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Tunneling between a point contact and a one-dimensional wire is usually described with the help of a tunneling
Hamiltonian that contains a δ function in position space. Whereas the leading-order contribution to the tunneling
current is independent of the way this δ function is regularized, higher-order corrections with respect to the
tunneling amplitude are known to depend on the regularization. Instead of regularizing the δ function in the
tunneling Hamiltonian, one may also obtain a finite tunneling current by invoking the ultraviolet cutoffs in a
field-theoretic description of the electrons in the one-dimensional conductor, a procedure that is often used in the
literature. For the latter case, we show that standard ultraviolet cutoffs lead to different results for the tunneling
current in fermionic and bosonized formulations of the theory, when going beyond leading order in the tunneling
amplitude. We show how to recover the standard fermionic result using the formalism of functional bosonization
and revisit the tunneling current to leading order in the interacting case.

DOI: 10.1103/PhysRevB.94.235426

I. INTRODUCTION

When electrons are confined to a single spatial dimension,
the screening of interactions becomes much less effective,
and the description in terms of a Fermi liquid of effectively
noninteracting particles breaks down. Instead, at low
energies, interactions are responsible for the emergence
of bosonic collective excitations, which are described by
the Luttinger liquid theory [1–6]. The description of this
many-electron system in terms of these collective modes
is called bosonization [4,5]. Technically, bosonization is
understood as an operator identity between fermionic and
bosonic operators in one dimension [7–9].

The confinement of electrons to one dimension has been
achieved in a variety of solid-state devices. Examples are
carbon nanotubes [10], cleaved-edge overgrowth wires in
semiconductor heterostructures [11–14], metallic chains in
nanowires [15,16], polymer nanofibers [17], or the edge states
of the quantum Hall insulator [18,19]. All of these systems
provide the possibility to investigate the properties of this
interaction-dominated state of matter for which the Fermi
liquid theory [20,21] does not apply.

A particular problem of interest is the tunneling of electrons
into one-dimensional interacting wires. At low temperatures,
the tunnel current has a power-law dependence on the applied
bias, which depends on the strength of interactions in the one-
dimensional wire [22–24]. Tunneling experiments allowed
the observation of fractional charge carriers in the edge
states of fractional quantum Hall states [25–27] in noise
measurements [28,29]. Moreover, recent experimental [30,31]
and theoretical [32] studies have shown how tunnel junctions
can also probe the out-of-equilibrium distribution of electrons
in one-dimensional strongly correlated systems.

Tunneling through a pointlike contact (in contrast
to the momentum-conserving tunneling in cleaved-edge-
overgrowth wires [12–14]) is usually described by a tunneling
Hamiltonian

Hγ = γψ†(0)c(0) + γ ∗c†(0)ψ(0), (1)

where γ is the tunneling amplitude, ψ(x) and ψ†(x) are
(fermionic) annihilation and creation operators for the interact-
ing one-dimensional wire, and c(x) and c†(x) are (fermionic)
annihilation and creation operators for the reservoir, which
is taken to be effectively noninteracting. The tunneling point
contact is at position x = 0 and for simplicity we consider a
spinless system. To lowest nontrivial order in the tunneling
amplitude, the zero-temperature tunneling current I reflects
the suppression by interactions of the single-particle density
of states in the wire [6,8,9,33,34]

I = |γ 2|e2

2πuv�3
V

(
eV

�

) 1
2 (K+1/K)−1

, (2)

where V is the applied bias, u and v the Fermi velocities in
the wire and the reservoir, respectively, K is the Luttinger
parameter, which equals one in the absence of interactions and
satisfies K < 1 (K > 1) for repulsive (attractive) interactions,
and � is an energy scale set by the interactions.

For certain applications it is important to go beyond the
lowest order in the tunneling amplitude γ . An example is the
calculation of tunneling currents beyond linear response [35],
but the inclusion of higher orders in γ may also be relevant for
calculations of the shot noise or for Andreev processes [36],
for which the tunneling effectively occurs for pairs of elec-
trons. Higher order tunneling processes may also induce a
nonmonotonic behavior with temperature or bias voltage for
the tunneling conductance in the presence of interactions [37].
For such higher-order processes the tunneling Hamiltonian (1)
is no longer a well-defined starting point and a regularization
with respect to the position x of the tunneling point contact
is needed. In general the higher-order contributions to the
tunneling current depend on this regularization. Although
this is known to the experts in the field, what surprised us
and prompted us to write the present article was our finding
that a calculation without a regularization of the tunneling
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Hamiltonian nevertheless leads to a finite and convergent
answer, albeit in such a way that the result of a fermionic
calculation differs from that obtained by standard application
of the bosonization identities.

Since the dependence on the regularization procedure and
the differences between fermionic and bosonized approaches
already exist on the noninteracting level (Luttinger parameter
K = 1), most of our article will consider this special case. We
also consider an alternative bosonization procedure, known
as functional bosonization [38–40], and show that it resolves
the inconsistency between fermionic and bosonic descriptions
in a quite elegant and direct way—although the fundamental
dependence on the choice of regularization for the tunneling
Hamiltonian (1) continues to exist.

The necessity to regularize tunneling Hamiltonians ap-
plies to all studies addressing the strong tunneling limit
for electrons in one-dimensional interacting systems. This
includes impurity problems out of equilibrium, for which
bosonization, followed by a refermionization, allowed major
theoretical breakthroughs. A notable example is the Kondo
problem at the Toulouse limit [41,42]. In this limit, a fine-
tuning of hopping parameters in the Kondo problem allows
to map it on a free fermion problem. Recently, Shah and
Bolech showed that the naive utilization of the bosonization
and refermionization identities leads to qualitative deviations
from the correct result in the strong tunneling limit [43,44].
Whereas these authors advocate an ad hoc modification of
the refermionization schemes to amend the issue, our results
suggest that the inconsistency may already appear at the level
of the bosonization procedure itself.

We start in Sec. II with a formulation of the model Hamilto-
nian that describes tunneling between a Fermi-liquid reservoir
and a Luttinger liquid. We solve the out-of-equilibrium prob-
lem in the noninteracting case by relying on standard scattering
theory [45] and illustrate how different regularizations of
the tunneling term imply different qualitative behaviors for
the conductance. Upon expanding in the tunneling amplitude
γ , the differences between different regularizations do not
appear to leading (second) order in the tunneling amplitude
γ , but only to next to leading (fourth) order correction to
the conductance. In Sec. III, we consider a calculation of
the tunneling current for an unregularized tunneling Hamil-
tonian [25–27,46–48], but with a short-distance cutoff in the
fermionic or bosonic propagators, and show that the fermionic
and bosonic versions of the noninteracting theory lead to
different but convergent results for the tunneling currents.
We also show that such a difference does not occur if the
tunneling Hamiltonian is regularized. In Sec. IV, we show that
functional bosonization with Luttinger liquid parameter K = 1
is consistent with the free fermion result to all order in the
tunneling amplitude. We discuss how functional bosonization
allows an intuitive distinction between interaction cutoffs, nec-
essary to regularize the bosonized theory, and short-distance
cutoffs, necessary to regularize free fermions with linear
dispersion—consistently with previous works, which relied on
a careful inspection of operator bosonization identities [8,33].
We also extend to N -point correlation functions. Finally, in
Sec. V, we provide an illustration about how this distinction
affects the current in the presence of interactions in the
wire.

FIG. 1. Tunneling contact between a metallic contact and an
interacting one-dimensional wire. In most of our discussion we take
the wire to have a single chiral (i.e., unidirectional) mode. The inset
shows a schematic representation of the unfolding procedure that
allows the electrons in the metallic contact to be described as a
one-dimensional chiral mode.

II. MODEL

In Fig. 1, we picture a typical device considered for the
study of the tunneling of electrons in one-dimensional (1D)
wires. It is composed of a metallic contact, such as the tip of a
scanning probe or an integer quantum Hall edge state, tunnel
coupled to a spinless one-dimensional wire. By a standard
unfolding procedure, electrons in the contact, which are taken
to be noninteracting, can be always mapped onto a chiral
one-dimensional system [49]. For electrons in the wire we
take a Luttinger-liquid description. To keep the discussion at
the simplest possible level, we focus most of our discussion
on the situation in which the wire has a single chiral (i.e.,
unidirectional) spinless mode.

The Hamiltonian for this system consists of three terms,

H = HC + HW + Hγ , (3)

where HC and HW describe the electrons in the contact and the
wire, respectively. Without interactions in the one-dimensional
wire they read

HC = r

∫ ∞

−∞
dx c†(x)(−i�v∂x)c(x), (4)

HW =
∫ ∞

−∞
dx ψ†(x)(−i�u∂x)ψ(x), (5)

where the operators c(x) and ψ(x) describe electrons in the
contact and the wire, respectively. The term Hγ describes
tunneling between the contact and the wire; it is given in
Eq. (1). The prefactor r = ± in Eq. (4) sets the propagation
direction of the electrons in the contact with respect to the
wire, a detail of some importance for certain regularization
procedures for the tunneling Hamiltonian Hγ , to be discussed
below.

