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Covalent functionalization tailors carbon nanotubes for a wide range of applications in varying
environments. Its strength and stability of attachment come at the price of degrading the
carbon nanotubes sp? network and destroying the tubes electronic and optoelectronic
features. Here we present a non-destructive, covalent, gram-scale functionalization of single-
walled carbon nanotubes by a new [2 + 1] cycloaddition. The reaction rebuilds the extended
n-network, thereby retaining the outstanding quantum optoelectronic properties of carbon
nanotubes, including bright light emission at high degree of functionalization (1 group per 25
carbon atoms). The conjugation method described here opens the way for advanced tailoring
nanotubes as demonstrated for light-triggered reversible doping through photochromic
molecular switches and nanoplasmonic gold-nanotube hybrids with enhanced infrared light

emission.

TDepartment of Physics, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany. 2 Faculty of Science, Department of Chemistry, Lorestan University,
Khorram Abad 68151-44316, Iran. 3 Institute of Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany. 4 Laboratorio de Microscopias
Avanzadas (LMA), Instituto de Nanociencia de Aragon, Universidad de Zaragoza, 50018 Zaragoza, Spain. 5 Fundacion ARAID, 50018 Zaragoza, Spain.
Correspondence and requests for materials should be addressed to M.A. (email: aadeli@zedat.fu-berlin.de) or to R.H. (email: haag@zedat.fu-berlin.de) or to
S.R. (email: sreich@zedat.fu-berlin.de).

| 8:14281| DOI: 10.1038/ncomms14281 | www.nature.com/naturecommunications 1


mailto:aadeli@zedat.fu-berlin.de
mailto:haag@zedat.fu-berlin.de
mailto:sreich@zedat.fu-berlin.de
http://www.nature.com/naturecommunications

ARTICLE

he unique optoelectronic properties of carbon nanotubes

originate from their singular mixture of sp> carbon bonding,

one-dimensional character and suppressed dielectric
screening!. This makes them ideal building blocks for applied
optoelectronics as nanometre-scale light sources, photodetectors
and photovoltaic devices?. Nanotubes were demonstrated as optical
rectifying antennas converting electromagnetic radiation at optical
frequencies to direct current® and as single-photon sources at room
temperature*, Their stability and compatibility with many
environments, including biological systems, makes them optically
detectable carriers of drugs and radiotracers as demonstrated for
in vivo localization and imaging®. Bio-imaging greatly benefits
from the wavelength at which single-walled carbon nanotubes
(SWNTs) emit light; it lies in the second window of tissue
transparency (1,100-1,400 nm) with a large 7penetration depth, but
low tissue scattering and autofluorescence®’.

Optoelectronic applications heavily rely on the read-out of the
SWNT fluorescence. For this, the m-conjugated structure of
the individual nanotube needs to be preservedd, as optical
excitation and emission of SWNTs are ruled by the n-electrons of
the carbon backbone!®°. A disruption of the m-network by
rehybridization from the sp? to the sp* configuration degrades the
conjugation, increases the number of non-radiative scattering
centres and quenches the overall SWNTSs luminescence'?. At the
same time, the m-conjugation and -7 interactions are the driving
force of a strong tube bundling. This prevents luminescence
through energy transfer into metallic tubes followed by non-
radiative recombination®,

Only individual SWNTs are strong light emitters and various
types of functionalization have been pursued to isolate, stabilize
and tailor them!!. Endohedral functionalization fills the nano-
tubes, whereas covalent and non-covalent exohedral functiona-
lizations operate onto the SWNT sidewalls!!. Endohedral filling
preserved the electronic properties of SWNTs!213 but is limited
to small molecules that fit into the tubes (inner diameter <2 nm).
The exohedral non-covalent approach is based on physisorption
of the targeted functionality onto the SWNTs!!. It preserves the
n-conjugation of the sp?> network. However, changes in the
environment easily reverse the functionalization and trigger
desorption making this method inherently unstable. The covalent
exohedral approach is advantageous in that it strongly binds the
functionalities onto the SWNTs by converting a fraction
of the sp? into sp® carbons. Its current implementations,
however, interrupt the electronic Erogerties of the nanotubes
and quench their luminescence®!®%!1:14, Alternative approaches
such as mechanically interlocking nanotubes likewise resulted in
reduced light emission!®.

