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Abstract

Heart failure has emerged as a disease with significant public health implications. Following

progression of heart failure, heart and liver dysfunction are frequently combined in hospital-

ized patients leading to increased morbidity and mortality. Here, we investigated the underly-

ing pathological alterations in liver injury following heart failure. Heart failure was induced

using a modified infrarenal aortocaval fistula (ACF) in male Wistar rats. Sham operated and

ACF rats were compared for their morphometric and hemodynamic data, for histopatholog-

ical and ultrastructural changes in the liver as well as differences in the expression of apopto-

tic factors. ACF-induced heart failure is associated with light microscopic signs of apparent

congestion of blood vessels, increased apoptosis and breakdown of hepatocytes and inflam-

matory cell inifltration were observed. The glycogen content depletion associated with the

increased hepatic fibrosis, lipid globule formation was observed in ACF rats. Moreover, cyto-

plasmic organelles are no longer distinguishable in many ACF hepatocytes with degenerated

fragmented rough endoplasmic reticulum, shrunken mitochondria and heavy cytoplasm

vacuolization. ACF is associated with the upregulation of the hepatic TUNEL-positive cells

and proapoptotic factor Bax protein concomitant with the mitochondrial leakage of cyto-

chrome C into the cell cytoplasm and the transfer of activated caspase 3 from the cytoplasm

into the nucleus indicating intrinsic apoptotic events. Taken together, the results demonstrate

that ACF-induced congestive heart failure causes liver injury which results in hepatocellular

apoptotic cell death mediated by the intrinsic pathway of mitochondrial cytochrome C leakage

and subsequent transfer of activated caspase 3 into to the nucleus to initiate overt DNA frag-

mentation and cell death.

Introduction

Chronic heart failure, a progressive disease marked by repeated hospitalizations for episodes

of acute decompensation, is frequently complicated by liver dysfunction—one of the most
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important risk factors for poor clinical outcome and death [1, 2]. Particularly right heart failure

causes liver congestion which over time leads to liver stiffness and finally may result into liver

fibrosis [3, 4]. This can induce a constellation of histopathological changes that can range from

mild sinusoidal dilation to advanced fibrosis [3, 4]. In addition, the heart may not be able to

deliver oxygen at a rate proportionate to the demands of the metabolizing tissues resulting in

damage to other organ systems such as liver, although this is subject of debate [5, 6]. The liver

is particularly sensitive to oxygen lack and the integrity of the liver cell depends on an adequate

oxygen supply [7, 8]. Interestingly, in an animal model of caval vein clamping it was shown

that liver congestion triggers liver stiffness with the end result of liver fibrosis without an overt

inflammatory process [9]. There are only very few reports of histopathological alterations in

liver sections obtained by aspiration biopsy or necropsy from patients with congestive heart

failure [3].

Recently, a small clinical study investigated the predominant hepatic cell death pattern in

heart failure by determining serum levels of hepatic cytokeratin-18 epitopes (M65 and M30)

which constitute peripheral cell death markers [1]. These elevated serum markers gave first

indirect evidence that apoptotic cell death seems to contribute to liver injury following heart

failure. It is well established that apoptotic signals initiate specific cellular pathways such as the

disruption of mitochondrial transmembrane potential, followed by the release of mitochon-

drial proteins like cytochrome C. The subsequent activation of caspase subtypes within the

apoptosome complex finally leads to cell death [10–12]. Once cytochrome C is solubilized,

permeabilization of the outer mitochondrial membrane by Bax is sufficient to allow the release

of this protein from isolated liver cell mitochondria into the extramitochondrial environment

[13]. Consistently, previous studies by Seervi [14] substantiated that mitochondrial cytochrome

C release was critical and essential for the caspase activation in cell systems.

The primary goal of this study was to investigate in a modified experimental rat model of

congestive heart failure the histopathological and ultrastructural changes in the liver. In addi-

tion, we examined the expression of apoptotic cell death markers such as caspase 3, activated

caspase 3, mitochondrial enzyme cytochrome C and Bax.

Material and methods

Animals

Male Wistar rats, 280–300 g (Harlan Winkelmann, Borchen, Germany), were maintained on

standard laboratory rat chow and water ad libitum. The animals were kept in cages (n = max.

5) on a 12-h light–dark cycle. This study was carried out in accordance with the European

Directive introducing new animal welfare and care guidelines (2010/63/EU). IRB approval for

animal experiments was given by local authorities (Reg # G 0144/12; Landesamt für Gesund-

heit und Soziales, Berlin, Germany) after a thorough review process. All surgical interventions

were performed under isoflurane (ACF induction) and tiletamine/zolazepam (hemodynamic

measurements) anesthesia and all efforts were made to minimize animals’ suffering.

