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Drude weight fluctuations in many-body localized systems
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We numerically investigate the distribution of Drude weights D of many-body states in disordered one-
dimensional interacting electron systems across the transition to a many-body localized phase. Drude weights
are proportional to the spectral curvatures induced by magnetic fluxes in mesoscopic rings. They offer a method
to relate the transition to the many-body localized phase to transport properties. In the delocalized regime, we
find that the Drude weight distribution at a fixed disorder configuration agrees well with the random-matrix-
theory prediction P (D) ∝ (γ 2 + D2)−3/2, although the distribution width γ strongly fluctuates between disorder
realizations. A crossover is observed towards a distribution with different large-D asymptotics deep in the
many-body localized phase, which however differs from the commonly expected Cauchy distribution. We show
that the average distribution width 〈γ 〉, rescaled by L�, � being the average level spacing in the middle of the
spectrum and L the systems size, is an efficient probe of the many-body localization transition, as it increases
(vanishes) exponentially in the delocalized (localized) phase.
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Introduction. Electron-electron interactions may drive a dis-
ordered electronic system through a delocalization transition
at finite temperature [1–3]: Without interactions, Anderson
localization implies a vanishing conductivity in one and two
dimensions, independent of the disorder strength [4–7]. In con-
trast, in the presence of electron-electron interactions, even in
one spatial dimension, the conductivity can take a finite value
above a critical temperature. The persistence of localization
in the presence of interactions at low temperatures and/or
strong disorder is known as many-body localization. Interest in
the properties of the many-body localized phase was recently
boosted by the demonstration of exotic properties, such as
atypical entanglement growth logarithmic in time [8–10],
anomalous spectral statistics of the many-particle spectrum
[11,12], and its connection to equilibration and violation of
the eigenstate thermalization hypothesis [13,14]. Recently, the
first experimental observations showing key signatures of a
many-body localization transition were reported in systems of
cold atoms in optical lattices [15,16].

In particular, for numerical studies it remains difficult to
directly relate the many-body localization transition to the
ability of the system to conduct current. The difficulty can
be partly attributed to the lack of reliable analytical tools
and partly to the relatively small system sizes attainable by
numerical approaches. Recent works in this direction showed
substantial modification of dynamic quantities across the
transition [17–21] as well as atypical behavior of both the
stationary [22] and the finite-frequency conductance [23,24].

In this Rapid Communication, we suggest an alternative
approach to address the conduction of current across the
many-body localization transition, by studying the behavior of
the Drude weights Dn of many-body states in one-dimensional
interacting disordered systems. The interest in this approach
consists in its ability to address stationary transport properties
in the presence of both disorder and interactions, without the
need to couple the system to source and drain reservoirs.
The intuitive idea underlying the approach is that one can
distinguish between a metal and an insulator by inspecting the
eigenvalue variations under changes of boundary conditions.
A magnetic flux φ in mesoscopic rings is responsible for a

twist in the periodic boundary conditions, to which the system
responds with persistent currents [25–28]. Drude weights
describe the current response to variations of φ and are related
to the curvature of the many-body eigen-energies En [29–35]
(the first derivatives ∂En/∂φ at φ = 0 vanish because of
time-reversal symmetry),

Dn = L

2

∂2En

∂φ2

∣∣∣∣
φ=0

. (1)

The Drude weights Dn have strong level-to-level fluctuations,
so that we must consider their full probability density P as a
function of D. An important argument by Thouless relates
the width of this distribution to the average conductance
[36–38]. The first derivatives ∂En/∂φ at a finite flux φ, i.e.,
the persistent currents, were investigated for the special case
of N = 2 particles [39], confirming an interaction-induced
enhancement of the localization length, a precursor of the
interaction-induced delocalization in the many-particle system
[40,41].

An important reference for the interpretation of our results
is, on the one hand, the prediction of random matrix theory
(RMT) for the distribution of level curvatures in response to a
generic perturbation [42–47]. This distribution is known and
has the exact form [44,45]

PRMT(D) = 1

2

γ 2

(γ 2 + D2)3/2
(2)

for time-reversal symmetric systems. Here, γ > 0 is a pa-
rameter setting the width of the distribution. We find that
in the delocalized phase the functional form of P (D)—for
a specific disorder realization and within an energy window
small compared to the width of the many-body spectrum—is
well described by the time-reversal symmetric RMT result.
On the other hand, in the many-body localized phase the
numerically obtained P (D) has a different form, reminiscent
of the distribution of single-particle noninteracting Anderson-
localized systems [47,48]. The distribution of many-body
Drude weights in the many-body localized phase is distinctly
different from that of many-body Drude weights without
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interactions, however. For the system sizes that are accessible
numerically, the width γ of the distribution has strong
fluctuations between disorder realizations. It shows a clear
exponential decay with system size only in the many-body
localized phase.

