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Abstract

The advancement of nanofabrication leads to the realization of machines on ever
smaller scales, which utilize the coupling between mechanical degrees of freedom and
electrons to perform a specific task. Upon this miniaturization, two fundamental
properties of the participant electrons become increasingly important: First, they
are charged particles that repel each other via Coulomb interactions, and second,
they are fermionic quantum particles properly described by wavefunctions whose
time-evolution is governed by the Schrödinger equation. In this thesis we investigate
how these two fundamental features of the electrons modify the working principle
of electronic nanomachines.
In the first part we examine an adiabatic quantum motor in which coupling to a one-
dimensional electron system generates directed motion. Due to their confinement
to a single dimension, the interactions between the electrons become important in
this system. The motor is based on an electron pump, which is operated in reverse.
We show that on the one hand the interactions enhance the robustness of the motor
against ’leakages’ through the electron pump, which would reduce the output power
of the motor. On the other hand, the interactions also increase the friction of the
motor. We show, however, that putting the one-dimensional electron system into
contact with macroscopic electronic reservoirs, such as a battery to drive the motor,
reduces the dissipation at steady velocity to the non-interacting value.
In the second part, we investigate how the thermodynamic laws, being extremely
successful in describing the operation of macroscopic machines, can be applied to
tiny electronic machines which are strongly coupled to their surrounding. We show
for the simplest possible model, a single slowly driven electronic level coupled to
a metallic bath, how to properly take the coupling energy and hybridization be-
tween system and bath into account. Thereby we derive the full thermodynamic
description of this simple electronic nanomachine beyond the quasistatic equilib-
rium. Subsequently, we show the strong limitations of developed approach, which
necessitates a splitting of the coupling Hamiltonian between effective system and
bath to derive the thermodynamics of finite velocity transformations. We demon-
strate that this splitting does not capture the fluctuations of the internal energy
correctly and breaks down beyond the wide band limit. This motivates a new ther-
modynamic formulation on the basis of the Landauer-Büttiker theory of electronic
transport to describe more complex nanoelectronic machines. Instead of calculating
the thermodynamic functions of the strongly coupled subsystem directly, which are
complicated by the strong hybridization and the proper placement of the coupling
energy, we look at the thermodynamic evolution from an outside perspective, i.e.
considering the associated currents in the attached leads. With this approach we
provide a clear understanding of the general connection between heat and entropy
currents generated when operating an electronic nanomachine, and show their con-
nection to the occurring dissipation. The developed formalism is applicable to ar-
bitrary non-interacting electron systems which are slowly driven. Finally, we show
the validity of the Jarzynski equality in these systems, which characterizes work
fluctuations.
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Zusammenfassung