Experimental model

The needle-technique to induce an infrarenal aortocaval fistula (ACF) has previously been

described by Garcia and Diebold using a 18G needle [15, 16]. Here, we applied a modified

technique using a 16G needle [16]. Briefly, under isoflurane anesthesia a laparotomy was per-

formed and the aorta was punctured with a 16G disposable needle (Braun, Melsungen, Ger-

many) distal to the renal arteries. Then, the needle was advanced to penetrate the aortic wall

into the adjacent inferior vena cava. After temporarily compressing the aorta and venous ves-

sels above and below the puncture site, the needle was carefully withdrawn and the aortic
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puncture site was sealed with a drop of cyanoacrylate glue [16]. Patency of the fistula (ACF) was

visualized by the pulsatile flow of oxygenated blood from the aorta into the inferior vena cava

[16]. Sham operated animals underwent a laparotomy with a temporary compression of the ves-

sels without any puncture of the aorta. As analgesic regimen, animals received intraoperatively

a s.c. injection of 40 mg/kg dipyrone which was continued over the next three postoparative

days by dipyrone dissolved in drinking water (1.33mg/ml). The rats were maintained in animal

room facilities and monitored daily under the supervision of a veterinarian. Considering techni-

cal aspects of the here presented approach, the main complication was uncontrollable bleeding

at the puncture site of the ACF induction (mortality: 2 out of 40 rats). During the progressive

course of heart failure over 28±2 days 3 out of 40 rats died due to cardiac arrhythmias. Out of

the remaining 35 rats n = 5 sham rats and n = 10 ACF rats were used for morphometric mea-

surements, hemodynamic measurements, rBNP plasma concentrations, and Western blot. In

addition, n = 5 sham rats and n = 5 ACF rats were used for light microscopy/immunohis-

tochemistry and n = 5 sham rats and n = 5 ACF rats were used for electron microscopy.

Morphometric data

After 28±2 days of fistula induction animals were sacrificed in isoflurane anesthesia and blood,

heart, lung and liver tissue were quickly removed. The wet weight of heart, lung and liver tissue

was measured by a weighing balance and normalized to the body weight of the individual ani-

mal to obtain the respective indices.

rBNP plasma concentration

Blood samples were taken from animals into EDTA-preloaded tubes. Then, the blood was cen-

trifuged at 4˚C at 1,000g for 10 min and the plasma was maintained at -80˚C until extraction.

Plasma rBNP45 concentrations were measured by using a sensitive enzyme linked immuno-

sorbent assay (ELISA) kit (Abnova, Heidelberg, Germany) [16].

Hemodynamic parameters

For hemodynamic measurements of animals, the “closed chest” method in spontaneously

breathing rats was used as described previously [16, 17]. All measurements were performed

under tiletamine /zolazepam anesthesia (Zoletil1, 10 mg/kg s.c. followed by 50 mg/kg i.m.) 28

±2 days after fistula induction [16–18]. Measurements were registered and analyzed by the

PowerLab1-system/-software (AD Instruments, New Zealand). After tracheotomy, a PE-50

tubing catheter was inserted via the left jugular vein into the superior vena cava for assessment

of central venous pressure. Arterial blood pressure was measured by cannulating the right

carotid artery with a micro-tip pressure-volume conductance catheter (Millar1, SPR- 838

NR). Intra-ventricular pressures and volumes were registered by further advancing the cathe-

ter into the left ventricle and optimizing its position aiming for maximal stroke volume (SV).

For measurement of the parallel conductance volume 100 μl of 15% saline was injected into

the central venous line as a correction factor for the blood–left ventricle (LV) tissue interface.

Heart rate was derived from the ECG signal. After completion of the hemodynamic measure-

ments animals, which were still under anesthesia, were killed by exsanguination and organs

were eviscerated for further determinations.

Tissue preparation

For histology and immunohistochemical experiments rats were deeply anesthetized with iso-

flurane and transcardially perfused with 100 ml 0.1 m PBS (pH 7.4) and 300 ml cold PBS
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containing 4% paraformaldehyde and 0.2% picric acid (pH 7.4; fixative solution) for light

microscopic immunohistochemistry and with 4% paraformaldehyde/0.1% glutaraldehyde/

0.2% picric acid solution (pH 7.4) for electron microscopy, respectively [19]. The liver tissue

was removed, postfixed for 90 min at 4 C in the fixative solution, and cryoprotected overnight

at 4 C in PBS containing 10% sucrose. The tissues were then embedded in Tissue-Tek com-

pound (OCT, Miles, Inc., Elkhart, IN) and frozen. Consecutive sections (6 μm thick) prepared

by using a cryostat were mounted onto gelatin-coated slides.

Histological examination

Serial 6 μm thick sections of liver tissues were cut and stained with hematoxylin-eosin as previ-

ously shown (Mayer 1981) [20]. All stained sections were examined by two experienced

pathologists, blinded for the sample assignment to the different experimental groups. All

H&E-stained slices were reviewed for changes in hepatic tissues under light microscopy (Zeiss

Axioplan photomicroscope equipped with a digital camera), by two experienced pathologists

blinded to the respective treatments. Cellular swelling, deep nuclear staining, nuclear shrink-

ing, karyoclasis, nuclear dissolving, inflammatory cell penetration and hepatic sinus structure

were all recorded. Random fields (minimum five areas) from each section (n = 5 rats) were

captured using a ×40 magnification lens. Hepatic glycogen content was analyzed by Periodic

acid-Schiff staining. However, hepatic collagen content was analyzed by Sirius red staining

(saturated picric acid containing 0.1% Sirius Red F3B) of paraffin embedded sections to assess

the degree of fibrosis. The Sirius red-positive area was measured in four individual fields on

each slide and quantified using NIH imaging software. Also, Oil Red O stain highlighting fat

globules in a frozen section of the liver was performed. Briefly, frozen liver sections incubated

with Oil Red O in 60% isopropanol for 20 minutes. The sections were then washed with 60%

isopropanol for 30 seconds, treated with hematoxylin for 2 minutes, and washed in cold water.

