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Abstract: Bacterial infections caused by antibiotic-resistant isolates have become a major 

health problem in recent years, since they are very difficult to treat, leading to an increase 

in morbidity and mortality. Fosfomycin is a broad-spectrum bactericidal antibiotic that 

inhibits cell wall biosynthesis in both Gram-negative and Gram-positive bacteria. This 

antibiotic has a unique mechanism of action and inhibits the initial step in peptidoglycan 

biosynthesis by blocking the enzyme, MurA. Fosfomycin has been used successfully for 

the treatment of urinary tract infections for a long time, but the increased emergence of 

antibiotic resistance has made fosfomycin a suitable candidate for the treatment of 

infections caused by multidrug-resistant pathogens, especially in combination with other 

therapeutic partners. The acquisition of fosfomycin resistance could threaten the 

reintroduction of this antibiotic for the treatment of bacterial infection. Here, we analyse 

the mechanism of action and molecular mechanisms for the development of fosfomycin 

resistance, including the modification of the antibiotic target, reduced antibiotic uptake and 

antibiotic inactivation. In addition, we describe the role of each pathway in clinical isolates.  
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1. Introduction 

Infectious diseases are the second-major cause of death worldwide and the third-leading cause of 

death in economically advanced countries [1]. Antibiotic-resistant strains of pathogenic bacteria are 

increasingly prevalent and represent a priority health problem [2]; hence, the problem of antibiotic 

resistance needs an urgent response. Developing a new antibiotic can take years and millions of dollars. 

Therefore, in the meantime, the rational use or retrieval of old antibiotics, like polymyxins, fusidic 

acid, co-trimoxazole, aminoglycosides, chloramphenicol and fosfomycin, may be a short-term solution [3]. 

Here, we focus our analysis on fosfomycin (also termed phosphomycin and phosphonomycin),  

a natural antibiotic compound produced by several Streptomyces and Pseudomonas species,  

exerting a powerful bactericidal activity against a wide range of Gram-negative and Gram-positive  

bacteria [4]. Fosfomycin is a phosphonic acid derivative containing an epoxide and a propyl group  

[(2R,3S-3-methyloxiran-2-yl) phosphonic acid] with a unique chemical structure (Figure 1). This 

molecule, with a very low molecular weight, is within a class of its own and is unrelated to any other 

antibiotic family, in addition to having an exclusive target, the initial step in peptidoglycan biosynthesis [5].  

Figure 1. Chemical structure of fosfomycin [(2R,3S-3-methyloxiran-2-yl) phosphonic acid]. 

 

2. Activity  

Fosfomycin is mainly used for the treatment of uncomplicated urinary tract infections (UTIs) [6], 

and various formulations are available. The form of the medication for intravenous use is fosfomycin 

disodium salt. For oral use, the antibiotic is combined in calcium salt or formulated with 

tromethamine. Fosfomycin tromethamine is primarily administered in a single dose, reaching a very 

high antibiotic concentration that is able to successfully kill the most common urinary pathogens [7].  

It has also been used in combination with other antibiotics in the treatment of patients suffering serious 

infections, systemic infections with sepsis or nosocomial infections [8].  

Fosfomycin shows a powerful bactericidal activity against enteric Gram-negative bacteria, such as 

Escherichia coli, although some of them have decreased susceptibility, as Klebsiella pneumoniae and 

Enterobacter cloacae. Fosfomycin is also very effective against Gram-positive cocci, like Staphylococcus 

aureus, Streptococcus pneumoniae, Enterococcus faecalis and Enterococcus faecium [9]. 

The analysis of its activity against nine commonly encountered bacteria associated with urinary 

tract infection has revealed a high susceptibility in E. coli isolates and most K. pneumoniae, E. cloacae 

and S. aureus strains [10]. In addition, E. faecalis and E. faecium isolates were also quite susceptible to 

fosfomycin, yet with higher MIC values. However, Acinetobacter baumannii isolates were resistant to 

fosfomycin, while P. aeruginosa and Stenotrophomonas maltophilia showed moderate susceptibility [10].  
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Fosfomycin has been successfully evaluated as a treatment option for infections caused by multiple 

drug resistant (MDR) Gram-negative and Gram-positive bacteria [11,12]. For example, a survey of 

clinical MDR Enterobacteriaceae isolates, including producers of extended-spectrum β-lactamases 

(ESBL), showed that >90% of E. coli and >80% of K. pneumoniae isolates were susceptible to 

fosfomycin [13].  