Fortschritte in der Herstellung von Nanostrukturen führen zur experimentellen Realisierung von
immer kleineren Maschinen, welche die Kopplung zwischen Elektronen und mechanischen Frei-
heitsgraden nutzen um bestimmte Aufgaben zu erfüllen. Je kleiner die Strukturen dabei werden,
umso mehr treten zwei fundamentale Eigenschaften der beteiligten Elektronen in den Vorder-
grund: erstens tragen die Elektronen Ladung und stoßen sich gegenseitig ab. Und zweitens
handelt es sich bei Elektronen um fermionische Quantenteilchen, welche mithilfe von Wellen-
funktionen und der Schrödingergleichung beschrieben werden. In dieser Arbeit untersuchen wir,
wie diese fundamentalen Eigenschaften der Elektronen das Wirkungsprinzip von elektronischen
Nanomaschinen beeinflussen.
Im ersten Teil analysieren wir einen adiabatischen Quantenmotor, in welchem die Kopplung an ein
eindimensionales Elektronensystem zu gerichteter Bewegung führt. Aufgrund ihrer Beschränkung
auf eine einzelne Dimension spielen die Wechselwirkung zwischen den Elektronen eine große Rolle
in diesem System. Der Motor basiert auf einer Elektronenpumpe, welche umgekehrt als Elektro-
motor betrieben wird. Wir zeigen, dass einerseits die Wechselwirkungen den Motor stabilisieren.
Andererseits führen die Wechselwirkungen auch zu einer erhöhten Reibung, was auf den ersten
Blick den Wirkungsgrad des Motors verringert. Eine genauere Untersuchung zeigt jedoch, dass
die Dissipation bei stationärer Geschwindigkeit auf den Wert von nicht wechselwirkenden Elektro-
nen reduziert wird sobald das eindimensionale Elektronensystem an makroskopische Reservoirs
angeschlossen wird, um den Motor zum Beispiel über eine Batterie zu betreiben.
Im zweiten Teil untersuchen wir, wie die Gesetze der Thermodynamik, welche extrem erfolgreich
dabei sind makroskopische Maschinen zu beschreiben, auf sehr kleine elektronische Maschinen
angewendet werden können die stark an ihre Umgebung gekoppelt sind. Wir zeigen im einfachst
möglichen System, das aus einem einzelnen langsam getriebenen Niveau in Kontakt zu einem
metallischen Bad besteht, wie man die Hybridisierung und die Kopplungsenergie in der thermody-
namischen Beschreibung richtig berücksichtigt und erlangen eine vollständige Charakterisierung
dieser elektronischen Nanomaschine über das quasistatische Regime hinaus. Anschließend leiten
wir her, dass das symmetrische Aufspalten des Hamiltonoperators der Kopplung zwischen ef-
fektivem System und Bad, welches benötigt wird um Prozesse mit endlicher Geschwindigkeit
zu beschreiben, die Anwendbarkeit des Formalismus stark beschränkt. Erstens prognostiziert
diese effektive Aufspaltung die falschen Fluktuationen der inneren Energie, und zweitens lässt
sie sich bei energieabhängiger Kopplung zwischen System und Bad, das heißt außerhalb der
’wide band’ Approximation, überhaupt nicht anwenden. Daher entwickeln wir einen neuen Zu-
gang zu stark gekoppelter Thermodynamik auf Basis der Landauer-Büttiker-Theorie zu Quanten-
transport, welcher die Beschreibung von komplexeren nanoelektronischen Maschinen ermöglicht.
Anstatt die thermodynamischen Größen des stark gekoppelten Subsystems direkt zu berech-
nen, nehmen wir dabei die assozierten Ströme in den angeschlossenen Leitern in den Fokus und
beschreiben die Zustandsänderungen aus einer Aussenperspektive. Das führt zu einem klaren
Verständnis vom Zusammenhang zwischen Entropie- und Wärmeströmen und ihrer Verbindung
zu der auftretenden Dissipation. Unsere Theorie ermöglicht eine vollständige Beschreibung der
thermodynamischen Zustandsänderungen von beliebigen, langsam getriebenen Elektronensyste-
men, in denen die Wechselwirkungen zwischen den Elektronen vernachlässigt werden können.
Abschließend zeigen wir für solche Systeme die Gültigkeit der Jarzynsikigleichung, welche die
Fluktuationen der Arbeit beschreibt.
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1 | Introduction: Nanoma-
chines on the move