The coverslips were mounted on microscope slides.

Electron microscopy

Liver tissue was processed for electron microscopy as described previously [19–21]. Small tis-

sue pieces were postfixed in 1% tannic acid (in 0.1 m phosphate buffer) and 1% osmium

tetroxide solution (in 0.1 m PBS), dehydrated in ethanol, and embedded in Epon. Semithin

and ultrathin sections were cut on a Reichert Ultracut (Leica, Nussloch, Germany), and the

ultrathin sections were contrasted with 2% uranyl acetate/lead citrate. Finally, the ultrathin

sections were examined under a transmission electron microscope (TEM 10, Zeiss, Jana, Ger-

many). Semithin sections of samples were stained 1 to 2 minutes in 1% Toluidine Blue (Merck,

Darmstadt, Germany), rinsed several times in purified water, and examined under a light

microscope (Axiophot 100; Zeiss, Jena, Germany).

Apoptosis assay

The staining method for liver apoptosis was performed in situ using Chemicon Apo-Direct

Tunel Assay Kit (Merck Millipore, Darmstadt, Germany) for the detection of the internucleo-

somal DNA fragmentation, characteristic of apoptosis according to the manufacturer’s

instructions. Briefly, 6 μm sections of paraformaldehyde-fixed, liver tissue were postfixed with

4% formaldehyde/PBS for 30 min at 4˚C, permeabilized with proteinase K at room tempera-

ture for 15 min and 0.2% Triton X-100/PBS for 15 min at 4˚C, and incubated with a mixture

of nucleotides and TdT enzyme for 60 min at 37˚C. The reaction was terminated with 2 SSC,

and the sections were washed with PBS. After that, staining was completed by a 1 min incuba-

tion with 4‘6-diamidino-2-phenylindole dihydrochloride (DAPI; Sigma), and coverslips were
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mounted on slides. Fluorescence nuclei were detected by visualization with a microscope

equipped with fluorescein filters (IX70; Olympus, Melville, NY). As a negative control, sections

were incubated in the absence of TdT enzyme. The degree of apoptosis was estimated by

counting the number of TUNEL positive apoptotic cells were counted in fifteen random fields

in each slide from liver tissues at a microscopic magnification of x400. Only cells that displayed

DAPI and intensely fluorescence nuclei by TUNEL assay were counted as apoptotic. The data

were expressed as the mean number of TUNEL-positive cells/field.

Double immunofluorescence staining

Double immunofluorescence staining of cytochrome C in the liver was performed as described

previously [22, 23]. Liver sections were incubated overnight with the following primary anti-

bodies: 1) monoclonal mouse anti-mitochondrial antibody (clone # MTC02; # cat MA5-12017,

Thermo Fisher Scientific Inc, Rockford, IL, USA) in combination with rabbit polyclonal anti-

cytochrome C (clone # c 136 F3, cat #4280, Cell Signalling, Danvers, MA, USA); 2) mouse

monoclonal anti-rat CD45 (Leukocyte common antigen, LCA, clone # OX-1, cat #202201, AbD

Serotec, Puchheim, Germany), rabbit polyclonal anti-cleaved caspase 3 (clone # Asp175, cat #

9661, Cell Signalling, Danvers, MA, USA), rabbit polyclonal anti-caspase 3 (cat #ab13847,

Abcam; Cambridge, MA) or rabbit polyclonal anti-Bax (clone # P-19, cat # SC-526, Santa Cruz

biotechnology, Inc, Texas, USA). After incubation with primary antibodies, the tissue sections

were washed with PBS and then incubated with red fluorescent Alexa Fluor 594 donkey anti-

rabbit antibody (Vector Laboratories) in combination with green fluorescent Alexa Fluor 488

goat anti-mouse (Invitrogen, Germany). Thereafter, sections were washed with PBS, and the

nuclei stained bright blue with 4’-6-Diamidino-2-phenylindole (DAPI) (0.1 μg/ml in PBS)

(Sigma). To demonstrate specificity of the staining, the following controls were included by

omission of either the primary antisera or the secondary antibodies.

Finally, the tissue sections were washed in PBS, mounted on vectashield (Vector Laborato-

ries) and imaged on a confocal laser scanning microscope, LSM510, equipped with an argon

laser (458/488/514 nm), a green helium/neon laser (543 nm), and a red helium/neon laser (633

nm; Carl Zeiss, Göttingen, Germany). Single optical slice images were taken using x10 or x20

Plan-Neofluar air interface or x40 Plan-Neofluar oil interface objective lens.

Quantification of immunostaining

Quantification of immunofluorescent colocalization of mitochondrial marker with cytochrome

C in liver tissue sections was performed by using the Zeiss Zen 2009 software Carl Zeiss Micro-

Imaging GmbH (Göttingen, Germany). Colocalization of proteins of interest was quantified by

calculating the overlap and colocalization coefficient as derived from Mander’s article based on

Pearson’s correlation coefficient [24]. The settings of the confocal microscope were established

using a control section and kept unchanged for all subsequent acquisitions. Images were thre-

sholded to exclude background fluorescence and gated to include intensity measurements only

from positively stained cells. Images were adjusted to a threshold to exclude background fluo-

rescence and gated to include intensity measurements only from positively stained cells. Six to

eight images were sampled per animal using 40x objective lens. The number of caspase 3 stained

nuclei was determined by the formula: caspase-3 stained nuclei/total number of DAPI stained

nuclei ×100. For images analysis, using area of the whole stained tissue section (μm2).

