vRx (t) ∈ R|Rx |, ∀t ≥ 0,

• the set of storage reactions Rc, which convert between internal metabolites and storage,
with corresponding fluxes vRc(t) ∈ R|Rc |, ∀t ≥ 0,

• the set of biomass reactions Rp, which synthesize macromolecules from internal metabolite

precursors, with corresponding fluxes vRp(t) ∈ R|Rp |
≥0 , ∀t ≥ 0,

where r = |Ry|+ |Rx|+ |Rc|+ |Rp|, and the set of all reactionsR is given byR = Ry ∪Rx ∪Rc ∪Rp.
We note that in deFBA models each reactionRp is producing a biomass component, as opposed

to regular FBA models, which only maximize the flux through a single biomass producing reaction.
The differential equations describing the dynamics of the species are given by the stoichiometric

matrix S ∈ Rn×r as
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d
dt




y(t)
x(t)
c(t)
p(t)


 = S




vRy(t)
vRx (t)
vRc(t)
vRp(t)


 =




SY ,Ry vRy(t)
SX ,Ry vRy(t) + SX ,Rx vRx (t) + SX ,Rc vRc(t) + SX ,Rp vRp(t)

SC,Rc vRc(t)
SP ,Rp vRp(t)


 , (4)

for all t ≥ 0, where the entries Si,j give the stoichiometry of species i in reaction j.
The complexity of the problem is reduced using a quasi-steady-state approximation for the

internal metabolites as

d
dt

x(t) = 0⇔ SX ,Ry vRy(t) + SX ,Rx vRx (t) + SX ,Rc vRc(t) + SX ,Rp vRp(t) = 0, ∀t ≥ 0. (5)

Furthermore, flux constraints which are independent of enzymatic capacity can be added as

vmin ≤ v(t) ≤ vmax, ∀t ≥ 0. (6)

In flux balance analysis (FBA) [21,22], where only the part of the system corresponding to internal
and exchange reactions is modeled and a static biomass objective function is maximized, these box
constraints are necessary to limit the growth yield, defined as the flux through the biomass reaction.
For our application, the limiting factor for the growth rate is the capacity of the enzymes to catalyze
the reactions, depending on the catalytic constants kcat. Individual enzymes may catalyze multiple
reactions. Hence, we denote the set of reactions catalyzed by the enzyme Pi as

cat(Pi) = {Rj | Pi catalyzesRj}

and constrain the reactions fluxes via

∑
Rj∈cat(Pi)

∣∣∣∣∣
vRj(t)

k
±Rj
cat

∣∣∣∣∣ ≤ pi(t), ∀t ≥ 0,

with the forward (backward) constant k
+Rj
cat (k

−Rj
cat ), [k

±Rj
cat ] = h−1. Similarly, the amount of ribosome

constrains the total rate of protein synthesis in the model. All these constraints can be formulated
linearly as

HCv(t) ≤ HE p(t), ∀t ≥ 0, (7)

with the capacity matrix HC containing the catalytic constants and the filter matrix HE containing exactly
one non-zero entry per row. An example of how to construct the matrices HC and HE for the model
introduced in Section 8 can be found in the Supplements. The enzyme capacity constraint Inequality (7)
must be satisfied at all times. Assuming any pathway from nutrients to biomass contains at least one
reaction limited by an enzyme, the rate of this reaction will be limiting and thus the growth rate will
be finite at all times.

In addition to enzymes and ribosomes, deFBA models also include noncatalytic biomass.
These are macromolecules of the cell that fulfill no immediate catalytic activity, such as the cell
wall or the membrane, but are nevertheless crucial for reproduction and their synthesis consumes
cellular resources. To model this, we impose a constraint to enforce the production of a certain
noncatalytic biomass component in a proportional way with the catalytic biomass. We call these
species quota compounds. As an example, consider a quota macromolecule Ps and assume it must make
up 20% of the total biomass Bt at any time point t ≥ 0. We express this as

ws ps(t) ≥ φsBt(t), (8)

with φs = 0.2. We call the according matrix formulation the biomass composition constraint and write
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HB

(
c(t)
p(t)

)
≤ 0, ∀t ≥ 0. (9)

An example of HB for the model in Section 8 can be found in the Supplements.
Finally, since deFBA models do not include all resource and energy consuming processes in the

cell, an ATP-maintenance reaction may be used to tune the model-derived growth rate and represent
additional unmodeled energy sinks. An ATP-maintenance reaction hydrolyzes ATP as

ATP→ ADP + Pi.

These reactions are typically enforced proportionally to the total biomass. Thus we assign each
maintenance reactionRm a maintenance coefficient ψm, [ψm] = mmol/(g · h), and write

vRm(t) ≥ ψmBt(t)⇔ v(t) ≥ HM

(
c(t)
p(t)

)
, ∀t ≥ 0. (10)

An example of HM for the model in Section 8 can be found in the Supplements.
We do not include the maintenance reactions as an individual class of reactions, as we are usually

only handling very few of them in comparison to other reactions. The maintenance reactions will thus
typically be a subset of the metabolic reaction setRx.

To formulate the dynamic optimization problem we need to choose initial conditions for the
external species y0, storage species c0, and the macromolecules p0. In many cases, one can assume
that cells are adapted to achieve maximum growth rate in a certain medium in which they have been
cultured before the start of the process modeled by deFBA. To obtain the biomass composition in these
cases, a good strategy is to solve an RBA problem [2] with extracellular species amounts y0 based on
the preculture medium, yielding storage and macromolecule amounts c0(y0) and p0(y0) for optimal
growth in this medium. The initial values are then set as

y(0) = y0, c(0) = c0(y0), p(0) = p0(y0). (11)

The metabolites x(t) operate in quasi steady-state (see Equation (14)) and thus do not need initial
values. The complete deFBA problem then reads

max
v(t)

∫ Tend

0
Bo(t) dt =

∫ Tend

0
bT
P p(t) dt (12)

s.t.
d
dt




y(t)
x(t)
c(t)
p(t)


 = S




vRy(t)
vRx (t)
vRc(t)
vRp(t)


 , ∀t ≥ 0 (13)

d
dt

x(t) = 0, ∀t ≥ 0 (14)

vmin ≤ v(t) ≤ vmax, ∀t ≥ 0 (15)

HCv(t) ≤ HE p(t), ∀t ≥ 0 (16)

HB

(
c(t)
p(t)

)
≤ 0, ∀t ≥ 0 (17)

v(t) ≥ HM

(
c(t)
p(t)

)
, ∀t ≥ 0 (18)

y(0) = y0, c(0) = c0, p(0) = p0 (19)

y(t), c(t), p(t) ≥ 0, ∀t ≥ 0 (20)
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This dynamic optimization problem can be solved by discretizing time using a collocation
method [8]. This way the problem is cast into a linear program (LP), which can be solved using
standard commercial solvers such as CPLEX or Gurobi or open source solvers such as cvxopt [23]
or the more numerically stable SoPlex [24–26]. The linearity of the problem is given by modeling
molar amounts of species instead of concentrations, see [8] for further details. With respect to the
computational and numerical details of solving such problems, we refer the reader to [8], and to [10]
for a large scale example.