Drude weights, level curvatures, and localization. In the
absence of dissipative mechanisms, the Drude weight controls
the singularity of the optical conductivity at zero frequency, as
σ (ω) = Dδ(ω) + σreg(ω) (a numerical study of σreg is carried
out in Refs. [23,24]; analytical work is presented in Ref. [49]).
Since the seminal work by Kohn [29], the scaling of D with
system size L is a criterion to identify the metal to insulator
transition in many-body systems [30,31]. One has D → 0 for
insulating systems and D → e2ρ/m∗ in the metallic case, ρ

being the electron density and m∗ a renormalized mass.
The connection to spectral curvatures (1) is readily derived

for the model system we consider here, interacting spinless
fermions on a one-dimensional ring subject to disorder and
magnetic flux [30]. The Hamiltonian is given by [50]. The
parameters have been defined in such a way that for φ = 0
and t = U = 1 the model maps onto the Heisenberg model
H = ∑

i Si · Si+1 + ∑
i εiS

z
i , ignoring an overall chemical

potential. The Heisenberg model is commonly considered in
the literature for many-body localization, see e.g. Ref. [12].

H(φ) = T (φ) +
L∑

j=1

(εjnj + Unjnj+1),

(3)

T (φ) =−1

2

L∑
j=1

[t(φ)c†j cj+1 + t(φ)∗c†j+1cj ].

Here φ is the magnetic flux, measured in units of the flux
quantum �0 = h/e, T (φ) is the kinetic energy, with t(φ) =
t e2πiφ/L being the complex flux-dependent hopping ampli-
tude, U is the strength of the nearest-neighbor interaction,
εi is the on-site disorder potential drawn uniformly from
the interval [−W,W ], cj annihilates a particle at site j , and
nj = c

†
j cj . The ring geometry is realized by identifying c1 =

cL+1. Without interactions and for weak disorder, W � t ,
the localization length of single-particle states at the band
center is ξ = ct2/W 2 with c ≈ 26.3 [51], measured in units
of the lattice spacing, so that the system size L exceeds
the localization length ξ for all energies if W/t � 1.3. With
interactions the model (3) is found to display a transition from
a many-body spectrum with level repulsion, characteristic of a
delocalized phase, to a spectrum without level repulsion. For
U/t = 1 the transition takes place at Wc ≈ 3.6t [12].

For the Hamiltonian (3) the current operator reads

I = i

2L

L∑
j=1

[t(φ)c†j cj+1 − t(φ)∗c†j+1cj ] = − 1

2π

∂H
∂φ

,

implying that the many-body state vector |ψn〉 of energy
En carries a persistent current In = −(1/2π )∂En/∂φ. In
the vicinity of zero fluxes H can be expanded as H(φ) =
H(0) − 2πφ I − 2π2φ2T (0)/L2 + O(φ3). To second order in
φ, the energy shifts read En(φ) − En(0) ≈ φ2Dn/e

2L, where

the Drude weight of |ψn〉 is given by

Dn = e2 4π2

L

[
− 1

2
〈T 〉 + L2

∑
m	=n

|〈ψn|I|ψm〉|2
En − Em

]
. (4)

The same expression for the Drude weight can be obtained
from the Kubo formula [52]. The assumption of uncorrelated
energy levels and nonfluctuating matrix elements of the
current operator on the one hand leads to a Cauchy curvature
distribution P ∝ (γ 2 + D2)−1 [36,37]. On the other hand, as
mentioned in the Introduction, a random-matrix distribution
gives the Drude weight distribution of Eq. (2) [42–47].

Drude weight distribution. We have numerically calculated
the level curvatures for the full many-body spectrum by exact
diagonalization of the Hamiltonian (3) at half filling up to
L = 16 sites. We show results for the cumulative distribution
function F of absolute values |D|,

F (D) =
∫ |D|

−|D|
dx P (x). (5)

To extract a (cumulative) distribution from the numerically
obtained level curvatures we consider M many-body levels
near the center of the spectrum for a fixed disorder config-
uration. The exponentially high number of many-body levels
ensures that even taking a small fraction of the total many-body
spectrum still gives a large number of levels M (M = 2554 for
the center 20% of many-body levels for L = 16). To facilitate
comparison to the RMT prediction (2), which has FRMT(D) =
|D|/

√
γ 2 + D2, we define the width γ of the distribution as

that value of D for which FD(D) = FRMT(γ ) = 1/
√

2.