New covalent methods are needed, which combine the
n-conjugation of the SWNTs with a stable functionalization.
They will have to operate under mild conditions and rebuild
a fully sp?> m-conjugated system. The [2+41] cycloaddition
reactions have the potential to solve this challenge, because they
exploit the 7m electrons for attachment instead of requiring
dangling bonds'®!8, A first example of such mild [2 + 1] cyclo-
addition has been recently reported based on an electron-poor
aromatic azide!®?°. This reaction initially transforms two
n-electrons of the carbon network to a covalent three-memb-
ered ring bridge (closed configuration). A subsequent rehybri-
dization step that releases the strained C-C bond underlying the
bridge and reconverts the two C atoms back to the sp? state
recovering the aromaticity of the system (open configuration) has
only been studied theoretically*! >3, Lee and Marzari?! proposed
to exploit the open configuration with dichlorocarbene to not
disrupt the transport properties of metallic SWNTs. Experi-
mentally, however, neither the carbene nor the nitrene addition
have yielded the open structure and no improvement of the

2

optoelectronic
reported!618:24:2

Here we develop a [2+4 1] cycloaddition reaction based on
electron-poor aromatic nitrenes that preserves the m-conjugated
electronic structure and infrared light emission. Our functiona-
lization method is universal and may conjugate many different
functionalities to the surface of SWNTs. It is highly robust, but
non-destructive for the unique properties of carbon nanotubes.
The functional groups become an integral part of the extended
conjugated network. We show light-triggered reversible doping of
SWNTs for nanotubes with photochromic molecular switches.
Gold nanoparticles (AuNPs) offer a covalent attachment of
plasmonic structures, leading to an enhanced luminescence. The
two examples highlight the versatility of our platform for hybrid
systems with distinctive photoelectronic properties.

5properties of the nanotubes has been

Results

n-Preserving triazine conjugation onto the SWNTSs. We intro-
duce a [2 + 1] reaction based on azidodichloro-triazine 1 (Fig. 1)
that in situ generates the corresponding nitrene to form the
intermediate SWNT adduct (2). As predicted for such highly
strained intermediates, ring-opening and rehybridization forms
fully conjugated hetero-bridged nanotubes (3) in a single
synthetic step. In this way, the electron lone pair of the bridging
nitrogen atom becomes part of the n-conjugated system of the
SWNT, increasing its electron density.

The highly reactive electron-poor precursor monoazidodi-
chloro-triazine 1 was selectively prepared at 0°C in situ from
commercially available compounds?®?” (Supplementary Fig. 1
and Supplementary Note 1). It conjugates onto SWNT through
[2 + 1] cycloaddition at 20 °C to form intermediate 2, which ring
opens to the final rehybridized structure 3. Quantum chemical
calculations predict that the entire reaction proceeds without
activation barrier at room temperature (300K; Supplementary
Fig. 17). In the fully relaxed structure (Fig. 1c), the triazine
covalently bridges onto the nanotubes with a binding energy of
4.2eV. The covalent attachment was also proven by thermo-
gravimetric analysis (Supplementary Fig. 5). The obtained open
configuration minimally distorts the carbon m-orbitals
(Supplementary Note 2). The number of functional groups
attached to the nanotubes is adjusted by the reaction temperature
(20-70°C)*82%, We present exemplary a low-density functiona-
lization with one triazine ring per 100 carbon atoms (SWNT-low)
and a high-density functionalization with one triazine ring
per 25 carbon atoms (SWNT-high). For details on the synthesis,
the characterization of the intermediate products and the
functionalized SWNTs, please refer to the Method section and
Supplementary Notes 1 and 3.

