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Abstract

The waggle dance is one of the most popular examples of animal communication. Forager

bees direct their nestmates to profitable resources via a complex motor display. Essentially,

the dance encodes the polar coordinates to the resource in the field. Unemployed foragers

follow the dancer’s movements and then search for the advertised spots in the field.

Throughout the last decades, biologists have employed different techniques to measure key

characteristics of the waggle dance and decode the information it conveys. Early techniques

involved the use of protractors and stopwatches to measure the dance orientation and dura-

tion directly from the observation hive. Recent approaches employ digital video recordings

and manual measurements on screen. However, manual approaches are very time-con-

suming. Most studies, therefore, regard only small numbers of animals in short periods of

time. We have developed a system capable of automatically detecting, decoding and map-

ping communication dances in real-time. In this paper, we describe our recording setup, the

image processing steps performed for dance detection and decoding and an algorithm to

map dances to the field. The proposed system performs with a detection accuracy of

90.07%. The decoded waggle orientation has an average error of -2.92˚ (± 7.37˚), well within

the range of human error. To evaluate and exemplify the system’s performance, a group of

bees was trained to an artificial feeder, and all dances in the colony were automatically

detected, decoded and mapped. The system presented here is the first of this kind made

publicly available, including source code and hardware specifications. We hope this will fos-

ter quantitative analyses of the honey bee waggle dance.

Introduction

The honey bee waggle dance is one of the most popular communication systems in the animal

world. Forager bees move in a stereotypic pattern on the honeycomb to share the location of

valuable resources with their nestmates [1–3]. Dances consist of waggle and return phases.

During the waggle phase, the dancer vibrates her body from side to side while moving forward

in a rather straight line on the vertical comb surface. Each waggle phase is followed by a return

phase, during which the dancer circles back to the starting point of the waggle phase. Clock-

wise and counterclockwise return phases are alternated, such that the dancer describes a path
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resembling the figure eight [1, 4–6]. The average orientation of successive waggle runs with

respect to gravity approximates the angle between the advertised resource and the solar azi-

muth as seen from the hive Fig 1. The duration of the waggle run correlates with the distance

between hive and resource [1, 7–9]. The resource’s profitability is encoded in the dance tempo:

valuable resources are signaled with shorter return runs, yielding a higher waggle production

rate [10].

Unemployed foragers might become interested in a waggle dance, follow the dancer’s

movements and decode the information contained in the dance. Followers may then exit the

hive to search for the communicated resource location in the field [2, 11–14]. Recruits that

were able to locate the resource, once back in the hive, may also dance, thereby amplifying the

collective foraging effort.

The study of the waggle dance as an abstract form of communication received great interest

after it was first described by von Frisch [15]. Keeping bee colonies in special hives for observa-

tion is well-established. The complex dance behavior allows insights into many aspects of the

honey bee biology and, even after seven decades, several research fields investigate the waggle

dance communication system.

The dance essentially contains polar coordinates for a field location. Hence, waggle

dances can be mapped back to the field [16]. The directional component relies on fixed

Fig 1. Correlation between waggle dance parameters and locations on the field. On the left, three food sources in the field located at

A) 45˚ counterclockwise B) 0˚ and C) 90˚ clockwise, with respect to the azimuth. On the right, their representation through waggle dance

paths on the surface of a vertical honeycomb.

https://doi.org/10.1371/journal.pone.0188626.g001
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reference systems such as gravity or the sun’s azimuth and therefore is straightforward to

compute from a dance observation. Honeybees integrate the optical flow they perceive along

their foraging routes to gauge the distance they have flown [8]. Several factors affect the

amount of optical flow perceived, such as wind (bees fly closer to the ground in with strong

headwinds [17]) or the density of objects in the environment, such as vegetation or build-

ings. Honeybees calibrate their odometer to the environment before engaging in foraging

activities. Hence, to convert waggle durations to feeder distances, our system requires cali-

bration itself. To this end, bees must be trained to a number of sample locations with known

distance. Assuming homogeneous object density in all directions, it may be sufficient to use

a simple conversion factor obtained from the waggle durations observed in dances for a sin-

gle feeding location.