Western blot analysis

Liver tissue from rats of the different experimental groups were removed from animals and

solubilized according to Mousa et al. [19, 22] to obtain total cell protein. Then the Western
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blot analysis was performed as previously described [19, 22]. Western blot bands of cleaved

caspase-3 were quantified by Java Image processing and analysis software (ImageJ, Version

1.38x; open-source image software) as described previously [19, 22].

Statistical analysis

When data were analyzed, they were represented as means ± SD. Normal distribution was

analyzed with the Kolmogorov-Smirnov test. Sample comparisons between the ACF- and

Sham-group were made using two-sided Student t-test in the case of normally distributed

data and Mann-Whitney-U test in the case of data not distributed normally. Differences

were considered significant if P<0.05. All tests were performed using Sigma Plot 13.0 statis-

tical software.

Results

Increased heart and lung weight indices and rBNP-45 plasma

concentrations following congestive heart failure

Heart and lung weights as well as heart and lung indices (related to body weight) were signifi-

cantly increased at 28±2 days after ACF-induced heart failure compared to sham operated

controls (p<0.05, Student t-test) (Fig 1A, 1B and 1D), whereas body weights were not signifi-

cantly different between both groups (Fig 1C). Values for rBNP-45 plasma concentrations

were significantly increased in ACF rats (147.0±5.9 pg/ml) compared to controls (28.1±3.5 pg/

ml) (p<0.05, Student t-test).

Systolic and diastolic dysfunction in ACF rats

In vivo hemodynamic measurements showed that central venous (CVP) (p<0.05, Student t-

test; controls: 0.5±0.3 mmHg; ACF: 5.5±0.4 mmHg) and left end-diastolic pressure (LVEDP)

were significantly increased in ACF rats (p<0.01, Student t-test; controls: 5.1±0.3 mmHg;

ACF: 12.1±1.0 mmHg). While the left ventricular end diastolic (LVEDV, ACF: 636±139 μl ver-

sus Controls: 194±22.4 μl) and end systolic volumes (LVESV, ACF: 404±101 versus Controls:

53±14 μl) were significantly elevated (p<0.05, Mann Whitney U test), the left ventricular ejec-

tion fraction (LVEF) (p<0.05, Student t-test; controls: 74±2.0%; ACF: 45±4.0%) and the maxi-

mum rate of pressure development (dP/dt max)(p<0.05, Student t-test; controls: 15940±2143

mmHg/s; ACF: 8851.3±3270 mmHg/s) were significantly reduced.

Histopathological alterations in the liver following congestive heart failure

Random fields of liver tissue sections of sham operated rats showed normal structure of

hepatic lobules with a central vein, radiating cords of hepatocytes, prominent round nuclei,

eosinophilic cytoplasm and normal slender Kupffer cells (Fig 2A). However, liver tissue sec-

tions of rats with ACF-induced heart failure exhibited histo-architectural distortion such as

sinusoidal dilation with signs of congestion, irregular arrangement of hepatocytes within

hepatic cords, hypertrophied Kupffer cells, hepatocellular destruction with obvious degenera-

tion of nuclei and signs of apoptotic cell death (nuclear pyknosis or crescent-shaped condensa-

tion of nuclear chromatin). Some of the hepatic cells that made up the cords did not have

regular borders and were fragmented (Fig 2A–2D). Liver semi-thin sections of control rats

stained with toluidine blue showed silver parenchyma of normal aspect (Fig 2E). However,

liver sections of ACF rats revealed more extensive areas of large vacuoles, heterogeneous liver

parenchyma consisting of dark and compact hepatocytes flanked by degenerated cells, as

well as hepatocytes with large vacuoles (Fig 2F). In addition, the cytoplasm of numerous
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hepatocytes with nuclear degeneration was pale or less stained with toluidine blue and showed

more vacuolization (Fig 2F). These cells called ballooned cells or apoptotic cells and prove that

the hepatocytes were undergoing an apoptosis process as described by [25]. In addition, there

were leukocyte infiltrations within the sinusoids as detected by the pan-leukocyte marker

CD45 (Fig 3A–3C). Also, glycogen granules of hepatic cells as examined in PAS-stained liver

sections showed a marked decrease in glycogen granules in ACF rats compared to controls

(Fig 3D–3F). In addition, Oil Red O stain highlighting fat globules in frozen sections of the

liver revealed the presence of large (macrovesicular) globules only in liver sections of ACF rats

compared to controls (Fig 3G–3I). Finally, collagen fibers within liver connective tissue exam-

ined by Sirius red staining showed signs of fibrosis in the perivascular as well as capsular area

extending downwards into the liver parenchyma of ACF rats (Fig 4A–4G).