3. Mechanism of Action  

Fosfomycin is a bactericidal antibiotic that inhibits the initial step in the biosynthesis of 

peptidoglycan in prokaryotes [5]. Peptidoglycan is assembled from a building block composed of  

N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid with an attached pentapeptide. Fosfomycin 

acts as a phosphoenolpyruvate (PEP) analogue and binds MurA (UDP-GlcNAc enolpyruvyl transferase), 

an essential enzyme for peptidoglycan biosynthesis [14], preventing the formation of UDP-GlcNac-3-

O-enolpyruvate from UDP-GlcNAc and PEP during the first step in peptidoglycan biosynthesis, leading to 

bacterial cell lysis and death [5] (Figure 2). The antibiotic can enter into the active site of MurA and 

inhibits this enzyme by covalently binding via a thioether bond formation with a key residue in the 

active site, Cys115 [15,16]. The crystal structure of E. coli MurA complexed with UDP-GlcNAc and 

fosfomycin has revealed that the Cys115-bound molecule is tightly packed between the enzyme and 

the substrate, forming strong electrostatic interactions between three conserved positively charged 

residues of MurA (Lys22, Arg120 and Arg397) and the phosphonate group of the antibiotic [16].  

3.1. Mechanisms of Fosfomycin Resistance 

There are different mechanisms leading to fosfomycin resistance: 

(i) Reduced permeability to fosfomycin. Since the discovery of fosfomycin, it was established that the 

main mechanism for the acquisition of antibiotic resistance was an impaired fosfomycin transport, due to 

mutation of any of the target genes encoding the antibiotic permeases. In E. coli, two main nutrient 

transport systems are responsible for fosfomycin uptake, the glycerol-3-phosphate transporter (GlpT) and a 

hexose phosphate transporter, the glucose-6-phosphate transporter (UhpT) [5]. The expression of the 

GlpT and UhpT transporters is induced by their substrates, glycerol-3-P and glucose-6-P, respectively, and 

requires the presence of cAMP-CRP (Figure 3). Mutations in any of the structural genes of those pathways 

produce a decrease in antibiotic uptake, conferring different levels of fosfomycin resistance [5,17,18].  

Strains defective in fosfomycin uptake are not able to grow using some substrates as the sole carbon 

source, glycerol-3-P in GlpT-deficient strains or glucose-6-P (and other hexose phosphates) in  

Uhp-deficient strains. Mutants affected in both systems are often unable to grow using multiple 

carbohydrates. In fact, it has been observed that the addition of glucose-6-P induces fosfomycin 

sensitivity in resistant GlpT-deficient strains, due to the induction of UhpT synthesis [5]. Therefore, 

the measurement of MIC to fosfomycin in E. coli is performed using media with and without  

glucose-6-P [19]. However, the addition of glucose-6-P recommended by the CLSI manual provides a 

more reliable MIC result, due to its activity as inducer of fosfomycin transport. 
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Figure 2. Although transporters are usually very selective, the chemical structure of 

fosfomycin mimics both glycerol-3-P (G3P) and glucose-6-P (G6P), which are transported 

under normal conditions. MurA catalyses the formation of UDP-GlcNac-3-O-enolpyruvate, a 

peptidoglycan precursor, from UDP-GlcNAc and PEP during the first step of peptidoglycan 

biosynthesis, allowing cell growth (A). In contrast, when fosfomycin (F) is present, it is 

transported inside the cell by GlpT and UhpT, blocking the UDP-GlcNac-3-O-enolpyruvate 

synthesis by mimicking the original substrate of MurA, PEP, avoiding cell wall synthesis 

and leading to cell death (B). For simplicity, only peptidoglycan and the inner membrane 

are shown. 