This way, without tracking the foragers’ flights, one can deduce the distribution of foragers

in the environment by establishing the distribution of dance-communicated locations. Couvil-

lon et al. [18] used this method to investigate how the decline in flower-rich areas affects

honey bee foraging, while Balfour and Ratnieks [19] used it to find new opportunities for max-

imizing pollination of managed honey bee colonies. But mapping is not the only application of

decoding bee dances. Theoretical biologists have studied the information content of the dance

[20, 21] and the accuracy and precision with which bees represent spatial information through

waggle dances [22, 23]. Landgraf and co-workers tracked honey bee dances in video recordings

to build a motion model for a dancing honey bee robot [6, 24]. Studies on honey bee collective

foraging also focus on the waggle dance [25], including studies that model their collective for-

aging [26, 27] and nest-site selection behavior [28–30]. In [31] we automatically decoded wag-

gle dances as part of an integrated solution for the automatic long-term tracking of activity

inside the hive.

Different techniques have been used over time to decode waggle dances. During the first

decades that followed von Frisch’s discovery, most of the dances were analyzed in real time,

directly from the observation hive with the help of protractors and stopwatches [1, 2].

Throughout the last decade, the use of digital video has become ubiquitous to extract the

encoded information on their computers. Digital video allows researchers to analyze dances

frame by frame and extract their characteristics either manually using the screen as a virtual

observation hive [23], or assisted by computer software [22]. Although digital video recordings

allow measurements with higher accuracy and precision, decoding communication dances

continued to be a manual and time-consuming task.

Multiple automatic and semi-automatic solutions have been proposed to simplify and

accelerate the dance decoding process. A first group of solutions focused on mapping the bees’

trajectories via tracking algorithms [32–34]. These trajectories might then be analyzed to

extract specific features such as waggle run orientation and duration, using either a generic

classifier trained on bee dances (see [35–37]) or methods based on hand-crafted features such

as the specific spectral composition of the trajectory in a short window [6]. Although a method

has been described by Feldman and Balch [38] that could potentially be an automatic detector

and decoder of dances [38], its implementation has been limited to the automatic labeling of

behaviors.

Here we propose a solution to detect and decode waggle dances automatically. Since all

information known to be carried in the dances, can be inferred from the waggle run charac-

teristics, our algorithm exclusively detects this portion of the dance directly from the video

stream, avoiding a separate tracking stage. Our system detects 89.8% of all waggle runs with

a false positive rate of only 5%. Compared to a human observer, the system extracts the
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waggle orientation with an average error of -2.92˚ (± 7.37˚) well within the range of human

error.

Materials and methods

Hive and recording setup

Our solution can be used either online with live streaming video or offline with recorded vid-

eos. The software requires a frame rate of approximately 100 Hz and a resolution of at least 1.5

pixels per millimeter. Thus QVGA resolution suffices to cover the whole surface of a “Deutsch-

normal” frame (370 mm x 210 mm). The four frame corners are used as a reference to rectify

distortions caused by skewed viewing angles or camera rotations; If the frame corners are not

captured by the camera, it is necessary to consider other reference points and their relative

coordinates. A basic setup configuration is depicted in Fig 2 and might serve as a template for

the interested researcher.

In our experiments, we worked with a small colony of 2000 bees (Apis mellifera carnica).

We used a one frame observation hive and one modified PS3eye camera per side. The camera

is a low-cost model that offers frame rates up to 125 Hz at QVGA resolution (320 x 240 pixels)

using an alternative driver (see S1 Text). For the lighting setup, it is necessary to use a constant

light source, such as LEDs. Pulsed light sources, such as fluorescent lamps, may introduce

flicker to the video, yielding suboptimal detection results. Our setup was illuminated by an

array of infrared IR-LED clusters (840 nm wavelength). The entire structure was enveloped

with a highly IR reflective foil with small embossments for light dispersion. The IR LED clus-

ters pointed towards the foil to create a homogeneous ambient lighting and reduce reflections

on the glass panes. The built in IR block of the PS3eye cameras had to be removed to make

them IR sensitive.