Fig 1. Heart and lung morphological changes following ACF-induced congestive heart failure. Increased heart and lung weight indices (A, B, D) but

not body weight (C) following ACF-induced congestive heart failure. Note, that heart and lung weight indices were significantly increased at 28 days of ACF

rats (n = 10) compared to those of sham operated controls (n = 5) (heart index: ACF 6.5±1.6 versus Controls 3.9±0.2; lung index: ACF 6.9±1.4 versus Controls

3.8±0.3; p<0.01, Student t-test) (D). Data show means ± SD.

https://doi.org/10.1371/journal.pone.0184161.g001
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Electron microscopic evidence for hepatocyte ultrastructural changes

Ultrathin sections of livers from control rats stained with uranyl acetate and lead citrate pres-

ent normal aspects of hepatocyte ultrastructure having prominent nuclei with intact double-

layered nuclear envelopes, abundantly distributed healthy mitochondria, Golgi apparatus and

widely distributed rough endoplasmic reticulum in close proximity to the nucleus (Fig 5A). In

contrast, liver sections from ACF rats showed that cytoplasmic organelles were no longer dis-

tinguishable in many hepatocytes (Fig 5B–5F). Most of hepatocytes contained irregular shaped

nuclei (lost their rounded shape), and degenerated fragmented rough endoplasmic reticulum.

In addition, heavy vacuolization was visible in most of the hepatocellular cytoplasm (Fig 5B–

5F). Also, many shrunken mitochondria became condensed (also known as apoptotic mito-

chondria) within hepatocytes (Fig 5B–5F).

Fig 2. Light microscopic photographs of representative haematoxylin-eosin and toluidine blue stained liver sections. A) Note normal lobular

structure with hepatocytes having prominent rounded nuclei. B-D) Liver sections of ACF rats show pyknotic nuclei (PN), cytoplasmic vacuolization, sinusoidal

dilation (SD), leukocyte infiltration (Leu) massive breakdown of hepatocytes (*), and congestive blood vessels (double arrows) as well as a crescent-shaped

condensation of nuclear chromatin (arrow). E) Semithin liver sections of control rats were stained in 1% toluidine blue showing normal branching and

anastomosing hepatocyte cords separated by hepatic blood sinusoids. Note, hepatocytes contain prominent rounded nuclei (N). F) Semithin liver sections of

ACF rats show hepatocytes with large vacuoles (arrow head) in the periportal area, heterogeneous parenchyma, which consists of dark and compact

hepatocytes flanked by ballooned cells (also called apoptotic cells) (arrow) with nuclear degeneration (ND). Bars = 20 μm.

https://doi.org/10.1371/journal.pone.0184161.g002
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Evidence of apoptosis in liver cells following congestive heart failure

Apoptosis was confirmed by histological TUNEL staining. In hepatic cells of control rats

TUNEL staining was absent (Fig 6A and 6B). However, in hepatic cells of ACF rats, apoptosis

was observed by intense TUNEL staining in condensed DAPI positive nuclei and significantly

different compared to controls (p<0.05, Student t-test)(Fig 6C–6E).

Fig 3. Light microscopic photographs of representative pan-leukocyte marker CD45 immunohistochemistry as well as Periodic acid-Schiff (PAS)

and Oil Red O staining of liver sections. A-C) show leukocyte infiltrations as detected with pan-leukocyte marker CD45 (green fluorescence) with DAPI-

counterstained nuclei (blue fluorescence) within the liver sinusoids. Quantification of CD45+ leukocyte positive cells/200 mm2 showed significantly more

leukocytes in ACF rats (34.3±5.6) compared to controls (2.5±0.3)(p<0.05, Student t-test). D-F) show that the glycogen granules of the hepatic cells as

examined in PAS-stained sections of liver showed a significant decrease in glycogen granules in ACF rats (78.8±3.8) compared to control (100±2.8)(p<0.05,

Student t-test). G-I) Representative Oil Red O stain highlighting fat globules in a frozen section of the liver revealed the presence of large (macrovesicular) fat

globules only in ACF rats (n = 5) compared to controls (n = 5)(PAS-optical density ACF: 198.3±4.9% versus controls: 100±12.4%) p<0.05, Student t-test).

Bars = 20 μm. Data show means ± SD.

https://doi.org/10.1371/journal.pone.0184161.g003
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Expression of proapoptotic Bax and mitochondrial cytochrome C

leakage into the cytosol of liver cells following congestive heart failure

Using immunofluorescence confocal microscopy, immunostaining of proapoptotic Bax pro-

tein was significantly increased in the hepatocytes of ACF rats (p<0.05, Student t-test)(Fig 6H

and 6I). In hepatic cells of control rats, proapoptotic Bax protein was only faintly observed (Fig

6F and 6G). In the cytoplasm of hepatocytes of sham rats, cytochrome C immunoreactivity

was predominantly restricted to mitochondria as revealed by an overlap with the mitochon-

drial marker using double immunofluorescence confocal microscopy (Fig 7A–7D). However,

cytochrome C colocalization with the mitochondrial marker was only faint in liver sections of

Fig 4. Light microscopic photographs of representative Sirius red staining of liver sections in control (A-C) and ACF (D-F). Note, representative

Sirius red staining of liver sections shows extensive collagen deposition, indicating fibrosis progression in ACF rats (n = 5) compared to controls (n = 5) (G)

(Sirius red-optical density ACF: 160±11.7% versus controls: 100±7.6%; p<0.05, Student t-test). Bars = 20 μm. Data show means ± SD.

https://doi.org/10.1371/journal.pone.0184161.g004
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ACF animals and leaked into the surrounding cytosol (Fig 7F–7I). This apparent leakage of

cytochrome C from mitochondria into the cytoplasm was evident in ACF rats, a process that is

known to proceed the development of apoptotic cells death. Quantification of the colocaliza-

tion coefficient of cytochrome C and mitochondrial marker showed a significant reduction of

their colocalization in ACF animals compared to controls (p<0.01, Student t-test; control: 78

±1.4 (100%); ACF: 57.5±1.4 (73.6%) (Fig 7E).