 

While fosfomycin uptake depends on GlpT and UhpT in E. coli, it has been reported that 

fosfomycin can only enter into the cells via GlpT in P. aeruginosa, due to the absence of UhpT 

permease. As a result, glpT is the only target gene whose inactivation confers antibiotic resistance in  

P. aeruginosa [20]. All the fosfomycin-resistant mutants generated in P. aeruginosa by spontaneous 

mutations are affected in glpT [20]. However, these mutations appear to be cost-free, probably because 

this species cannot use glycerol-3-P as a sole carbon source, even in glpT
+
 wild-type strains [21]. 

Fosfomycin uptake is essential for antibiotic activity, and intrinsic resistance to the antibiotic in 

some pathogenic species is caused by the lack of transport. A paradigmatic example is Listeria 

monocytogenes. This species is unable to uptake the antibiotic in vitro and, consequently, is resistant to 

fosfomycin. Nevertheless, a central virulence regulator, PrfA, induces in vivo the virulence factor Hpt, 

a glucose-6-P permease that also mediates the uptake of fosfomycin, conferring antibiotic susceptibility 

during infection [22,23]. 
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Figure 3. Regulation of GlpT and UhpT. In E. coli and several Enterobacteria, the 

expression of glpT and uhpT requires the presence of the cAMP, which together with the 

receptor protein complex (CRP) forms the cAMP receptor protein complex (cAMP-CRP). 

This complex binds to the specific promoter sites of both genes, glpT and uhpT, and 

promotes their expression. Both transporters experience additional regulation. On the one 

hand, glpT gene expression is also controlled by the repressor, GlpR, which becomes 

inactive when it is bound to glycerol-3-P (G3P), and on the other hand, of uhpT; high-level 

expression also requires the regulatory genes, uhpA, uhpB and uhpC, which sense and 

transduce signals by phosphorylation when hexose phosphates are detected, thereby 

positively regulating the transcription of the gene. 

 

GlpT system. GlpT is a glycerol-3-phospate permease, a protein belonging to the organophosphate 

phosphate antiporter (OPA) family of the major facilitator superfamily (MFS). GlpT transporters are 

present in various bacterial species with a high degree of sequence conservation, and homologues are 

widely distributed in all phyla [24].  

The structure of E. coli GlpT reveals two domains connected by a long central loop, with a substrate 

translocation pore located between the two domains opened to the cytoplasm [25,26]. As an integral 

inner membrane component, the GlpT protein contains 12 highly conserved transmembrane α-helices 

typical of all glycerol-3-P permeases [25,26]. GlpT catalyses an exchange of external glycerol-3-P for 

internal Pi, acting as a secondary active transporter for glycerol-3-P uptake [27]. 

This permease also provides an entrance mechanism for fosfomycin, owing to this antibiotic 

mimicking glycerol-3-P. The acquisition of mutations affecting GlpT confers fosfomycin resistance, 

decreasing the antibiotic uptake into the bacterial cells [5,28,29]. The interaction between GlpT and 

fosfomycin has recently been characterized in proteoliposomes, showing that fosfomycin competes for 

the substrate-binding site of the permease and is transported by the protein in vitro [30].  
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The expression of GlpT in E. coli is induced by the presence of glycerol-3-P. The repressor, GlpR, 

blocks glpT transcription by binding to the operators near the glpT promoter. The interaction of GlpR 

with glycerol-3-P reduces its affinity for the glpT operator and activates GlpT synthesis [31–33] (Figure 3). 

Inactivation of GlpR leads to a constitutive expression of glpT.  

UhpT system. UhpT is a hexose phosphate transporter responsible for the accumulation of glucose-6-P 

and the uptake of fosfomycin into the bacterial cells. Fosfomycin-resistant strains defective in growth 

with hexose phosphates as a carbon source, such as glucose-6-P, carry mutations in the uhp genes [34]. 

UhpT is also a member of the Major Facilitator Superfamily that exchanges a cytoplasmic 

phosphate Pi for a hexose phosphate [35]. UhpT transporters show an extensive amino acid sequence 

homology with glycerol-3-P transporters, GlpT [36]. In a similar way as GlpT, UhpT is a monomer, 

with twelve transmembrane alpha-helical segments [37,38].  

In addition, the UhpT transport system is controlled by several regulatory components, including uhpA, 

uhpB and uhpC, whose products are necessary for high-level expression of the UhpT transporter (Figure 3). 