Target features

The relation of site properties (distance and direction to the feeder) and dance properties

(duration and angle) have been recorded via systematic experiments [1]. The following

Fig 2. Recording setup. A basic recording setup consists of an observation hive, an array of LED clusters for illumination and one webcam

per side.

https://doi.org/10.1371/journal.pone.0188626.g002
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equations will be used for an approximate inverse mapping of dance parameters to site proper-

ties.

rR � f � 1
d ðdwÞ: ð1Þ

yR � atan2
Xn

j¼1

sinawj;
Xn

j¼1

cosawj

 !

; n ¼ 2k: ð2Þ

pR �
dw
dr
: ð3Þ

Where rR (Eq 1) is the distance between hive and resource. It is related to the average waggle

run duration dw through the function fd that approximates the calibration curve [16]. Here, we

use a simple linear mapping and use an empirically determined conversion factor. θR (Eq 2) is

the angle between resource and solar azimuth (see Fig 1). It corresponds to the average orien-

tation of the waggle runs with respect to the vertical, with an even number of consecutive runs

to avoid errors due to the divergence angle [1, 4–6]. The resource’s profitability pR (Eq 3) is

proportional to the ratio between average waggle run duration dw and average return run

duration dr. Dances for high-quality resources contain shorter return runs than those for less

profitable resources located at the same distance, hence yielding a higher pR value [10].

From Eqs 1 to 3 it follows that to decode the information contained in a communication

dance three measurements are required: average waggle run duration dw, average orientation

αw, and average return run duration dr. In contrast to some approaches that require tracing

the dance path to then analyze it and extract its characteristics [32, 33], we propose an algo-

rithm that directly analyzes video frames to obtain each waggle run’s starting timestamp, dura-

tion, and angle. In our approach, return run durations are calculated as the time difference

between the end of a waggle run and the beginning of the next one Fig 3.

Software modules

Our software consists of four modules that are executed in sequence, namely: attention module

(AM), filter network (FN), waggle orientation module (OM) and mapping module (MM). The

AM runs in real-time and stores small subregions of the video containing waggle-like activity.

Later, false positives are filtered out using a convolutional neural network FN. The OM extracts

the duration and angle of the waggle runs. Finally, the mapping module (MM) clusters waggle

runs belonging to the same dances and maps them back to field coordinates. All modules can

run offline on video recordings. Long observations, however, require large storage space.

Therefore, we propose using the AM with a real-time camera input to reduce the amount of

stored data drastically. A detailed description of all four modules is given in the following

sections.

Fig 3. Fundamental parameters. Knowing the starting time (tx) and duration (dwx) for each waggle run, it is possible to calculate the return

run durations as the time gaps between consecutive waggle runs.

https://doi.org/10.1371/journal.pone.0188626.g003
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Attention module (AM). The waggle frequency of dancing bees lies within a particular

range we call the waggle band[34, 39]. Under consistent lighting conditions, the bee body is

well discriminable from the background; therefore, the brightness dynamics of each pixel in

the image originates from either honey bee activity or sensor noise. Thus, when a pixel inter-

sects with a dancing bee, its intensity time-series is a function of the texture pattern on the bee

and her motion dynamics. Indeed, by using a camera with low spatial resolution, bees appear

as homogeneous ellipsoid blobs without surface texture. Thus the brightness of pixels that are

crossed by waggling bees varies with the periodic waggle motion, and the frequency spectrum

of that time series exhibits components in the waggle band or harmonics. To detect this general

feature, we define a binary classifier here on referred to as Dot Detector (DD), each pixel posi-

tion [i, j] is associated to a DDDij. The DD analyzes the intensity evolution of the pixel within a

sliding window of width b. For this purpose, the last b intensity values of each pixel are stored

in a vector B, which at the time n can be described as Bnij ¼ ½v
n� bþ1
ij ; vn� bþ2

ij ; . . . ; vnij�, where vkij is

the intensity value of the pixel [i, j] at time k. We calculate a score for each of these time series

using a number of sinusoidal basis functions, in principle similar to the Discrete Fourier