Nuclear transfer of caspase 3 as activated caspase 3 into the nucleus of

liver cells following congestive heart failure

Liver sections of control rats revealed that caspase 3 immunoreactivity was restricted primarily

to well-defined subcellular organelle-like structures of hepatic cells (Fig 8A and 8B). In contrast

in ACF rats, caspase 3 immunofluorescence was predominantly transfered to the immediate

perinuclear area of cells or inside the nuclei of hepatic cells (Fig 8C–8E) indicating activation of

Fig 5. Transmission electron micrograph of the rat liver in control (A-C) and ACF (D-F) rats. A-C) Electron microscopic demonstration of control liver

tissue. Liver cells of controls consist of round nuclei (N) with intact double-layered nuclear envelopes (arrowhead) (A), well-developed rough endoplasmic

reticulum (ER) close to the nucleus, mitochondria (M), Golgi apparatus (GA), lysosomes (L) and a well-organized cytoplasm. D-F) Electron microscopic

demonstration of ACF liver tissue shows cytoplasmic organelles are no longer distinguishable within hepatocytes. Ultrastructure evaluation shows marked

cytoplasmic vacuolization with large vacuoles (*) of hepatocytes with irregular shaped nuclei (nucleus lost its rounded shape) (D), and degenerated

fragmented rough endoplasmic reticulum (DER). F) Also, many shrunken mitochondria (M), became condensed (also known as apoptotic mitochondria)

(arrow) in some hepatocytes. x5000; Bar:1 μm.

https://doi.org/10.1371/journal.pone.0184161.g005

Liver injury following congestive heart failure

PLOS ONE | https://doi.org/10.1371/journal.pone.0184161 September 21, 2017 11 / 19

https://doi.org/10.1371/journal.pone.0184161.g005
https://doi.org/10.1371/journal.pone.0184161


the proapoptotic factor caspase 3. Therefore, we used the apoptotic marker cleaved activated

caspase-3 which is detectable only during cell apoptosis [26]. Indeed, in using this antibody our

Western blot analysis of respective liver tissue extracts showed a prominent single band of

cleaved caspase 3 at the expected molecular weight of 19 kDa in ACF rats compared to a very

faint or almost non-detectable band in controls (p<0.05, Student t-test)(Fig 8J) [19]. Immuno-

histochemical staining of liver sections of ACF rats revealed that cleaved caspase 3 immunoreac-

tivity was confined primarily to the perinuclear area or within nuclei of hepatic cells (Fig 8H

and 8I), however, no staining was found in control rats (p<0.05, Student t-test)(Fig 8F and 8G).

Importantly, the number of caspase 3-IR nuclei as well as cleaved caspase 3-IR nuclei cells in

relation to the total number of DAPI stained nuclei was significantly higher in ACF rats than

controls (p<0.05, Student t-test) (Fig 8J).

Fig 6. Confocal microscopy of TUNEL staining (A-E) or proapoptotic Bax protein (F-J) in the liver of control and ACF rats. A-E) showed TUNEL-

positive (green fluorescence) with DAPI-counterstained nuclei (blue fluorescence) immunofluorescence of the liver in control or ACF adult rats. Note,

apoptotic hepatic cells were detected in liver following ACF-induced heart failure in rats (C and D), however, no staining was found in controls (A and B)

(Tunel positive cells per 200 μm2 ACF rats 16.1±2.5 versus Controls: 1.5±0.4; p<0.05, Student t-test). (F-J) Confocal microscopy of proapoptotic Bax protein

(red fluorescence) with DAPI-counterstained nuclei (blue fluorescence) of the liver in controls or ACF rats. Note absent or weak Bax immunostaining in

hepatocyte cytoplasm of controls (n = 5). In contrast in hepatocytes of ACF rats (n = 5), Bax immunofluorescence staining within hepatocyte cytoplasm is very

prominent (Bax-optical density ACF rats 388.7±61.7 versus Controls 100±18%; p<0.05, Student t-test). Bars = 20 μm. Data show means ± SD.

https://doi.org/10.1371/journal.pone.0184161.g006
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Discussion

Failure of the pumping heart often leads to the damage of other organs, especially the liver,

and the combined dysfunction of heart and liver increases morbidity and mortality [1]. This

study aimed to investigate possible mechanisms that underlie liver injury following heart dys-

function using the animal model of ACF-induced congestive heart failure [16, 19]. In this ani-

mal model heart failure developed in a predictable way within approximately 28 days. Animals

revealed elevated central venous and left end diastolic pressures and increased rBNP-45 plasma

concentrations indicating “backward failure” with pulmonary congestion [16, 19]. Liver tissue

sections of ACF animals showed prominent hepatic damage including apparent congestion of

blood vessels, increased breakdown of hepatocytes, cytoplasmic vacuolization concomitant

with large lipid droplets and collagen fiber formation as well as glycogen depletion and hepato-

cyte ultrastructural alterations. Consistently, double immunofluorescent staining revealed a

marked increase in the number of TUNEL-positive apoptotic hepatocytes concomitant with

the enhanced expression of pro-apoptotic Bax, mitochondrial leakage of cytochrome C and

nuclear transfer of activated caspase 3 indicating apoptotic processes and subsequent cell dam-

age. These findings provide morphological evidence of apoptosis throughout damaged liver

resulting from congestive heart failure.