The miniaturization of electronic devices has drastically changed modern life.
Calculations that used to be done by room size computers, can now be per-
formed in smart phones – at a multiple of the speed [Wolf, 2015]. This is
primarily driven by the strongly enhanced complexity of the involved semicon-
ductor chips, said to double every two years by Moore’s law. But not only
computer chips become increasingly sophisticated as fabrication gets more and
more refined. Also tiny machines that utilize the coupling between electronic
and mechanical degrees of freedom get integrated into the electronic circuits
of modern devices, forming an important cornerstone of state-of-the-art tech-
nology. In today’s smartphones they are in use for motion sensing (gyroscopes
and accelerators), stabilization, and filtering (bulk acoustic wave filters). Upon
further miniaturization of these devices, currently commercially operated at the
micron scale, new opportunities open up arising from their reduced dimension
and mass, high resonance frequencies, small force constants, and high quality
factors [Craighead, 2000; Ekinci and Roukes, 2005; Zhang et al., 2013]. Mass
sensing of single molecules [Naik et al., 2009], force detection of single spins
[Rugar et al., 2004], and explorations of the quantum regime of mechanical
oscillators [O’Connell et al., 2010] point to exciting technological advances and
allow for new insights into the coupling between electrons and mechanical modes
from a fundamental science perspective.
One challenge to building future nanotechnology is to generate directed motion
on the nanoscale – a nanomotor. Modern life is influenced by an immense variety
of motors in all forms and sizes, driven by energy sources ranging from heat, as in
a combustion engine, through chemical energy in biological motors to electrical
energy in electric motors. As the miniaturization of modern devices moves
forward, the need for control over mechanical motion at these scales becomes
increasingly pressing. The advances in experiments and nanofabrication are
impressive: nanomechanical motion was already realized using chemical energy
[Collins et al., 2016; Wilson et al., 2016], light [Koumura et al., 1999; Klok
et al., 2008], and electrons [Tierney et al., 2011; Kudernac et al., 2011] as driving
agents. And the design and synthesis of the involved molecular machines earned
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Jean-Pierre Sauvage, Sir J. Fraser Stoddart and Ben Feringa the Nobel Prize in
Chemistry in 2016.
We focus here on nano-electromechanical machines, which utilize the coupling
between mechanical modes and many electrons to perform a prescribed task. As
these devices become very small, the theoretical description of their operation
moves to exciting new frontiers: the quantum mechanical nature of the electrons
plays an increasing role as do the interactions between them. In this thesis
we focus on two key aspects: First, the influence of the interactions between
electrons on the working principle of electronic nanomachines. Second, how to
extend the thermodynamic laws, the ruling description of machines since the
industrial revolution, to analyze their operation.

1.1 Electromechanical coupling

Nano-electromechanical machines rely fundamentally on the coupling between
electrons and mechanical modes at these small scales. This coupling becomes
manifest in the dependence of the electronic current through a nanostructure on
mechanical deformations, e.g. vibrations of the nanostructure, and in the inverse
effect in a modification of the mechanical dynamics by an electric current. In
general these couplings fall into two different regimes, depending on the involved
time scales.
In the regime of slow electrons, the time that the electrons spend in the nanos-
tructure is long compared to typical mechanical periods. This is typically real-
ized for the transport through molecular junctions, where the vibrations are fast
and the coupling between the molecule and the adjacent metallic lead is small
[Galperin et al., 2007]. In this regime one can observe vibrational side-bands in
the conductance spectra, induced by the absorption or emission of one or several
vibrational quanta in an electronic tunneling event when the electro-mechanical
coupling is weak [Park et al., 2000; Yu et al., 2004]. If the coupling becomes
strong, the transport through the nanostructure can be strongly suppressed
by an effect known as Franck-Condon blockade [Koch and von Oppen, 2005;
Koch et al., 2006], analogous to the suppression of certain electronic-vibrational
transitions in molecular spectroscopy.
In the opposite regime of fast electrons, the electrons spend a very short time in
the nanostructure compared to the vibration period and observe an almost static
configuration of the mechanical modes. This regime is typically realized for
slower, collective mechanical modes for example in suspended carbon nanotubes
[Steele et al., 2009; Lassagne et al., 2009; Benyamini et al., 2014]. We focus on
this adiabatic regime in the present thesis.
The theoretical analysis of the adiabatic regime was in the past executed as-
suming non-interacting electrons in a Fermi liquid theory, treated with a combi-
nation of non-equilibrium Green’s functions and scattering theory [Bode et al.,
2011, 2012b; Thomas et al., 2012], and field theoretic treatments on the basis
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Figure 1.1: In a 1d electron systems any motion of an electron, such as the
addition of an extra electron depicted here, necessitates a reaction of all other
electrons in the system. This excludes quasi-particle-like excitations and leads
to a description of the system in terms of the collective modes.

of the Feynman-Vernon influence functional [Lü et al., 2012]. However, the as-
sumption of non-interacting electrons can be violated when the electrons become
strongly confined to small nanostructures.

