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Abstract

In peptide receptor radionuclide therapy (PRRT) of patients with neuroendocrine neoplasias

(NENs), intratherapeutic dosimetry is mandatory for organs at risk (e.g. kidneys) and

tumours. We evaluated commercial dosimetry software (Dosimetry Toolkit) using varying

imaging scenarios, based on planar and/or tomographic data, regarding the differences in

calculated organ/tumour doses and the use for clinical routines. A total of 16 consecutive

patients with NENs treated by PRRT with 177Lu-DOTATATE were retrospectively analysed.

Single-photon emission computed tomography (SPECT)/low-dose computed tomography

(CT) of the thorax and abdomen and whole body (WB) scintigraphy were acquired up to 7

days p.i. (at a maximum of five imaging time points). Different dosimetric scenarios were

evaluated: (1) a multi-SPECT-CT scenario using SPECT/CT only; (2) a planar scenario

using WB scintigraphy only; and (3) a hybrid scenario using WB scintigraphy in combination

with a single SPECT/low-dose CT. Absorbed doses for the kidneys, liver, spleen, lungs,

bladder wall and tumours were calculated and compared for the three different scenarios.

The mean absorbed dose for the kidneys estimated by the multi-SPECT-CT, the planar and

the hybrid scenario was 0.5 ± 0.2 Sv GBq-1, 0.8 ± 0.4 Sv GBq-1 and 0.6 ± 0.3 Sv GBq-1,

respectively. The absorbed dose for the residual organs was estimated higher by the planar

scenario compared to the multi-SPECT-CT or hybrid scenario. The mean absorbed tumour

doses were 2.6 ± 1.5 Gy GBq-1 for the multi-SPECT-CT, 3.1 ± 2.2 Gy GBq-1 for the hybrid

scenario and 5.3 ± 6.3 Gy GBq-1 for the planar scenario. SPECT-based dosimetry methods

determined significantly lower kidney doses than the WB scintigraphy-based method.

Dosimetry based completely on SPECT data is time-consuming and tedious. Approaches

combining SPECT/CT and WB scintigraphy have the potential to ensure compromise

between accuracy and user-friendliness.
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Introduction

Peptide receptor radionuclide therapy (PRRT) with radiolabelled somatostatin analogues is an

established treatment option for internal radiation therapy in patients with neuroendocrine

neoplasias (NENs) [1,2]. Currently, PRRT is performed using 177Lu-labelled pharmaceuticals,

because of the physical properties of the radionuclide (e.g. emission types and energy, particle

range in tissue and physical half-life) [3,4] in treatment of NENs [1,5].

In addition to the beneficial effect on tumours, there are also risks associated with PRRT

mostly because of radiation toxicity to tumour-unaffected tissues, especially for kidneys and

red bone marrow. To avoid treatment-related side effects, dosimetry is mandatory for PRRT

for each treatment cycle. For individualised dosimetry, a variety of factors, for example,

tumour size, organ size, uptake and tracer kinetic, should be considered [6–8].

Clinical dosimetry is often performed by evaluating accumulated activity in target regions

using a region of interest (ROI)-based evaluation of planar (2D) whole-body (WB) scintigraphy.

Next, data from ROI analysis were analysed according to medical internal radiation dose (MIRD)

formalism [9,10]. In 2D, the overlapping of regions (e.g. organs) or neglecting additional individ-

ual factors (e.g. organ mass [11]) may lead to incorrect determination of the ROI uptake [12],

resulting in an over- or underestimation of the absorbed dose in the corresponding region. By

using single-photon emission computed tomography (SPECT), the uptake in the ROI is deter-

mined without superimposed structures. The combination with a low-dose computed tomogra-

phy (CT) for morphological mapping and for attenuation correction (CTAC) enables even

further improvement in dosimetry, for example, correction for scattered photons [4,12–20].

However, it should be possible to perform individual dosimetry of PRRT patients in a clini-

cal routine using an integrated patient-friendly workflow. For this reason, this study aimed to

optimise the dosimetry workflow in PRRT examining three different imaging scenarios for

dosimetry: (1) a multi-SPECT-CT scenario using SPECT/low-dose CT only; (2) a planar sce-

nario using WB scintigraphy only; and (3) a hybrid scenario using WB scintigraphy in combi-

nation with a single SPECT/low-dose CT. We compared intra-individually the calculated

organ and tumour doses obtained by the different imaging protocols and the calculation meth-

odologies implemented by a specific software tool certified for clinical dosimetry. Additionally,

we assessed the processing time for the investigator (e.g. physician or physicist) for a single

dosimetric evaluation.

Methods

Patients

Sixteen consecutive patients with NENs (nine male, seven female, aged 65.6 ± 9.7 yr, 51–82 yr)

referred between December 2011 and December 2015 for PRRT with 177Lu-[DOTA0,Tyr3]

octreotate (177Lu-DOTATATE) were retrospectively analysed. The total number of PRRT

cycles was 47 (median = 3, range = 1–4). For the study, we included imaging data of the first

therapy cycle of each patient with their specific physique and accumulation pattern (n = 16).

PRRT was performed in concordance with established clinical guidelines [8,21].

The retrospective analysis (registration number: 77/14, RAD252) was approved by the local

institutional ethics committee (Ethics Committee of the University Hospital Magdeburg). All

patients had provided written informed consent on the evaluation of their data.

Imaging

All examinations were performed using a hybrid SPECT/CT (Discovery NM/CT 670, GE Health-

care, Haifa, Israel). The imaging protocol consisted of planar WB scintigraphy and SPECT/low-
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dose CT of the thorax and abdomen. The protocol included imaging on 5 days between 4 h and

168 h p.i. (post injection), while each patient was examined after 4 h, 24 h and 72 h.

The SPECT gamma camera was equipped with a medium-energy, general propose collima-

tor (MEGP), and all image acquisitions were performed using a single energy window at 208

keV ± 10%. No energy window for scatter correction was applied. Planar WB scintigraphy

(anterior and posterior) was acquired with a matrix of 256 x 1024 and a scan speed of 10 cm

min-1. For each patient, imaging was performed with an individually chosen constant table

high and a fixed detector radius, to realise a minimal distance to the patient contour. For sub-

sequent examinations of the same patient, the initial scan parameters were used. For the esti-

mation of the sensitivity of the gamma camera, a 177Lu-filled syringe (V = 50 mL, A = 196 ± 27

MBq) was measured. The syringe was scanned at every patient WB examination and was

located below the feet of the patient. For SPECT sensitivity, a separate static image of the

syringe was necessary to determine the calibration factor [22]. However, it was also possible to

determine the sensitivity factor in concordance with NEMA procedure [23]. Then the corre-

sponding sensitivity factor can be entered manually.