Recently, our group modified an experimental rat model of heart failure to induce an infra-

renal aortocaval fistula resulting in congestive heart failure within a predictable and short time

period of 28 ± 2 days and without high mortality [16]. Consistent with our previous results

[16], we found a significant increase in the heart and lung weight indices as well as rBNP-45

plasma concentrations in ACF animals compared to controls. In previous studies, the degree

of heart and lung hypertrophy was directly correlated with hemodynamic changes of conges-

tion including an increase in the left and right ventricular filling pressure as well as a

Fig 7. Confocal microscopy of cytochrome C (red fluorescence) with mitochondrial marker (green fluorescence) double immunofluorescence of liver sections of

controls (A-D) or ACF (E-H) rats. Note that the cytochrome C immunostaining overlapped as indicated with yellow immunofluorescence) with the mitochondrial

marker in the cytoplasm of hepatocytes of control animals (C-D). However, in hepatocytes of ACF rats (G-H), cytochrome C (red immunofluorescence) leaked

from mitochondria and was distributed distinct from the mitochondrial marker (green immunofluorescence). J) Quantitative analysis of immunofluorescence

microscopy of mitochondrial leakage of cytochrome C into the cytosol of liver cells following congestive heart failure. Note, the colocalization coefficient of

cytochrome C and mitochondrial marker showed a significant reduction of their colocalization in the liver in ACF animals (n = 5) compared to controls (n = 5)

(ACF rats 73.6±1.5 versus Controls: 100±1.9; p<0.05, Students t-test). Bars = 20 μm. Bars = 20 μm. Data show means ± SD.

https://doi.org/10.1371/journal.pone.0184161.g007
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significant reduction of left ventricular ejection fraction [16, 27]. Heart performance and liver

function are closely interconnected and a synergistic relationship exists between these organs

[3, 28]. Dysfunction of one organ often leads to a deterioration of function of the other [29].

During heart failure, chronic congestion is known to result in enhanced liver stiffness and sub-

sequent liver fibrosis [4, 9]. In addition, the hemodynamic conditions may not be sufficient to

achieve an adequate circulation of the liver, because inflow into the liver is limited by outflow

Fig 8. Confocal immunofluorescence microscopy of caspase 3 (red fluorescence) using an antibody detecting pro-caspase 3 recombinant

protein (A-D) or cleaved caspase 3 recombinant protein (F-I) with DAPI-counterstained nuclei (blue fluorescence) in liver sections of control or

ACF adult rats. Note, caspase 3 immunoreactivity was confined primarily to the well defined subcellular organelle-like structures in hepatic cells of control

rats (A, B). In contrast in ACF rats, caspase 3 immunofluorescence was transferred to the perinuclear area of cells or inside nuclei of hepatic cells indicating

an activation of pro-apoptotic factor caspase 3 (C,D). Confocal immunofluorescence microscopy activated caspase 3 (red fluorescence) and DAPI-

counterstained nuclei (blue fluorescence) in liver sections using an antibody which detects exclusively cleaved caspase 3 recombinant protein. H, I) showed

that cleaved caspase 3 immunoreactivity was confined primarily to the perinuclear area of cells or nuclei within hepatic cells of ACF rats, however, no staining

was found in controls (F, G). Quantitative analysis of immunofluorescence microscopy of nuclear transfer of caspase 3 as activated caspase 3 into the

nucleus of liver cells following congestive heart failure. Note, cleaved caspase 3-IR hepatocyte nuclei in the liver of ACF animals (n = 5) relative to controls

(n = 5) showed a significant increase in the percentage of caspase 3-ir nuclei/total nuclei (ACF rats 58.2±2.8% versus Controls 9.6±1.8%; p<0.05, Students t-

test)(E). Bar = 40 μm (B, D, G, I) and 20 μm (A, C, F, H). Western blot analysis for activated caspase3 protein with a molecular weight of 19 kDa in the liver of

ACF and control rats. (J) The optical integrated density (OID) of activated caspase3 protein increased significantly in the liver of ACF rats (n = 5) compared to

controls (n = 5) (ACF rats 181.8±2.7 versus Controls: 100±4.7%; p<0.05, Students t-test). Bars = 20 μm. Data show means ± SD.

https://doi.org/10.1371/journal.pone.0184161.g008
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pressure [30]. Therefore, congestive heart failure prevents the heart’s ability to deliver the

appropriate amount of oxygen to a rate proportionate to the demands of the metabolizing tis-

sues that may result in damage to organs such as the liver [28, 31–34]. In a recent study, ele-

vated serum levels of the peripheral cell death markers M65 and M30 gave first indirect

evidence of hepatic apoptotic cell death in patients with liver injury following heart failure [1].