Transform [40]:

scoreð�Bnij; rÞ ¼
Xb

m¼1

�BnijðmÞ � cos 2pr
m
sr

� �� �2

þ �BnijðmÞ � sin 2pr
m
sr

� �� �2
 !

ð4Þ

where �Bnij is the normalized version of Bnij with �Bnij 2 f� 1; 1g andminnij ¼ minðB
n
ijÞ and

maxnij ¼ maxðB
n
ijÞ, sr is the video’s sample rate (100 Hz), and r 2 [10, 16] are the frequencies in

the waggle band. If at least one of the frequencies in the waggle band scores over a defined

threshold th, Dij is set to 1. After computing the scores, those Dij set to 1 are clustered together

following a hierarchical agglomerative clustering (HAC) approach [41], using as a metric the

Euclidean distance between pixels and with a threshold dmax1 set to half the body length of a

honey bee. Clusters formed by less than cmin1 DDs are discarded as noise-induced, and the cen-

troids of the remaining clusters are regarded as positions of potential dancers.

Positions found during the clustering step are then used to detect waggle runs (WR). If posi-

tions detected in successive frames are located within a maximum distance dmax2, defined

according to the average waggle forward velocity (see [6]), the positions are considered as

belonging to the sameWR. At each iteration new dancer positions are matched against open

WR candidates, and either appended to a candidate or used as basis for a new one. AWR can-

didate can remain open up to gmax2 frames without new detections being added. If no detec-

tions could be added it is closed. Only closed WR candidates with a minimum of cmin2

detections are retrieved asWRs. Finally, coordinates of the potential dancer, along with 50 x 50

pixels image snippets of theWR sequence are stored to disk.

The operation of the AM can be seen as a three layers process summarized in the following

points:

1. Layer 0, for each new frame In:

(a) Update DDs’ score vector.

(b) Set to 1 DDs with spectrum components in the waggle band above th

2. Layer 1, detecting potential dancers:

(a) Cluster together DDs potentially activated by the same dancer.

(b) Filter out clusters with less than cmin1 elements.

Automatic detection and decoding of honey bee waggle dances
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(c) Retrieve clusters’ centroids as coordinates for potential dancers.

3. Layer 2, detecting waggle runs:

(a) Create waggle run assumptions by concatenating dancers positions with a maximum

Euclidean distance of dmax2.

(b) Assumptions with a minimum of cmin2 elements are considered as realWR.

Filtering with convolutional neural network (FN). For long term observations we pro-

pose using the AM to filter relevant activity from a camera stream in real-time. This signifi-

cantly reduces the disk space otherwise required to store full sized videos. Depending on the

task at hand, it might e.g. be advisable to configure the module to never miss a dance. A higher

sensitivity, however, might come with a higher number of false detections. For this use-case,

we have trained a convolutional neural network that processes the sequence of 50 x 50 px

images to discard non-waggles. The scalar output of the network is then thresholded to predict

whether the input sequence contains a waggle dance. The network is a 3D convolutional net-

work whose convolution and pooling layers are extended to the 3rd, i.e. temporal, dimension

[42–45]. The network architecture, three convolutional and two fully connected layers, is

rather simple but suffices for the filtering tasks (for details refer to S1 Fig).

The network was trained on 8239 manually labeled AM detections from two separate days.