3. Model Prerequisites

The most important prerequisite for building a metabolic resource allocation model is a
(genome-scale) metabolic reconstruction of the organism of interest. As we will see in the following
sections, key ingredients that this reconstruction should contain are

• the reactions of central carbon metabolism,
• the reactions of the amino acid synthesis pathways,
• the pathways for the biosynthesis of precursors of structural cell components (e.g., lipids for

the membrane),
• a gene-reaction mapping,
• an accurate biomass objective function (if quota compounds are to be included).

Table 1. Databases where the necessary information needed to build a metabolic resource allocation
model can be found.

Resource Link Reference

Annotated genome sequences
Genbank https://www.ncbi.nlm.nih.gov/genbank/ Benson et al. [27]
UniProtKB http://www.uniprot.org/ The UniProt Consortium [28]
Metabolic network reconstructions
BiGG http://bigg.ucsd.edu/ King et al. [29]
BioModels https://www.ebi.ac.uk/biomodels-main/ Juty et al. [30]
ModelSEED http://modelseed.org/ Devoid et al. [31]
KEGG http://www.genome.jp/kegg/pathway.html Kanehisa and Goto [18]
Pathway Tools http://bioinformatics.ai.sri.com/ptools/ Karp et al. [32]
Enzyme subunit stoichiometry
UniProtKB http://www.uniprot.org/ The UniProt Consortium [28]
Ribosome composition
Ribosomal Protein Gene Database http://ribosome.med.miyazaki-u.ac.jp/ Nakao et al. [33]
KEGG http://www.genome.jp/kegg/ Kanehisa and Goto [18]
Quantitative proteomics datasets
MaxQuant http://maxqb.biochem.mpg.de/mxdb/ Schaab et al. [34]
Proteomaps https://www.proteomaps.net/index.html Liebermeister et al. [35]
Turnover rates
BRENDA http://www.BRENDA-enzymes.org/ Schomburg et al. [36]
SABIO-RK http://sabio.villa-bosch.de/ Wittig et al. [37]

A description of how exactly to come up with such a genome-scale metabolic reconstruction is
out of the scope of this article. To date, more than 2600 functional draft reconstructions have been
generated [38] and many of them can be retrieved from online databases such as BioModels [30,39–41].
If there exists no genome-scale metabolic reconstruction for the organism of interest, but the full
genome sequence of the organism is available, the protocol of Thiele et al. [15] can be followed in order
to generate the metabolic network reconstruction.

One remark we would like to make is that it may not be possible to simulate a complete
genome-scale deFBA model due to the size of the resulting linear program. While RBA allows
simulation of steady-state resource allocation in genome-scale networks [42], the dynamic approaches
like deFBA are currently constrained to smaller sizes. Networks with up to 500 metabolic reactions can
be successfully simulated with deFBA as demonstrated in [10]. If the starting metabolic network is too

https://www.ncbi.nlm.nih.gov/genbank/
http://www.uniprot.org/
http://bigg.ucsd.edu/
https://www.ebi.ac.uk/biomodels-main/
http://modelseed.org/
http://www.genome.jp/kegg/pathway.html
http://bioinformatics.ai.sri.com/ptools/
http://www.uniprot.org/
http://ribosome.med.miyazaki-u.ac.jp/
http://www.genome.jp/kegg/
http://maxqb.biochem.mpg.de/mxdb/
https://www.proteomaps.net/index.html
http://www.BRENDA-enzymes.org/
http://sabio.villa-bosch.de/
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large, tools such as the minimal network finder in [43] or procedures as described in [44,45] can be
used to reduce the size of the network while keeping desired functionalities in the model. We note
that, although the model formalism does not prohibit it in any way, lumping of reactions for model
reduction as done in [46] is difficult within the scope of resource allocation models. The difficulty
arises in deciding how far the lumping should go, but more importantly in adjusting the production
cost of the lumped enzymes as well as the turnover rate. The cost adjustment difficulty is brought in
particular by lumping reactions that share enzymes with other pathways.

Another key prerequisite of a deFBA model are the annotated amino acid sequences of all the
genes present in the model, as we will explain next.

4. Building the Protein Production Reactions

Any good quality genome-scale metabolic reconstruction contains a gene-reaction mapping.
Such a mapping describes which genes are involved in the catalysis of each reaction. In addition,
it offers information about isoenzymes, i.e., enzymes that differ in amino acid sequence but catalyze
the same reaction. In the following subsections we will explain how to make use of the gene-reaction
mapping in order to construct the protein synthesis reactions for a deFBA model.

4.1. The Case of Enzymes Encoded by One Gene Only

To build any protein production reaction using the gene-reaction mapping the key ingredient is
a database of all genes to be included in the model and their corresponding amino acid sequences.
This can be obtained as a FASTA file from online databases such as Genbank [27] or UniProt [47].
A FASTA file is formatted such that it represents either nucleotide or peptide sequences using
single-letter codes. The advantage of using UniProt is that, through the Java API, one can automatically
access the sequences, as well as information about the Enzyme Commission number (EC number) [48]
or sometimes even subunit stoichiometry for enzymes. There also exist organism-specific databases
where this information can be retrieved. To give some examples, in the case of Saccharomyces cerevisiae
one could obtain such a FASTA file also from the Saccharomyces Genome Database [17], while for
cyanobacteria one could use Cyanobase [49].

To build the synthesis reaction for an enzyme encoded by exactly one gene, we look up the
corresponding entry in the FASTA file, compute its amino acid count, and set the amino acids with
their respective counts as reactants for the production reaction. Additional reactants are then the
energy cofactors needed to grow the peptide chain: per amino acid added, one ATP is hydrolyzed
into AMP and PPi, and two GTP molecules are hydrolyzed into GDP and Pi [50]. Depending on the
granularity of the model, the modeler may decide to include tRNA-amino acid complexes, cofactors,
or prosthetic groups in the enzyme synthesis reactions. However, this involves additional manual
curation and in general it cannot be automated. As an alternative, these can be included as quota
compounds as detailed in Section 5.

For small scale models and toy models where the different energy cofactors are not modeled (e.g.,
GTP), we recommend merging the energy requirements into a single term that is dependent on the
enzyme size, as done in the example in Section 8.