X-ray photoelectron spectroscopy of the N1s level shows that
the pristine SWNT sample was free of nitrogen (Fig. 2a). The
triazine conjugated samples 3 (SWNT-low and SWNT-high)
clearly display nitrogen peaks (Fig. 2a), which increased by a
factor of 4.3 + 0.5 between the two samples, in agreement with the
elemental analysis (see Supplementary Note 3). This proves
the successful tuneable decoration of the nanotubes with
dichlorotriazine. With increasing nitrogen coverage we observe
an exponential and uniform shift of the Cls XP spectra to higher
binding energy (up to 200meV for SWNT-high, see Supple-
mentary Fig. 29). This reflects an increasing Fermi energy,
because the nitrogen lone pair interacts with the nanotube. High-
resolution scanning transmission electron microscopy (STEM)
and electron energy loss spectroscopy (EELS) prove the outcome
of the functionalization on a single nanotube level*’. In Fig. 2b,
we show a high-angle annular dark field high-resolution STEM
micrograph of a SWNT-high together with spatially resolved
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Figure 1 | One-pot functionalization of carbon nanotubes by heterocyclic [2 + 1] cycloaddition reaction. (a) After establishment of the heterocyclic
bridge between azidodichloro-triazine 1 and SWNTs, (b) the cycloaddition product (2) undergoes ring opening and rehybridization of the C atoms
underlying the bridge and is converted into the form (3) with regenerated n-conjugation. (¢) Quantum chemically optimized molecular configuration of the

triazine on an (8,0) nanotube.

EELS spectra at the nitrogen edge. The spectra, taken in the
regions marked by squares in the STEM image, clearly prove the
localization of nitrogen in the external sidewall of the SWNTs
(region ii, Fig. 2b right).

Our covalent functionalization is unique as it preserves the sp?
character of the conjugated carbon nanotubes, see EELS analyses
in Supplementary Note 1. Raman spectra show a constant
intensity of the defect-induced D-mode (Fig. 2¢)°. The ratio
between the D and G bands reflects the fraction of sp® atoms and
other defects in an sp? carbon system. Even at highest
functionalization (SWNT-high, one triazine ring per 25 carbon
atoms) the ratio remained identical to the pristine materlal
ID/IG 0.1, proving that no conversion of C atoms from sp? to
sp> occurred. The outcome of conjugating triazine (1) onto the
SWNT is thus the ring-open compound (3).

The triazine-functionalized SWNTs show strong light emis-
sion, because the m-network was kept intact. The overall two-
dimensional luminescence intensity of SWNT-high is identical to
that of the pristine tubes (Fig. 2d). Each of the spots in Fig. 2d
umvocally confirms the presence of a specific (n,m) SWNT
species® and their unperturbed 7-conjugated system for the
SWNT-high sample!’. Some functionalized species show even
brighter emission than their pristine counterparts (compare, for
example, the (9,4) tube in the left and right panel of Fig. 2d). The
increase in light emission is due to the change in chemical
potential by the triazine conjugated onto the tubes. Raman
measurements showed an initial position of the Fermi level
70 meV away from the Dirac point (see Supplementary Fig. 30,
Supplementary Table 6 and Supplementary Note 4). For SWNT-
high, the Fermi level is within 20meV of the intrinsic value,

which increases the luminescence intensity. Emission from
highly covalently functionalized carbon nanotubes has never
been reported before and disproves the dogma that covalent
functionalization always quenches nanotube emission.

Advanced photoelectronic applications of SWNTs require
further customization of the tubes. For optoelectronics, for
example, the emission should be controlled through external
parameters. Sensing and imaging in biological environment, on
the other hand, benefit from enhanced overall emission. With
such applications in mind, we present two functional examples
for covalently tailored luminescent SWNTs: A conjugated
photochromic molecular switch to control the emission from
the SWNTs and covalently attached AuNPs to plasmonically
enhance the nanotubes optical response.

Photochromic molecular switches-based conjugation. Photo-
chromic molecular switches are molecular systems displaying two
or more (meta- )stable configurations with distinctive chemo-
physical features®!. On irradiation with photons, they change
their conﬁguratlon and properties. As a prominent example,
spiropyran (SP) on irradiation with ultraviolet light (4 =350 nm)
passes from the closed to the open merocyanine (MC) form (see
Fig. 3). We covalently connected SP to SWNTs, which made the
switch an active part of the extended m-network (Fig. 3a, see
Methods and Supplementary Note 1 for the synthesis and
characterization).