SPECT data were acquired using automatic body contouring with a total 60 angular views

(30 per detector) at steps of 6˚ (30 s/projections) and a 256 × 256 matrix (pixel size = 2.21 x

2.21 mm, zoom = 1.0). SPECT data were acquired for two bed positions covering the thorax

and abdomen. Low-dose CT imaging was performed with a primary collimation of 16 x 1.25

mm, pitch = 1.375, rotation time = 0.8 s and an X-ray tube voltage of 120 kVp. The X-ray tube

current was 40 mA at the first imaging time point (after 4 h p.i.) and 20 mA for the later four

imaging time points. The CT scans with 40 mA and 20 mA were used for the CTAC of the cor-

responding SPECT data and for the registration of different imaging time points. The CT

scans with 40 mA were further used for morphologic-oriented ROI definition. CT data were

reconstructed with a matrix of 512 x 512 (pixel size = 0.98 x 0.98 mm) and a slice thickness of

3.75 mm by an iterative CT image reconstruction algorithm (adaptive statistical image recon-

struction, ASIR) with an ASIR level of 100% [24].

Dose calculation

Analysis was performed with dedicated dosimetry software (Dosimetry Toolkit—DTK, vendor

GE Healthcare, Haifa, Israel) for examination of pharmacokinetic uptake and calculation of

residence time. Residence time represents the cumulated activity to the organ normalized to

the (total) administered activity to the patient according to the MIRD-concept [9]. The DTK

provided three different evaluation workflows: (1) based on SPECT/CT imaging (multi-

SPECT-CT scenario); (2) based on planar scintigraphy (planar scenario); and (3) based on pla-

nar WB scintigraphy with a supplementary single SPECT/CT examination performed in con-

junction with one of the planar WB scintigraphies (hybrid scenario). Uptake and residence

time were estimated for all patients by each scenario for kidneys, liver, spleen, lungs, bladder

content and at least for one liver tumour. Using DTK, a time-activity curve for each previously

defined ROI was estimated and fitted automatically by a mono-exponential function for the

calculation of residence time. Other analytic fit functions (e.g. bi-exponential function) were

not implemented. A final report of the DTK is shown in Fig 1. Using the hybrid scenario, the

time-activity curve for each ROI, estimated from sequential planar scintigraphies, was scaled

by the activity inside a corresponding volume of interest (VOI) estimated from a single SPECT

[22]. Personalized organ dose calculations were performed using OLINDA/EXM software [25]

with residence times calculated by DTK.

All dose values calculated by OLINDA/EXM were corrected for gender and adjusted indi-

vidually for organ/patient weight. Organ masses were calculated from organ volume
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individually estimated from CT data by using standardized organ densities [26]. Furthermore,

the absorbed doses of tumour lesions in the liver were calculated by the density sphere model

implemented in OLINDA/EXM [20,27,28] using the volume estimated from CT volumetry

and considering a tumour lesion density equal to the liver. All tumour doses were corrected

for partial volume effect.

Additionally, CT exposure was analysed by evaluating the dose length product (DLP) docu-

mented by the CT. The effective (E) dose for the low-dose CT imaging procedure was calcu-

lated by the software CT-Expo [29].

Multi-SPECT-CT scenario

This scenario is based solely on SPECT/CT data. Image reconstruction was performed by iterative

ordered-subset expectation maximisation algorithm (OSEM, 5 iterations, 10 subsets, HANN fil-

ter-function with 0.9 cycles/cm) with CTAC. The registration of all scans to one reference scan

(the latest SPECT/CT) and the subsequent organ registration were performed by the DTK.

The segmentation of the VOIs (e.g. for organs and tumours) was performed by automatic,

semi-automatic and manual DTK tools using CT or SPECT data. VOI segmentation started

with the first SPECT/CT scan (4h p.i.). After defining VOIs for the first SPECT/CT, the VOIs

were copied automatically to the residual SPECT/CTs. The VOIs were adjusted for each time

point manually if appropriate. Representative VOIs are shown in Fig 2A.

Fig 1. A representative final report of the Dosimetry Toolkit. (A) Illustration of the serial images of a patient with all regions of interest 4 h, 24 h, 48 h, 72 h

and 168h p.i. (B) Normalised time-activity curves for all regions of interest. (C) Calculated residence times of all regions of interest.

https://doi.org/10.1371/journal.pone.0187570.g001
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Planar scenario

Geometric mean images (square root of the product of the counts in the anterior and posterior

projections) were automatically calculated from the WB scintigraphies for each time point.

The resulting images were co-registered to the first imaging time point (4 h p.i.).

ROIs for body contour and calibration standard (syringe) were automatically defined by

the DTK. ROIs for organs and tumours were defined manually with ROI drawing tools for the

first imaging time point. After confirming all ROIs, they were automatically copied to the geo-

metric mean images of later time points. Representative ROIs are shown in Fig 2B. Back-

ground correction for the count rate was performed for each organ ROI. The corresponding

background ROI was defined automatically for each time point next to the organ ROI (Fig

2B). The Background correction for the counts estimated for an organ ROI was applied by sub-

tracting the weighted background counts. Weighting was performed by a factor (wf)

Fig 2. ROI/VOI comparison of all three imaging scenarios 24 h p.i. of the same patient. The delineations of lungs, liver, kidneys, spleen, bladder and

tumour (white, in the liver) are shown. (A) 2D presentation (summed coronal slice) of the 3D VOIs of the multi-SPECT-CT scenario. (B) Geometric mean

image of the planar scenario with all ROIs. The small elongated delineations (*) next to the ROIs were used for background correction. (C) Geometric mean

image of the WB scintigraphies with SPECT/CT based VOIs (hybrid scenario). Here, overlapping regions of interest were automatically removed (#) and

corrected.

https://doi.org/10.1371/journal.pone.0187570.g002
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respecting the organ thickness [30].

wf ¼ 1 �
dorgan
dbody

ð1Þ

The extension of the organ (dorgan) and the body (dbody) in the anterior–posterior direction

was previously estimated from CT scans.

Hybrid scenario

The hybrid scenario combined a series of WB scintigraphies with a single SPECT/CT acquired in

a timely manner corresponding to one of the WB scintigraphies. The pre-processing of the scin-

tigraphies is identical to the planar scenario. Furthermore, the SPECT data were reconstructed

and a summed coronal slice, representing the reference image, was calculated. The co-registered

series of geometric mean WB images were automatically registered to the summed slice.