As long as interactions are neglected in the wire, the
Hamiltonian (3) is quadratic in the fermion creation and
annihilation operators and the stationary current induced by
a voltage bias V between the contact and the wire can be
calculated exactly from standard scattering theory. To second
order in γ the result is unambiguous; when higher orders are
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FIG. 2. Sketch of the regularization schemes Eqs. (6) and (7) for
the tunneling coupling Eq. (1). Choice II is sensitive to the respective
chirality of electrons in the wire and in the contact and we make a
distinction between choices IIa and IIb.

included, a regularization of the tunneling Hamiltonian must
be specified. We focus on two possible choices,

Choice I:

ψ(0) →
∫

dxf (x)ψ(x)

and c(0) →
∫

dxf (x)c(x),

(6)

Choice II: ψ†(0)c(0) →
∫

dxf (x)ψ†(x)c(x), (7)

with f (x) = (1/2δ)�(δ − |x|),�(x) being the Heaviside step
function and δ being the regularization scale. For the second
choice it matters whether the chiral modes in the wire and
the contact have the same propagation direction, and we
refer to the two cases as IIa and IIb, corresponding to
r = −1 and r = 1 in Eq. (4), respectively; see Fig. 2. Similar
regularizations, without taking the δ → 0 limit, were also
considered in Refs. [50,51]. Without interactions, the relation
between current and applied bias V is always linear. However,
the conductance G = I/V depends on the choice of the
regularization. The resulting expressions for the conductance
contain the tunneling amplitude γ in the combination

t = γ

2�
√

uv
, (8)

and they read (the explicit derivation can be found in
Appendix A):

G(I) = e2

h

4t2

(1 + t2)2
, (9a)

G(IIa) = e2

h
tanh2(2t), (9b)

G(IIb) = e2

h
sin2(2t). (9c)

The three expressions are plotted in Fig. 3 as a function
of the tunneling parameter t . Although the three expressions

0 1 0

t 1/t
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FIG. 3. Conductances in Eq. (9) as a function of the tunneling
parameter t = γ /2�

√
uv. Different choices of the tunneling regu-

larization are responsible for different qualitative behaviors in the
limit t → ∞, even if they all have the same behavior for t → 0. The
vertical dashed line signals the change of scale from t to 1/t on the
horizontal axis.

coincide up to order t2,

G = 4e2t2

h
+ O(t4), (10)

the three regularization schemes differ rather strongly in the
limit t → ∞ [43,44].

In the case of choice I, the suppression of the conductance in
the limit t → ∞ can be explained by the formation of bonding
and antibonding states at the junction between electrons in the
contact and in the wire. This leads to a local suppression
of the density of states, reducing the conductance. In the
case of choice II, the situation is quite different. As already
mentioned, choice II is sensitive to the respective chirality
of the contact and the wire. For opposite chiralities (IIa),
in the high hybridization limit, Hγ opens up a gap in the
contact and the wire, leading to complete backscattering
and, hence, complete transmission into the wire, in the limit
t → ∞. For equal chiralities (IIb), on the other hand, electrons
oscillate coherently between contact and wire, and the total
transmission depends sensitively on the strength of the contact.

In Appendix B we discuss an explicit physical example
for the regularization choice I: The conductance between
two semi-infinite fermionic chains is suppressed according
to Eq. (9a), if the hopping amplitude linking the two chains
is taken to infinity, consistent with choice I. Choice IIa
corresponds to the opening of a quantum point contact between
two quantum Hall edge states with opposite chirality.

The quantitative (and qualitative!) difference between the
results in Eqs. (9) shows that a regularization of the tunneling
Hamiltonian of Eq. (1) is always necessary if the electrons
have a linear dispersion relation. If the regularization of the
tunneling Hamiltonian (1) is not made explicit, some form
of regularization of the linear spectrum of the fermions in
the wire is needed. For example, δ-function terms in the
Schrödinger equation need no regularization if the dispersion
is quadratic. However, instead of resorting to an explicitly
nonlinear spectrum, often an implicit regularization of the
linear dispersion is used in the literature. The resulting
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regularization of the tunneling term is uncontrolled and, as
we show in the next section, leads to different results in the
fermionic and bosonic formulations of the theory.

III. COMPARISON WITH STANDARD BOSONIZATION

A. Perturbation theory

The three explicit examples discussed in the previous sec-
tion clearly demonstrate the importance of the regularization
scheme for the calculation of the conductance to arbitrary order
in the tunneling strength t . Nevertheless, it is worth asking to
which extent it is possible to avoid the specification of the
regularization of the tunneling term (1). The practice of not
specifying the regularization is widespread in the literature, in
particular for wires with interacting electrons [25–27,46–48],
for which the exact solution of Sec. II is not available.

What makes it possible to avoid specifying the regulariza-
tion for the tunneling Hamiltonian is that standard approaches
in terms of propagators for the electrons in the wire and the
contact involve an additional regularization, which seemingly
appears to remove the necessity to regularize the tunneling
term. This short-distance cutoff appears in both the fermionic
and the bosonic formulations of the theory. We will now
calculate the conductance to fourth order in the tunneling
amplitude γ for both formulations separately and show that
they lead to different results.

By a standard gauge transformation, it is possible to absorb
the difference eV of the chemical potentials in the contact and
the wire in the tunneling term Eq. (1), by replacing

γ → γ (t) = γ ei	t , with 	 = eV/�. (11)

The coupling term of Eq. (1) then acts as a time-dependent
perturbation to the system. The current operator reads

Î (t) = i
e

�
[γ (t)ψ†(0,t)c(0,t) − γ ∗(t)c†(0,t)ψ(0,t)] (12)

and the tunneling current is readily written in terms of a
correlation function between fermions in the contact and in
the wire

I = 2e

�
Re[γ (t)�<(t,t ; 0,0)], (13)

in which

�C(t,t ′; x,x) = −i〈TCc(x,t)ψ†(x ′,t ′)〉. (14)

Here we have introduced the ordering TC along the Keldysh
contour CK [52]. Times t± evolve on an upper or lower branch
C± of this contour, and we adopt the convention that the upper
(lower) branch runs forward (backward) in time. The function
�C equals the time-ordered Green’s function �T if both t and
t ′ ∈ C+, it equals the anti-time-ordered Green’s function �T̃ if
both t and t ′ ∈ C−, and it equals the greater Green’s function
�> if t ∈ C− and t ′ ∈ C+ and the lesser Green’s function �<

if t ∈ C+ and t ′ ∈ C−.
Using perturbation theory in Hγ , the correlation function

�C and, hence, the current I can be expressed in terms of
the correlation functions of the fermions in the wire and the
contact, which have to be evaluated without the tunneling
Hamiltonian Hγ . Explicitly, up to fourth order in the tunneling

amplitude, one has

I = I (2) + I (4), (15)

with

I (2) = 2eγ 2

�2
Re

[∫
CK

dt1e
i	(t−t1)〈−iTCc(t+)c†(t1)〉

× 〈−iTCψ(t1)ψ†(t−)〉
]
, (16)

I (4) = − eγ 4

�4
Re

[∫
CK

dt1dt2dt3 ei	(t+t1−t2−t3)

×〈−TCc(t+)c(t1)c†(t2)c†(t3)〉

× 〈−TCψ(t3)ψ(t2)ψ†(t1)ψ†(t−)〉
]
, (17)

where t± is the point on C± corresponding to the real time t . To
keep the expressions compact, we have suppressed the spatial
argument x = 0 for the fields ψ(x,t) and c(x,t). The pair
correlation functions in Eq. (16) are nothing but the contour-
ordered Green’s functions GC(x − x ′; t − t ′) for electrons in
the wire,

GC(x − x ′,t − t ′) = −i〈TCψ(x,t)ψ†(x ′,t ′)〉
= 1

2π [x − x ′ − u(t − t ′) + iα sC(t − t ′)]
,

(18)

where sC(t − t ′) is the contour-ordered sign,

sC(t − t ′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sign(t) t, t ′ ∈ C+,

+1 t ∈ C−, t ′ ∈ C+,

−1 t ∈ C+, t ′ ∈ C−,

−sign(t) t, t ′ ∈ C−,

(19)

and α is a short-distance cutoff that must be sent to zero at the
end of the calculation. The expression for the Green’s function
CC(x − x ′; t − t ′) = −i〈TCc(x,t)c†(x ′,t ′)〉 for the electrons in
the contact is identical, up to the replacement x,x ′ → rx,rx ′.
Physically, α is conventionally interpreted as the (inverse)
band width for the fermionic fields, which should play no
role for phenomena taking place in the immediate vicinity
of the Fermi level. It is important to stress that this is
a heuristic interpretation, however, and that there is no
mathematical framework relating α to an actual bandwidth.
Instead, the inclusion of α is nothing more than a mathematical
construction to regularize infinite and divergent summations
over momenta—the commonality with a finite bandwidth
being nothing more than that for a finite bandwidth momentum
sums are finite, too. Importantly, as we show below, even if
the observable that is calculated allows one to send the cutoff
α to zero at the end of the calculation, the inclusion of a
cutoff may have uncontrolled consequences for physical ob-
servables, such as the conductance, if the tunneling term is left
unregularized.