Another important factor that comes into play is whether the enzyme is a monomer, i.e., if only
one copy of the corresponding gene is needed to build the enzyme. Otherwise the amount of copies
of the gene required to produce the enzyme has to be accounted for in the production reaction.
This information can be often retrieved from the UniProt database. As an example, if the enzyme
is a homotrimer, i.e., three copies of the gene are needed to build it, then the stoichiometries of
the amino acids and the energy cofactors in the production reaction have to be multiplied by three.
The importance of taking into account such information can be seen in the cost of producing such an
enzyme. If there are alternative pathways, not taking into account these extra costs may result in the
optimization approach predicting a wrong pathway choice.
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4.2. The Case of Enzyme Complexes Encoded by Several Genes

Suppose we want to build the production reaction for an enzyme encoded by three genes as:
g1 and g2 and g3. In this case, we compute the amino acid counts for all three genes, add them up and
use them as reactants as described in Section 4.1, while making sure we also adapt the ATP and GTP
requirements. This strategy is however only correct if the peptides encoded by each gene participate
in the enzyme as monomers. This is not always the case, and often peptides encoded by one gene
participate in enzymes as dimers or trimers.

An example is the enzyme isocitrate dehydrogenase in yeast, composed of the gene products
of YOR136W and YNL037C, where the corresponding gene products both participate as dimers.
Hence the amino acid counts for each gene product should be multiplied by two and then added up
when setting up the synthesis reaction (see Tables A1 and A2 in the Appendix A) Therefore, in general,
before we add up the amino acid counts for all genes, we have to multiply the counts with the factor
with which they participate in the enzyme.

Information about the stoichiometry of individual peptides within enzymes is unfortunately not
readily incorporated in genome-scale metabolic network reconstructions and can often only be found
through extensive literature research or by querying the UniProt database.

4.3. The Case of Isoenzymes

Isoenzymes usually arise as a result of partial genome duplication and subsequent point mutations
or insertion/deletion events in the course of evolution. They usually have different kinetic properties
and are subject to different regulatory influences. Isoenzymes are important features of metabolism
that allow fine-tuning of reactions rates in a way that satisfies the exact needs of the organism in
different environments and at different stages of development or of the cell cycle.

Isoenzymes also play a special role in a deFBA model. To see this, let us assume we have two
enzymes e1 and e2 that catalyze the same irreversible reaction r. In the deFBA model we would then
build two enzyme production reactions with different amino acid requirements for the two enzymes
and then the sum of the amounts of these enzymes will bound the flux through reaction r together
with the corresponding turnover rates. For simplicity, however, we recommend that the reaction r
is transformed into two identical reactions r1 and r2, each catalyzed by one of the two isoenzymes,
and whose fluxes are bounded as

vr1(t) ≤ kr1
cat pe1(t), ∀t ≥ 0,

vr2(t) ≤ kr2
cat pe2(t), ∀t ≥ 0.

Having mentioned turnover rates, it is important to keep in mind that usually isoenzymes are
assigned the same Enzyme Commission (EC) number. This means that, when searching turnover
rates for isoenzymes we are usually bound to find the same values in databases such as BRENDA [36],
although in reality the turnover rates may be different. This is an inherent problem with EC numbers
as they are mapping from a reaction to a family of enzymes catalyzing this reaction. Therefore, one can
usually only find a single kcat value for a reaction even if several isoenzymes are known. Without more
specific information, we are forced to use the same catalytic constant for all isoenzymes.

In this situation, the only distinguishing feature of isoenzymes from the perspective of resource
allocation, is their amino acid and translation cost. However, if they do not make a significant difference
in the complexity of the resulting linear program, it is recommended that all isoenzymes, including the
longer ones, are represented separately in the system.

The way the isoenzyme production reactions are built depends on their gene structure,
as described in Sections 4.1 and 4.2.
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4.4. The Ribosome

In deFBA models, the ribosome is assumed to simply have catalytic function just as any other
enzyme. The amount of ribosome constrains the combined fluxes through the protein production
reactions via different turnover rates.

Considering the ribosome to be an “enzyme” encoded by several genes, its production reaction
can be modeled as described in Section 4.2 above. As opposed to usual enzymes for which it may be
difficult to find the stoichiometry of individual peptides, the ribosomes are rather well studied and
information about their composition can be found for many organisms in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) resource [18]. In addition to the ribosomal proteins, also the ribosomal
RNA needs to be taken into account for the production reaction. Information about this can also be
found in the KEGG resource.

The ribosome translation rate is a key parameter in a deFBA model and it has very high impact
on the tradeoffs that govern the choice of one model behavior over another. This parameter directly
affects the required ribosome fraction to sustain a certain growth rate.

Ribosome translation rates vary between prokaryotes and eukaryotes and they even vary with
growth rate within the same organism [51]. They are usually measured in attached amino acids per
second, and hence the efficiency of the ribosome for building different enzymes is dependent on this
parameter, but also on the respective enzymes’ lengths. In general the formula for computing the kcat

of the ribosome for the production of a protein is thus given by

kcat =
a
l

,

where a is the ribosome rate in amino acids per unit of time, and l is the length of the protein in
amino acids. For instance, if we consider the translation of one enzyme of 100 amino acids by a
bacterial ribosome with a rate of 15 amino acids per second then, assuming the enzyme does not
compete with other proteins for the ribosome, the enzyme will be translated with a catalytic constant
of 15 s−1/100 = 540 h−1, i.e., a maximal rate of 540 enzyme units per hour and ribosome unit.

4.5. Compartmentalization

Eukaryotic cells, as opposed to prokaryotic ones, are usually compartmentalized (into cytosol,
mitochondrion etc.). This compartmentalization plays a role in the way enzymes are built, in the sense
that there may be identical enzymes that are active in the cytosol as well as in the mitochondrion for
example. In this case, two production reactions should be used, one for each compartment, since an
enzyme that is in the cytosol cannot catalyze a reaction in the mitochondrion.

We give an example from the Yeast 6 network [52]. In this metabolic network there are two
fumarase reactions annotated—one cytosolic and one mitochondrial, both with the same gene
association—YPL262W. Therefore, in the deFBA model, we must have two fumarase enzymes,
cytosolic-fumarase and mitochondrial-fumarase. These enzymes will have each their own production
reaction and will only catalyze reactions in their respective compartments.

5. Setting Up Quota Compounds

Although the catalytic biomass is the main part of the model that is responsible for the
autocatalytic cycle, there are several noncatalytic components (which we call quota compounds) that are
also needed in a full cell model. Examples are DNA, RNA, cell wall or membrane. Without accounting
for the growth and duplication of these components we would be neglecting a significant biosynthetic
energy requirement.

As explained in Section 2, in the model the production of these compounds is ensured by using
the biomass composition constraint (9). However, the question then arises: what are appropriate
biomass fractions φs that we should impose for these compounds?
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5.1. Constructing Noncatalytic Biomass Requirements

A good place to look for the total biomass fractions that should be dedicated to quota compounds
is the biomass reaction of the metabolic network reconstruction. The stoichiometric coefficients for the
substrates of this artificial reaction describe the average composition of the modeled cell. To better
understand this, let us take a look at the biomass reaction of the Yeast 6 model [52], which we have
reproduced in Table A3 in the Appendix B.