Furthermore, VOIs (e.g. organs and tumours) were defined by using SPECT/CT data that

were acquired nominally 24 h p.i. Finally, the determined VOIs were projected by the DTK to

registered geometric mean images. Volumes (or parts of volumes) overlapping in the 2D pro-

jection were not considered by DTK for analysis of the geometric mean images (Fig 2C). In

these cases, organ activity was corrected for the activity in the removed volume by using the

mean activity concentration in the residual volume (VOI) as a surrogate for substitution.

Inter-observer variability

The influence of observers on ROI definition was examined and inter-observer variability was

tested for three independent observers (C.H., H.W. and D.K) defining the kidney ROIs for all

patients. All observers were experienced in nuclear medical imaging and clinical dosimetry

(4–20 years). The influence of the observer on kidney dosimetry was tested for WB scintigra-

phy data and for the SPECT/CT data (24 h p.i.). Furthermore, the time required for ROI/VOI

delineation was determined.

Statistics

The R software package (version 3.2.0, R Foundation for Statistical Computing, Vienna, Austria)

was used for statistical evaluations. Descriptive parameters were expressed as mean ± standard

deviation (SD), median, interquartile range (IQR; 25th/75th percentiles) and range. The organ and

tumour doses per injected activity calculated by the different scenarios were tested for differences

using the Friedman test and Wilcoxon signed-rank test, if applicable. The multi-SPECT-CT sce-

nario represented the standard of truth for this study. Inter-observer variability of the observer in

drawing kidneys ROI was examined by Kendall’s coefficient of concordance wt. All tests were per-

formed two-sided, and statistical significance was assumed at a p-value of< 0.05.

Results

The mean administered activity of 177Lu-Dotatate was A = 7.2 ± 0.4 GBq. The mean weighting

factors (wf) used for the planar scenario were: wfKidneys = 0.82 ± 0.06, wfLiver = 0.52 ± 0.23,

wfSpleen = 0.80 ± 0.10, wfLung = 0.44 ± 0.17, wfBladder = 0.77 ± 0.12 and wfTumour = 0.92 ± 0.04.

A detailed summary of the determined organ masses and organ residence times for dosime-

try are presented in Table 1 and Table 2. The dose per injected activity (DpA) for each organ is

shown in Table 3.

There were no significant differences in residence times between the examined three imag-

ing scenarios for the liver (p = 0.7788) and the bladder content (p = 0.2574). The residence
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times of the kidneys (p = 0.0023), spleen (p = 0.0013) and lung (p< 0.0001) differed signifi-

cantly between the three imaging scenarios.

Dose to organs

The mean absorbed doses for both kidneys were 3.5 ± 1.4 Sv for the multi-SPECT-CT scenario,

4.3 ± 2.2 Sv for the hybrid scenario and 5.5 ± 3.3 Sv for the planar scenario. The organ dose

estimated by the scenarios was significantly different (p = 0.0023). The median DpA of the kid-

neys, estimated by the hybrid and planar scenario, was compared to the multi-SPECT-CT sce-

nario and increased by a factor of 1.2 (p = 0.0052) and 1.6 (p = 0.0013), respectively.

The mean absorbed dose for the liver was 4.8 ± 4.4 Sv for the multi-SPECT-CT scenario,

5.0 ± 4.5 Sv for the hybrid scenario and 4.5 ± 3.8 Sv for the planar scenario. The organ dose cal-

culated by the three different imaging scenarios was not significantly different (p = 0.7788).

Table 1. Patient whole body (WB) weight and determined organ masses. The individual masses estimated with low-dose CT volumetry were used for

weight adjustments in OLINDA/EXM software.

WB (g) Kidneys (g) Liver (g) Spleen (g) Lungs (g)

Female

mean ± SD 69,000 ± 12,383 400 ± 73 3,338 ± 3,808 461 ± 543 461 ± 128

50th (25th/75th) 76,000 (57,500/76,500) 407 (354/421) 1,505 (1,442/3,058) 199 (194/395) 619 (553/717)

range 54,000–85,000 307–535 1,092–11,770 170–1,578 458–832

Male

mean ± SD 84,670 ± 13,077 611 ± 104 2,644 ± 797 267 ± 141 829 ± 124

50th (25th/75th) 90,000 (75,000/94,000) 649 (522/652) 2,777 (2,035/2,968) 233 (213/244) 793 (725/910)

range 66,000–101,000 475–812 1,558–3,922 127–598 681–1,017

Note: Organ mass was calculated by using a standardized tissue density for each organ (kidney = 1.05 g mL-1, liver = 1.06 g mL-1, spleen = 1.06 g mL-1,

lungs = 0.26 g mL-1) [26].

https://doi.org/10.1371/journal.pone.0187570.t001

Table 2. Residence times for the first therapy cycle (n = 16 patients) estimated by DTK using different imaging scenarios.

Kidneys (h) Liver (h) Spleen (h) Lungs (h) Bladder Content (h)

Multi-SPECT-CT

mean ± SD 2.7 ± 0.8 29.1 ± 43.3 3.3 ± 4.7 0.6 ± 0.5 0.9 ± 0.5

50th (25th/75th) 2.5 (2.4/3.1) 10.6 (5.4/32.7) 2.4 (1.3/3.1) 0.5 (0.3/0.7) 0.7 (0.5/1.3)

range 1.3–4.3 1.4–165.4 0.7–19.9 0.1–2.3 0.3–1.6

Hybrid

mean ± SD 3.3 ± 1.4 29.4 ± 39.3 3.7 ± 4.3 0.7 ± 0.5 0.7 ± 1.2

50th (25th/75th) 3.1 (2.40/3.9) 9.0 (6.0/41.2) 2.8 (1.8/3.5) 0.6 (0.3/0.9) 0.3 (0.2/0.4)

range 1.3–6.2 1.1–147.0 0.6–19.3 0.1–2.0 0.1–5.0

pa 0.0034 n.s.c 0.0355 0.5282 n.s.c

Planar

mean ± SD 4.1 ± 1.6 23.4 ± 25.0 4.2 ± 2.6 3.0 ± 1.1 1.0 ± 0.8

50th (25th/75th) 4.3 (3.0/5.3) 9.5 (5.4/46.1) 3.5 (2.9/4.7) 2.9 (2.3/3.7) 0.8 (0.5/1.4)

range 1.3–7.2 2.4–66.8 1.3–12.4 1.0–5.3 0.2–3.1

pb 0.0017 n.s.c 0.0115 < 0.0001 n.s.c

aSignificance of differences between the multi-SPECT-CT and hybrid scenario (Wilcoxon signed-rank test)
bSignificance of differences between the multi-SPECT-CT and planar scenario (Wilcoxon signed-rank test)
cn.s. (not significant) differences between the three groups (Friedman test)

https://doi.org/10.1371/journal.pone.0187570.t002
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The calculations for the spleen revealed a mean absorbed dose of 5.9 ± 3.1 Sv for the

multi-SPECT-CT scenario, 7.0 ± 4.1 Sv for the hybrid scenario and 10.4 ± 6.5 Sv for the planar

scenario. The dose estimated by the three imaging scenarios was significantly different

(p = 0.0013). The median DpA of the spleen was for the hybrid scenario, which increased by a

factor of 1.3 (p = 0.0256) and for the planar scenario by a factor of 1.6 (p = 0.0020) compared

to the multi-SPECT-CT scenario.