B. Fermionic approach

In the fermionic formulation, higher-order correlation
functions, such as those that appear in Eq. (17), can be
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expressed in the function (18) using Wick’s theorem,〈−TCψ(t1)ψ(t2)ψ†(t3)ψ†(t4)
〉

= GC(0,t1 − t4)GC(0,t2 − t3)

− GC(0,t1 − t3)GC(0,t2 − t4). (20)

Because of the presence of the short-distance cutoff α, the
current (13) can be calculated to any order in γ . Since
the tunneling term is not regularized, the chirality r of the
fermions in the contact does not play a role in the calculation.
After taking the limit α ↓ 0 at the end of the calculation, the
result coincides with Eq. (9a) (i.e., our choice I), without the
apparent need of a regularization of the tunneling coupling
Eq. (1) [53]. In particular, for the second-order and fourth-
order contributions to the tunneling current we find

I (2) = 4t2e2V

h
, (21)

I (4) = −8t4e2V

h
. (22)

C. Bosonization approach

The starting point for a calculation using the bosonization
formalism is the identity [4–7]

ψ(x) = F√
2πa

e−iφ(x), (23)

which expresses the (chiral) fermion operator ψ(x) in terms
of a (chiral) bosonic field φ and a Klein factor F . Strictly
speaking, Eq. (23) applies to an infinite system size only [7].
The short-distance cutoff a ensures convergence of correlation
functions of the bosonic fields, but is a priori not necessarily
identical to the cutoff α appearing in the free fermion
correlation functions (18) [54]. The boson fields are subject to
the Hamiltonian

Hφ = �u

4π

∫
dx(∂xφ)2. (24)

Right-moving fields obey the Kac-Moody relation
[∂xφ(x),φ(x ′)] = 2πiδ(x − x ′), which is fulfilled by

φ(x) = −i
∑
q>0

√
2π

Lq

[
bqe

iqx − b†qe
−iqx

]
e−qa/2, (25)

in which [bq,b
†
q] = 1, allowing to diagonalize Eq. (24) and to

derive the two-point correlation function

1

2
〈TC[φ(x,t) − φ(x ′,t ′)]2〉

= ln

[
1 − isC(t − t ′)[(x − x ′) − u(t − t ′)]

a

]
, (26)

in which we introduced the bosonic cutoff a to regularize sums
over momenta. Combined with the correlation function of the
Klein factors,

〈TCF (t)F †(t ′)〉 = sC(t − t ′), (27)

the bosonized theory precisely reproduces the Green’s func-
tion (18), with the substitution α → a [6,7,55]—a possible

a posteriori reason to equate the two short-distance cutoffs.
It then follows directly that the bosonized and fermionic
formulations lead to the same tunneling current I to second
order in the tunneling amplitude t .

For the fourth-order contribution to the tunneling current
I (4), we need to evaluate the four-point correlation function
〈−TCψ(t1)ψ(t2)ψ†(t3)ψ†(t4)〉 in the bosonized formalism; see
Eq. (17). (We continue to use the fermionic formalism for the
electrons in the contact.) One finds [7]

〈−TCψ(t1)ψ(t2)ψ†(t3)ψ†(t4)〉

= 〈−TCF (t1)F (t2)F †(t3)F †(t4)〉
(2πa)2

f12f34

f13f14f23f24
, (28)

where we abbreviated

f12 = 1 + i
u(t1 − t2)

a
s12, and sij = sC(ti − tj ). (29)

The contour-ordered expectation value of the four Klein factors
is given by Wick’s theorem [7,46]

〈−TCF (t1)F (t2)F †(t3)F †(t4)〉 = s13s24 − s12s34 − s14s23.

(30)
It is interesting to compare Eq. (28) with the four-point
correlation function (20) obtained in the fermionic approach.
Hereto we apply the equality

s12s34 + s14s23 − s13s24

s12s34s13s14s23s24
= 1, (31)

and a simplified form of the Cauchy identity [56,57]

−(t1 − t2)(t3 − t4)

(t1 − t3)(t1 − t4)(t2 − t3)(t2 − t4)

= 1

t1 − t3

1

t2 − t4
− 1

t1 − t4

1

t2 − t3
. (32)

The four-point correlation function (28) can then be cast into
the form

〈−TCψ(t1)ψ(t2)ψ†(t3)ψ†(t4)〉
= GC(0,t1 − t4)GC(0,t2 − t3)

×
[
1 − i a

s12u(t1−t2)

][
1 − i a

s34u(t3−t4)

]
[
1 − i a

s13u(t1−t3)

][
1 − i a

s24u(t2−t4)

]
−GC(0,t1 − t3)GC(0,t2 − t4)

×
[
1 − i a

s12u(t1−t2)

][
1 − i a

s34u(t3−t4)

]
[
1 − i a

s14u(t1−t4)

][
1 − i a

s23u(t2−t3)

] , (33)

where the short-distance cutoff in the Green’s function GC

should be taken equal to the short-distance cutoff a of the
bosonized theory. Since the expressions between brackets
become unity if the short-distance cutoff a is sent to zero, this
expression coincides with Eq. (20) obtained from the fermionic
theory if the short-distance cutoffs α and a are both sent to
zero, which is possible if the four times t1, t2, t3, and t4 all
have different values. This is also the requirement to recover
the generalized form of Wick’s theorem for interacting fields
in one dimension [7,58].

The expressions (20) and (33) are not identical if two or
more of the times t1, t2, t3, and t4 coincide, or differ less than
the short-distance cutoff a. We now show that this difference
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FIG. 4. Numerical calculation of I in Eq. (34) as a function of
ω = α	/v for fixed va/uα = 1. Diamonds are calculated starting
from Eq. (35), using the standard bosonization approach. Circles are
calculated using the fermionic approach, using Wick’s theorem for
the four-point correlators in Eq. (17). The estimated errors of the
numerical results are less than the symbols used to represent the data
points. The limit α → 0 clearly differs for the two approaches.

has consequences for physical observables calculated from
the correlation function. In particular, calculating the fourth-
order-in-tunneling contribution to the current I (4) of Eq. (16)
we find, with the help of Eq. (33), that

I (4) = −8t4e2V

h
I, (34)

with

I = − lim
ω→0

1

2π3ω
Re
∫ ∞

−∞
dτ1dτ2dτ3

×
∑

η1η2η3=±
η1η2η3e

iω(τ1−τ2−τ3)

× s+2s13(s32s1− + s3−s21 − s31s2−)

(−iτ2s+2 + 1)(i(τ1 − τ3)s13 + 1)

× f ′(τ3 − τ2)f ′(τ1 − τ−)

f ′(τ3 − τ1)f ′(τ3 − τ−)f ′(τ2 − τ1)f ′(τ2 − τ−)
,

(35)

where ω = α	/v, ηj denotes the upper or lower branch of the
Keldysh contour corresponding to the real time τj , j = 1,2,3,
and

f ′(tk − tl) = va

uα
+ i(τk − τl)skl, (36)

a dimensionless version of Eq. (29), with α the short-time
cutoff for the (fermionic) states in the contact. We have not
been able to carry our the remaining integration analytically,
but we could perform the integral numerically using Monte
Carlo sampling, which gives the result

I ≈ 1.4, (37)

for u = v and a = α, see Fig. 4, with quite good convergence
for the limit ω → 0. For comparison, the fermionic approach
gives I = 1; see Eq. (22). Also, in the bosonization formalism
the current I (4) depends on the ratio uα/va, see Fig. 5, whereas
there is no such dependence in the fermionic calculation based

10−3 10−2 10−1 100

va/uα

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

I

Fermionic
Bosonized

FIG. 5. Numerical calculation of I as a function of va/uα.
Diamonds are for the standard bosonization approach.

on Wick’s theorem. To this order in the tunneling amplitude,
the results from bosonized and fermionic calculations coincide
in the limit uα/va → ∞.

The discrepancy between the fermionic and bosonized
approaches, despite the mathematical equivalence between
the two methods [7], suggests that the introduction of the
short-distance cutoff somehow corresponds to an uncontrolled
regularization of the tunneling term (1). In Sec. III D, we
show that both approaches give the same expression for the
tunneling current to next-to-leading order in γ if the tunneling
Hamiltonian (1) is regularized, and the short-distance cutoffs
α and a are sent to zero before taking the limit of a δ-function
tunneling term.

An expression similar to Eq. (33) previously appeared in
Refs. [27,46], but the inconsistency with free fermion was
not discussed there. An inconsistency between a fermionic
calculation and a refermionized calculation after bosonization
was recently reported by Shah and Bolech [43,44], also for
a problem with an unregularized tunnel Hamiltonian. We
suspect that the these discrepancies can also have their origin
in the uncontrolled regularization implied by the bosonization
procedure.

D. Perturbation theory with regularized tunneling term

We now rederive Eqs. (9a), (9b), and (9c) up to fourth order
in t , using standard perturbation theory on the Keldysh contour.
This calculation shows that the fermionic and bosonized
approaches give identical results if the tunneling term is
properly regularized and the ultraviolet cutoffs of the theory
are sent to zero before the regularization parameter δ of the
tunneling Hamiltonian.