Inactivation of any of these regulatory genes also leads to fosfomycin resistance, due to an inhibited or 

reduced expression of the UhpT transporter, thereby preventing fosfomycin uptake into the cells [34]. 

The integral membrane component UhpC detects the extracellular signal, glucose-6-P and activates 

UhpB [39]. UhpB is a sensor histidine kinase in a two-component regulatory system with UhpA based on 

His-to-Asp phosphoryl transfer. UhpA, a DNA-binding response regulator, binds to two adjacent regions, 

an upstream strong binding site and a downstream weak binding site, in the uhpT promoter. 

Phosphorylation of UhpA stimulates DNA binding, hence promoting uhpT transcription [40–42] 

(Figure 3). 

Regulation: levels of cyclic adenosine monophosphate (cAMP). High levels of cAMP are required 

for the full expression of the fosfomycin transporters, GlpT and UhpT, in Enterobacteria. cAMP 

synthesis depends on the activity of adenyl cyclase CyaA. cAMP levels are also regulated by the 

phosphotransferase enzyme, PtsI, a component of the PEP sugar phosphotransferase transport system. 

Mutations in cyaA or ptsI cause a decrease in the intracellular cAMP levels and, consequently, a 

reduced synthesis of both fosfomycin transporters, leading to a diminished antibiotic uptake [43–46]. 

Inactivation of the cAMP receptor protein CRP impairs the expression of both transporter systems, 

reducing the susceptibility to fosfomycin [43]. cAMP-CRP recognizes several binding sites upstream of 

the glpTQ operon in a DNA stretch, controlled negatively by GlpR and positively by cAMP-CRP [47]. 

This global regulator also binds to the E. coli uhpT promoter at a single site upstream of the  

UhpA-binding sites (Figure 3). Transcription of the uhpT gene requires the response regulator UhpA 

and is stimulated by the global regulator protein, cAMP-CRP [48]. cAMP-CRP stabilizes the open 

promoter complexes for uhpT transcription and also enhances the rate of their formation [49]. 

(ii) Modification of the antibiotic target MurA. Modification of the antibiotic target is one of the 

most common mechanisms to acquire antibiotic resistance in bacteria. MurA, an essential enzyme, is 

the target of the antibiotic fosfomycin, which, as mentioned, inactivates the enzyme by irreversibly 

binding to the protein. In E. coli mutation of the fosfomycin-binding site in MurA, Cys115, results in 

resistance to this antibiotic [50].  
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After a protein mutagenesis analysis, it has been proposed that the catalytic residue, Cys115, acts as a 

general acid-base catalyst, promoting the enzymatic reaction. When the enzyme mediates the enolpyruvyl 

transfer from PEP to the 3'-OH of UDP-GlcNAc, MurA-Cys115 reacts with PEP (or fosfomycin) to 

form a covalent phospholactoyl-enzyme adduct [15,51–53]. In addition, MurA-Cys115 seems to be 

essential for product release, i.e., inorganic phosphate and UDP-GlcNAc-3-O-enolpyruvate [54]. 

MurA shows an enzymatic activity susceptible to be blocked by fosfomycin in a dose-dependent 

manner. However, the Cys115 to Asp mutation in the E. coli MurA generates a fully active enzyme, 

yet completely insensitive to inhibition by fosfomycin, while the Cys115 to Glu mutant shows no 

enzymatic activity [50]. The impact of these types of mutations in the acquisition of fosfomycin 

resistance is reflected by the presence of an Asp residue in the catalytic site of MurA proteins encoded 

by pathogenic bacteria with intrinsic resistance to fosfomycin, such as Mycobacterium tuberculosis, 

Chlamydia trachomatis and Borrelia burgdorferi [55–57]. In addition, antibiotic resistance to 

fosfomycin was acquired in E. coli by the expression of this naturally resistant enzyme when endogenous 

E. coli murA was conditionally inactivated [57]. Conversely, mutation of the wild-type aspartate residue 

in the MurA active site to a cysteine renders an enzyme sensitive to fosfomycin in M. tuberculosis and 

B. burgdorferi [55,56].  

Modification of the fosfomycin target to acquire antibiotic resistance seems to be rare in clinical 

isolates. A fosfomycin-resistant E. coli mutant affected in MurA affinity to the antibiotic was 

characterized [58]. However, very few reports of clinical isolates show mutations in the murA gene, 

and none in the catalytic site of MurA. Recently, mutations in the MurA sequence of clinical isolates 

of E. coli, Asp369 to Asn and Leu370 to Ile, have been suggested to contribute to the development of 

fosfomycin resistance in vivo [59]. These mutant proteins are less susceptible to the inhibitory activity 

of this antibiotic. Both highly conserved residues could be important for PEP substrate binding and, 

thus, may affect interaction between the enzyme and fosfomycin [59].  