1.2 Interaction effects due to reduced dimen-
sionality

Even a small piece of metal (∼ [1mm]3) contains a huge number (∼ 1020) of free
electrons. Since these are charged particles, they all interact with each other
via Coulomb interactions – a horrendously complicated problem already in the
static case, not even speaking of coupling them to time-dependent potentials to
make use of them to drive a nanomotor. Luckily things are not so bad: the Fermi
liquid theory provides a drastic simplification of the multi-particle problem. In
its essence it shows that the low energy excitations of the interacting many-
body system behave like free quasi-particles [Landau, 1957]. It is so successful,
and its application ubiquitous that deviations from it are considered exotic and
exciting.
Strong deviations from the Fermi liquid behavior occur when electrons are
confined to lower-dimensional regions. When they are constrained to a 0-
dimensional structure, a quantum dot, with a sufficiently small coupling to
the surrounding, the energy needed to add an additional electron to the dot
(charging energy) becomes important [Kouwenhoven et al., 1997]. Therefore in
this situation the description of the excitations as non-interacting quasi-particles
breaks down. The coupling to mechanical modes in this regime has in the past
been treated on the basis of the Pauli master equation, which treats the elec-
tronic occupations in terms of classical probabilities and is valid at sufficiently
small couplings to the surrounding and sufficiently high temperatures so that
quantum mechanical coherences can be neglected [Koch and von Oppen, 2005;
Koch et al., 2006].
Another situation which strongly deviates from the Fermi liquid behavior is
when the electrons are confined to a single spatial dimension, like in a quantum
wire with sufficiently low diameter. The fermionic nature of the electrons (and
with it the Pauli principle) forbids independent motion of an electron in the
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system regardless of the effective strength of Coulomb interactions between the
electron, see Fig. 1.1. Therefore any motion in the one-dimensional structure is
necessarily collective. Coming as a drawback at first sight, since one has to give
up the beloved picture of essentially free quasi-particles, this collective nature of
all excitations turns out to be a virtue: an exactly solvable bosonic description
in terms of the collective excitations is possible for the low energy excitations
[Haldane, 1981]. This kind of one-dimensional (1d) electron system is called a
Luttinger liquid.
The behavior of a Luttinger liquid deviates significantly from a Fermi liquid in
several aspects. In a Luttinger liquid, spin and charge excitations can move
independently at different velocities, while they are tied together in the quasi-
particle excitations of a Fermi liquid. This was observed, e.g., in quantum wires
[Tserkovnyak et al., 2002; Auslaender et al., 2002; Tserkovnyak et al., 2003;
Auslaender et al., 2005]. The same effect that lets all excitations be collective
also suppresses the tunneling conductance into a Luttinger liquid at low energies
(zero-bias anomaly): since the electrons cannot pass each other, addition of an
extra electron into the wire requires a movement of all the other electrons of the
1d system (Fig. 1.1). Experimentally this was found, e.g., in carbon nanotubes
[Dekker et al., 1999] and quantum wires [Auslaender et al., 2000, 2002].
To make use of a one-dimensional electron system as fuel for a nanomachine, a
good understanding of the coupling between mechanical degree of freedom and
Luttinger liquid is needed. One goal of this thesis is thus to investigate the
effect of electron-electron interactions in such a one-dimensional system on the
electro-mechanical coupling. Thereby we want to find out, how electron-electron
interactions affect the working principles of nano-electromechanical motors.

1.3 Thermodynamic laws describing the opera-
tion of nanomachines

Classical machines such as heat engines and refrigerators are described by ther-
modynamic laws which characterize how a subsystem exchanges energy – in the
form of both heat and work – and particles with its environment. The theory
of thermodynamics, founded by Nicolas Léonard Sadi Carnot in 1824 [Carnot,
1824] in the desire to defeat the British in the Napoleonic wars by increasing
the efficiency of steam engines at the time, is extremely successful: it describes
very complex systems containing ∼ 1022 particles with just a few parameters
such as temperature, pressure, and volume. In an idealization of a heat engine,
the classical Carnot cycle describes heat-to-work conversion by considering ex-
pansion and compression of a gas in contact to either a hot or a cold reservoir
respectively–or being isolated from both (see Fig. 1.2).
Once one leaves the macroscopic world towards smaller scales, several things
change. The surface-to-volume ratio becomes drastically enhanced in nanos-
tructures. In macroscopic thermodynamics this ratio vanishes, which justifies
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Figure 1.2: Carnot’s heat engine: a movable piston compresses and expands a
gas while being in contact to a hot (A) or a cold (B) reservoir, or being isolated
from both [Carnot, 1824].