The two regularization procedures (6) and (7) regularize
the current operator in two different ways,

I (I) = 2e

�

∫
dxdx ′f (x)f (x ′)Re[γ (t)�<(0,x; 0,x ′)], (38)

I (II) = 2e

�

∫
dxf (x)Re[γ (t)�<(0,x; 0,x)], (39)

where the correlation function � was defined in Eq. (14) and
where the time dependence of the tunneling amplitudes γ

was introduced as in Eq. (11). We first discuss the calculation
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of the current to leading order in perturbation theory, and
then discuss the subleading contribution. To avoid spurious
repetitions, intermediate results will be given for choice II of
the regularization only, and we discuss choice I at the end of
this subsection.

1. Leading order in tunneling amplitude

Choice II in Eq. (7) has two variants, depending on the
relative chirality of fermions in the contact and in the wire.
Following Eq. (4) we use the chirality label r = − for case IIa
and r = + for case IIb. The leading (second) order contribution
to the correlation function � in Eq. (39) reads

�<(0,x; 0,x) = γ

�

∫
dx ′f (x ′)

∫
dτe−i	τ

× [CT
r (x − x ′, − τ )G<(x ′ − x,τ )

−C<
r (x − x ′, − τ )GT̃(x ′ − x,τ )

]
, (40)

where the r dependence is in the Green’s functions Cr of the
contact only. The superscripts T and T̃ refer to time-ordered
and anti-time-ordered correlation functions, respectively; see
also the discussion following Eq. (14). Inserting this expres-
sion into Eq. (39) and transforming to frequency representation
gives

I (2) = 2e

�2
γ 2Re

∫
dxdx ′f (x)f (x ′)

∫
dω1

2π

× [CT
r (x − x ′,ω1)G<(x ′ − x,ω1 − 	)

−C<
r (x − x ′,ω1)GT̃(x ′ − x,ω1 − 	)

]
. (41)

The limit α → 0 has to be taken first and can be carried out
using the explicit expressions for the correlation functions
given in Eq. (18). For example,

C>
r (x,t) = − 1

2πv
P
[

1

t − rx/v

]
− i

2v
δ(t − rx/v), (42)

in which the symbol P stands for the Cauchy principal part.
The relevant Fourier transforms of the Green’s functions in
Eq. (41) are

C>
r (x,ω) = − i

v
θ (ω)eeωrx/v,

C<
r (x,ω) = i

v
θ (−ω)eeωrx/v,

CT
r (x,ω) = 1

2
[C>

r (x,ω) + C<
r (x,ω)] + Av,r (x,ω),

CT̃
r (x,ω) = 1

2
[C>

r (x,ω) + C<
r (x,ω)] − Av,r (x,ω),

Av,r (x,ω) = − i

2v
sgn(rx)eiωrx/v, (43)

with similar expressions for the wire Green’s functions G. We
specialize to the case 	 > 0, so that Eq. (41) simplifies to

I (2) = e

�2
γ 2Re

∫
dxdx ′f (x)f (x ′)

∫
dω1

2π

× [C>
r (x − x ′,ω1)G<(x ′ − x,ω1 − 	)

+ 2Av,r (x − x ′,ω1)G<(x ′ − x,ω1 − 	)

+ 2C<
r (x − x ′,ω1)Au,+(x ′ − x,ω1 − 	)]. (44)

One first notices that all the x occurring in the exponential
factors, see Eq. (43), can be sent to zero as they are all of
order δ. Then only the functions A depend on position (but
not frequency). Being antisymmetric functions of x (after x

has been sent to zero in the exponent), they, however, always
integrate to zero to this order for any regularization of the
tunneling term for which the function f (x) is an even function
of its argument. A similar reasoning can be applied to choice
I in Eq. (6). In both cases the result for the current Eq. (10) is
then recovered to second order in t .

2. Next-to-leading order

For regularization choice II, the next-to-leading-order
contribution reads

I (4) = eγ 4

π�4
Re
∫

dxdx1dx2dx3f (x)f (x1)f (x2)f (x3)

×
∑

η1η2η3

η1η2η3

∫
dω1C

+η1
r (x − x1,ω1)

×Gη1η2 (x1 − x2,ω1 − 	)Cη2η3
r (x2 − x3,ω1)

×Gη3−(x3 − x,ω1 − 	). (45)

The sum over the Keldysh labels η = ± leads to eight
terms which can be all expressed in terms of the functions
C>/<,G>/<, and A. In the previous section we showed that
for both regularizations terms linear in A always integrate to
zero, and the same applies for terms involving three factors A.
After some algebra one arrives at

I (4) = eγ 4

π�4

∫
dxdx1dx2dx3f (x)f (x1)f (x2)f (x3)

∫
dω1

× [− 1
4C>

r (x − x1,ω1)G<(x1 − x2,ω1 − 	)

×C>
r (x2 − x3,ω1)G<(x3 − x,ω1 − 	)

+Av,r (x − x1)Au,+(x1 − x2)

×C>
r (x3 − x2,ω1)G<(x3 − x,ω1 − 	)

]
. (46)

For the first term in the integral the limit δ → 0 can be taken
before the frequency integration, and one finds the contribution
−8e2t4V/h to the current, which is the correction one finds
in choice I; see Eqs. (9a) and (22). For the second term we
need to consider the explicit form of the regularizing functions
f (x). For choice II the spatial dependence of C>

r and G< can
be neglected in the limit δ → 0 and the result depends on the
relative chirality of the two wires only,

I (4)

V
= −8t4e2

h
− 8t4e2

h

r

(2δ)3

×
∫ δ

−δ

dx1dx2dx3 sgn(x1 − x2) sgn(x2 − x3)

= −8t4e2

h

(
1 − r

3

)
, (47)

recovering the fourth-order-in-t contributions to the cor-
rections (9b) and (9c) for r = − and r = +, respectively.
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Repeating the same procedure for choice I in Eqs. (6)
and (38), one finds that the second term in Eq. (46) is
always zero, in agreement with the fourth-order expansion
of the current in Eqs. (9a) and (22), independently of the
respective chirality of electrons. This concludes our derivation
of the regularization-dependent currents given in Eqs. (9) with
regularized perturbation theory.

IV. CONSISTENCY WITH FUNCTIONAL BOSONIZATION

The regularization of the tunneling term resolves the
discrepancies between the fermionic and bosonic approaches.
It also shows that without regularization the tunneling Hamil-
tonian of Eq. (1) is ambiguous, and that one should be careful
in curing this ambiguity by means of a regularization of the
linearized spectrum. Nevertheless, the resolution offered by
inclusion of the explicit regularization of Eq. (1) is expensive,
since taking account of the regularization of the tunneling
term comes at the cost of significant technical complications.
Whereas every choice of a bosonization prescription inevitably
comes with a short-distance cutoff and, hence, with an implicit
regularization of the tunneling Hamiltonian (1), there would
be less of a problem if this implicit regularization is the
same for fermionic and bosonic approaches. In this section
we show that the functional bosonization prescription, a
technique first devised by Fodgeby [38], formalized in the
path-integral formalism by Yurkevich and Lerner [39,40,59]
and then extended to out of equilibrium situations by Gutman,
Gefen, and Mirlin in Ref. [32], satisfies this property.

The starting point of the functional bosonization procedure
is the introduction of auxiliary bosonic fields through a
Hubbard-Stratonovich transformation, followed by a gauge
transformation of the fermionic fields, which is chosen in such
a way that the transformed fermionic fields have no residual
interactions. To keep the discussion general, in this section
we will consider a wire with right-moving and left-moving
electrons, which are labeled by the index r = ±1 respectively.
The auxiliary bosonic field is denoted φr , and the gauge
transformation of the fermionic fields is of the form

ψr → ψr eiθr , (48)

in which the bosonic fields θr is chosen in such a way that the
gauge-transformed fermions are noninteracting.

A comparison of Eqs. (23) and (48) reveals the main dif-
ferences with standard bosonization: Functional bosonization
maps interacting fermions onto free fermions and relegates
all interaction effects to the bosonic fields θr . Functional
bosonization then has the double advantage of avoiding the use
of Klein factors and make a clear separation between fermionic
and bosonic degrees of freedom. As a consequence, one finds
that interactions affect free fermionic correlation functions by
global prefactors, even at a finite value of the short-distance
cutoffs; see Eqs. (64), (65), and (67). This is different from
Eq. (28), derived within standard bosonization. In particular,
the functional bosonization prescription straightforwardly
reproduces Wick’s theorem in the limit of noninteracting
fermions.

An additional feature of the functional bosonization ap-
proach is that it naturally allows us to distinguish interaction
and bandwidth cutoffs. A clear identification of the short-

distance cutoff of the bosonized theory with the range of the
interaction also exists for bosonization schemes that involve
operator identities between fermionic and bosonic operators
and, hence, need no bandwidth cutoff [33,60], although
sending the range of interactions to zero, too, has been shown to
lead to uncontrolled modifications of nonuniversal properties
of Luttinger liquids [61–63]. The calculation presented in this
section revisits well-known calculations [39,40], showing how
the disambiguation between interaction and bandwidth cutoffs
appears in N -point correlation functions derived within the
functional bosonization formalism. We here briefly sketch the
main steps of the derivation. All additional information about
calculations are provided in Appendix C.