During training, subsequences consisting of 128 frames were randomly sampled from the

detections for each mini-batch. Detections with less than 128 frames were padded with con-

stant zeros. Twenty percent of the manually labeled data was reserved for validation. To reduce

overfitting, the sequences were randomly flipped on the horizontal and vertical axes during

training. We used the Adam optimizer [46] to train the network and achieved an accuracy of

90.07% on the validation set. This corresponds to a recall of 89.8% at 95% precision.

Orientation module (OM). While the duration of aWR is estimated from the number of

frames exported by the AM, its orientation is computed in a separate processing step here on

referred as orientation module (OM), usually performed offline to keep computing resources

free for detecting waggle runs. Dancing bees move particularly fast during waggle runs, throw-

ing their body from side to side at a frequency of about 13 Hz [6]. Images resulting from sub-

tracting consecutive video frames of waggling bees exhibit a characteristic pattern similar to a

2D Gabor filter, a positive peak next to a negative peak, whose orientation is aligned with the

dancer’s body Fig 4.

The Fourier transformation of the difference image provides a location-independent repre-

sentation of the waggling event while preserving information regarding the dancer’s orienta-

tion (Fig 4B). We make use of the Fourier slice theorem [47], which states that the Fourier

transform of a projection of the original function onto a line at an angle α is just a slice through

the Fourier transform at the same angle. Imagine a line orthogonal to the dancer’s orientation.

If we project the Gabor-like pattern onto this line, we obtain a clear sinusoidal pattern which

appears as a strong pair of maxima in the Fourier space at the same angle. Not all difference

images in a given image sequence exhibit the Gabor pattern, it only appears when the bee is

quickly moving laterally. To get a robust estimate of the waggle orientation, we sum all Fourier

transformed difference images Fig 5A and apply a bandpass filter Fig 5B to obtain the correct

maxima locations Fig 5C. The bandpass filter is performed in the frequency domain by multi-

plying with a difference-of-Gaussians DoG. The radius of the ring needs to be tuned to the

expected frequency of the sinusoidal in the 1D projection of the Gabor pattern. This frequency

depends on the frame rate (in our case 100 Hz) and the image resolution (17 px/mm). With

the lateral velocity of the bee (we used the descriptive statistics in [6]) one can compute the
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displacement in pixels (5 to 7 px/frame). Using Eq 5 we can approximate the value of the

expected frequency k:

k ¼
Isize
T
¼
Isize
2x
; ð5Þ

Fig 4. Difference image and its Fourier transformation. (A) The image resulting from subtracting consecutive video frames of waggling

bees exhibits a characteristic Gabor filter-like pattern. (B) While the peak location varies in image space along with the dancer’s position, its

representation in the Fourier space is location-independent, showing distinctive peaks at frequencies related to the size and distance of the

Gabor-like pattern.

https://doi.org/10.1371/journal.pone.0188626.g004

Fig 5. Filtering cumulative sum of difference images in the Fourier space. (A) The cumulative sum of the Fourier transformed

difference images of a waggle run exhibit a strong pair of maxima in locations orthogonal to the dancer’s orientation. (B) A DoG kernel of

the Mexican hat type, properly adjusted to the waggle band, is used as a bandpass filter. (C) Bandpass filtering the cumulative sums

emphasizes values within the frequencies of interest.

https://doi.org/10.1371/journal.pone.0188626.g005
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where Isize is the input image size (50 px in this case) and T is the period for the Gabor filter-

like pattern or twice the bee’s displacement between frames.

The orientation of the waggle run is obtained from the resulting image through Principal

Component Analysis (PCA). However, the principal direction reflects the direction of the

dancer’s lateral movements, so it is necessary to add 90˚ to this direction to obtain the dancer’s

body axis. This axis represents two possible waggle directions. To disambiguate the alterna-

tives, we process the dot detector positions extracted by the AM. Each of these image positions

represents the average pixel position in which we found brightness changes in the waggle

band. In a typical waggle sequence, these points trace roughly the path of the dancer. We

average all DD positions of the first 10% of the waggle sequence and compute all DD positions

relative to this average. We then search for the maximum values in the histogram of the orien-

tation of all vectors and average their direction for a robust estimate of the main direction of

the dot detector sequence. This direction is then used to disambiguate the two possible direc-

tions extracted by PCA.