Since fosfomycin produces covalent modification of MurA, increased synthesis of the enzyme 

confers a resistant phenotype [60]. Indeed, the analysis of a complete E. coli library of gene 

amplifications (the ASKA collection) has revealed that murA is the only gene in the entire E. coli 

genome capable of conferring clinical levels of antibiotic resistance when overexpressed [61]. 

Increased MurA levels in E. coli correlate with higher levels of fosfomycin resistance, reaching 

clinical resistance levels (32 µg/mL) at a low fitness cost. In this sense, it has been shown that the 

enhanced expression of the murA gene contributes to the acquisition of fosfomycin resistance in 

several E. coli clinical isolates [62]. 

(iii) Antibiotic modification. Several enzymes are able to modify fosfomycin, producing chemical 

changes that inactivate it. Microbial resistance to fosfomycin by antibiotic modification in pathogenic 

strains involves one of three different fosfomycin resistance proteins (FosA, FosB or FosX). All of them 

catalyse the opening of the oxirane ring of the antibiotic, rendering it ineffective. Nevertheless, they differ 

in terms of chemical mechanism, using different substrates to add chemical groups to the antibiotic [63].  

Structure-based sequence alignments of Fos proteins show remarkable sequence homology among 

them, with a limited set of residues that differ among Fos enzymes and confer different catalytic 

properties to each class (Figure 4). This allows different fos genes to recombine via homologous 
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recombination, leading to recombinant enzymes that confer fosfomycin resistance, as shown between 

Mesorhizobium loti FosX and P. aeruginosa FosA [64]. 

Figure 4. Amino acid sequence alignment generated by ClustalX (under Bioedict) of three 

representative sequences of fosfomycin resistance proteins (Fos) present in different 

bacterial species. Represented sequences are FosA [P. aeruginosa 18A], FosA3 [E. coli], 

FosB [S. aureus subsp. aureus USA300_TCH1516], FosC2 [E. coli] and FosX [Clostridium 

botulinum Ba4 str. 657]. Fos enzymes belong to the same divalent metal-ion dependent 

metalloenzymes, the vicinal oxygen chelate superfamily (VOC), sharing a high number of 

core-conserved or identical residues in their sequences. 

 

Fosfomycin resistance proteins (FosA, FosB and FosX) are members of the same metalloenzyme 

superfamily, the divalent metal-ion dependent enzymes [63]. They are evolutionarily related and form 

a group of enzymes related to glyoxalase I, methylmalonyl-CoA epimerase and extradiol dioxygenases, all 

members of the same metalloenzyme superfamily. The members of the metalloenzyme superfamily, the 

vicinal oxygen chelate superfamily (VOC), share a common structural fold that provides a very versatile 

metal coordination environment, mediating the catalysis of a very diverse set of reactions [65,66]. 

FosA. FosA was first identified as a fosfomycin resistance determinant able to modify and inactivate the 

antibiotic in conjugative multiresistance plasmids from Enterobacteriaceae clinical isolates [67–69]. The 

gene fosA was found to reside in a transposon, Tn2921, in some plasmids [70]. The nucleotide sequence of 

this transposon has revealed that fosA is flanked by two identical insertion sequences (ISs) and associated 

with genes showing striking similarity to a genomic segment from Enterobacter cancerogenus [71]. In 

fact, close relatives of FosA, with catalytic properties very similar to those of the plasmid-encoded enzyme, 

also appear in microbial genomes, such as that of the pathogen P. aeruginosa [72].  