Functional bosonization is operated in field theory lan-
guage. The Keldysh action of a general interacting wire with
linearized spectrum reads

S = S0 + S1,

S0 =
∫

dxdxdtdt ′
∑

r

ψr (x,t)G−1
r (x − x ′,t − t ′)ψr (x ′,t ′),

S1 = −1

2

∫
dxdx ′dtdt ′

×
∑
rr ′

nr (x,t)Vrr ′ (x − x ′,t − t ′)nr ′(x ′,t ′), (49)

in which all time integrals are performed on the Keldysh
contour. The index r = ±1, for left- and right-moving elec-
trons, respectively. The electron density is nr = ψrψr . We
also assume implicitly the standard Keldysh matrix structure
in which ψ = (ψ+,ψ−) are vectors of fermionic Grasmann
variables defined on the upper and lower Keldysh branches.
The 2 × 2 matrix Green’s function

GC
r =

(
GT

r G<
r

G>
r GT̃

r

)
= −i〈TCψrψr〉 (50)

collects all free fermion Green’s functions defined in Eq. (18).
For the interaction matrix, we adopt the conventional
“g-ology” labeling [64,65]

Vrr ′ (x − x ′,t − t ′) = δ(t − t ′)
[
g4(x − x ′) g2(x − x ′)
g2(x − x ′) g4(x − x ′)

]
,

(51)

in which g4,2 describe forward- and backscattering interaction
between electrons respectively. The first step consists in
decoupling fermion densities in S1 by introducing auxiliary
fields φr via the Hubbard-Stratonovich transformation

e− i
2

∫
nηVηη′ nη′ =

∫
D[φ]e

i
2

∫
(φηV

−1
ηη′ φη′−φηnη)

. (52)

The action then takes the form

S[ψ,ψ,φ] = 1

2

∑
ηη′

∫
φrV

−1
rr ′ φr ′

+
∑

η

∫
ψr (i∂t + iru∂x − φr )ψr, (53)

in which we made explicit the formal identity G−1
r = (i∂t +

iru∂x). This identity has to be understood with the correct
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Keldysh structure [52]. The coupling between boson and
fermion fields can be gauged out with Eq. (48) under the
condition

Drθ
±
r = −φ±

r , D−1
r = [∂t + ru∂x]. (54)

The Jacobian of the gauge transformation accounts for an
additional contribution to the action,∫

D[ψ,ψ]e
i∑

r

∫
ψr (i∂t+iru∂x−φn)ψr

−→
∫

D[ψ,ψ]ei
∑

r

∫
ψr (i∂t+iru∂x )ψrJ [φ], (55)

with

lnJ [φ] =
∑

r

Tr ln[1 − Grφr ]. (56)

Equation (55) describes the decoupling of free fermion
fields with linear dispersion and boson fields accounting
for interactions. Dzyaloshinki and Larkin showed that the
random-phase approximation (RPA) for the bosonic field is
exact [60]. As a consequence, the determinant contribution to
the action (56) leads to quadratic contributions in the boson
fields φr only, which allows for the exact solution of the full
interacting model.

After quite tedious, but standard, algebra—details in Ap-
pendix C—the correlation functions

F C
rr ′ = −i〈TCθrθr ′ 〉 (57)

are derived in real space. For example, the greater correlation
functions read

F>
rr (x,t) = −i

∫
dp

eipx

p

{
e−iwpt [1 + nB(wp)]

(1 + rK)2

4K

+ eiwptnB(wp)
(1 − rK)2

4K

− re−irupt [1 + nB(rup)]
}
, (58)

F>
r,−r (x,t) = −i

∫
dp

eipx

p

1 − K2

4K
{e−iwpt [1 + nB(wp)]

+ eiwptnB(wp)}, (59)

in which nB(ω) = (eβω − 1)−1 is the Bose-Einstein distribu-
tion function,

w(p) = u

√[
1 + g4(p)

2πu

]2

−
[
g2(p)

2πu

]2

(60)

is the velocity of the collective modes induced by interactions,
and

K(p) =
√

2πu + g4(p) − g2(p)

2πu + g4(p) + g2(p)
(61)

is the Luttinger parameter. In the absence of interactions one
has K = 1, whereas generally K < 1 (K > 1) for repulsive
(attractive) interactions [6].

The momentum dependence of g2 and g4 allows for
the natural introduction of separate cutoffs for interaction
and band width. For any finite-range interaction, g2,4(p) �=

0 only on a finite support, whereas g2,4(p) → 0 in the
limit |p| → ∞. As a consequence, w → u and K → 1 for
|p| → ∞. This ensures the convergence of both integrals in
Eqs. (58) and (59). (Note that often the functions g2 and
g4 are considered as momentum independent, and a single
ultraviolet cutoff a is introduced to ensure converge of both
(free) fermion and boson correlation functions. That there
is actually no reason to make this assumption was pointed
out in some of the early works on bosonization, focusing on
two-point correlation functions [8,33,60,61].) We thus assume
momentum-independent interaction parameters in Eqs. (60)
and (61) and introduce an exponential cutoff e−ε|p| in the
integrals Eqs. (58) and (59), where the ultraviolet cutoff ε is
different from the ultraviolet cutoff α used for the free-fermion
correlation functions. In fact, the ultraviolet cutoff α can be
sent to zero at the end of the calculation [7], whereas the
cutoff ε for the electron-electron interactions should remain
finite throughout the calculation. An example pointing out the
different roles of the two cutoffs can be found in Sec. V. (We
note that the replacement of the true interaction function K(p)
by an exponential and w(p) by a constant is a simplification
which may lead to uncontrolled modification of nonuniversal
properties of Luttinger liquids; see Refs. [62,63]. Nevertheless,
our current approach can be straightforwardly extended to
more realistic situations.)

Performing the momentum integrations with the ultraviolet
cutoff as described above, we find that the greater Green’s
functions of the boson fields become

F>
rr (x,t) = −i

{
(1 + ηK)2

4K
ln

ε

ε − i(x − wt)

+ (1 − rK)2

4K
ln

ε

ε + i(x + wt)

− ln
ε

ε − i(rx − ut)

}
, (62)

F>
−rr (x,t) = −i

1 − K2

4K

{
ln

ε

ε − i(x − wt)

+ ln
ε

ε + i(x + wt)

}
. (63)

The lesser functions are readily extracted by using F<
rr ′(x −

x ′,t − t ′) = −[F>
rr ′(x − x ′,t − t ′)]∗. By applying standard

properties of the averages of exponentials of fields with
quadratic actions, the full fermion Green’s functions on the
Keldysh contour are now easily derived [8,33,60,61],

GC
r (x − x ′,t − t ′) = 1

2π

ε − isC(t)(rx − ut)

ε[rx − ut + iαsC(t)]

×
∏
±

(
ε

ε ∓ isC(t)(x ∓ wt)

) (1±rK)2

4K

,

(64)

where we point to the appearance of separate cutoffs for the
fermionic (band width) and bosonic (interaction) degrees of
freedom. A difference with the textbook presentations of the
bosonization procedure is that in Eq. (64) the sound velocity
of the collective modes w does not replace the Fermi velocity
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u of the original fermions [6,7,55], although the velocity u

drops out of the expression for distances larger than ε.
Notice that the sole effect of interactions is to multiply

the free fermion correlation functions by a prefactor. This is
a general feature, which also applies to the four-point and
higher order correlation functions. Explicitly, for the four-
point correlation functions with all fields evaluated at the same
spatial position, one finds

〈−TCψr (1)ψr (2)ψr (3)ψr (4)〉
= [

GC
0r (1 − 4)GC

0r (2 − 3) − GC
0r (1 − 3)GC

0r (2 − 4)
]

×f C
w (t1 − t3)f C

w (t1 − t4)f C
w (t2 − t3)f C

w (t2 − t4)

f C
w (t1 − t2)f C

w (t3 − t4)
, (65)

where

f C
w (t) = eiF C (0,t) = ε + iutsC(t)

ε + iwtsC(t)

(
ε

ε + iwtsC(t)

) (1−K)2

2K

(66)

and GC
0r is the contour-ordered Green’s function for free

fermions. As advertised, Eq. (65) is the product of a free
fermion part, for which Wick’s theorem applies, and a global
prefactor, which accounts for all interaction effects. The
global prefactor simplifies to a factor one for K = 1, so that
Wick’s theorem is automatically satisfied in the limit of no
electron-electron interactions. Given the nature of the gauge
transformation, Eq. (48), the same applies to all N -point corre-
lation functions when calculated in the functional bosonization
formalism. It follows that in the noninteracting limit K → 1
physical observables, such as the conductance (9a), are the
same in the functional bosonization formalism as in the
fermionic approach.

For completeness, we also report the correlation function
between counterpropagating fermions, again evaluated at
equal positions,

〈−TCψr (1)ψ−r (2)ψ−r (3)ψr (4)〉
= GC

0r (1 − 4)GC
0−r (2 − 3)

× gC
w(t1 − t3)f C

w (t1 − t4)f C
w (t2 − t3)gC

w(t2 − t4)

gC
w(t1 − t2)gC

w(t3 − t4)
. (67)

Here the function gC
w(t) is defined as

gC
w(t) =

(
ε

ε + iwtsC(t)

) 1
2K

(K2+1)(1−K)

. (68)

Notice that the long-distance behavior of this correlation
function has a power-law decay with a different exponent
from the one present in the copropagating correlation functions
Eqs. (64) and (65).