Mapping module (MM). Waggle dances encode polar coordinates for field locations. To

map these coordinates back to the field we implemented a series of steps in what is here on

referred as mapping module (MM). TheMM reads the output of the AM and OM, essentially

time, location, duration and orientation of each detected waggle run. Then, waggle runs are

clustered following aHAC approach, similar to the AM (see S2 Fig). In this case, the clustering

process is carried out in a three-dimensional data space defined by the axes X and Y of the

comb surface and a third axis T of time of occurrence. This way, eachWR can be represented

in the data space by (x, y, t) coordinates based on its comb location and time of occurrence

(see S3A Fig). To maintain coherence between spatial and temporal values, the time of occur-

rence is represented in one fourth of the seconds relative to the beginning of the day.

A threshold Euclidean distance dmax3 is defined as a parameter for the clustering process

(see S3B Fig). The value of the threshold is based on the average drift betweenWRs and the

average time gap between consecutiveWRs (we used the data provided in [6]). We only con-

sider clusters with a minimum of 4 waggle runs as actual dances [23]. Then, we use random

sample consensus (RANSAC) [48] to find outliers in the distribution of waggle run orienta-

tions. Waggle run duration and orientation are then averaged for all inliers and translated to

field locations. The mean waggle run duration is translated to meters using a conversion factor,

and its orientation is translated to the field with reference to the azimuth at the time of the

dance. The duration-to-distance conversion factor was empirically determined by averaging

the durations of waggle runs advertising a known feeder (see Discussion for further details).

Experimental validation and results

To evaluate the distance decoding accuracy, we ran the AM on a set of video sequences con-

taining a total of 200 WRs. These videos were recorded for a another research question using

different hardware (for details refer to [6]). The duration exported by the AM for each WR

was compared to manually labeled ground truth. We found that the AM overestimated WR

durations on average by 98 ms, with an SD of 139 ms.

To evaluate the performance of the OM, we reviewed the video snippets exported and fil-

tered by the attention module AM and the filter network FN, respectively. Eight coworkers

defined the correct waggle run orientation for a set of 200 waggle runs. A custom user interface

allowed tracing a line that best fits the dancer’s body (see S2 Text). The reference angle for

each waggle run was defined as the average of the eight manually extracted angles. The OM
performed with an average error of -2.92˚ and a SD of 7.37˚, close to the SD of 6.66˚ observed

in the human-generated data (further details in S3 Text).
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To illustrate the use cases of the automatic decoding of waggle dances we mapped all dances

detected by our system during a period of 5 hours. The data was collected from a honey bee

colony kept under constant observation during the summer of 2016. A group of foragers from

the colony was trained to an artificial feeder placed 342 m southwest of the hive. Fig 6 depicts

the distribution of coordinates converted from 571 dances the system detected. The color satu-

ration of each circle encodes the number of waggle runs associated (5.8 WR on average). Since

our bees were allowed to forage from other food sources, not all of the detected dances point

towards the artificial feeder. However, most of the detected dances cluster around the feeding

site. By averaging the direction of all 571 dances we obtained a very precise match with the arti-

ficial feeder’s direction, with an angular error below 2.35. If we select only dances in an interval

of ±45˚ around the feeder direction we obtain an angular deviation of 2.33˚ ± 11.12˚ on the

dance level and 2.68˚ ± 14.37˚ on the waggle level.