FIG. 1. Cumulative rescaled Drude weight distribution F for
disorder strengths W increasing from 1.5 to 7.5 in steps of 0.5
(left to right data series). Each data set is based on 1000 disorder
realizations, each contributing 2554 curvatures from states in the
middle of the many-body spectrum. The other system parameters are
U/t = 1, L = 16, and N = 8 particles. For W � 2.5 the system is
in the ergodic phase and the distribution is well approximated by
the RMT prediction FRMT (solid thin line) [see Eq. (2)]. Deep in the
many-body localized phase (W/t � 5), the distribution converges
towards a different one with longer tails.
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FIG. 2. Drude weight distribution for W/t = 2 (left) and W/t = 5.5 (center), again at U/t = 1 for the left and the center figures. The
main panels are for rescaled distributions of 2574 states in the middle of the many-body spectrum, averaged over 1000 disorder realizations.
The insets are for single disorder realizations. The other parameters are chosen as in Fig. 1. For W/t = 2 both the single-realization and the
averaged distributions are in excellent agreement with the RMT prediction. For W/t = 5.5 a large part of the distribution is well described by
a log-normal distribution, whereas the Cauchy distribution of Refs. [36,37,53] does not provide a good fit. The right panel (main and inset)
shows F (D) in the absence of interactions, U = 0. The curvature distribution for a single realization in the inset shows lack of self-averaging.

We find that different disorder realizations with equal
strength W give Drude weight distributions P with the same
shape, but with different widths. To reduce statistical errors
when inspecting the shapes of the distribution functions, we
therefore determine the width γ of the distribution for each
disorder realization separately, rescale the Drude weights
D �→ D̃ = D/γ , such that rescaled distributions have unit
width, and then combine distributions from different disorder
realizations. The results for such rescaled Drude weight
distributions are shown in Fig. 1. For W/t � 2.5 the shape
of the distribution is in excellent agreement with the RMT
prediction (2) (see also the left panel of Fig. 2). For W/t � 3
the distribution starts deviating from Eq. (2), although the
tails (at least initially) continue to scale ∝|D̃|−2. We attribute
the deviation from the RMT prediction for disorder strengths
well below Wc to finite-size effects, which were also found, in
the same way, to cause a “premature” transition of the level
statistics from random-matrix-like to Poisson (see Ref. [12]).
For W � Wc, the system enters the many-body localized
phase. Because of finite size effects the progression between
the ergodic and localized phases appears as a crossover, not as
a sharp transition. A crossover of similar width was observed in
Ref. [12]. Deep in the many-body localized regime (W/t � 5),
the distribution converges towards a distribution with signif-
icantly longer tails than the RMT distribution (2). Although
there is some hint of an intermediate tail scaling ∝D̃−1, the
overall shape of the distribution in the localized regime is not
consistent with the Cauchy distribution of Refs. [36,37,53]. A
deviation from the Cauchy distribution must be attributed to
correlations between the spacings of many-body energy levels
and matrix elements of the current operator I [see Eq. (4)].
Such correlations appear naturally in the localized regime,
taking into account that nearby energy levels generically result
from states “far apart” in Fock space, so that matrix elements
of (local) single-particle operators such as I are strongly
suppressed. What is more, while interactions will modify the
structure of many-body eigenstates, this is not expected to
necessarily lead to a very large deviation in relevant matrix
elements, for the same reason that only overlaps reflecting
nearby energy levels contribute significantly to the tails of the
distribution.

Figure 2 shows more detailed results for representative
disorder strengths W/t = 2 and W/t = 5.5 below and above
the many-body localization transition, as well as a comparison
with the noninteracting case. The insets show cumulative
distributions for a single disorder realization, confirming that
our averaging procedure, in the interacting case, does not lead
to any systematic deformations of the shape of the distribution
function. We also considered different system sizes L (at fixed
electron density) [54], showing that the RMT result Eq. (2) is
reproduced independently of L in the delocalized phase. This is
not the case in the localized regime, in which the distribution
tails appear to be sensitive to the system size, although we
could not find a tendency towards a Cauchy distribution upon
increasing L.