the practice of disregarding the system-bath coupling in the thermodynamic
description. In contrast, when considering the thermodynamics of small sys-
tems, special attention has to be given to both the definition of the ’system’
and consequently the ’bath’, and their mutual interaction. This issue is further-
more closely connected to the quantum nature of the electrons. At sufficiently
low temperatures and strong couplings, the hybridization with the surrounding
necessitates a full quantum treatment of the problem, including the coherent
evolution of the electronic wave functions. These issues have been the subject
of several earlier papers, which addressed quantum particles strongly coupled
to a harmonic oscillator bath [Allahverdyan and Nieuwenhuizen, 2000; Hänggi
et al., 2008; Hilt and Lutz, 2009] and also simple models for the electronic
nanomachines considered here [Ludovico et al., 2014; Esposito et al., 2015b].

In an elementary thermodynamic transformation, an external agent performs
work on a system by changing its Hamiltonian, constituting a stroke of a quan-
tum engine, analogous to the compression and expansion of a gas in the Carnot
engine above. For electronic nanomachines, this is achieved by changing the
potential in a finite region which is coupled to electronic reservoirs. This type
of machine can be realized by a quantum dot connected to leads and subject
to a time-dependent gate potential (see Fig. 1.3). In the presence of strong
coupling between the quantum dot and the surrounding electronic reservoirs,
the hybridization between the electronic levels of the dot and the bath com-

5



Figure 1.3: Quantum dot engine: a quantum dot open to electronic reservoirs
of temperature T and chemical potential µ is subject to a changing gate voltage
VG. The gate voltage changes the energy levels of the dot, thereby doing work
on the system and acting as a “nano-piston”.

plicates the thermodynamic description: The system-bath distinction becomes
fuzzy and quantum mechanical coherences become important. Even for the
simplest possible case of just a single time-dependent level coupled to metallic
leads, i.e. the resonant level model, the thermodynamic description in the strong
coupling regime is nontrivial and sparked a lot of discussion in the community
[Ludovico et al., 2014; Esposito et al., 2015a,b; Bruch et al., 2016; Ochoa et al.,
2016]. The present thesis introduces our contribution that overcomes flaws in
earlier approaches for this model [Esposito et al., 2015b] in Chapter 3. This
treatment of the simplest possible electronic nanomachine builds a solid basis
for the development of a new approach in Chapter 5 that yields a general ther-
modynamic theory of strongly coupled electronic nanomachines applicable to
arbitrary non-interacting electron systems. Thereby we aim at better under-
standing the working principles of electronic nanomachines.
The problem of system-bath distinction in the strong coupling regime is not the
only issue that arises when one tries to describe small quantum systems thermo-
dynamically. While for macroscopic systems fluctuations around the mean are
strongly suppressed by the huge number of participant particles, the thermo-
dynamic quantities necessarily acquire strong fluctuations at small scales. Re-
markably, the entire probability distribution of these fluctuating quantities can
be characterized elegantly for very general thermodynamic transformations, also
far from equilibrium. This development started with classical systems [Jarzyn-
ski, 1997; Crooks, 1999], and was later generalized to quantum systems with
arbitrarily strong system-bath coupling [Campisi et al., 2009]. These laws go
under the name of fluctuation theorems, which gained considerable attention in
recent years [[Talkner et al., 2007; Jarzynski, 2011; Hänggi and Talkner, 2015].
Experimentally the fluctuation theorems were confirmed for systems ranging
from classical zipping-unzipping experiments of DNA hairpins [Mossa et al.,
2009; Junier et al., 2009], electrons in a single-electron box [Saira et al., 2012;
Koski et al., 2013, 2014], trapped ions [An et al., 2014], to nuclear spins [Batalhão
et al., 2014]. In Chapter 6 we show the validity of the work fluctuation theo-
rem within our developed formalism for slow transformations of non-interacting
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electron systems.