V. APPLICATION: TUNNELING CURRENT FROM
FUNCTIONAL BOSONIZATION

As a simple application of the functional bosonization
approach, we reexamine the calculation of the tunneling
current in the presence of interactions in the wire to leading
order in the tunneling amplitude t . Our aim is to show how the
ultraviolet cutoffs α for the band width and ε for the interaction
range appear in the tunnel current calculations and to clarify

which of these is the cutoff that appears in the known result
from the literature, Eq. (2). As before, we will not regularize
the tunneling Hamiltonian in this calculation, and instead rely
on the regularization from the ultraviolet cutoffs α and ε.

Without regularization of the tunneling Hamiltonian, all
fields are evaluated at the same location. The Green’s
functions (64) fulfill G>(0,t)∗ = G<(0,t) and G>(0, − t) =
−G<(0,t). After some manipulations and taking explicitly the
real part in Eq. (16), one can recast the expression for the
current as an integral in frequency space of exclusively greater
and lesser Green’s functions

I (2) = 2γ 2

2π�2

∫
dω1[C>(ω1)G<(ω1 − 	) − C<(ω1)

×G>(ω1 − 	)]. (69)

For small values of the interaction cutoff ε the Fourier
transform of the greater Green’s function Eq. (64) reads (see
Appendix C for details)

G>(x = 0,ω) = −i
εν−1

wν�(ν)
ων−1θ (ω), (70)

where G<(ω) = G>(−ω)∗, � is the � function, and

ν = 1

2

(
K + 1

K

)
. (71)

In this expression the limit α → 0 has already been taken.
The dependence on the Fermi velocity u for the free fermions,
still present in Eq. (64), has disappeared, as a consequence
of considering all fields at the same point. As discussed
above, the regularization of the tunneling Hamiltonian has
no consequence to leading order in perturbation theory, but it
does for the higher ones.

For a positive bias 	 > 0 only the first term in Eq. (69) has
a nonzero contribution and one finds

I (2) = 4t2V e2

h

1

�(ν + 1)

u

w

(
εeV

�w

)ν−1

, (72)

with t defined in Eq. (8). Essentially this is the same result
as in Eq. (2), with an explicit evaluation of the energy scale
� = �w/ε. The same result is found if the ultraviolet cutoffs α

and ε are taken to be equal. The present calculation underlines
the different roles of the two cutoffs and shows that the
ultraviolet cutoff α for the band width does not appear in
the final result for the tunneling current.

VI. CONCLUSIONS

In this paper we considered the tunneling current between a
metallic pointlike contact and a one-dimensional wire to higher
order in perturbation theory. Nevertheless, we should stress
here that our results apply in general whenever one considers
tunneling of one-dimensional fermions with a linearized
dispersion relation. We reexamined the standard tunneling
Hamiltonian Eq. (1), commonly considered as a perturbation in
this kind of problem. In the absence of interactions, scattering
theory allows us to find the current to arbitrary order in the
tunneling amplitude γ . We showed that the tunneling current
is strongly sensitive to the regularization scheme in the strong
tunneling limit and pointed out that discrepancies between
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regularization schemes appear only beyond the leading-order
expansion in the tunneling amplitude γ of the current.

The need to regularize the tunneling term is no longer
apparent once an ultraviolet cutoff α is inserted in fermion
correlation functions. The same applies when the electrons are
described by boson fields, using the bosonization formalism.
For free fermions, we showed that this procedure corresponds
to a specific regularization of the tunneling Hamiltonian, but
it is not consistent with the standard regularization choice in
the bosonization formalism. The reason is that the utilization
of an ultraviolet cutoff a for bosonic fields is responsible for
a violation of Wick’s theorem in the short-time limit. This
leads to different results for the tunneling current to higher
orders in perturbation theory even in the noninteracting limit.
Our results suggest that this regularization inconsistency may
also be responsible for other discrepancies recently pointed out
in the literature [43,44]. On the other hand, with an explicit
calculation we showed that the regularization of the tunneling
term fully lifts any inconsistencies between free fermions and
standard bosonization, as it allows us to avoid any uncontrolled
ultraviolet regularizations of the tunneling term in both cases.

The regularization of the tunneling term leads to quite
involved calculations and it is important to rely on bosonization
prescriptions which do not lead to uncontrolled modification
of the underlying fermionic model. We showed how functional
bosonization allows us to resolve the inconsistency between
free and bosonized fermions and also allows us to distinguish,
in an intuitive way, between the ultraviolet regularization nec-
essary to account for the approximation of a linear dispersion
relation and the short-distance scale imposed by interactions.
Nevertheless, our work should warn about the widespread
habit to regularize Eq. (1) by means of the introduction of an
ultraviolet cutoff in fermionic or bosonic propagators, which
is a nonuniversal and not fully controlled procedure.

We hope that our work will contribute to a consistent theory
of higher-order tunneling processes for interacting electrons.
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APPENDIX A: TUNNELING CURRENT FROM DIRECT
SOLUTION OF THE SCHRÖDINGER EQUATION

The conductances in Eq. (9) can be derived with the aid
of scattering theory, without the need to introduce ultraviolet
cutoffs for the fermionic fields. The scattering states are solu-
tions of the Schrödinger equation with a properly regularized
tunneling Hamiltonian. We present explicit solutions for the
three choices I, IIa, and IIb for the regularization; see Fig. 2
and Eqs. (6)–(7). For the function f (x) in Eqs. (6) and (7) we
choose a boxlike form,

f (x) =
{

1/2δ for|x| < δ,

0 otherwise.
(A1)

Choice I. For the first choice for the regularization
of the tunneling term the Schrödinger equation reads, for
−δ < x < δ,

0 = −i�v∂x�C(x) + γ

4δ2

∫ δ

−δ

dx ′�W(x ′),

0 = −i�u∂x�W(x) + γ

4δ2

∫ δ

−δ

dx ′�C(x ′),

(A2)

where �C,W are the wave functions of the scattering state
in the contact (C) and wire (W), respectively. (Without loss
of generality we have set r = 1.) For a particle incident
from the contact we solve these equations with the boundary
condition ψC(−δ) = 1/

√
2πv,ψW(−δ) = 0, corresponding

to unit incoming flux in the contact. For −δ < x < δ the
solution reads

�C(x) = 1√
2πv

[
1 − t2(x + δ)

4δ(1 + t2)

]
,

�W(x) = − i√
2πu

t(x + δ)

δ(1 + t2)
,

(A3)

where t = γ /2�
√

uv. The transmission amplitude is then
given by ψW(δ)

√
2πu, so that, by the Landauer formula, we

find the tunneling conductance

G(I) = 4t2e2

h(1 + t2)2
; (A4)

see Eq. (9a).
Choice IIa. In this case, the Schödinger equation reads, for

−δ < x < δ

0 = i�v∂x�C(x) + γ

2δ
�W(x),

0 = −i�u∂x�W(x) + γ

2δ
�C(x). (A5)

Since the electrons in the contact now propagate in the
negative x direction, the boundary condition corresponding
to an electron incident from the normal contact reads ψC(δ) =
1/

√
2πv,ψW(−δ) = 0. The solution of the Schrödinger equa-

tion (A5) with this boundary condition is

�C(x) = cosh[t(x/δ+1)]√
2πv cosh 2t

,

�W(x) = sinh[t(x/δ+1)]
i
√

2πu cosh 2t
. (A6)

As before, the transmission amplitude is ψW(δ)
√

2πu, so that
we find the conductance (9b).

Choice IIb. For this choice of the regularization, the
Schrödinger equation reads

0 = −i�v∂x�C(x) + γ

2δ
�W(x),

0 = −i�u∂x�W(x) + γ

2δ
�C(x),

(A7)

and the boundary condition is the same as for choice I. The
solution is

�C(x) = cos[t(x/δ+1)]√
2πv

,

�W(x) = sin[t(x/δ+1)]
i
√

2πu
. (A8)

Again the transmission amplitude is ψW(δ)
√

2πu, which gives
the conductance (9c).
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FIG. 6. Spinless fermions on two semi-infinite lattices hopping
on nearest neighbors with amplitude λ. The two lattices are coupled
at their ends with hopping amplitude λ′ �= λ. If λ′ = 0, electrons in
the two lattices are backscattered at the junction and cover the dashed
path.

APPENDIX B: PHYSICAL SETUP CORRESPONDING TO
THE REGULARIZATION CHOICE I: FERMIONIC CHAIN

We show here that the regularization choice I and Eq. (9a)
describe the conductance between two semi-infinite fermionic
lattices, shown schematically in Fig. 6. The hopping amplitude
between neighboring sites within a chain is λ; the hopping
amplitude between the end points of the chains is λ′. If
λ′ = 0, no hopping is possible between the two chains and
the conductance is zero. Electrons in the two chains follow
the paths shown schematically in the lower part of Fig. 6.
Such a path can be continuously deformed to the chiral modes
considered in the main text by a standard unfolding procedure
(see Ref. [49] for an example).