We observe there the main biomass components: proteins (in the form of charged transfer RNAs),
storage (glycogen and trehalose), DNA (dAMP, dCMP, dGMP, dTMP), RNA (AMP, CMP, GMP, UMP),
cell wall (mannan and β-D-glucan), membrane (lumped lipid), other small molecules, and the ATP
energy needed for polymerization. For ease of understanding later on, we denote the biomass reaction
by Rb, the indices of biomass components (reactants of biomass reaction) as Ibio, and the indices of
biomass byproducts (products of biomass reaction) as Ibp. Then the biomass reaction has the form

∑
i∈Ibio

Si,RbXi → 1 g biomass + ∑
i∈Ibp

Si,RbXi,

where Xi denotes the i-th internal metabolite and [Si,Rb ] = mmol/g.
In general, the reactant stoichiometries for the biomass reaction are chosen such that,

when weighted by the corresponding molecular weights wi, they add up to 1, i.e.,

∑
i∈Ibio

Si,Rb wi − ∑
i∈Ibp

Si,Rb wi = 1.

To reduce the number of quota compounds in the model, we lump these together and build
spontaneous reactions that produce the artificial merged quota compounds such as generic cell wall.

As an example, all charged transfer RNAs (whose indices we denote by Iaa−tRNA ⊂ Ibio) would
be consumed to produce one merged protein quota metabolite, and release all the uncharged tRNAs
(indices denoted by ItRNA ⊂ Ibp). In setting up this reaction, we should make sure that we adjust
the stoichiometric coefficients in such a way that, multiplied with the corresponding amino acids’
molecular weights, they add up to one, i.e., we need to divide them by

φprotein = ∑
i∈Iaa−tRNA

SiRb wi.

Thus, the protein quota building reaction will read

∑
i∈Iaa−tRNA

Si,Rb

φprotein
Xi +

SATP,Rb

φprotein
ATP +

SH2O,Rb

φprotein
H2O

→ 1 protein + ∑
i∈ItRNA

Si,Rb

φprotein
Xi +

SADP,Rb

φprotein
ADP +

Sphosphate,Rb

φprotein
phosphate +

SH+ ,Rb

φprotein
H+.

Therefore, for Yeast 6 the corresponding quota production reaction takes a form as shown
in Table A4 in the Appendix B. Please note that we have also added to this reaction the necessary ATP
needed for polymerization, which is the fraction φprotein = 0.466298 of the total ATP consumed in the
original biomass reaction.

After setting up this reaction, the amount of protein quota would be φprotein = 0.466298. However,
of these proteins, some are modeled explicitly as enzymes, and in the next section we will see how to
adjust the φprotein to only require the proteins that are not modeled as enzymes or ribosome. For the
rest of the quota compounds (DNA, RNA, cell wall, membrane, other small molecules) we would
proceed in a similar fashion as for the proteins, with the sole difference that their φi would not need to
be adjusted once computed.
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5.2. The Case of Noncatalytic Proteins

The noncatalytic proteins quota poses a special case because, in the typical biomass reactions, we
only have one component called ’protein’, which encompasses all protein content present in one gram
dry weight of cells. However, we need to distinguish in a deFBA model between proteins that are
explicitly accounted for as enzymes, and not explicitly modeled proteins that should be put into the
protein quota compound.

One way to do this is to find a (genome-scale) quantitative proteomics dataset. If not already
scaled, we normalize the protein amounts in the dataset to add up to 1. We observe that in this dataset
we find two types of proteins corresponding to our model: those included explicitly in the model,
which sum up to a fraction fe, and those not present explicitly in our model, that we call quota proteins,
and which sum up to 1− fe after the normalization of the dataset.

Since we want to adapt the protein quota to only account for the noncatalytic proteins, we adjust
φprotein by multiplying it with the fraction 1− fe of noncatalytic proteins in the dataset.

An important issue that arises here is the growth rate at which the cells were growing when used
for the quantitative proteomics measurement. Several studies show that, for instance, the total amount
of ribosomes grows linearly with the growth rate and that partitioning of proteome strongly varies
with growth rate and growth conditions [53–55]. Since deFBA models an autocatalytic system where
typically exponential growth is the predicted optimal solution, quantitative proteomics datasets from
exponentially growing cultures should be used if available.

Last but not least, we note that the production reaction for noncatalytic protein quota is not
spontaneous. It is catalyzed by the ribosome and competes this way for the ribosome with the enzyme
production reactions. Thus, we have to compute a turnover rate for it as described in Section 4.4 above,
by using the sum of the stoichiometric coefficients of the amino acids (or of the amino acid-tRNA
complexes) as the protein length. The unit of this turnover rate however is not h−1, but mmol−1 · h−1

because of how the lumping reaction is set up.

5.3. Storage

Besides the catalytic macromolecules and the quota described above, most microorganisms also
produce storage macromolecules, cf. Section 2. For some of them, like cyanobacteria, the storage is
essential to survive the night period, when no energy from the sun is present. For others, like yeast,
the storage is used to survive through periods of starvation or as an energetic reserve for the production
of new enzymes and transporters as a consequence of sudden changes in the environment. Therefore,
we strongly advise to include the storage macromolecules in the resource allocation model if it is
going to be used for dynamic simulations. Looking at the biomass reaction of Yeast 6 in Table A3 in
the Appendix B, we observe that glycogen and trehalose are included as reaction substrates. In fact,
these are storage macromolecules in yeast and should directly be included as such in a resource
allocation model.

There are a number of possible choices how to take the specific role of storage molecules into
account for these models. If there is evidence that a certain fraction of storage molecules is always
present in the situations to be described by the model, one could in principle include them as quota
compounds with a biomass composition constraint. However, this has to be done with caution because
this constraint will then prohibit the model from using up storage molecules in a situation where it
would actually be needed. Also, for most cases, we recommend not to include the weight of storage
in the biomass objective function (see Equations (2) and (3)), because inclusion of storage may lead
to unrealistic growth modes in some situations as discussed in [56]. Nevertheless, depending on the
usage of storage in the model, one can of course add the storage molecules to the objective function
if needed. In both cases the storage should be included in the total biomass for scaling of biomass
dependent constraints, e.g., maintenance reactions.
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6. Assigning Reaction Turnover Rates

Turnover rates are necessary parameters in a resource allocation model. They are involved in the
capacity constraints on reaction fluxes using the amount of their catalyzing enzymes.

Such turnover rates can be derived from experimental data as explained in [57]. Alternatively,
a recent study has shown that turnover rates reported in online databases are a good enough
approximation of in vivo turnover rates [58].

The two main databases for retrieving turnover rates are BRENDA [36] and SABIO-RK [37].
While BRENDA stores both manually curated as well as text mining data, SABIO-RK only offers data
that was either manually extracted from the literature or directly submitted by experimenters. As a
result, BRENDA offers a larger amount of turnover rates than SABIO-RK. On the other hand, the text
mining entries may not have the same quality as the manually curated ones and the incorporation
of these values in resource allocation models should be done with care and if possible these values
should be manually checked. Both databases have automated retrieval options.