The SWNTs carried one SP group every 100 carbon atoms.
Under ultraviolet irradiation the SP-functionalized SWNTs
(SP-SWNTs) hybrids convert into MC-SWNT's by the molecular
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Figure 2 | Demonstration of n-conjugation preserving functionalization. (a) X-ray photoelectron spectroscopy (XPS) spectra of the N1s level of pristine
and functionalized SWNTs. (b) High-resolution STEM-high-angle annular dark field (HRSTEM-HAADF) micrograph of the SWNT-high sample, showing a
bundle of SWNTs and an individual tube. Scale bar, 2 nm. The regions marked by squares were investigated by EELS, see Supplementary Information. The
inset on the right shows the corresponding N-K edge EEL spectra. (€) Raman spectra showing the D and G bands of samples with different density of
functional groups. (d) Two-dimensional (2D) luminescence maps of pristine SWNTs compared with SWNT-high. The (n,m) indices specify the SWNT

species associated with each emission spot.
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Figure 3 | SP-conjugated SWNTs. (a) Schematic representation of the SP-SWNTs. (b) Absorption spectrum of the SP-SWNTs under ultraviolet light
irradiation at 367 nm. Grey: absorption spectrum of free MC. (¢) Emission spectra of the SP-SWNTs (blue) and of the MC-SWNTs (red), obtained after

ultraviolet irradiation.

switching from SP to MC as seen by the characteristic change in
the ultraviolet absorption band in Fig. 3b and Supplementary
Fig. 33. The isomerization is reversible by keeping the sample in
darkness for 24 h. Interestingly, the light-induced back isomer-
ization, MC-to-SP, is supressed for functionalized SWNTs.
Indeed, MC-SWNTs display no characteristic band in the visible
reminiscent of the free MC (Fig. 3b). This absorption is observed
for free MC and ascribed to the m-electron delocalized along the

4

MC structure’?. For MC-SWNT, the m-electron is no longer
confined to the MC but can extend over the whole conjugated
MC-SWNTs network. This delocalization over a few hundreds of
nanometres shifts the transition energy in the far infrared outside
of our measurement windows>>. The net effect of the SP to MC
isomerization on the SWNTs is a further increase in the Fermi
level. We effectively and reversibly dope the SWNTSs by exposing
them to ultraviolet photons. This idea is supported by a shift of
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the Raman G-band from SP-SWNTs to MC-SWNTs (see Supple-
mentary Fig. 32)3%.

The shift of 2cm ~! in semiconducting tubes corresponds to
0.2eV change in the energy of the Fermi level**. This also
reduced the rate of radiative exciton emission®>37. We observed
a quenching of 50% emission intensity when passing from SP- to
the MC-SWNTs (see Fig. 3c). The intensity fully recovers when
MC thermally isomerizes back to SP.

Covalently functionalizing SWNTs with SP thus offers a
novel controlled, non-disruptive and reversible way to tailor
the optoelectronic properties of nanotubes. Through ultraviolet
photons we change the Fermi level and modulate light emission
by SWNTs. SP-SWNTs could lead to light-switchable ballistic
transport channels.

Plasmonically enhanced emission. In a second application we
demonstrate nanoplasmonic-hybridized SWNTs as brighter
fluorophores, for example, for increasing resolution in bio-
imaging®’. The collective oscillations of free electrons in metal
nanoparticles give rise to electromagnetic resonances (plasmons)
that strongly enhance optical signals from nearby molecules>~40,
To bind plasmonic AuNPs onto the SWNTs, we exploit
covalently anchored thiol groups onto the tubes (thiol-functi-
onalized SWNT (SH-SWNT)) as sketched in Fig. 4a, in the
Methods section and summarized in Supplementary Fig. 1. TEM
microscopy of the resulting Au@SWNT hybrids shows the
AuNPs assembled along the sidewall of the SWNTs (see Fig. 4b).
This assembly is stable towards environmental changes yet
again confirming the covalent nature of the functionalization
method.

The functionalization with plasmonic particles markedly
increased the luminescence of the SWNTs, which neither
happened for defect functionalization nor simple assembly
(Supplementary Note 5). The emission of Au@SWNT hybrids
in Fig. 4c is two to three times stronger than for uncoated tubes.
As only a small fraction of the nanotubes spatially overlaps with
the AuNP near field, the increase in the emission cross-section is
much higher. Luminescence peak position and width remained
constant between pristine and Au@SWNT. The intensity increase
originated from an enhanced excitation (absorption) through
the strongly localized near-fields around the metallic particle.
Interestingly, the maximum enhancement efficiency is obtained

a

S S

Ve
HN COOH

for species with excitation windows red-shifted from the AuNP
plasmonic resonance (Supplementary Fig. 36), consistent with
other coupled emitter-nanometal systems*!.