For the lungs, mean absorbed doses were 0.6 ± 0.4 Sv for the multi-SPECT-CT scenario,

1.0 ± 1.3 Sv for the hybrid scenario and 2.6 ± 1.1 Sv for the planar scenario. Compared to the

multi-SPECT-CT scenario, the median DpA of the hybrid scenario was not significantly differ-

ent (p = 0.4332), but the DpA was significantly higher for the planar scenario with a factor of

6.7 (p< 0.0001).

The mean absorbed dose for the bladder wall was 1.5 ± 0.8 Sv for the multi-SPECT-CT sce-

nario, 1.3 ± 2.5 Sv for the hybrid scenario and 1.8 ± 1.4 Sv for the planar scenario. The bladder

content volume varied considerably between patients, 318 ± 238 mL (108–954 mL). There

were no significant differences between the imaging scenarios, p = 0.2574.

Dose to tumours

Liver tumour lesions (n = 23) were evaluated for each scenario. The tumour masses were

54 ± 87 g (median = 20 g, range = 3–403 g). The details of the tumour doses are shown in

Table 4. The mean absorbed tumour doses were 22.1 ± 12.9 Gy for the multi-SPECT-CT sce-

nario, 25.3 ± 17.4 Gy for the hybrid scenario and 45.3 ± 56.8 Gy for the planar scenario. The

difference between the scenarios was not significant (p = 0.1199).

Inter-observer variability

Definition of 3D kidney VOIs showed a very good inter-observer agreement with respect to

the extracted counts, wt = 0.937 (p = 0.0003). A good inter-observer agreement was estimated

for the definition of 2D kidney ROIs using planar images, wt = 0.634 (p = 0.0018). The mean

Table 3. Dose per injected activity for the first therapy cycle (n = 16 patients), with respect to the different evaluation scenarios.

Kidneys (Sv GBq-1) Liver (Sv GBq-1) Spleen (Sv GBq-1) Lungs (Sv GBq-1) Bladder Wall (Sv GBq-1)

Multi-SPECT-CT

mean ± SD 0.477 ± 0.184 0.663 ± 0.618 0.816 ± 0.406 0.081 ± 0.062 0.199 ± 0.110

50th (25th/75th) 0.413 (0.325/0.593) 0.375 (0.278/0.935) 0.697 (0.488/1.150) 0.055 (0.039/0.106) 0.173 (0.102/0.301)

range 0.272–0.896 0.080–2.075 0.293–1.584 0.013–0.202 0.061–0.383

Hybrid

mean ± SD 0.588 ± 0.297 0.696 ± 0.624 0.962 ± 0.530 0.130 ± 0.173 0.177 ± 0.335

50th (25th/75th) 0.503 (0.353/0.819) 0.403 (0.264/1.031) 0.930 (0.516/1.090) 0.086 (0.037/0.139) 0.088 (0.046/0.102)

range 0.295–1.298 0.067–2.332 0.257–2.089 0.017–0.744 0.029–1.362

pa 0.0052 n.s.c 0.0256 0.4332 n.s.c

Planar

mean ± SD 0.757 ± 0.433 0.627 ± 0.535 1.429 ± 0.864 0.362 ± 0.141 0.241 ± 0.177

50th (25th/75th) 0.647 (0.524/0.908) 0.441 (0.288/0.667) 1.136 (0.728/1.906) 0.367 (0.260/0.422) 0.176 (0.136/0.285)

range 0.248–1.823 0.143–1.831 0.576–3.623 0.148–0.698 0.054–0.647

pb 0.0013 n.s.c 0.0020 < 0.0001 n.s.c

aSignificance of differences between the multi-SPECT-CT and hybrid scenario (Wilcoxon signed-rank test)
bSignificance of differences between the multi-SPECT-CT and planar scenario (Wilcoxon signed-rank test)
cn.s. (not significant) differences between the three groups (Friedman test)

https://doi.org/10.1371/journal.pone.0187570.t003
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time for drawing kidneys in planar WB scintigraphy was 20 ± 4 s, 15–32 s (C.H.: 24 ± 3 s, D.K.:

18 ± 2 s, and H.W.: 19 ± 2 s). The mean time needed for drawing kidneys in the SPECT/CT

data was 151 ± 44 s, 77–316 s (C.H.: 123 ± 33 s, D.K.: 134 ± 13 s, and H.W.: 195 ± 41 s). The

time for defining the ROI in WB scintigraphy data was significantly smaller compared to

defining the VOI in the SPECT/CT data (p< 0.0001).

CT dose exposure

The effective dose for a single low-dose-CT examination (scan length of 80 cm, thorax and

abdomen) was E = 2.6 mSv (male) and 3.2 mSv (female) for a tube current of I = 40 mA

(DLP = 172.6 mGy cm) and E = 1.2 mSv (male) and 1.6 mSv (female) for I = 20 mA (DLP =

86.3 mGy cm). A single PRRT cycle yielded an effective dose from CT exposure of E = 7.4 mSv

(male) and 9.6 mSv (female) for the multi-SPECT-CT scenario and a CT exposure of E = 2.6

mSv (male) and 3.2 mSv (female) for the hybrid scenario.

Discussion

In this study, we used two commercially available software tools (DTK and OLINDA/EXM)

for semi-automatic evaluation of organ doses in PRRT with 177Lu-DOTATATE. We compared

dose values for different organs and for tumours estimated by three different scenarios based

on SPECT/low-dose CT, planar WB imaging and a hybrid protocol with planar WB imaging

and SPECT/low-dose CT imaging. Each scenario differed in terms of accuracy, exposure from

additional CT imaging and processing time.