Some simple rules of thumb for retrieving turnover rates from these databases are that one should
filter for wild type, non-recombinant values, and, if possible, should make sure that the measurements
were done at (nearly) physiological pH. This typically narrows down the results significantly such that
alternatives can be investigated or a median of the remaining values can be used, in a similar fashion
as explained below.

Although large amounts of biochemical data are now available, usually not all turnover rates
for the organism of interest can be found. We recommend that in this case, if turnover rates for a
given enzyme from other organisms are found, that these should be used. Moreover, it is important to
perform a sensitivity analysis to check the influence of these unknown parameters on the results.

The question then arises: which of the available other organism turnover rates should be used?
Should it be a mean or a median of all found turnover rates for the respective enzyme, or the
turnover rate from the organism that has the most sequence similarity with the target organism
within that protein?

To answer this question, we have automatically retrieved wild type turnover rates from the
BRENDA database of all enzymes for three organisms: Saccharomyces cerevisiae, Escherichia coli,
and Bacillus subtilis. In a second iteration, we retrieved turnover rates of all enzymes from all other
organisms, excluding the organism of interest, and computed the mean, median, and best sequence
match with the organism of interest kcat on a per enzyme basis. The best sequence match was obtained
by computing the alignment score using the Needleman-Wunsch algorithm [59] with the BLOSUM62
scoring matrix [60]. We computed the Pearson correlation coefficients between the logarithms of kcat

values from the organism of interest and the logarithms of the mean, median and best sequence match
kcat values obtained from other organisms. Only values corresponding to the same catalyzed reaction
were compared. The resulting correlation coefficients are displayed in Table 2.

Table 2. Pearson correlation coefficients between the logarithms of kcat values from the organism of
interest and the logarithms of the mean, median and best sequence match kcat values obtained from
other organisms.

Organism Median Mean Best Sequence Match

Saccharomyces cerevisiae 0.701 0.650 0.526
Escherichia coli 0.808 0.756 0.606
Bacillus subtilis 0.762 0.708 0.679

We observe that, in the cases we have analyzed, the medians of all turnover rates enzyme-wise is
the best approximation for the actual turnover rates in the organism of interest. Moreover, the order of
magnitude correlation coefficients are very high and the p-values we get are all in the order of 10−14

or lower, indicating that indeed these median turnover rates from other organisms are good enough
approximations of the real kcat values, if no specific data is available for the organism of interest.
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To give an idea of the spread of the turnover rate data, we show in Figure 2 a plot of the kcat

values in yeast versus the median kcat values from other organisms.
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Figure 2. Turnover rates in yeast versus the median kcat values from other organisms.

7. Validating the Model Using Experimental Data

Once the model has been constructed, a first step before further investigations is its validation
using experimental data. This can stretch from fairly basic matching of growth rates obtained from
batch experiments to matching of reaction fluxes if measurements of these are available.

In general, the growth rate obtained in the model under constant conditions should provide an
upper bound on the growth rate measured in the lab, since the model gives the optimal behavior of
the metabolism, which may not always be observed in the lab. To check that this is the case, we need
data from an exponentially growing batch culture of the organism of interest at saturating nutrient
concentrations. In this case, it is sufficient to compute the growth rate of the culture µexp as the slope
of the logarithm of the optical density (OD) measurements versus time, as in Figure 1f. In addition,
we also need to compute the instantaneous growth rate of the model (under the same conditions as in
the experiments), which we define as

µmodel(t) :=
1

ti+1 − ti
ln
(

Bt(ti+1)

Bt(ti)

)
, ∀t ∈ (ti, ti+1). (21)

We observe that, if nutrients are saturating, µmodel(t) is constant, and hence we will refer to it in
this case as simply µmodel.

If µmodel is smaller than µexp, the problem lies very likely in the kcat values and these should then
be checked manually. If this is not the case, µmodel can be tuned to µexp by forcing a biomass dependent
flux through a suited maintenance reaction, e.g., hydrolysis of ATP into ADP and phosphate. Note that
the flux we need to force through maintenance strongly depends on how detailed the model is and
how much lumping of reactions has been done. We therefore cannot provide an order of magnitude
approximation for how much flux should be forced. Modelers should however be aware that the
need for a large ATP maintenance forced flux to match experimental growth rates is an indication of
model errors or poor model quality. Using a maintenance reaction makes sense also from a biological
perspective, since one can usually not claim that the constructed resource allocation model covers all
energy expending processes in an actual cell, so such an ATP maintenance reaction serves the purpose
of modeling this remaining energy expenditure.
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8. The SBML Representation of a Resource Allocation Model

For metabolic network models used together with constraint-based modeling, it is standard to
define them in the systems biology markup language (SBML), an XML-based way of representing
models (http://sbml.org/Main_Page). However, there is so far no specific way of representing resource
allocation models, which come with several extra ingredients in addition to the metabolic network
part. Therefore, in this section we propose a way of making use of the existing SBML capabilities for
representing resource allocation models [13]. We illustrate this proposal using a toy resource allocation
model listed in Table 3 for which we attach the SBML representation in the Supplement.

Table 3. List of species, reactions, and catalysis relationships for the toy model whose SBML
representation can be found in the Supplement. Reaction 6 is the maintenance reaction and is considered
spontaneous. Reaction 7 has different turnover rates for the forward (f) and reverse (r) directions.
ETrans2 is a transporter complex. S is a structural quota component and R is the ribosome.

External Metabolites: N1, N2, O2
Internal Metabolites: N, AA, ATP
Macromolecules: Stor, ETrans1, ETrans2, EMetab1, EMetab2, EStor, S, R

No. Reactions Catalysed By Turnover Rate

1 N1 + O2 ↔ N ETrans1 1800
2 N2 + O2 ↔ N ETrans2 2400
3 N → AA + ATP EMetab1 2000
4 N → AA + ATP EMetab2 2500
5 N → AA + 2 ATP EMetab2 2000
6 50 AA + 60 ATP → ∅
7 200 AA + 300 ATP ↔ Stor EStor f: 25, r: 30
8 100 AA + 400 ATP → ETrans1 R 10
9 160 AA + 640 ATP → ETrans2 R 6.25
10 200 AA + 800 ATP → EMetab1 R 5
11 160 AA + 640 ATP → EMetab2 R 6.25
12 150 AA + 500 ATP → EStor R 5
13 1500 AA + 200 ATP → S R 10
14 1000 AA + 4000 ATP → R R 1

8.1. Compartments

We keep any compartments present from the original reconstruction of the metabolic network.
If possible, we place species objects for the additional gene products in the compartments in which the
corresponding enzymes are acting. This means, e.g., that enzymes are located where the reactions they
catalyze are happening. Species without any real physical location in the model, e.g., lumped species,
can be placed arbitrarily in any compartment.