Antibiotics 2013, 2 225 

 

The fosfomycin resistance protein, FosA, is an Mn
2+

-dependent glutathione S-transferase that 

inactivates fosfomycin by the addition of glutathione to the oxirane ring of fosfomycin, rendering it 

inactive [73,74] (Figure 5). Overexpression of FosA from a plasmid in E. coli confers fosfomycin 

resistance in a wild-type strain, but not in cells deficient in glutathione biosynthesis [75]. FosA acts as 

a homodimeric metalloenzyme with an Mn
2+

 molecule bound to each subunit in a metal binding site 

that interacts strongly with the substrate fosfomycin [72,75,76]. In addition, FosA also requires K
+
 for 

optimal activity, due to the 100-fold activation effect of the monovalent cation when it interacts with the 

catalytic site [77]. Functional analysis of the FosA sequence has revealed several residues involved in 

substrate binding and ligands to the Mn
2+

 and the K
+
 ions that are essential for enzymatic activity [78]. 

Figure 5. Reactions catalysed by Fos metalloenzymes (FosA, FosB and FosX) and 

fosfomycin kinases (FosC, FomA and FomB). Fosfomycin-inactivating enzymes modify 

the antibiotic, rendering it inactive by opening the oxirane ring (metalloenzymes) or by 

phosphorylation (fosfomycin kinases). Substrates and the metal requirement for each 

enzyme are also shown.  

 

FosB. FosB is a thiol-S-transferase related to FosA that was first detected in a plasmid conferring 

resistance to fosfomycin in Staphylococcus epidermidis [79,80]. Fosb has been widely detected in the 

chromosomes and plasmids of many low G+C Gram-positive bacteria, including Bacillus subtilis, 

Bacillus anthracis, Bacillus cereus, S. aureus, S. epidermidis and E. faecium.  

In B. subtilis, intrinsic fosfomycin resistance depends on the presence of the fosB (yndN) gene in the 

bacterial chromosome. Expression of fosB requires the extracytoplasmic sigma factor, SigW [81], a 

regulator with a prominent role in providing inducible resistance to antimicrobial compounds [82]. 

Therefore, fosB or sigW mutants are fosfomycin-sensitive in B. subtilis [81]. 
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FosB was initially characterized as an Mg
2+

-dependent L-cysteine thiol transferase that catalyses the 

addition of a thiol group using L-cysteine as a donor substrate [81]. B. subtilis FosB is a dimer whose 

activity is almost 10-fold greater with Mg
2+

 or Ni
2+

 than with Mn
2+

 as a cofactor. In contrast to FosA, 

FosB shows no monovalent metal dependence [81]. 

Recently, it has been suggested that bacillithiol, the α-anomeric glycoside of L-cysteinyl-D-glucosamine 

with L-malic acid could be the thiol donor in vivo for FosB [83] (Figure 5). Cells lacking bacillithiol 

show a dramatic increase in fosfomycin sensitivity in B. subtilis, B. anthracis and S. aureus [83–85]. 

The increase in fosfomycin sensitivity, due to the lack of bacillithiol in B. subtilis, was similar to a 

fosB null mutant and to a fosB and bacillithiol biosynthesis double mutant [83]. Kinetic analysis of 

FosB from S. aureus has confirmed that the enzyme is a divalent metal-dependent (Mg
2+

 and Mn
2+

) 

thiol S-transferase, and bacillithiol is its preferred thiol substrate under physiological conditions [85]. 

FosX. FosX hydrolases are a subfamily of enzymes related to FosA and FosB, sharing 30%–35% 

sequence identity with both groups of enzymes and detected in the survey of the microbial  

genome sequences [86]. fosX homologues have been identified in the chromosome of several 

microorganisms, including Mesorhizobium loti, and the pathogens, L. monocytogenes, Clostrium 

botulinum and Brucella melitensis. 

FosX is a Mn
2+

-dependent epoxide hydrolase that catalyses the hydration of fosfomycin [86,87] 

(Figure 5). The enzyme mediates the addition of water to the C1 position of the antibiotic, breaking 

the oxirane ring, producing a diol product. The reaction involves an essential glutamic acid residue in 

the FosX active site acting as a general base catalyst for the reaction [86,87]. 

Other fosfomycin-inactivating enzymes. Microorganisms able to synthesize fosfomycin, such as 

some strains of Streptomyces and Pseudomonas syringae, are resistant to high concentrations of the 

antibiotic. Antibiotic-producing organisms usually associate biosynthetic genes to resistance genes in 

gene clusters in order to protect cells from the harmful effect of the antibiotic [88,89].  