The Schrödinger equation for this system reads

Eψj = −λ[ψj+1(1 − δ0j ) + ψj−1(1 − δ1j )]

− λ′[ψ1δ0j + ψ0δ1j ]. (B1)

If λ = λ′, Eq. (B1) is the standard translational invariant tight-
binding model with Fermi energy equal to zero at half-filling
and Fermi wave vector kF = π/2 (we set the lattice spacing
equal to one). For general λ′ �= λ, we look for eigenvectors in
the scattering form ψj ∝ eikF j + ρe−ikF j , for j < 0 and ψj =
τeikF j , for j > 1. The solution of the Schrödinger equation
leads to the transmission amplitude

τ = 2(λ′/λ)

1 + (λ′/λ)2
. (B2)

Applying the Landauer formula and making the identification
λ′/λ = t , Eq. (9a) is recovered. Remarkably, sending the
interchain coupling λ′ to infinity leads to a suppression of
the conductance, the reason being the suppression of the local
density of states, as explained in the main text.

APPENDIX C: INTERMEDIATE RESULTS FOR THE
FUNCTIONAL BOSONIZATION PROCEDURE

Derivation of the bosonic correlation functions Eqs. (58) and (59)

Here it is practical to perform the Keldysh rotation to
classical and quantum boson fields(

φc
r

φ
q
r

)
= 1√

2

(
1 1

1 −1

)(
φ+

r

φ−
r

)
, (C1)

which we will adopt for the remainder of this Appendix.
We also introduce σ0 = 1 and σ1 = σx . The Jacobian (56)
simplifies to [40]

lnJ [φr ] = − 1
4 Tr
[
Grφ

α
r σαGrφ

β
r σβ

]
, (C2)

where we assumed the implicit summation of repeated indices
α and β.

An effective action for the bosonic fields φr can now be
derived easily. The result takes the most compact form if we
define the polarization functions � as 2i times the coefficients
of products of classical and quantum fields in Eq. (C2).
Carrying out the trace in Eq. (C2) in reciprocal space, one
then finds

�A
r = − i

2
[GKGR + GAGK]

= r

2π

p

ω − i0+ − rup
,

�R
r = − i

2
[GKGA + GRGK]

= r

2π

p

ω + i0+ − rup
,

�K
r = − i

2
[GKGK + GAGR + GRGA]

= coth
( ω

2T

)[
�R

r (p,ω) − �A
r (p,ω)

]
,

(C3)

where the superscripts A, R, and K refer to the advanced,
retarded, and Keldysh components [52]. Substituting this into
the action (53), the effective action of the φ fields can be
expressed as

S[φ] = φrV−1
rr ′ φr ′ , (C4)

with

V−1
rr ′ =

[
0 V −1

rr ′ − δrr ′�A

V −1
rr ′ − δrr ′�R −δrr ′�K

]
. (C5)

We derive then the explicit expressions for the correlation
functions

Vrr ′ = −i〈φrφr ′ 〉. (C6)

The matrix Vrr ′ is the inverse of Eq. (C5) and reads

Vrr ′ =
[∑

r ′′ (V −1 − �R)−1
rr ′′�

K
r ′′ (V −1 − �A)−1

r ′′r ′ (V −1 − �R)−1
rr ′

(V −1 − �A)−1
rr ′ 0

]
. (C7)
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We switch to reciprocal space, in which

[V −1(p) − �R/A(ω,p)]r,r ′ =
⎡
⎣ g4

g2
4−g2

2
− �

R/A
+ − g2

g2
4−g2

2

− g2

g2
4−g2

2

g4

g2
4−g2

2
− �

R/A
−

⎤
⎦, (C8)

where we have suppressed the dependence of the functions g2,4 on the momentum p. Inverting this equation and inserting it into
Eq. (C7) we find that the off-diagonal elements of Vrr ′ are given by

VR/A
rr ′ = [V −1(p) − �R/A(ω,p)]−1

r,r ′

= 1(
g4

g2
4−g2

2
− �

R/A
+
)(

g4

g2
4−g2

2
− �

R/A
−
)− g2

2

(g2
4−g2

2 )2

⎡
⎣ g4

g2
4−g2

2
− �

R/A
−

g2

g2
4−g2

2

g2

g2
4−g2

2

g4

g2
4−g2

2
− �

R/A
+

⎤
⎦. (C9)

After some algebra, the following explicit expressions for the retarded/advanced components of Vrr ′ are derived:

VR/A
+− (ω,p) =VR/A

−+ (ω,p) = g2(p)
ω2

± − vF p2

ω2± − w2(p)p2
,

VR/A
++ (ω,p) =VR/A

−− (ω,p) = g4(p)(ω± − rvF p)

ω2± − w2(p)p2

[
ω± + rp

(
vF + 1

2π

g2
4(p) − g2

2(p)

g4(p)

)]
,

(C10)

in which ω± = ω ± i0 and we introduced the renormalized velocity of collective modes w(p); see Eq. (60). One can verify that
the Keldysh component VK in Eq. (C7) fulfills the general bosonic fluctuation-dissipation relation

VK
rr ′ (ω,p) = coth

( ω

2T

)[
VR

rr ′ (ω,p) − VA
rr ′ (ω,p)

]
, (C11)

which completes the calculation of Vrr ′ . The matrix V is the correlation function of the fields φ and it is directly related to the
correlation matrix imposed on the fields θ appearing in Eqs. (48) and (54), through [66](

θc(x,t)

θq(x,t)

)
= −

∫
dx ′dt ′

(
DR(x − x ′,t − t ′) DK(x − x ′,t − t ′)

0 DA(x − x ′,t − t ′)

)(
φc(x ′,t ′)
φq(x ′,t ′)

)
. (C12)

The choice of signs in the matrix is such to fulfill the correct boson causality condition for the θ fields.
We can derive now the Green’s function (57). This Green’s function has the usual bosonic structure, in which, after switching

to retarded/advanced/Keldysh components [52],

Frr ′ =
(

F K
rr ′ F R

rr ′

F A
rr ′ 0

)
, (C13)

with

F
R/A
rr ′ (ω,p) = DR/A

r (ω,p)VR/A
r ′ (ω,p)DA/R

r ′ (−ω,−p). (C14)

Substitution of the expressions for Dr and Vr from the main text and Eq. (C10) then leads to

F
R/A
+− (ω,p) = F

R/A
−+ (ω,p) = g2

ω2± − p2w2
,

F
R/A
++ (ω,p) = F

R/A
−− (ω,p) = g4

ω± + rp
(
vF + 1

2π

g2
4−g2

2
g4

)
(ω2± − w2p2)(ω± − rvF p)

.

Again, the Keldysh component F K
rr ′(ω,p) may be calculated from the fluctuation-dissipation relation,

F K
rr ′(ω,p) = coth

( ω

2T

)[
F R

rr ′(ω,p) − F A
rr ′ (ω,p)

]
. (C15)

To derive Eq. (58) we return to real space. Using the definitions of the retarded, advanced, and Keldysh components, as well
as the fluctuations-dissipation theorem, one has

F>(ω,p) = 1
2 [F K(ω,p) + F R(ω,p) − F A(ω,p)] = [1 + nB(ω)][F R(ω,p) − F A(ω,p)], (C16)

with nB(ω) = (eβω − 1)−1 the Bose-Einstein distribution. First Fourier transforming in the time domain, we find

F>(p,t) = 1

2π
θ (t)

∫
C̃−

dze−izt [1 + nB(z)]F R(z,p) − 1

2π
θ (−t)

∫
C̃+

dze−izt [1 + nB(z)]F A(z,p), (C17)
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in which C̃+ and C̃− denote the standard complex contours closed in the upper/lower plane respectively. The poles of nB(ω) do
not contribute, because F R(iω) = F A(iω) for any finite complex frequency. The two integrals lead to the same result for positive
and negative t , so that

F>(p,t) = 1

2π

∫
C̃−

dze−iz|t |[1 + nB(z)]F R(z,p). (C18)

For comoving fields, r = r ′, the function F R
rr appearing in the integrand has poles at ω = ±w(p)p and at ω = rvF p, leading to

F>
ηη(p,t) = −ig4

⎧⎨
⎩
∑
±

e∓iupt [1 + nB(±up)]
ηp
(
vF + 1

2π

g2
4−g2

2
g4

)± up

2up(up ∓ ηvF p)
+ e−iηvF pt [1 + nB(ηvF p)]

ηvF p + ηp
(
vF + 1

2π

g2
4−g2

2
g4

)
(ηvF p − up)(ηvF p + up)

⎫⎬
⎭.

(C19)

The Fourier transform of the momentum argument then gives Eq. (58). Equation (59) for countermoving fields is derived in a
similar manner.