The determined mean DpA of 0.8 ± 0.4 Sv GBq-1 for the kidneys per treatment cycle esti-

mated by the planar scenario was comparable to results of other studies using planar WB

approaches (range: 0.6–1.2 Gy GBq-1) [12,16,19,28,31]. The kidney doses estimated by SPECT/

CT-based methods were lower compared to previous results. Garkavij et al. [12] used a hybrid

approach in their work, in which planar WB data were scaled by uptake values from SPECT

data. They reported an average DpA of 0.8 ± 0.2 Gy GBq-1 (our data: 0.6 ± 0.3 Sv GBq-1).

Authors using multi-SPECT/CT methodology reported a mean kidney dose of 2.6–9.1 Gy per

treatment cycle [13,17,18]. Here, our results are comparable to published studies. The DpA

calculated for liver by the planar scenario (0.6 ± 0.5 Sv GBq-1) exceeds the published values by

0.2 to 0.3 Gy GBq-1 [28,31]. In contrast, the mean dose estimated by the multi-SPECT-CT sce-

nario converges with the range of published data of 1.9 to 4.5 Gy [13,17,18]. Both the calcu-

lated spleen doses for the planar and the multi-SPECT-CT scenario are in good agreement

with the available literature [13,17,18,28,31]. Since the lung and bladder wall in PRRT with
177Lu-DOTATATE are not considered as organs at high risk, no corresponding reference val-

ues were reported by other authors.

Table 4. Dose per injected activity (DpA) and absorbed tumour doses of n = 23 liver tumour lesions of 16 patients for the first therapy cycle.

Multi-SPECT-CT Hybrid Planar p

DpA (Gy GBq-1)

mean ± SD 2.58 ± 1.47 3.09 ± 2.16 5.32 ± 6.26

50th (25th/75th) 2.71 (1.26/3.65) 2.70 (1.34/3.74) 3.13 (2.43/4.65) 0.1199

Range 0.16–5.35 0.20–7.89 0.18–25.30

Dose (Gy)

mean ± SD 22.08 ± 12.91 25.27 ± 17.37 45.30 ± 56.75

50th (25th/75th) 21.70 (11.40/29.75) 24.30 (11.65/29.15) 26.50 (19.75/43.55) 0.1835

Range 1.40–47.60 1.90–59.00 1.60–259.10

https://doi.org/10.1371/journal.pone.0187570.t004
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The multi-SPECT-CT scenario provides probably the most accurate data (e.g. for residence

times) compared to the planar scenario due to the definition of non-overlapping 3D VOIs by

using CT information [32] and the evaluation of CTAC corrected SPECT data [33]. However,

the multi-SPECT-CT scenario was highly time-consuming because of the pre-processing of

the raw data (reconstruction of SPECT data and co-registration) and the elaborated VOI defi-

nition. In addition, the patient accumulated an additional CT exposure from each hybrid

SPECT/CT scan. This exposure was significantly smaller for the hybrid scenario using a single

hybrid SPECT/CT and was absent for the planar scenario. Using the multi-SPECT-CT sce-

nario for dosimetry, the median DpAs were estimated to be significantly lower for organs (e.g.

organs at risk) compared to the planar or hybrid imaging approach. The planar scenario was

the fastest and easiest dosimetry scenario due to the simple pre-processing and ROI drawing.

The calculated DpAs from the planar scenario were significantly higher for the kidneys, spleen,

and lungs and slightly but not significantly increased for the liver and bladder wall compared

to the multi-SPECT-CT scenario. The overestimation of the organ doses of the planar 2D

imaging scenario compared to the SPECT/CT imaging scenario was due to increased residence

times caused by the overlapping segmentation of organ ROIs [32], the non-attenuation cor-

rected data used for dosimetry [33] and the weighting factor for organ thickness for the correc-

tion of the count-rate. The lack of consideration of photon attenuation in planar-only imaging

methods was probably an important source of error compared to CTAC SPECT-based meth-

ods [22]. Especially, in the thoracic region, the lack of attenuation correction led to an overesti-

mation of the lung dose [34]. Furthermore, the high systematic overestimation of the lung

dose with the planar scenario by a factor of 6.7 may have been due to the weighting factor of

the lungs (wfLung = 0.44 ± 0.12). As mentioned, this factor was obtained by the ratio of organ

thickness to body thickness (Eq 1) and was used to correct the count-rate and therefore the res-

idence time. Since the thickness of the lungs varied widely from the apex to the base and only

one weighting factor for thickness per organ can be used in the DTK, it is likely that a reduc-

tion of the weighting factor for organ thickness would provide results that are more represen-

tative. Compared to the lungs, the kidneys and the spleen have a relatively simple geometric

shape, so these weighting factors are probably less error-prone. Unfortunately, an ROI-based

background correction to another ROI or a smaller ROI within the target region of the planar

data is not provided by the DTK. Such a correction could improve the results of the planar

methodology [12]. Furthermore, a correction for the individual organ masses was applied.

Using the standard organ masses of OLINDA/EXM, dose calculation can be further distorted

resulting in an overestimation of organ dose in our cohort.

In the hybrid scenario, organ VOIs were drawn overlap-free in SPECT or CT data before

they were projected onto the planar WB data. A correction for overlapping compartments was

performed automatically. Because of the pre-processing and VOI/ROI definition, the time

required for the hybrid scenario was less than the time of the multi-SPECT-CT scenario but

increased compared to the planar scenario. The calculated DpA did not significantly differ

from the multi-SPECT-CT scenario except for the kidneys and the spleen. The difference in

results between the multi-SPECT-CT and hybrid scenario could arise from the automatic

removal of overlapping ROIs (e.g. right kidney and liver). For the extrapolation of overlapping

regions, a uniformly distributed activity in the VOIs was assumed [35]. Inhomogeneous

uptake in organs or tumour lesions in the organs might compromise the extrapolation and

thus the calculation of the residence time. Another limitation, due to our imaging protocol,

occurred when the SPECT data were co-registered to the planar WBs. Here, different patient

positioning (e.g. SPECT imaged with arms stretched upwards and WB imaged with arms next

to the body) may have led to an internal shift of organs and tumours.
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Tumour dosimetry was focused on the liver, since all enrolled patients had NENs with

liver-dominant metastases. The dose calculations for the multi-SPECT-CT and hybrid sce-

nario revealed a median DpA of 2.7 Gy GBq-1 (multi-SPECT-CT scenario: 22 ± 13 Gy, hybrid

scenario: 25 ± 17 Gy). For the planar scenario, a median DpA of 3.1 Gy GBq-1 (or 45 ± 57 Gy)

was estimated. Other authors reported a comparable tumour dose based on three SPECT/CTs

per treatment cycle (21.4 ± 9.7 Gy [17] and 20 Gy [20] with a range of 10–170 Gy [20]). The

tumour dose (69 ± 33 Gy) by Gupta et al. [28] determined from planar WB data was larger

compared to our planar tumour dose. However, because of heterogeneity in tumours (e.g.

somatostatin receptor density and vascularisation) the doses are not necessarily comparable.