Discussion

We have presented the first automatic waggle dance detection and decoding system. It is open

source and available for free. It does not require expensive camera hardware and works with

Fig 6. Detected dances mapped back to the field. The average duration and orientation of four or more waggle runs per dance were

translated to a field coordinate. The spots’ color saturation denotes the number of waggle runs in the dance, white corresponding to the

dances with four waggle runs and deep purple to the those with the maximum number (17 for this particular data set). A linear mapping was

used to convert waggle duration to distance from the hive. The hive and feeder positions are depicted with a red and green triangle,

respectively. The dashed line represents the average direction of all dances (Map data copyrighted OpenStreetMap contributors and

available from https://www.openstreetmap.org [49]).

https://doi.org/10.1371/journal.pone.0188626.g006
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standard desktop computers. The system can be used continuously for months, and its accu-

racy (μ: -3.3˚ ± 5.5˚) is close to human performance (μ: 0˚ ± 3.7˚).

We investigated the possible error sources and visually inspected waggle runs decoded with

large error. Before the outlier detection step we find several waggle orientations decoded with

an 180˚ error. The orientation of 9% of the waggle runs in our test set were incorrectly flipped.

This flip error is corrected in the mapping module by clustering waggle runs to dances and

removing angular outliers with RANSAC. Once the outliers have been removed, our system

performs with an average error of -2.0˚ ± 6.1˚ on the waggle run level. In this process, we dis-

card dances with no strong mode in its waggle orientation distribution and, theoretically, it is

therefore possible that a few undiscarded dances contain only flipped waggle runs.

In most of these examples the dancing bee was partly occluded or wagged her body for only

short durations, i.e. there is almost no forward motion visible. The forward motion is the cen-

tral feature in the orientation reader module used to disambiguate the direction. Recognizing

anatomical features of the dancing bee, such as the head or abdomen, could help reducing this

common error. With falling costs for better camera and computing hardware in mind, we,

however, think that, although some bees just don’t move forward while wagging, using a

higher spatial resolution will likely resolve most of the detection and decoding errors we have

described.

The error of the distance decoding could only be assessed for the offline mode of operation,

i.e. on prerecorded videos. We found a systematic error that can be ignored with a properly

calibrated system. The standard deviation of the waggle duration error was found to be 139

ms. This result highly depends on the choice of the threshold value th. We determined the

default value of th empirically for optimal waggle detection accuracy. We did not explicitly

optimize this parameter for more accurate distance decoding.

Bees encode accumulated optical flow rather than metric distances in their waggle runs.

Neither the internal calibration, nor the external factors that influence a bee’s perception of

optical flow were assessable. Hence we calibrated our system with the collective calibration of

the very colony under observation: We extracted all waggle runs signaling the location of our

artificial feeder (±10˚) and averaged all waggle durations (μ = 582.79 ms ± 196.10 ms). It is

unlikely that the set of waggle runs could have contained waggle runs signalling other feeders

since natural food sources were scarce in that time of year. This notion is supported by a coeffi-

cient of variation of� 0.34, consistent with the value observed by Landgraf et al. in [6].

Given the high accuracy of the method, why do the projected dances in Fig 6 exhibit such a

large spread? We inspected random samples and found that not all of the dances advertised

our feeding site. Thus, the vector endpoint distribution shows smaller clusters that likely repre-

sent natural food sources. The variation of the dance points around the feeding site is correctly

reproduced with a large part of the variation originating from the animals themselves. This

imprecision is well-know and caused by waggle runs missing the correct direction, with alter-

nating sign. The difference between consecutive waggle runs, or divergence, is surprisingly

large and has been studied previously [4, 50, 51]. The divergence correlates negatively with dis-

tance to the advertised goal, i.e. it is largest for short distances. In a previous work [6], we ana-

lyzed dances to a 215 m distant food source and tracked the motion of all dancers, corrected

the tracker manually whenever necessary, and computed the distribution of waggle directions

of over 1000 waggle runs. We found that although the average waggle orientation was surpris-

ingly accurate, it was astonishingly imprecise (μ = −0.03˚, σ = 28.06˚). A similar result was

obtained in the present study. The average direction of all dances matches the direction to the

feeding station closely (Δ = 2.68˚) with a standard deviation of σ = 14.37. The spread of dance

endpoints, however, is smaller due to the integration of at least four waggle runs (σ = 11.12˚.