1.4 Outline of this thesis

We organize the present thesis as follows:
To investigate the effect of electron-electron interactions on the working principle
of electronic nanomachines, which gain importance due reduced dimensionality,
we consider a model for a quantum motor based on a 1d electron pump oper-
ating in reverse [Qi and Zhang, 2009; Bustos-Marún et al., 2013] in Chapter
2. In such a pump, the cyclic variations of parameters, here effected by a me-
chanical degree of freedom, lead to a net charge transport through the device
[Brouwer, 1998]. In the reverse mode a dc bias is applied and the forces ex-
erted by the scattered electrons drive the coupled mechanical degree of freedom
[Bode et al., 2011, 2012b; Thomas et al., 2012], realizing a motor. We present
a field theoretic treatment of an adiabatic quantum motor in which coupling to
a one-dimensional interacting electron system generates directed motion. The
system is based on a Thouless electron pump operating in reverse. When the
sliding periodic potential of the pump is associated with the motor degree of
freedom, a bias voltage applied to the 1d electron channel sets the motor in
motion. To investigate the effects of electron-electron interactions we model the
leads of the Thouless motor as Luttinger liquids. We show that interactions en-
hance the energy gap opened by the periodic potential and the robustness of the
Thouless motor against variations in chemical potential. Thereby interactions
support the working principle of the motor. While in the case of an infinite
Luttinger liquid the coupling induced friction is enhanced by electron-electron
interactions, the connection to Fermi liquid reservoirs results in a reduction of
the dissipation at steady velocity to the non-interacting value. We show that
our results can be readily applied to the model of a nanomagnet coupled to a
quantum spin Hall edge. The manuscript for a publication about the content
of this chapter is in preparation.
To study the thermodynamics for strongly coupled electronic nanomachines, we
consider the simplest possible example in Chapter 3: the resonant level model.
We present a consistent thermodynamic theory for the resonant level model in
the wide band limit, whose level energy is driven slowly by an external force.
The problem of defining ’system’ and ’bath’ in the strong coupling regime is
circumvented by considering as the ’system’ everything that is influenced by
the externally driven level. The thermodynamic functions that are obtained to
first order beyond the quasistatic limit fulfill the first and second law with a
positive entropy production, successfully connect to the forces experienced by
the external driving, and reproduce the correct weak coupling limit of stochastic
thermodynamics. This chapter is based on Ref. [Bruch et al., 2016].
Subsequently we investigate the limitation of this approach. The treatment of
Chapter 3 demands the representation of the internal energy in terms of an
expectation value of a split Hamiltonian to take proper account of the coupling
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energy. Only on this basis the non-equilibrium Green’s function formalism can
be employed to find the thermodynamic functions beyond the quasistatic limit.
We demonstrate in Chapter 4 that this splitting of the coupling Hamiltonian
in the resonant level model has a very limited applicability: First, already in
wide band limit and in equilibrium, the fluctuations of the internal energy are
not properly captured by a split Hamiltonian, narrowing its use to the mean
of the internal energy. Second, beyond the wide band limit, no splitting of the
system-bath interaction can properly describe the thermodynamic functions of
the strongly coupled level. This chapter is based on Ref. [Ochoa et al., 2016].
In Chapter 5 we overcome these limitations and develop an approach to strongly
coupled thermodynamics from an outside perspective that is applicable to arbi-
trary non-interacting electron systems. For that we develop a Landauer-Büttiker
theory of entropy evolution in time-dependent strongly coupled electron sys-
tems. This formalism naturally avoids the problem of system-bath distinction
caused by the strong hybridization of central system and surrounding reser-
voirs. In an adiabatic expansion up to first order beyond the quasistatic limit,
it provides a clear understanding of the connection between heat and entropy
currents generated by time-dependent potentials and shows their connection
to the occurring dissipation. Combined with the work required to change the
potential, the developed formalism provides a full thermodynamic description
from an outside perspective. This chapter is based on Ref. [Bruch et al., 2017].
In the final Chapter 6 we show the validity of the Jarzynski equality charac-
terizing the non-equilibrium work distribution for slowly driven non-interacting
electron systems.
Throughout this thesis we use units in which the reduced Planck constant ~ = 1
and the Boltzmann constant kB = 1 are set to unity.
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2 | An interacting adiabatic
quantum motor