Remarkably, for intermediate curvatures, the distribution
function in the localized regime is well approximated by
a log-normal distribution [see Fig. 2 (center)]. We note
that a log-normal distribution has also been found a good
approximation for the curvature distribution of single-particle
levels in noninteracting Anderson models with strong disorder
[47,48]. However, this form of the distribution does not
necessarily carry over to the many-body curvature distribution
for the noninteracting case: Since many-body level curvatures
are sums of single-particle level curvatures, it is reasonable to
expect that they have a Gaussian distribution as a consequence
of the central limit theorem, with non-Gaussian tails to
reflect the large fluctuations of the single-particle curvature
distribution. Such a distribution is distinctly different from the
many-body curvature distribution we observe for the localized
phase of the interacting system [see Fig. 2 (center)]. For the
small system sizes we address here, however, this Gaussian
distribution for the noninteracting case has not fully developed
yet [see Fig. 2 (right)].

Fluctuations of the width of the distribution. While the
shape of the Drude weight distribution was found to be
independent of the precise disorder realization, we find that
the width γ of the distribution has large sample-to-sample
fluctuations. Figure 3 shows the (cumulative) probability
distribution of the widths γ . This width distribution is well
approximated by a log-normal distribution for W � Wc,
whereas we find that the tails at small (large) γ are below
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FIG. 3. Main panel: Cumulative distribution functions of the
Drudeweight distribution widths γ for disorder strength W/t increas-
ing from 1.5 to 8 in steps of 0.5 (right to left data series). We consider
103 realizations per disorder value. The solid black lines increase a
log-normal fit to the data. Parameters of the simulations are as in
Fig. 1. Inset: Average width 〈γ 〉 of the Drude weight distribution
(rescaled by L�, � being the average level spacing in the middle of
the spectrum) vs system size L for disorder strength W/t increasing
from 1.5 to 5 in steps of 0.5 (top to bottom data series).

(above) log-normal in the many-body localized regime. The
average 〈γ 〉 decreases with increasing disorder, whereas the
magnitude of the fluctuations increases. This is consistent
with the width γ being a measure of conductance [36,37].
We attribute the origin of the width fluctuations to finite
size effects. Indeed, we find that the variance of the width
distribution decreases with system size L. However, since the
average 〈γ 〉 also decreases with L, inset, we cannot settle the
question whether the fluctuations of γ disappear relative to
the average for the limited system sizes attainable in our
numerical simulations. The average 〈γ 〉 shows a clear expo-
nential decay in the localized phase; in the delocalized phase
we observe a decrease with system size, but could not draw any
firm conclusions regarding its functional form. Alternatively,
the adimensional quantity 〈γ 〉/L�, in which � is the average
level spacing in the middle of the many-body spectrum, is
an effective probe of the many-body localization transition.
The inset of Fig. 3 shows that this quantity switches from an
exponential increase to decrease with system size L across
the many-body localization transition, a behavior observed for
related quantities in Refs. [53,55].

To investigate the strong sample-to-sample fluctuations of
the width γ of the Drude weight distribution P , we also
calculated the distribution of the matrix elements In,m =
〈ψn|I|ψm〉 of the current operator (a similar quantity was
considered in Ref. [55]). Consistently with the large fluctu-
ations of γ observed in our numerical simulations, we find
large sample-to-sample fluctuations of the mean square I2

n,m,

with the average · · · taken with respect to the M many-body
state vectors |ψn,m〉 within the energy window around the
center of the spectrum at a fixed disorder realization. The
sample-to-sample fluctuations of ln I2

n,m are found to be
statistically correlated with the sample-to-sample fluctuations
of ln γ (Pearson correlation coefficient �0.35, with a slight
maximum near the localization transition). The correlations
are even stronger, if we consider correlations between ln γ

and ln I2
n,n+1, such that only current matrix elements between

neighboring energy levels are included (correlation coefficient
�0.45), consistent with the expectation based on Eq. (4).

Conclusions. We numerically studied the statistical dis-
tribution of Drude weights of many-body states for one-
dimensional interacting electrons. We find that the shape
of the Drude weight distribution shows clear differences
between the weak-disorder and strong-disorder phases, con-
sistent with the onset of a many-body localized phase at strong
disorder. The shape of the distribution is still sensitive to the
system sizes we could attain in the localized regime. This
motivates further studies applying more refined numerical
approaches to address bigger system sizes, in which the study
of this issue could be made more definitive. The width γ of the
Drude weight distribution, defined with respect to a collection
of many-body states taken near the center of the spectrum,
is commonly associated with the system’s conductance. For
the relatively small system sizes we could consider, we found
large sample-to-sample fluctuations of the distribution width
γ . In the many-body localized phase the disorder average
of γ shows a clear exponential decay with system size,
signaling the suppression of transport. We also showed that
the dimensionless quantity 〈γ 〉/L� discriminates effectively
between the localized and delocalized regime.