Furthermore, we used the density sphere model implemented in OLINDA/EXM for tumour

dose calculation. This model was based on assumptions (e.g. spherical tumour volume and a

homogeneous activity distribution), which can result in erroneous tumour dose calculation.

Furthermore, cross-radiation has not been considered [25]. Particularly large tumours proba-

bly do not fit the spherical shape and small tumours are compromised by a partial volume

effect.

The basic clinical impact of our results is the demonstrated difference in organ doses esti-

mated by various methodologies for organs at risk (e.g. kidneys) in PRRT. Depending on the

imaging scenario used for dosimetry, the patients accumulate significantly different kidney

doses, which, in turn, affect the number of possible treatment cycles. Patients evaluated with

the planar scenario would exceed the tolerance dose of the kidneys (23 Gy [36]) after an aver-

age of eight treatment cycles, whilst the accumulated dose calculated by the multi-SPECT-CT

scenario is only two-thirds of the reported tolerance. Even the tolerance dose for the kidneys

is under discussion according to MIRD 26 [22], so it is either 23 Gy or 27 Gy. Furthermore,

higher tolerance doses for the kidneys were proposed (28 Gy and 40 Gy) [22]. Naturally, addi-

tional treatment cycles are determined by further parameters (e.g. absorbed dose to the bone

marrow). However, with respect to this dose, Sandström et al. [18] demonstrated in their work

with 200 patients that the kidneys were the organ at risk in about 98% of all cases. We deter-

mined the dose to the red bone marrow by measuring several blood samples with a calibrated

NaI-scintillation detector [6]. Because no imaging approach was used for analysis, the data

were not published by this study.

Obviously, our dosimetric comparison is restricted to the software provided by the vendor,

GE Healthcare, and therefore is subject to the limitations of this particular software package.

For example, it is not possible to perform bi-exponential fits for the estimation of the residence

time. Even though this would be very useful, especially for the evaluation of specific kinetics

(e.g. kidney). This is a limitation that was also reported for actual dosimetric studies (study

from Uppsala) [22].

Furthermore, the dead time effects for 177Lu-DOTATATE dosimetry are small and a cor-

rection was not applied since only the first imaging time point (4 h p.i.) may be effected [22]

and dose calculations were performed over 7 days. Nevertheless, the software-assisted work-

flows simplified and improved essential steps in the internal dosimetry due to automated pro-

cessing, and the use of specific image editing and segmentation tools (e.g. with correction for

overlapping organs). Moreover, a good agreement was observed for organ dosimetry (e.g. kid-

neys) by using the software toolbox independent of the user’s experience. The CT-based seg-

mentation resulted in an almost perfect agreement of the organ definitions with a similar renal

dose determined by the different observers.

The usage of scatter corrections for 177Lu imaging is the subject of current discussions.

Depending on the collimator, the number of scatter windows, and the width of energy win-

dows, Nijs et al. [37] have shown that the reconstructed scatter corrected counts either under-

or overestimated the activity in a lesion (VOI). Our imaging protocol was in accordance with
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the current MIRD 26 [22] published energy window settings of the study of Uppsala in which

no scatter correction was applied.

Conclusion

SPECT/CT-based dosimetry methods determined significantly lower organ doses compared

to the planar scintigraphy method, which was possibly due to the benefit of a CTAC and

overlap-free uptake calculation. However, dosimetry based completely on SPECT data is time-

consuming and tedious. Hybrid imaging approaches combining SPECT/CT and planar delin-

eation provide a compromise between accuracy and user-friendliness.

Supporting information

S1 Table. Patient demographics and organ weights.

(XLS)

S2 Table. Residence times and dose values for each organ of each patient.

(XLS)

S3 Table. Mass, residence times and doses values of the tumours.

(XLS)

S4 Table. Additional data of the Inter-Observer Variability.

(XLS)

Acknowledgments

We thank Corinna Herkula for assistance in data processing.

Author Contributions

Conceptualization: Dennis Kupitz, Holger Amthauer, Oliver S. Grosser.

Formal analysis: Dennis Kupitz.

Funding acquisition: Jens Ricke, Holger Amthauer, Oliver S. Grosser.

Investigation: Dennis Kupitz, Heiko Wissel.

Methodology: Dennis Kupitz, Oliver S. Grosser.

Resources: Christoph Wetz, Florian Wedel, Ivayla Apostolova, Thekla Wallbaum, Holger

Amthauer, Oliver S. Grosser.

Supervision: Jens Ricke, Holger Amthauer, Oliver S. Grosser.

Validation: Dennis Kupitz, Christoph Wetz, Ivayla Apostolova, Oliver S. Grosser.

Visualization: Dennis Kupitz.

Writing – original draft: Dennis Kupitz.

Writing – review & editing: Dennis Kupitz, Christoph Wetz, Florian Wedel, Ivayla Aposto-

lova, Oliver S. Grosser.

References
1. Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK et al. Overview of

results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med.

2005; 46: 62S–66S. PMID: 15653653

Software-assisted dosimetry in PRRT

PLOS ONE | https://doi.org/10.1371/journal.pone.0187570 November 6, 2017 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0187570.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0187570.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0187570.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0187570.s004
http://www.ncbi.nlm.nih.gov/pubmed/15653653
https://doi.org/10.1371/journal.pone.0187570


2. Strosberg J, Wolin E, Chasen B, Kulke M, Bushnell D, Caplin M et al. NETTER-1 Phase III in Patients

with Midgut Neuroendocrine Tumors Treated with 177Lu-DOTATATE: Efficacy and Safety Results. J

Nucl Med. 2016; 57: 629.