Fourier transform of interacting Green’s functions. We conclude by providing some details on the derivation of the Fourier
transform of the Green’s function (64), leading to Eq. (70). For x = 0, Eq. (64) reads

G>(0,t) = εν−1

2π (−ut + iα)

ε + iut

(ε + iwt)ν
. (C20)

If ν is a positive integer the Fourier transform can be carried out with standard complex integration techniques, leading to

G>(0,ω) = − εν−1i

u(iw)ν
θ (ω)

[
εe−ωα/u(
iα
u

− iε
w

) + 1

(ν − 1)!

dν−1

dzν−1

eiωz(iuz + ε)

z − iα
u

]
z= iε

w

. (C21)

At this stage the limit α → 0 can be performed, which gives

G>(0,ω) = − εν−1i

u(iw)ν
θ (ω)

[
iu(iw)ν−1

(ν − 1)!
e−ωε/w + (iw)ν

εν−1
+ ε

(ν − 1)!

dν−1

dzν−1

eiωz

z

]
z= iε

w

. (C22)

In the limit ε → 0, the two last terms in the above expression simplify to zero,

lim
ε→0

[
(iw)ν

εν−1
+ ε

(ν − 1)!

dν−1

dzν−1

eiωz

z

∣∣∣∣
z= iε

w

]
= lim

ε→0

[
(iw)ν

εν−1
+ ε

ν−1∑
k=0

(iω)ke−ωε/w(−1)ν−1−k

k!(iε/w)ν−k

]

= lim
ε→0

[
(iw)ν

εν−1
+ ε

∞∑
k=0

(iω)ke−ωε/w(−1)ν−1−k

k!(iε/w)ν−k

]
= 0. (C23)

Equation (70) is recovered upon continuing ν to continuous values.

[1] S.-I. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).
[2] J. Luttinger, J. Math. Phys. 4, 1154 (1963).
[3] D. C. Mattis and E. H. Lieb, J. Math. Phys. 6, 304 (1965).
[4] F. Haldane, J. Phys. C 14, 2585 (1981).
[5] F. D. M. Haldane, Phys. Rev. Lett. 47, 1840 (1981).
[6] T. Giamarchi, Quantum Physics in One Dimension (Oxford

Science Publications, Oxford, UK, 2004).
[7] J. Von Delft and H. Schoeller, Annalen Phys. 7, 225 (1998).
[8] K. Schonhammer, arXiv:cond-mat/9710330.
[9] K. Schönhammer, in Strong Interactions in Low Dimensions

(Springer, Berlin, 2004), pp. 93–136.
[10] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley,

L. Balents, and P. L. McEuen, Nature (London) 397, 598 (1999).
[11] S. Tarucha, T. Honda, and T. Saku, Solid State Commun. 94,

413 (1995).

[12] A. Yacoby, H. L. Stormer, N. S. Wingreen, L. N. Pfeiffer, K. W.
Baldwin, and K. W. West, Phys. Rev. Lett. 77, 4612 (1996).

[13] O. Auslaender, A. Yacoby, R. De Picciotto, K. Baldwin, L.
Pfeiffer, and K. West, Science 295, 825 (2002).

[14] O. Auslaender, H. Steinberg, A. Yacoby, Y. Tserkovnyak, B.
Halperin, K. Baldwin, L. Pfeiffer, and K. West, Science 308, 88
(2005).

[15] E. Slot, M. A. Holst, H. S. J. van der Zant, and S. V. Zaitsev-
Zotov, Phys. Rev. Lett. 93, 176602 (2004).

[16] L. Venkataraman, Y. S. Hong, and P. Kim, Phys. Rev. Lett. 96,
076601 (2006).

[17] A. N. Aleshin, H. J. Lee, Y. W. Park, and K. Akagi, Phys. Rev.
Lett. 93, 196601 (2004).

[18] X. G. Wen, Phys. Rev. B 41, 12838 (1990).
[19] A. M. Chang, Rev. Mod. Phys. 75, 1449 (2003).

235426-14

https://doi.org/10.1143/ptp/5.4.544
https://doi.org/10.1143/ptp/5.4.544
https://doi.org/10.1143/ptp/5.4.544
https://doi.org/10.1143/ptp/5.4.544
https://doi.org/10.1063/1.1704046
https://doi.org/10.1063/1.1704046
https://doi.org/10.1063/1.1704046
https://doi.org/10.1063/1.1704046
https://doi.org/10.1063/1.1704281
https://doi.org/10.1063/1.1704281
https://doi.org/10.1063/1.1704281
https://doi.org/10.1063/1.1704281
https://doi.org/10.1088/0022-3719/14/19/010
https://doi.org/10.1088/0022-3719/14/19/010
https://doi.org/10.1088/0022-3719/14/19/010
https://doi.org/10.1088/0022-3719/14/19/010
https://doi.org/10.1103/PhysRevLett.47.1840
https://doi.org/10.1103/PhysRevLett.47.1840
https://doi.org/10.1103/PhysRevLett.47.1840
https://doi.org/10.1103/PhysRevLett.47.1840
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1521-3889(199811)7:4%3C225::AID-ANDP225%3E3.0.CO;2-L/abstract
http://arxiv.org/abs/arXiv:cond-mat/9710330
https://doi.org/10.1038/17569
https://doi.org/10.1038/17569
https://doi.org/10.1038/17569
https://doi.org/10.1038/17569
https://doi.org/10.1016/0038-1098(95)00102-6
https://doi.org/10.1016/0038-1098(95)00102-6
https://doi.org/10.1016/0038-1098(95)00102-6
https://doi.org/10.1016/0038-1098(95)00102-6
https://doi.org/10.1103/PhysRevLett.77.4612
https://doi.org/10.1103/PhysRevLett.77.4612
https://doi.org/10.1103/PhysRevLett.77.4612
https://doi.org/10.1103/PhysRevLett.77.4612
https://doi.org/10.1126/science.1066266
https://doi.org/10.1126/science.1066266
https://doi.org/10.1126/science.1066266
https://doi.org/10.1126/science.1066266
https://doi.org/10.1126/science.1107821
https://doi.org/10.1126/science.1107821
https://doi.org/10.1126/science.1107821
https://doi.org/10.1126/science.1107821
https://doi.org/10.1103/PhysRevLett.93.176602
https://doi.org/10.1103/PhysRevLett.93.176602
https://doi.org/10.1103/PhysRevLett.93.176602
https://doi.org/10.1103/PhysRevLett.93.176602
https://doi.org/10.1103/PhysRevLett.96.076601
https://doi.org/10.1103/PhysRevLett.96.076601
https://doi.org/10.1103/PhysRevLett.96.076601
https://doi.org/10.1103/PhysRevLett.96.076601
https://doi.org/10.1103/PhysRevLett.93.196601
https://doi.org/10.1103/PhysRevLett.93.196601
https://doi.org/10.1103/PhysRevLett.93.196601
https://doi.org/10.1103/PhysRevLett.93.196601
https://doi.org/10.1103/PhysRevB.41.12838
https://doi.org/10.1103/PhysRevB.41.12838
https://doi.org/10.1103/PhysRevB.41.12838
https://doi.org/10.1103/PhysRevB.41.12838
https://doi.org/10.1103/RevModPhys.75.1449
https://doi.org/10.1103/RevModPhys.75.1449
https://doi.org/10.1103/RevModPhys.75.1449
https://doi.org/10.1103/RevModPhys.75.1449


TUNNELING INTO QUANTUM WIRES: REGULARIZATION . . . PHYSICAL REVIEW B 94, 235426 (2016)

[20] A. A. Abrikosov, Fundamentals of the Theory of Metals
(Elsevier Science, New York, 1988).

[21] P. Nozières and D. Pines, The Theory of Quantum Liquids,
(Perseus Books, Cambridge, MA, 1999), Vol. 6.

[22] C. Kane, L. Balents, and M. P. A. Fisher, Phys. Rev. Lett. 79,
5086 (1997).

[23] Z. Yao, H. W. C. Postma, L. Balents, and C. Dekker, Nature
(London) 402, 273 (1999).

[24] S. Eggert, Phys. Rev. Lett. 84, 4413 (2000).
[25] C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 72, 724 (1994).
[26] P. Fendley, A. W. W. Ludwig, and H. Saleur, Phys. Rev. Lett.

75, 2196 (1995).
[27] C. de C. Chamon, D. E. Freed, and X. G. Wen, Phys. Rev. B 51,

2363 (1995).
[28] L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev.

Lett. 79, 2526 (1997).
[29] R. De-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G.

Bunin, and D. Mahalu, Nature (London) 389, 162 (1997).
[30] Y.-F. Chen, T. Dirks, G. Al-Zoubi, N. O. Birge, and N. Mason,

Phys. Rev. Lett. 102, 036804 (2009).
[31] C. Altimiras, H. Le Sueur, U. Gennser, A. Cavanna, D. Mailly,

and F. Pierre, Nat. Phys. 6, 34 (2010).
[32] D. B. Gutman, Y. Gefen, and A. D. Mirlin, Phys. Rev. B 81,

085436 (2010).
[33] J. Voit, Rep. Prog. Phys. 58, 977 (1995).
[34] M. P. Fisher and L. I. Glazman, Mesoscopic Electron Transport

(Springer, Berlin, 1997), pp. 331–373.
[35] H. Schoeller et al., Europhys. Lett. 31, 31 (1995).
[36] M. J. M. de Jong and C. W. J. Beenakker, Phys. Rev. B 49,

16070 (1994).
[37] D. N. Aristov, A. P. Dmitriev, I. V. Gornyi, V. Y. Kachorovskii,
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