Following the seminal ideas of Kohn [29] and Thouless
[37], the sensitivity of the quantum eigenstates to boundary
conditions played a crucial role in developing the scaling
theory of localization for noninteracting systems [5]. A
thorough understanding of the Drude weights—measuring the
sensitivity of the many-body states to boundary conditions —
may thus contribute an important ingredient to recent attempts
[55–57] of formulating a scaling theory of the many-body
localization transition. A deeper understanding of transport
properties may also help in devising novel devices, such
as quantum memories to reliably store quantum information
for a long time, stabilized by suitably exploiting many-body
localization. It is the hope that the present work will stimulate
such endeavors.
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[27] L. Saminadayar, C. Bäuerle, and D. Mailly, in Encyclopedia

of Nanoscience and Nanotechnology, edited by H. S. Nalwa,
(American Scientific, Valencia, CA, 2004), Vol. 3, p. 267.

[28] A. Bleszynski-Jayich, W. Shanks, B. Peaudecerf, E. Ginossar, F.
von Oppen, L. Glazman, and J. Harris, Science 326, 272 (2009).

[29] W. Kohn, Phys. Rev. 133, A171 (1964).
[30] B. S. Shastry and B. Sutherland, Phys. Rev. Lett. 65, 243 (1990).
[31] A. J. Millis and S. N. Coppersmith, Phys. Rev. B 42, 10807

(1990).

[32] R. M. Fye, M. J. Martins, D. J. Scalapino, J. Wagner, and W.
Hanke, Phys. Rev. B 44, 6909 (1991).

[33] D. J. Scalapino, S. R. White, and S. C. Zhang, Phys. Rev. Lett.
68, 2830 (1992).

[34] T. Giamarchi and H. J. Schulz, Phys. Rev. B 37, 325 (1988).
[35] G. Bouzerar, D. Poilblanc, and G. Montambaux, Phys. Rev. B

49, 8258 (1994).
[36] J. Edwards and D. Thouless, J. Phys. C: Solid State Phys. 5, 807

(1972).
[37] D. J. Thouless, Phys. Rep. 13, 93 (1974).
[38] E. Akkermans and G. Montambaux, Phys. Rev. Lett. 68, 642

(1992).
[39] D. Weinmann, A. Müller-Groeling, J.-L. Pichard, and K. Frahm,

Phys. Rev. Lett. 75, 1598 (1995).
[40] D. L. Shepelyansky, Phys. Rev. Lett. 73, 2607 (1994).
[41] Y. Imry, Europhys. Lett. 30, 405 (1995).
[42] P. Gaspard, S. A. Rice, H. J. Mikeska, and K. Nakamura, Phys.

Rev. A 42, 4015 (1990).
[43] J. Zakrzewski and D. Delande, Phys. Rev. E 47, 1650 (1993).
[44] F. von Oppen, Phys. Rev. Lett. 73, 798 (1994).
[45] F. von Oppen, Phys. Rev. E 51, 2647 (1995).
[46] Y. V. Fyodorov and H.-J. Sommers, Phys. Rev. E 51, R2719

(1995).
[47] D. Braun, E. Hofstetter, A. MacKinnon, and G. Montambaux,

Phys. Rev. B 55, 7557 (1997).
[48] M. Titov, D. Braun, and Y. V. Fyodorov, J. Phys. A 30, L339

(1997).
[49] E. Ilievski and T. Prosen, Commun. Math. Phys. 318, 809

(2013).
[50] The parameters have been defined in such a way that for φ = 0

and t = U = 1 the model maps onto the Heisenberg model H =∑
i Si · Si+1 + ∑

i εiS
z
i , ignoring an overall chemical potential.

The Heisenberg model is commonly considered in the literature
for many-body localization (see, e.g., Ref. [12]).

[51] M. Kappus and F. Wegner, Z. Phys. B 45, 15 (1981).
[52] Notice that the Drude weights given by Eq. (4) are strongly

sensitive to the choice of boundary conditions for finite system
sizes [58]. Nevertheless, the possibility to generate finite
persistent current I, whose first derivative in φ leads directly
to Eq. (1), is only possible by assuming periodic boundary
conditions.

[53] C. Monthus, arXiv:1607.00750.
[54] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.94.201112 for detailed finite-size scaling
analysis of the Drude weight distribution both in the delocalized
and localized regime; and also shows that finite-size effects are
absent in the delocalized regime, while they are strong in the
many-body localized phase.
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