Note that the compartments are not used in the formulation of the deFBA problem, besides the
identification of external species.

8.2. Species

As postulated by the SBML standard, each species object must contain the attributes:

• id
• compartment
• constant (true or false)
• boundaryCondition (true or false)
• hasOnlySubstanceUnits (true or false)
• initialAmount

All species in the model also contain a ram:species annotation. We distinguish between limiting
extracellular metabolites, for which the amount changes by cellular uptake (as N1 and N2 in the
toy model), nonlimiting extracellular metabolites, where the amount is assumed to be unchanged

http://sbml.org/Main_Page
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by cellular uptake (as O2 in the toy model), intracellular metabolites (N, AA, ATP), storage (Stor),
and biomass components (ETrans1, ETrans2, EMetab1, EMetab2, EStor, S, R).

As per SBML specifications, a boundaryCondition value of true means a differential equation
derived from the reaction definitions should not be generated for the species. Thus, in RAM,
the nonlimiting extracellular species should have boundaryCondition = “true” as the amount of
species at the systems boundary cannot be changed by the reactions, while all other species should
have boundaryCondition = “false”. The mandatory attribute constant is used in RAM, as per SBML
definition, to specify whether a species amount is assumed to be changing or not in a deFBA simulation.
With the deFBA approach this can only be constant = “true” for nonlimiting boundary species. Still,
these species should only have constant = “false” if they are changed by extracellular processes such
as oxygen through gas exchange. All other species will always have constant = “false”.

In order to generate the mathematical model for the deFBA problem in terms of molar
amounts, each external, storage, and biomass species element must be assigned an initial value,
either by setting the initialAmount attribute and hasOnlySubstanceUnits = “true”, or by setting
the initialConcentration attribute, hasOnlySubstanceUnits = “false”, and specifying the size
attribute of the respective compartment. Other mathematical models may require less information,
for example for RBA it would be sufficient to specify the amounts or concentrations of the external
species. We show in Table 4 examples on how to set the mandatory species fields for each
metabolite type.

Table 4. Examples for setting species fields for each species type.

ID Compartment Constant Boundary Condition Has Only Substance Units Initial Amount

N1 N1 external false false true 10
O2 O2 external true true true 10
N N cytosol false false true 0

Stor Stor cytosol false false true 0
R R cytosol false false true 0.03364

In addition to the required SBML fields listed above, each species must have a RAM annotation
ram:speciesType specifying its type. We distinguish between the species types

• “extracellular”, which can be either limiting or nonlimiting extracellular species
• “metabolite”, which are species that obey the quasi-steady-state approximation Constraint (5)
• “storage”, which represent the storage species C
• “enzyme”, which represent species P with catalytic role involved in Constraint (7)
• “quota”, which represent quota species P that are enforced using Constraint (9)

The biomass species have additionally an annotation field ram:molecularWeight for storing
their molecular weight wi, an annotation field ram:objectiveWeight for their objective weight
bi, and an annotation field ram:biomassPercentage for their the biomass percentage φi.
The ram:biomassPercentage attribute contains the fractions of the quota components (8) that need to
be enforced at each time point.

Below we show the annotation fields for the ribosome and the structural component as examples.
Ribosome R:

<species id="R" name="Ribosome" compartment="cytosol" initialAmount="0.03364"
constant="false" boundaryCondition="false" hasOnlySubstanceUnits="true">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:species ram:molecularWeight="weight_R" ram:objectiveWeight="weight_R"
ram:biomassPercentage="zero" ram:speciesType="enzyme"/>

</ram:RAM>
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</annotation>
</species>

Structural component S:

<species id="S" name="Structural biomass component" compartment="cytosol"
initialAmount="0.7499" constant="false" boundaryCondition="false"
hasOnlySubstanceUnits="true">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:species ram:molecularWeight="weight_S" ram:objectiveWeight="weight_S"
ram:biomassPercentage="bp_S" ram:speciesType="quota"/>

</ram:RAM>
</annotation>

</species>

Note that “weight_R”, “weight_S”, “zero”, “bp_S” are ids of parameters defined in the list of
parameters of the SBML model.

8.2.1. Guideline to Ensure Uniqueness of Macromolecule IDs

There are some enzymes that can act in different compartments of the cell, cf. Section 4.5.
An example is fumarase, which catalyzes reactions both in the cytosol and in the mitochondrion
in yeast. While we include the respective compartments for the species in their description, a potential
error is to give both enzymes the same id, either in their species or their fbc:geneAssociation
representation. Hence, we suggest to name enzymes in a specific pattern combining, e.g., their name
and their respective location.

If the enzyme is acting in only one compartment we choose its id in the format
“Main_id_[acting-compartment]”. If the enzyme is a transporter between two compartments we
choose “Main_id_[compartment1]_[compartment2]”. If the enzyme is translated from only one gene
(e.g., ETrans1), this represents the main id. For enzyme complexes made of multiple gene products we
suggest simply using “E[id(s) of catalyzed reactions]” as main id (e.g., ETrans2). Of course, the user
can choose these ids freely, but following these suggestions can help with easier evaluation of the
model in deFBA implementations.

8.3. Gene Products

Each catalytic macromolecule is not only present as a species, but also as a gene product, with
the fields fbc:id, fbc:label, and fbc:associatedSpecies. The fbc:id must be unique among
the fbc:geneProduct elements. Hence, we suggest using the same naming conventions as with
the macromolecules. Following the Flux Balance Constraints package version 2 specifications,
the fbc:label field is currently unused. Hence, we suggest to insert the recipe for the creation
of the enzyme(-complex) in this attribute. Lastly, the fbc:associatedSpecies attribute contains the id
of the biomass species associated with this gene product and used for bounding the flux. An example
is ETrans2 from the toy model in Table 3:

<fbc:geneProduct fbc:id="Etrans2" fbc:label="1*GTRANS2 AND 1*GTRANS3"
fbc:associatedSpecies="Etrans2"/>

8.4. Reactions

8.4.1. General Reaction Definition

In the SBML specification, all reaction objects must contain the fields:
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• id
• reversible (true or false)
• fast (false)
• listOfReactants (may be empty)
• listOfProducts (may be empty)

Depending on their type, reactions also include a fbc:geneProductAssociation and a
ram:reaction annotation. Additionally, we recommend adding the EC number, if known, to the
reactions in the form of a MIRIAM annotation [61]:

<rdf:RDF xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="#thx1138">
<bqbiol:isVersionOf>

<rdf:Bag>
<rdf:li rdf:resource="http://identifiers.org/ec-code/2.7.1.17"/>

</rdf:Bag>
</bqbiol:isVersionOf>

</rdf:Description>
</rdf:RDF>

The id must be unique for each reaction. For reactions producing biomass we recommend starting
the id with “synth_” for easier reading and reduced chance of assigning the same id multiple times.
Furthermore, this makes it easier to distinguish between the reactions from the original metabolic
network model and the deFBA additions. The fast attribute will be removed in SBML Level 3 Version 2
(L3V2). Hence, we set it to “false” for now and we will delete it all together in an upcoming version
once SBML L3V2 is released.