3. Cremonesi M, Ferrari M, Bodei L, Tosi G, and Paganelli G. Dosimetry in Peptide radionuclide receptor

therapy: a review. J Nucl Med. 2006; 47: 1467–1475. PMID: 16954555

4. Cremonesi M, Botta F, Dia AD, Ferrari M, Bodei L, de Cicco C et al. Dosimetry for treatment with radio-

labelled somatostatin analogues. A review. Q J Nucl Med Mol Imaging. 2010; 54: 37–51. PMID:

20168285

5. Teunissen JJM, Kwekkeboom DJ, Valkema R and Krenning EP. Nuclear medicine techniques for the

imaging and treatment of neuroendocrine tumours. Endocr Relat Cancer. 2011; 18: S27–51. https://

doi.org/10.1530/ERC-10-0282 PMID: 22005114

6. Hindorf C, Glatting G, Chiesa C, Linden O and Flux G. EANM Dosimetry Committee guidelines for bone

marrow and whole-body dosimetry. EJNMMI. 2010; 37: 1238–1250.

7. Lassmann M, Chiesa C, Flux G and Bardies M. EANM Dosimetry Committee guidance document: good

practice of clinical dosimetry reporting. EJNMMI. 2011; 38: 192–200.

8. Bodei L, Mueller-Brand J, Baum RP, Pavel ME, Horsch D, O’Dorisio MS et al. The joint IAEA, EANM,

and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine

tumours. EJNMMI. 2013; 40: 800–816.

9. Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF et al. MIRD pamphlet no. 16: Tech-

niques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in

human radiation dose estimates. J Nucl Med. 1999; 40: 37S–61. PMID: 10025848

10. Bouchet LG, Bolch WE, Blanco HP, Wessels BW, Siegel JA, Rajon DAet al. MIRD Pamphlet No 19:

absorbed fractions and radionuclide S values for six age-dependent multiregion models of the kidney. J

Nucl Med. 2003; 44: 1113–1147. PMID: 12843230

11. Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK et al. Practical dosimetry of

peptide receptor radionuclide therapy with (90)Y-labeled somatostatin analogs. J Nucl Med. 2005; 46:

92S–98. PMID: 15653657

12. Garkavij M, Nickel M, Sjogreen-Gleisner K, Ljungberg M, Ohlsson T, Wingardh K et al. 177Lu-DOTA0,

Tyr3 octreotate therapy in patients with disseminated neuroendocrine tumors: Analysis of dosimetry

with impact on future therapeutic strategy. Cancer. 2010; 116: 1084–1092. https://doi.org/10.1002/

cncr.24796 PMID: 20127957

13. Sandström M, Garske U, Granberg D, Sundin A and Lundqvist H. Individualized dosimetry in patients

undergoing therapy with (177)Lu-DOTA-D-Phe (1)-Tyr (3)-octreotate. EJNMMI. 2010; 37: 212–225.

14. Berker Y, Goedicke A, Kemerink GJ, Aach T and Schweizer B. Activity quantification combining conju-

gate-view planar scintigraphies and SPECT/CT data for patient-specific 3-D dosimetry in radionuclide

therapy. EJNMMI. 2011; 38: 2173–2185.

15. Dewaraja YK, Frey EC, Sgouros G, Brill AB, Roberson P, Zanzonico PB et al. MIRD pamphlet No. 23:

quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl

Med. 2012; 53: 1310–1325. https://doi.org/10.2967/jnumed.111.100123 PMID: 22743252

16. Larsson M, Bernhardt P, Svensson JB, Wangberg B, Ahlman H and Forssell-Aronsson E. Estimation of

absorbed dose to the kidneys in patients after treatment with 177Lu-octreotate: comparison between

methods based on planar scintigraphy. EJNMMI Research. 2012; 2: 49. https://doi.org/10.1186/2191-

219X-2-49 PMID: 23006939

17. Jackson PA, Beauregard JM, Hofman MS, Kron T, Hogg A and Hicks RJ. An automated voxelized

dosimetry tool for radionuclide therapy based on serial quantitative SPECT/CT imaging. Med Phys.

2013; 40: 112503. https://doi.org/10.1118/1.4824318 PMID: 24320462

18. Sandström M, Garske-Roman U, Granberg D, Johansson S, Widstrom C, Eriksson B et al. Individual-

ized dosimetry of kidney and bone marrow in patients undergoing 177Lu-DOTA-octreotate treatment. J

Nucl Med. 2013; 54: 33–41. https://doi.org/10.2967/jnumed.112.107524 PMID: 23223392

19. Delker A, Ilhan H, Zach C, Brosch J, Gildehaus FJ, Lehner S et al. The Influence of Early Measurements

Onto the Estimated Kidney Dose in (177)LuDOTA(0),Tyr(3)Octreotate Peptide Receptor Radiotherapy

of Neuroendocrine Tumors. Mol Imaging Biol. 2015; 17: 726–734. https://doi.org/10.1007/s11307-015-

0839-3 PMID: 25790773

20. Ilan E, Sandström M, Wassberg C, Sundin A, Garske-Roman U, Eriksson B et al. Dose response of pan-

creatic neuroendocrine tumors treated with peptide receptor radionuclide therapy using 177Lu-DOTA-

TATE. J Nucl Med. 2015; 56: 177–182. https://doi.org/10.2967/jnumed.114.148437 PMID: 25593115

21. DGN—Deutsche Gesellschaft für Nuklearmedizin, Handlungsempfehlung 031–045 (S1-Leitlinie)—

Peptid-Rezeptor-Radionuklid-Therapie (PRRT) somatostatinrezeptorexprimierender Tumore. 2013.

1–19.

Software-assisted dosimetry in PRRT

PLOS ONE | https://doi.org/10.1371/journal.pone.0187570 November 6, 2017 13 / 14

http://www.ncbi.nlm.nih.gov/pubmed/16954555
http://www.ncbi.nlm.nih.gov/pubmed/20168285
https://doi.org/10.1530/ERC-10-0282
https://doi.org/10.1530/ERC-10-0282
http://www.ncbi.nlm.nih.gov/pubmed/22005114
http://www.ncbi.nlm.nih.gov/pubmed/10025848
http://www.ncbi.nlm.nih.gov/pubmed/12843230
http://www.ncbi.nlm.nih.gov/pubmed/15653657
https://doi.org/10.1002/cncr.24796
https://doi.org/10.1002/cncr.24796
http://www.ncbi.nlm.nih.gov/pubmed/20127957
https://doi.org/10.2967/jnumed.111.100123
http://www.ncbi.nlm.nih.gov/pubmed/22743252
https://doi.org/10.1186/2191-219X-2-49
https://doi.org/10.1186/2191-219X-2-49
http://www.ncbi.nlm.nih.gov/pubmed/23006939
https://doi.org/10.1118/1.4824318
http://www.ncbi.nlm.nih.gov/pubmed/24320462
https://doi.org/10.2967/jnumed.112.107524
http://www.ncbi.nlm.nih.gov/pubmed/23223392
https://doi.org/10.1007/s11307-015-0839-3
https://doi.org/10.1007/s11307-015-0839-3
http://www.ncbi.nlm.nih.gov/pubmed/25790773
https://doi.org/10.2967/jnumed.114.148437
http://www.ncbi.nlm.nih.gov/pubmed/25593115
https://doi.org/10.1371/journal.pone.0187570


22. Ljungberg M, Celler A, Konijnenberg MW, Eckerman KF, Dewaraja YK and Sjogreen-Gleisner K, MIRD

Pamphlet No. 26: Joint EANM/MIRD Guidelines for Quantitative 177Lu SPECT Applied for Dosimetry

of Radiopharmaceutical Therapy. J Nucl Med. 2016; 57: 151–162. https://doi.org/10.2967/jnumed.115.