To study the effects of electron-electron interactions on electronic nanomachines,
we consider a device, in which electrons in a one-dimensional (1d) wire are
coupled to a slowly sliding periodic potential. The sliding periodic potential is
associated with the mechanical degree of freedom of the motor as depicted in
Fig. 2.1. This device exhibits the essential features of an ancient Archimedean
screw. When operating the Archimedean screw as a pump, turning of the screw
leads to water transport. The same happens in the electronic system, where the
sliding periodic potential pumps electrons through the 1d conductor, forming a
Thouless pump [Thouless, 1983]. When the Archimedean screw is operated in
reverse, the water pushed through makes it work as a turbine. Similarly, in the
electronic system a current pushed through the 1d conductor by an applied dc
bias voltage slides the periodic potential associated with the slow mechanical
degree of freedom, turning the device into a Thouless motor [Qi and Zhang,
2009; Bustos-Marún et al., 2013].
Possible physical realizations of the Thouless motor were proposed based on a
nanoscale helical wire placed in between capacitor plates [Qi and Zhang, 2009]
and on a quantum spin Hall (QSH) edge coupled to a nanomagnet [Meng et al.,
2014; Arrachea and von Oppen, 2015; Silvestrov et al., 2016]. In the case of the
helical wire, a slowly rotating transverse electric field leads to charge pumping,
while in the inverse mode an applied dc bias in the presence of a static field
leads to a rotation of the helix. Similarly the precession of the magnetization of
the nanomagnet pumps charge along the QSH edge, while in the inverse mode
an applied bias leads to a spin transfer torque acting on the nanomagnet and
driving its precession, cf. Fig. 2.1b).
The earlier theoretical description of adiabatic quantum motors assumed non-
interacting electrons. When the electrons are confined to 1d, as in the present
case of the quantum wire, the low energy behavior is modified by electron-
electron interactions in essential ways. In this paper we investigate how these
interaction effects modify the dynamics of adiabatic quantum motors. We de-
scribe the 1d electronic system as a Luttinger liquid (LL), which provides an
exact description of its low energy excitations in terms of bosonic collective
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Figure 2.1: a) Model for a Thouless motor based on a single channel quantum
wire in proximity to a chain of alternating charges. The sliding periodic potential
U(x) is associated with the rotational degree of freedom ϑ(t) of the quantum
motor. b) A Nanomagnet with magnetization M is coupled to a single edge of a
quantum spin Hall insulator in the x-y-plane, where ϑM (t) (angle of the in-plane
magnetization) is associated with the motor degree of freedom. The Thouless
motor resembles an Archimedean screw water pump (on the right, figure taken
from [Altshuler and Glazman, 1999]).

excitations [Giamarchi, 2004]. LL theory has proven a useful description of
both quantum wires [Fisher and Glazman, 1997; Auslaender et al., 2005] and
QSH edges [Wu et al., 2006], covering the possible physical realizations of the
Thouless motor mentioned above. Furthermore, our LL approach leads to a
field theoretic description of quantum motors, complementing the earlier anal-
ysis on the basis of Landauer-Büttiker theory [Bustos-Marún et al., 2013]. For
definiteness we base our discussion on the Thouless motor and give an explicit
translation of the results to the magnetic system in Sec. 2.5.

We introduce the model of the Thouless pump in Sec. 2.1. In Sec. 2.3 we inves-
tigate the coupling of the LL to the periodic potential and derive the effective
gap size in the presence of electron-electron interactions. Section 2.4 is devoted
to the derivation of the effective field theory of the motor degree of freedom
that leads to an interaction dependent effective Langevin equation for the mo-
tor dynamics. In the case of an infinite LL the friction is enhanced by repulsive
interactions, as shown in Sec. 2.4.2. The connection to Fermi liquid (FL) leads
yields an effective equation of motion including memory and restores the re-
duced non-interacting dissipation at steady velocity, as presented in Sec. 2.4.4.
In the final section 2.5 we give the explicit translation of the obtained results
to the nanomagnet coupled to a QSH edge.
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2.1 Model