The fbc:geneProductAssociation is used to map catalysis relationships between the enzymes
(which are also gene products, see above) and the reactions. The fbc:geneProductAssociation
supports the inclusion of multiple fbc:geneProductRef elements connected by fbc:and and fbc:or
nodes. While this can certainly be useful for certain model types, we decided to create the complex
enzymes as stated above to eliminate the fbc:and connections and save the gene codes in the fbc:labels.
Instead of including fbc:or elements for isoenzymes, we copy the catalyzed reaction until each
reaction is catalyzed by exactly one fbc:geneProductRef (cf. Section 4.3). This way we ensure a
unique interpretation of the SBML file and can easier build the deFBA model. All reactions without
a fbc:geneProductAssociation are considered spontaneous (e.g., the ATP maintenance reaction),
and hence their rates are not constrained by any enzyme.

The forward and reverse kcat values for each reaction can be found in the ram:reaction annotation,
in the attributes ram:kcatForward and ram:kcatBackward respectively. All irreversible reactions must
have their reversible flag set to “false” and thus their ram:kcatBackward must be set to “zero”.
Typically, the values in the kcatForward and kcatBackward are defined as parameters, and in these
fields the ids of the respective parameters are stored, as in the examples below.

8.4.2. The Maintenance Reactions

Lastly, we explain how to handle maintenance in the SBML representation. Maintenance reactions
are typically part of metabolic resource allocation models, since these models do not account for all
energy expenditures of the cell. The maintenance reactions we consider are all biomass-associated,
i.e., the flux forced through them is dependent on the total biomass at each time point using a fixed
coefficient ψm as described in the Inequality (10). Thus, we add an attribute ram:maintenanceScaling
inside the ram:reaction field, which specifies the coefficient ψm for each reaction. For typical reactions
this field is “zero” as in the case of the metabolic reaction
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<reaction id="Metab1_2" reversible="false" fast="false">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:reaction ram:kcatForward="kcat2" ram:kcatBackward="zero"
ram:maintenanceScaling="zero"/>

</ram:RAM>
</annotation>
<fbc:geneProductAssociation fbc:id="Emetab2">
<fbc:geneProductRef fbc:geneProduct="Emetab2" />

</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="N" stoichiometry="1" constant="true"/>

</listOfReactants>
<listOfProducts>
<speciesReference species="AA" stoichiometry="1" constant="true"/>
<speciesReference species="ATP" stoichiometry="1" constant="true"/>

</listOfProducts>
</reaction>

For the maintenance reaction we have the representation

<reaction id="Maintenance" reversible="false" fast="false">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:reaction ram:kcatForward="zero" ram:kcatBackward="zero"
ram:maintenanceScaling="main"/>

</ram:RAM>
</annotation>
<listOfReactants>
<speciesReference species="AA" stoichiometry="50" constant="true"/>
<speciesReference species="ATP" stoichiometry="60" constant="true"/>

</listOfReactants>
<listOfProducts>
</listOfProducts>

</reaction>

9. Discussion

Dynamic resource allocation models have emerged in recent years as a means of extending the
predictive capabilities of constraint-based models. Such resource allocation models allow investigating
how dynamics of the extracellular environment are reflected inside the metabolism in the form
of cost-benefit tradeoffs of active pathways. This is achieved by extending FBA models in two
directions: (i) accounting for the costs of producing enzymes before these can be used to catalyze their
corresponding reactions; and (ii) taking a dynamic perspective where the levels of these enzymes
change over time in response to changes in the environment.

Such models have a larger predictive power and can predict complex biological behaviors
such as the catabolite repression as demonstrated in [8]. Moreover, a recent genome-scale dynamic
resource allocation study [10] shows that these models can be used to understand the optimality
of glycogen accumulation patterns in cyanobacteria. Such bacteria live in a constantly changing
environment governed by the dynamics of sun light availability. By using dynamic resource allocation
models, it was possible to develop a manifest hypothesis on the biology of cyanobacteria: that their
metabolism is coordinated according to a temporal program that evolved to maximize growth in a
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diurnal environment, and that the circadian clock is the regulatory mechanism that modulates the
transcriptional program of the cell to achieve this metabolic optimum.

Although their large predictive power has already been demonstrated, it is not possible to
use resource allocation models for studying all biological processes connected to the metabolism.
For instance, such models always assume optimality of growth. A scenario where this may not be an
accurate assumption is starvation, when the objective changes more towards maximizing survival
rather than growth. Moreover, starvation triggers different kinetics of nutrient uptake, where stochastic
effects and substrate affinity may play a role. It is, therefore, no longer sufficient to consider only
upper bounds on uptake rates based on enzyme amount and turnover rate, as done in resource
allocation models.

Another limitation of such models may also lie in the fact that, so far, they do not incorporate
any kind of regulatory logic that may also have an impact on the metabolic strategies, in addition to
the resource tradeoffs. Some resource allocation models such as ME models indeed go a step beyond
modeling translation costs and also model transcription. Others, like deFBA or RBA, include such
costs in the form of biomass composition constraints and maintenance.

So far, there exist ME models of E. coli [5] and T. maritima [4], an RBA model of B. subtilis [2,57],
and a deFBA model of S. elongatus [10]. Moreover, we can mention software packages for handling
ME models [6] and deFBA models (Python implementation can be found at: https://bitbucket.
org/hlindhor/defba-python-package; MATLAB implementation is available at https://github.com/
alexandra-m-reimers/deFBA). We therefore felt there is a need in the community for a guideline for
building such models as well as a means to exchange them without losing information.

Therefore, we have provided in this article a list of ingredients of such models, together with
links to the relevant databases where parameters can be found. Every step of this guideline can be
automated except for (i) production of enzyme complexes for which the subunit stoichiometries cannot
yet be automatically retrieved from online databases; (ii) adjustment of protein quota requirements,
which needs a quantitative proteomics dataset; and (iii) maintenance requirements for adjusting
growth rate.

With respect to exchanging metabolic resource allocation models, we have provided here a
specification that is based on SBML and the flux balance constraints package. This specification covers
deFBA and RBA models and we believe that it can be extended to also incorporate ME models.

We believe that our contribution will help extend the use and number of metabolic resource
allocation models as well as exchange of these models among researchers.

Supplementary Materials: The following are available online at www.mdpi.com/2218-1989/7/3/47/s1,
Supplementary S1: A protocol for generating and exchanging (genome-scale) metabolic resource allocation models;
Supplementary SBML S2: resalloc.xml
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Appendix A. Synthesis of Enzyme Complexes Composed From Several Gene Products

Table A1. Amino acid counts for the gene products involved in the synthesis of isocitrate
dehydrogenase in yeast.