Using single waggles or short dances to pinpoint foraging locations of individuals can
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therefore unlikely be accurate and it is clear that the number of dances to be mapped needs to

be tuned to the given scientific context and environmental structure. We excluded waggle

detections shorter than 200 ms, a timespan that would contain less than three body oscilla-

tions. Remarkably, bees shake their body in short pulses quite frequently even in non-dance

behaviors and hence, the number of false positive detections increases with lower thresholds.

Round dances, a dance type performed to advertise nearby resources [1], may also contain

short waggle portions. Although our system may be able to detect these, the waggle oscillation

is an unreliable feature for round dances. We therefore explicitly focus on waggle dances. Note

that the sharp cutoff of dance detections close to the hive in Fig 6 stems from discarding short

waggle runs.

The presented system is unique in its approach and capabilities. There are, however, still

some features missing that might be added in the future. The mapping module, e.g., does not

yet extract and visualize the profitability of a food source. One could, e.g. calculate the return

run duration in the clustering step and use a color coding scheme to encode this information

into the map. Bee dances also exhibit a systematic angular error that depends on the waggle

orientation on the comb (“Restmissweisung”, [1]). To improve mapping accuracy, we plan to

add a correction step to the mapping module.

The proposed system consists of multiple modules executable as command line programs.

Although well documented, this might seem impractical or even obfuscating to the end-user.

We are thus developing a graphical user interface to be published in the near future. We cur-

rently investigate whether a deep convolutional network is able to extract the relevant image

features. If successful, this would enable us to merge the filter network module and the orienta-

tion reader, therefore reducing the system’s complexity for the user. For the future, we envi-

sion an entirely neural system for all the described stages. We also think the solution could be

ported to mobile devices. This would enable users an easier setup. Dance orientations could be

corrected by reading the direction of gravity directly from the built-in accelerometer. We

would like to encourage biologists to use our system and report issues that they face in experi-

ments. Interested software developers are invited to help improving existing features or imple-

menting new ones.

Supporting information

S1 Text. Specifications of the recording setup used during reported experiments. This doc-

ument contains further information on the recording setup, with an emphasis on technical

details.

(PDF)

S2 Text. Further details on the software modules. This document contains diagrams and

detailed information on the functioning of the software modules.

(PDF)

S3 Text. Error distributions at multiple levels of analysis. This document provides addi-

tional results supporting the case of study presented in the experimental validation and results

section.

(PDF)

S1 Fig. A convolutional neural network was used to filter the detections of the AM. The

raw sequences of images are processed by two stacked 3D convolution layers with SELU non-

linearities. The outputs of the second convolutional layer are flattened using average pooling

on all three dimensions. A final fully connected layer with a sigmoid nonlinearity computes

the probability of the sequence being a dance or not. Dropout is applied after the average
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pooling operation to reduce overfitting.

(PNG)

S2 Fig. Dendrogram representing the hierarchical agglomerative clustering of 200 waggle

runs. The dendrogram is a graphic representation of the clustering process. Each observation

starts it its own cluster, at each iteration the two clusters closer to each other are merged, this

process is performed recursively till only one cluster remains. We set a threshold distance for

clusters to be merged, all clusters generated to the point this threshold is reached are regarded

as dances and their constituent elements as their waggle runs.

(PNG)

S3 Fig. Representation of WRs in the data space XYT. (A) Representation of a set of 200

WRs in the XYT data space, where values in the axes X and Y are defined by their comb loca-

tion, and in axis T by their time of occurrence. (B)WRswithin a maximum Euclidean distance

of dmax3 are clustered together and regarded as dances.

(PNG)

S1 Movie. Automatic detection and decoding of honey bee waggle dance: Examples of cor-

rect and false detections. A collection of video snippets that were detected by the Attention

Module as waggle runs.

(WMV)
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