The functionalization of carbon nanotubes with dichloro-
triazine preserves the electronic and optoelectronic properties of
SWNTs. Such functionalized nanotubes are versatile building
blocks for nanophotonic hybrids as we demonstrated with two
exemplary structures.

Methods

Synthesis of the functionalized tubes. HiPCO SWNTs (length: 0.2-1.2 pm,
diameter: 0.8-1.2 nm) were purchased from Unidym (batch SP0295). The
2,4,6-trichloro-1,3,5-triazine (cyanuric chloride or triazine), 2,3,3-trimethylindo-
lenine and 5-nitrosalicylaldehyde were purchased from Sigma-Aldrich. Sodium
azide and N-methyl-2-pyrrolidone were purchased from Merck. A schematic
depiction of the reaction steps described below can be found in Supplementary
Fig. 1.

Conjugating triazine onto the SWNTs: SWNT-low and SWNT-high. Pristine
SWNTs (1g) were added to N-methyl-2-pyrrolidone (150 ml), sonicated for 1h
and then stirred at room temperature for an additional 1h. The 2,4,6-1,3,
5-trichloro-triazine (10 g, 54 mmol) dissolved in N-methyl-2-pyrrolidone (50 ml)
was added to the mixture at 0°C and stirred for 20 min. Sodium azide (1.76 g,
27 mmol) in solid state was gradually added to the reaction flask at 0°C; the
mixture was stirred at this temperature for 2h. The temperature was raised to
25°C and stirred for 1h. Operating at low temperature ensures the substitution of
only one chlorine atom*?4>, We thus converted 2,4,6-trichloro-1,3,5-triazine into
2-azido-4,6-dichloro-1,3,5 triazine and prevented the creation of more complicated
structures such as di- or tri-azide derivatives, or C;N, graphitic materials*. Details
of the characterization of the intermediate product can be found in the
Supplementary Information. Thereafter, the suspension was stirred overnight at a
temperature of 25 °C (SWNT-low) and at 70 °C (SWNT-high). The mixtures were
centrifuged (5,000 r.p.m. for 5min) and the crude products were dispersed in
acetone and centrifuged again under the same condition. Dispersion and
centrifugation of the product was repeated in water, toluene and chloroform to
obtain the purified compounds. The products were lyophilized to obtain 1.08 g
black solid compound of SWNT-low and 1.03 g black solid compound of SWNT-
high.

Synthesis of SP-SWNTs. The synthesis of the SP derivatives for the SP-SWNTs
was performed by the Wagenknecht method*®. The conjugation of SP onto the
SWNTs is a two-step process requiring first the attachment of the indole

group onto the triazine to be used for the growth of the SP. SWNT-low (0.2 g)
was dispersed in N-methyl-2-pyrrolidone (150 ml) and sonicated for 1h. The
2,3,3-Trimethylindolenine (2 ml, 12.47 mmol) dissolved in N-methyl-2-pyrrolidone
(10 ml) was added to this mixture at 0 °C and stirred for 1 h. The mixture was
sonicated at room temperature for 1h and the temperature was raised to 65 °C.
Finally, the mixture was stirred under nitrogen atmosphere for 4 days. It was
centrifuged at 7,000 r.p.m. for 10 min, washed by acetone, chloroform,
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Figure 4 | Plasmonic hybrids of AuNP and SWNT. (a) Molecular sketch of AuNPs covalently anchored to SH-SWNTs. (b) TEM micrograph of Au@SWNTs
hybrids. Scale bar, 5nm. A few-SWNTs bundle can be observed and AuNPs assembled along the tubes. (¢) Enhancement of the luminescence emission of
SWNTs after covalent attachment of AuNPs onto their surface: comparison of the emission of the AuU@SWNT hybrids (red curve) with the one of SH-

SWNT (black curve).
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tetrahydrofuran (THF) and water, and collected by centrifugation. The product was
lyophilized overnight obtaining 0.19 g black solid compound of SWNT-indole. The
intermediate step required SWNT-indole to be added to a saturated solution of
NaOH in water and sonicated for 30 min. The mixture was stirred for 5h at room
temperature and the final product (SWNT-indolene) was purified by repeated
washing with water and centrifugation. For the characterization of the reaction of
dichlorotriazene with dimethyl indoline, please refer to Supplementary Note 1. The
final step required to add an excess amount of 5-nitrosalicylaldehyde (2.5g,

1.19 mmol) at 25°C to a well-sonicated and degassed dispersion of SWNT-
indolene (0.1g) in dry ethanol (70 ml). The mixture was sonicated at 25 °C with
35kHz for 2h and stirred at 70 °C overnight. Finally, the solvent was evaporated,
the mixture dispersed in ethanol, chloroform, water, toluene and acetone, and
collected by centrifugation at 5,000 r.p.m. for 5min.