YOR136W YNL037C

Ala 29 29
Arg 18 18
Asn 21 19
Asp 15 18
Cys 3 0
Gln 7 8
Glu 19 22
Gly 28 32
His 7 10
Ile 29 32

Leu 20 26
Lys 34 28
Met 4 8
Phe 13 12
Pro 20 13
Ser 33 20
Thr 30 30
Trp 1 2
Tyr 9 8
Val 29 25

Table A2. Synthesis reaction for producing the enzyme isocitrate dehydrogenase in the Yeast 6.06 model.
The two gene products that form this enzyme participate in the complex as dimers. Therefore, the
counts in Table A1 are multiplied by two and added up for the synthesis reaction.

Reactants Stoichiometry Products Stoichiometry

Ala-tRNA(Ala) 116 tRNA(Ala) 116
Arg-tRNA(Arg) 72 tRNA(Arg) 72
Asn-tRNA(Asn) 80 tRNA(Asn) 80
Asp-tRNA(Asp) 66 tRNA(Asp) 66
Cys-tRNA(Cys) 6 tRNA(Cys) 6
Gln-tRNA(Gln) 30 tRNA(Gln) 30
Glu-tRNA(Glu) 82 tRNA(Glu) 82
Gly-tRNA(Gly) 120 tRNA(Gly) 120
His-tRNA(His) 34 tRNA(His) 34
Ile-tRNA(Ile) 122 tRNA(Ile) 122

Leu-tRNA(Leu) 92 tRNA(Leu) 92
Lys-tRNA(Lys) 124 tRNA(Lys) 124
Met-tRNA(Met) 24 tRNA(Met) 24
Phe-tRNA(Phe) 50 tRNA(Phe) 50
Pro-tRNA(Pro) 66 tRNA(Pro) 66
Ser-tRNA(Ser) 106 tRNA(Ser) 106
Thr-tRNA(Thr) 120 tRNA(Thr) 120
Trp-tRNA(Trp) 6 tRNA(Trp) 6
Tyr-tRNA(Tyr) 34 tRNA(Tyr) 34
Val-tRNA(Val) 108 tRNA(Val) 108

ATP 1458 AMP 1458
GTP 2916 GDP 2916
H2O 4374 diphosphate 1458

phosphate 2916
H+ 4374

isocitrate dehydrogenase 1
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Appendix B. Biomass and the Protein Quota Synthesis Reactions

Table A3. Biomass reaction of the Yeast 6.06 model.

Reactants Stoichiometry Products Stoichiometry

Ala-tRNA(Ala) 0.4588 tRNA(Ala) 0.4588
Arg-tRNA(Arg) 0.1607 tRNA(Arg) 0.1607
Asn-tRNA(Asn) 0.1017 tRNA(Asn) 0.1017
Asp-tRNA(Asp) 0.2975 tRNA(Asp) 0.2975
Cys-tRNA(Cys) 0.0066 tRNA(Cys) 0.0066
Gln-tRNA(Gln) 0.1054 tRNA(Gln) 0.1054
Glu-tRNA(Glu) 0.3018 tRNA(Glu) 0.3018
Gly-tRNA(Gly) 0.2904 tRNA(Gly) 0.2904
His-tRNA(His) 0.0663 tRNA(His) 0.0663
Ile-tRNA(Ile) 0.1927 tRNA(Ile) 0.1927

Leu-tRNA(Leu) 0.2964 tRNA(Leu) 0.2964
Lys-tRNA(Lys) 0.2862 tRNA(Lys) 0.2862
Met-tRNA(Met) 0.0507 tRNA(Met) 0.0507
Phe-tRNA(Phe) 0.1339 tRNA(Phe) 0.1339
Pro-tRNA(Pro) 0.1647 tRNA(Pro) 0.1647
Ser-tRNA(Ser) 0.1854 tRNA(Ser) 0.1854
Thr-tRNA(Thr) 0.1914 tRNA(Thr) 0.1914
Trp-tRNA(Trp) 0.0284 tRNA(Trp) 0.0284
Tyr-tRNA(Tyr) 0.1020 tRNA(Tyr) 0.1020
Val-tRNA(Val) 0.2646 tRNA(Val) 0.2646

ATP 59.2760 ADP 59.2760
H2O 59.2760 phosphate 58.70001

(1→3)-β-D-glucan 1.1348 H+ 59.3050
(1→6)-β-D-glucan 1.1348 biomass 1

glycogen 0.5185
trehalose 0.0234
mannan 0.8079

riboflavin 0.00099
lipid 1

sulphate 0.0200
dAMP 0.0036
dCMP 0.0024
dGMP 0.0024
dTMP 0.0036
AMP 0.0460
CMP 0.0447
GMP 0.0460
UMP 0.0599

Table A4. Helper reaction for producing the protein quota in the Yeast 6.06 model.

Reactants Stoichiometry Products Stoichiometry

Ala-tRNA(Ala) 0.9839201541 tRNA(Ala) 0.9839201541
Arg-tRNA(Arg) 0.3446294001 tRNA(Arg) 0.3446294001
Asn-tRNA(Asn) 0.2181008711 tRNA(Asn) 0.2181008711
Asp-tRNA(Asp) 0.6380040232 tRNA(Asp) 0.6380040232
Cys-tRNA(Cys) 0.0141540388 tRNA(Cys) 0.0141540388
Gln-tRNA(Gln) 0.2260357111 tRNA(Gln) 0.2260357111
Glu-tRNA(Glu) 0.6472255939 tRNA(Glu) 0.6472255939
Gly-tRNA(Gly) 0.6227777087 tRNA(Gly) 0.6227777087
His-tRNA(His) 0.1421837537 tRNA(His) 0.1421837537
Ile-tRNA(Ile) 0.4132550429 tRNA(Ile) 0.4132550429

Leu-tRNA(Leu) 0.6356450167 tRNA(Leu) 0.6356450167
Lys-tRNA(Lys) 0.6137705931 tRNA(Lys) 0.6137705931
Met-tRNA(Met) 0.1087287529 tRNA(Met) 0.1087287529
Phe-tRNA(Phe) 0.2871554242 tRNA(Phe) 0.2871554242
Pro-tRNA(Pro) 0.3532076054 tRNA(Pro) 0.3532076054
Ser-tRNA(Ser) 0.3975998181 tRNA(Ser) 0.3975998181
Thr-tRNA(Thr) 0.4104671262 tRNA(Thr) 0.4104671262
Trp-tRNA(Trp) 0.060905258 tRNA(Trp) 0.060905258
Tyr-tRNA(Tyr) 0.2187442365 tRNA(Tyr) 0.2187442365
Val-tRNA(Val) 0.5674482841 tRNA(Val) 0.5674482841

ATP 36.3823134562 ADP 36.3823134562
H2O 36.3823134562 phosphate 36.3823134562

H+ 36.3823134562
protein quota 1
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