Here, we investigated the histopathological and ultrastructural changes of the liver as well as

the expression of apoptotic cell death markers following heart failure.

We found that the histological liver structure in rats with ACF-induced heart failure exhib-

ited apparent congestion of blood vessels, widespread apoptosis with obvious cytoplasmic

vacuolization and degeneration of nuclei. Also, cytoplasmic glycogen granules were apparently

decreased in ACF animals compared to controls. In contrast, collagen fibers in the connective

tissue as well as large (macrovesicular) fat globules were apparently increased in ACF rats com-

pared to controls. Besides liver damages observed with light microscopy, we also investigated

the hepatocyte ultrastructural alterations. Indeed, the cytoplasmic organelles were no longer

distinguishable in many hepatocytes of rats with congestive heart failure with obvious degener-

ated fragmented rough endoplasmic reticulum, shrunken mitochondria and heavy cytoplasm

vacuolization. These findings are in agreement with a previous study using light microscopy

which investigated the pathological changes in the liver obtained from patients with congestive

heart failure [28]. The authors found in severe cases that liver cells showed a variety of degen-

erative changes including apoptosis and necrosis processes [28]. Also, these findings are con-

sistent with the recent investigation by others [35, 3] which revealed a sinusoidal dilation and

congestion with progressive fibrosis in liver biopsy from patients with heart failure.

TUNEL, i.e. terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling, has

become a widely used staining method to assist in the detection of apoptotic cells of tissue sec-

tions. Indeed, our TUNEL apoptotic cell assay in liver tissue sections revealed a prominent

increase in the number of TUNEL-positive apoptotic hepatocyte exclusively in ACF rats

compared to controls. Apoptosis has long been proposed as a mechanism for hepatocellular

damage in several liver disorders, including hepatitis, and alcoholic liver disease [36–38].

Therefore, the understanding of the cellular processes leading to programmed cell death (apo-

ptosis) is of utmost importance in the study of liver disease. Recent evidence is emerging that

the mitochondria-mediated apoptotic pathway is initiated by a variety of apoptosis-inducing

signals to cause an imbalance of the major apoptosis regulators such as Bcl-2 and Bax [39].

Here, we provide first morphological evidence of the overexpression of the proapoptotic pro-

tein Bax in hepatocytes of rats following congestive heart failure. These findings are in agree-

ment with the previous demonstration of Bax overexpression-accompanied apoptosis in

response to liver injury induced by acetaminophen [40], liver cancer [41], psychoactive drug-

induced hepatotoxicity [42], non-alcoholic rat liver disease [43] or chronic hepatitis [44].

Indeed, the previous studies reported that activation of the pro-apoptotic protein Bax trig-

gers the disruption of mitochondrial transmembrane potential, followed by mitochondrial

swelling and an increase in the permeability of the outer mitochondrial membrane [10, 11].

Consequently, the release of mitochondrial proteins like cytochrome C and the subsequent

activation of caspase subtypes within the apoptosome complex activate downstream death pro-

grams [10, 11]. In line with this, our double immunofluorescence confocal microscopy

revealed that the cytochrome C immunoreactivity was primarily confined to the mitochondria

of control hepatocytes; however, its colocalization with the mitochondrial marker was clearly

reduced in hepatocytes of ACF rats indicating leakage into the cytoplasm. These findings are

in agreement with the previous study by Toledo [45] who found that oxidative stress is a com-

mon event in most hepatopathies leading to mitochondrial permeability transition pore for-

mation and mitochondrial release of cytochrome C. This subsequently activates caspase 3 to
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finally result in hepatocytes death. Caspases (cysteinyl aspartate-specific proteases) are a family

of important signaling molecules with various tasks depending on the subtype and organ

involved [46]. Our recent study showed that the activation of caspases was a marker for cellular

damage in diseases such as stroke and myocardial infarction [19]. Indeed, the appearance of

the morphological and biochemical hallmarks of apoptosis and cell death [10] was associated

with activation of caspase 3, i.e. the nuclear translocation of activated caspase 3 [11]. Therefore,

we used the apoptotic marker cleaved activated caspase-3 which is absent under normal condi-

tions and detectable only during cell apoptosis [26]. Indeed, cleaved caspase 3 was increased in

ACF animals by Western blot as well as immunofluorescence microscopy, consistent with a

previous demonstration of cleaved caspase 3 protein in rat heart [19]. Moreover, we demon-

strated the translocation and, hence, activation of caspase 3 from cell organelle-like structures

into the perinuclear area or nuclei of hepatocytes following heart failure induction.

In summary, taken together, the results demonstrate that ACF-induced congestive heart

failure causes liver injury which results in sinusoidal dilation, breakdown of hepatocytes, cyto-

plasmic vacuolization concomitant with large lipid droplets and collagen fiber formation. In

addition, hepatocellular apoptotic cell death mediated by the intrinsic pathway of mitochon-

drial cytochrome C leakage and subsequent transfer of activated caspase 3 into to the nucleus

may occur to initiate overt DNA fragmentation and cell death. These findings provide evi-

dence for progressive pathophysiological alterations of the liver during congestive heart

failure.
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