Fosfomycin producers have antibiotic kinases unrelated to Fos metalloenzymes that modify and 

detoxify the antibiotic inside the cells. In Streptomyces spp., two fosfomycin kinases sequentially 

modify the antibiotic in the presence of ATP and Mg
2+

. FomA converts fosfomycin to fosfomycin 

monophosphate, while FomB produces fosfomycin diphosphate using the monophosphate form as a 

substrate [88,89] (Figure 5). FomA shares homology with the amino acid kinase family and also with 

the resistance protein, FosC, from P. syringae and differs from FomB. The structure of the FomA 

enzyme bound to fosfomycin shows a typical fold of the amino acid kinase family of enzymes, and 

important structural similarities [90]. Intrinsic resistance to fosfomycin in P. syringae relies on a 

fosfomycin kinase named FosC, which is able to phosphorylate the antibiotic to produce fosfomycin 

monophosphate using ATP in the reaction [91] (Figure 5). However, a recent article demonstrated that 

FosC from P. syringae is actually an ortholog of FomA [92]. 

4. Clinical Impact 

In clinical isolates, the main mechanism for the development of fosfomycin resistance is a reduced 

permeability of the cell membrane. The contribution of plasmid-encoded inactivating enzymes to the 

overall resistance to fosfomycin in clinical strains seems to be low [93,94]. Modification of the 



Antibiotics 2013, 2 227 

 

antibiotic target, MurA, also seems to be a very rare mechanism in fosfomycin-resistant clinical 

isolates, although it is clearly very important for intrinsic resistance in some pathogens [55–57]. Only a 

few reports have described mutations in the murA sequence or murA expression that could be 

associated with fosfomycin resistance [59,62]. This suggests that changes in the MurA sequence 

reducing its affinity for fosfomycin can also affect the essential process of peptidoglycan biosynthesis. 

This could be explained by the fact that MurA is an essential enzyme and, apparently, can be modified 

by point mutations in a few specific residues without rendering it inactive. In our experience, the 

probability of finding a murA mutant resistant to fosfomycin in a bacterial population is around 10
−9

 to 

10
−10

 in vitro, while gene inactivation (glpT, for instance) is three orders of magnitude higher. 

An analysis of plasmid-encoded fosfomycin resistance in pathogenic bacteria has revealed a 

relatively low percentage of fosA and fosB genes among fosfomycin-resistant strains. Only five strains 

out of 219 fosfomycin-resistant isolates carried plasmids harbouring fosA (three Enterobacteria) and fosB 

(two staphylococci). The mechanism of antibiotic resistance in the other isolates was caused by the 

alteration of the chromosomally encoded antibiotic uptake systems [93]. No transferable plasmid-encoded 

fosfomycin resistance was found among a collection of P. aeruginosa antibiotic resistance strains [95]. 

Although the incidence of plasmid-encoded fosfomycin-modifying enzymes is still low, plasmids 

that encode Fos enzymes are very often associated with other antibiotic resistance genes, leading to the 

emergence of multidrug resistance strains. In a survey of CTX-M β-lactamase-producing E. coli clinical 

isolates, three out of ten fosfomycin-resistant strains contained two different FosA-like enzymes with 

glutathione S-transferase activity, FosA3 and FosC2, encoded in transferable multiresistance plasmids 

simultaneously conferring a cefotaxime resistance phenotype [96]. Multiresistance plasmids encoding 

fosA3 and, to a lesser extent, fosC2 are emerging among CTX-M β-lactamase-producing E. coli and  

K. pneumonia isolates in Asia (China, Japan and South Korea) [96–99]. For instance, the multidrug 

resistance plasmid, pHN7A8, carries the bla(TEM-1b), bla(CTX-M-65), fosA3 and rmtB genes  

conferring resistance to penicillins, cephalosporins, fosfomycin and aminoglycosides, respectively [100]. 