Synthesis of SH-SWNT. Based on the protocols for the nucleophilic substitution
of the chlorine atoms of the triazine reported in literature, cysteine was conjugated
to the triazine functional groups*>*3#0. SWNT-high (100 mg) was dispersed in
dimethylfomamide (50 ml) and sonicated for 15min at room temperature. Next,
cysteine (1g, 8.2 mmol) and triethylamine (1.72 ml, 12.3 mmol) were added to the
mixture that was stirred at 65 °C for 2 days. The mixture was then dialysed for 1
week in water. We lyophilized the product and 90 mg black compound of SH-
SWNT was obtained.

Sample preparation. To solubilize the carbon nanotubes, we dissolved them

in water (density of tubes 0.1 gl ™ 1y and added sodium cholate (SC, 1 wt %).
Following the routine described in our past works?”48, the solution was sonicated
with a tip-sonicator (Bandelin Sonopuls HD 2070) for 1h at 60 W and then
centrifuged (Hettich Mikro 220 R centrifuge) at 30,000 g for 1 h. The supernatant
was collected and used for optical measurements. For the functionalized nanotubes,
we corrected the values of the density of functionalized nanotubes dissolved in
water by taking into account the mass change due to the attachment of the
functionalities (fraction of SWNT enlisted in Supplementary Table 4).

The AuNPs were synthesized according to the Turkevich method®. We
obtained spherical AuNPs with diameters 10-20 nm. The plasmon absorption band
peaked at 520 nm (Supplementary Fig. 34). The Au@SWNT hybrids were created
by adding 200 pl of 0.1gl ™! thiol-SWNTs into 1,000 ul of the AuNP solution.
The mixture was stirred overnight. To promote further debundling we added SC
(1 wt%) to the solutions and applied mild sonication for 1h at ~20 W. After
decantation, the supernatant was used for spectroscopic characterization. For TEM
imaging of the Au@SWNTs, we dropped 5 pl of the solution onto a nickel grid
covered with a lossy carbon film. The grid was placed over a heating plate until
complete evaporation of the liquid.

Experimental details. Two-dimensional luminescence was recorded with a
Nanolog spectrofluorometer from Horiba, equipped with a Xenon lamp and a
liquid-Nitrogen cooled InGaAs detector. Ultraviolet-visible-infrared absorption
spectra were taken with a Perkin-Elmer Lambda 950 spectrophotometer. Kinetic
absorption measurements under ultraviolet illumination were performed with a
spectrophotometer from Thermo-Fisher. The ultraviolet light source was a hand-
held ultraviolet lamp emitting at 365 nm. The Raman spectra were acquired with
a Horiba LabRam spectrometer equipped with an He-Ne laser (633 nm). The
TEM measurement of the Au@SWNTSs were taken with a transmissions electron
microscope FEI Tecnai G2 20 S-TWIN with LaB6-cathode, 120kV acceleration
voltage and a GATAN MS794 CCD acquistion camera, with 1,024 x 1,024 pixels
and point resolution of 0.24 nm. Details on the X-ray photoelectron spectroscopy
as well as on the HR(S)TEM and EELS setups can be found in the Supplementary
Methods.

Quantum chemical calculations. Calculations were performed using
MOPAC2016 (http://openmopac.net/). The geometries of the (8,0) nanotube, the
nitrenes and the nanotube-addend (nitrenes) systems were fully optimized at the
PM?7 level using a minimal basis set®®. The climbing image nudged elastic band
method®! was used to determine transition state configurations and barrier
energies for the cycloaddition reaction (see Supplementary Note 2 for details).

Data availability. The data supporting the findings of this study are available
within the article and its Supplementary Information files, and from the corre-
sponding author upon reasonable request.
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