159012 PMID: 26471692

23. National Electrical Manufacturers Association. Performance measurements of positron emission tomo-

graphs. NEMA Standards Publication NU 1–2012. Rosslyn, USA: National Electical Manufacturers

Association. 2012.

24. Grosser OS, Kupitz D, Ruf J, Czuczwara D, Steffen IG, Furth C et al. Optimization of SPECT-CT Hybrid

Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study. PloS one. 2015;

10: e0138658. https://doi.org/10.1371/journal.pone.0138658 PMID: 26390216

25. Stabin MG, Sparks RB and Crowe E. OLINDA/EXM: the second-generation personal computer soft-

ware for internal dose assessment in nuclear medicine. J Nucl Med. 2005; 46: 1023–1027. PMID:

15937315

26. Park S, Lee JK, Kim JI, Lee YJ, Lim YK, Kim CS et al. In vivo organ mass of Korean adults obtained

from whole-body magnetic resonance data. Radiat Prot Dosimetry. 2006; 118: 275–279. https://doi.

org/10.1093/rpd/nci340 PMID: 16332919

27. Howard DM, Kearfott KJ, Wilderman SJ and Dewaraja YK. Comparison of I-131 radioimmunotherapy

tumor dosimetry: unit density sphere model versus patient-specific Monte Carlo calculations. Cancer

Biother Radiopharm. 2011; 26: 615–621. https://doi.org/10.1089/cbr.2011.0965 PMID: 21939358

28. Gupta SK, Singla S, Thakral P and Bal CS. Dosimetric analyses of kidneys, liver, spleen, pituitary

gland, and neuroendocrine tumors of patients treated with 177Lu-DOTATATE. Clin Nucl Med. 2013;

38: 188–194. https://doi.org/10.1097/RLU.0b013e3182814ac1 PMID: 23412597

29. Stamm G and Nagel HD. CT-expo—a novel program for dose evaluation in CT. RoFo: Fortschritte auf

dem Gebiete der Rontgenstrahlen und der Nuklearmedizin. 2002; 174: 1570–1576. https://doi.org/10.

1055/s-2002-35937 PMID: 12471531

30. Koral KF and Zaidi H. Methods for Planar Image Quantification in Quantitative Analysis in Nuclear Medi-

cine Imaging. Springer Science+Business Media Inc, Boston, MA; 2006: pp. 414–421.

31. Kwekkeboom DJ, Bakker WH, Kooij PP, Konijnenberg MW, Srinivasan A, Erion JL et al. [177Lu-

DOTA0,Tyr3]octreotate. Comparison with [111In-DTPA0]octreotide in patients. Eur J Nucl Med. 2001;

28: 1319–1325. PMID: 11585290

32. He B and Frey EC. The impact of 3D volume of interest definition on accuracy and precision of activity

estimation in quantitative SPECT and planar processing methods. Phys Med Biol. 2010; 55: 3535–

3544. https://doi.org/10.1088/0031-9155/55/12/017 PMID: 20508323

33. King M and Farncombe T. An overview of attenuation and scatter correction of planar and SPECT data

for dosimetry studies. Cancer Biother Radiopharm. 2003; 18: 181–190. https://doi.org/10.1089/

108497803765036346 PMID: 12804043

34. Yu N, Srinivas SM, Difilippo FP, Shrikanthan S, Levitin A, McLennan G et al. Lung dose calculation with

SPECT/CT for 90Yittrium radioembolization of liver cancer. Int J Radiat Oncol. 2013; 85: 834–839.

35. GE Healthcare, Organ Dose estimates for Radio-Isotope Therapy treatment planning purposes. Dosim-

etry toolkit package. White Paper. 2011.

36. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE et al. Tolerance of normal tissue to

therapeutic irradiation. Int J Radiat Oncol. 1991; 21: 109–122.

37. Nijs R, Lagerburg V, Klausen TL, Holm S. Improving quantitative dosimetry in (177)Lu-DOTATATE

SPECT by energy window-based scatter corrections. Nucl Med Commun. 2014; 35: 522–533. https://

doi.org/10.1097/MNM.0000000000000079 PMID: 24525900

Software-assisted dosimetry in PRRT

PLOS ONE | https://doi.org/10.1371/journal.pone.0187570 November 6, 2017 14 / 14

https://doi.org/10.2967/jnumed.115.159012
https://doi.org/10.2967/jnumed.115.159012
http://www.ncbi.nlm.nih.gov/pubmed/26471692
https://doi.org/10.1371/journal.pone.0138658
http://www.ncbi.nlm.nih.gov/pubmed/26390216
http://www.ncbi.nlm.nih.gov/pubmed/15937315
https://doi.org/10.1093/rpd/nci340
https://doi.org/10.1093/rpd/nci340
http://www.ncbi.nlm.nih.gov/pubmed/16332919
https://doi.org/10.1089/cbr.2011.0965
http://www.ncbi.nlm.nih.gov/pubmed/21939358
https://doi.org/10.1097/RLU.0b013e3182814ac1
http://www.ncbi.nlm.nih.gov/pubmed/23412597
https://doi.org/10.1055/s-2002-35937
https://doi.org/10.1055/s-2002-35937
http://www.ncbi.nlm.nih.gov/pubmed/12471531
http://www.ncbi.nlm.nih.gov/pubmed/11585290
https://doi.org/10.1088/0031-9155/55/12/017
http://www.ncbi.nlm.nih.gov/pubmed/20508323
https://doi.org/10.1089/108497803765036346
https://doi.org/10.1089/108497803765036346
http://www.ncbi.nlm.nih.gov/pubmed/12804043
https://doi.org/10.1097/MNM.0000000000000079
https://doi.org/10.1097/MNM.0000000000000079
http://www.ncbi.nlm.nih.gov/pubmed/24525900
https://doi.org/10.1371/journal.pone.0187570