Plasmid pKP96 carries nine genes (fosA among them), conferring resistance to several antibiotics, 

including penicillins, cephalosporins, fosfomycin, aminoglycosides, tetracycline, quinolones and 

sulfamethoxazole [101]. Therefore, the acquisition of fosfomycin resistance mediated by antibiotic-

modifying enzymes shows a higher incidence in multidrug resistance strains. From a collection of 21 

isolates with extended-spectrum β-lactamase, seven strains (five E. coli and two K. pneumoniae) 

harboured both fosA3 and blaCTX connected via insertion sequences in different multiresistance 

plasmids [102]. Fos enzymes encoded in the chromosome contribute to intrinsic resistance, but they could 

also be important in pathogenic bacteria for the development of antibiotic resistance, as seen in P. 

aeruginosa overexpressing chromosomally encoded fosA [103]. 

A recent study of six fosfomycin-resistant E. coli clinical isolates showed that all of them contained 

glpT mutations with an impaired GlpT transport system, and five of them were unable to grow using 

glycerol-3-P. Two of these strains with a high level of fosfomycin resistance were also defective in UhpT 

by gene loss, but all the other resistant isolates were functional in UhpT transport growing with  

glucose-6-P [59]. A previous report by Nilsson et al [104] about the molecular mechanism of fosfomycin 

resistance in 13 E. coli clinical isolates revealed that the highest level of fosfomycin resistance required 

simultaneous inactivation of both transport pathways, GlpT and UhpT (a glpT stop codon + uhpA 

deletion in this strain). By contrast, most of the resistant strains analysed were only defective in the 
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UhpT transport system, growing with glycerol-3-P, but not with glucose-6-P as a sole carbon source. 

Nevertheless, among those strains, the uhpT and/or uhpA genes, inactivating mutations were only 

detected in four of them, although it is possible missense mutations were not evaluated [104].  

In a survey of fosfomycin-resistant isolates in the urinary isolates of E. coli producing  

extended-spectrum beta-lactamases, a cluster of five isolates carried an uhpA deletion [105], showing 

that mutations targeted to chromosome genes could be important for the development of antibiotic 

multiresistance. Although mutations in uhpA are often detected in clinical isolates, this is not the case 

for uhpB or uhpC. Experiments of in vitro mutagenesis by insertions in uhpA led to the loss of uhpT 

expression; however, a high proportion of uphB or uhpC mutations retained uhpT expression [39].  

A high level of fosfomycin resistance has also been described by the concurrent effects of increased 

murA expression/murA point mutations and alteration of the GlpT or/and UhpT transport systems in 

two Shiga-Like Toxin-producing E. coli strains [59,62]. 

Finally, it is known that mutations in cyaA or ptsI, which in turn decrease the level of cAMP, 

provoke a profound disturbance in carbohydrate metabolism of bacteria and may have a high 

biological cost [104]. Therefore, it is expected that these mutations per se lack clinical relevance 

unless bacteria find compensatory mutations. The need for this compensation certainly diminishes the 

probability of finding these mutants in clinical settings. 

The sequence changes in fosfomycin-resistant strains isolated both in vitro and in clinical settings 

show that large and small deletions are the main source of gene-inactivating mutations, followed by 

insertions/duplications. In addition, a considerable number of point mutations have been detected, 

including truncations by nonsense and missense mutations [20,104,106]. As an example, the sequence 

of glpT in 20 fosfomycin-resistant isolates of P. aeruginosa, where all fosfomycin resistance mutations 

are targeted to glpT, has been explored detecting 14 deletions (nine frameshifts), five-point mutations 

and one insertion/duplication [20,106]. 

5. Conclusions  

Fosfomycin has been used for a long time, but the emergence of antibiotic resistance and the 

decline in newly developed antibiotics has increased interest in the treatment of bacterial infections 

with this antibiotic. The mechanisms of acquisition of fosfomycin resistance should be considered in 

detail so as to optimize therapy and avoid the further development of antibiotic resistance. Evaluation 

of fosfomycin susceptibility in clinical strains is widely performed, but the molecular bases are 

frequently unexplored. In addition, several clinical trials have recently been performed to evaluate the 

potential application of fosfomycin in the treatment of bacterial infections, including those caused by 

multidrug resistant isolates, most of them with promising results. Therefore, a more-in-depth 

knowledge of the molecular mechanisms leading to fosfomycin resistance in clinical strains could 

improve the successful use of fosfomycin for the treatment of bacterial infections. 
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