Our model of a quantum motor is based on a finite length Thouless pump
operating in reverse. A toy model realizing such a pump is sketched in Fig. 2.1.
A single channel quantum wire is placed next to a chain of fixed, periodically
alternating charges. These charges move with respect to the quantum wire when
turning the wheel and advancing the angular degree of freedom ϑ. This causes
a slowly sliding periodic potential for the electrons, thereby forming a Thouless
pump [Thouless, 1983].
The sliding periodic potential U (cf. Fig. 2.1) is of the form

U(x) = 2V0 cos (q x− ϑ(t)) Θ
(
L

2 − |x|
)
, (2.1)

where q is the wavevector of the potential of strength 2V0. For q ≈ 2kF (kF
is the Fermi momentum), the periodic potential causes backscattering between
right and left moving electrons in the wire. The analysis of the system on the
basis of Landauer-Büttiker theory for non-interacting electrons showed that, to
exponential accuracy in the length L, the backscattering induced gap leads to
a vanishing normal conductance, quantized charge pumping per cycle, and unit
efficiency, i.e., a conversion of the entire electronic energy provided by the bias
into mechanical energy associated with the degree of freedom ϑ [Bustos-Marún
et al., 2013]. To include the interaction effects when confining the electrons to
the 1d quantum wire, we model the electrons as a spinless LL [Haldane, 1981;
Giamarchi, 2004]. We introduce the Luttinger liquid formalism in the following
technical section, which can be skipped by readers either familiar with the topic
or uninterested in technical details.

2.2 Technical section: Luttinger liquid

In the following we introduce the basic concepts needed to treat the interact-
ing one-dimensional electron system, based on the books by Giuliani and Vig-
nale [Giuliani and Vignale, 2005] and Giamarchi [Giamarchi, 2004]. A detailed
derivation of all required quantities and relations is beyond the scope of this
work. Instead, we try to sketch the most important steps in the derivation of
the Luttinger model and provide the necessary relations needed in this thesis.
Above in Sec. 1.2 we already gave an intuitive picture why a bosonized descrip-
tion of the one-dimensional electron system might be useful: since the electrons
can not pass each other in 1d, a movement of a single electron is necessarily
accompanied by a reaction of all the other electrons of the system. Therefore
all fundamental excitations are collective, hence bosonic, and quasi-particle-like
fermionic excitations are forbidden unlike in 2d and 3d.
To describe the low-energy excitations of the system, the Luttinger model as-
sumes a one-dimensional electron system with a linearized dispersion around
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Figure 2.2: Linearized electron dispersion of the Luttinger model in the vicinity
of ±kF .

the Fermi energy EF (Fig. 2.2). By linearizing the spectrum, the band bottom
is removed, which yields an infinite number of states with arbitrarily large neg-
ative energies. This needs to be accounted for by working with normal-ordered
occupation numbers N̂k,τ = :a†k,τak,τ :. Here a†k,τ (ak,τ ) is the creation (annihi-
lation) operator of a right- (τ = 1) or left-moving (τ = −1) electron with wave
vector k. The normal ordering is executed with respect to the vacuum, i.e. with
all electronic states filled up to ±kF for right and left movers, respectively, e.g.

:a†k,Rak,R: =
{

a†k,Rak,R for k > kF

−ak,Ra†k,R for k < kF .
(2.2)

This yields the non-interacting Hamiltonian asH0 = vF
∑
k,τ (k τ − kF ) :a†k,τak,τ :,

while interactions between the electrons take the form Ĥ = 1
2L
∑
q 6=0 vqn̂qn̂−q.

Here vq is the Fourier transform of the interaction potential and n̂q =
∑
k a
†
k−qak

is the electron density operator.
The normal ordering for the operators leads to an anomalous commutator for
the density fluctuation operators [n̂q,τ , n̂−q′,τ ′ ] = qL

2π τδq,q′δτ,τ ′ . This shows that
the electron density operators can serve as bosonic creation and annihilation
operators

b̂q =

√
2π
L|q|

(Θ(q)n̂q,R + Θ(−q)n̂q,L) (2.3)

b̂†q =

√
2π
L|q|

(Θ(q)n̂−q,R + Θ(−q)n̂−q,L) , (2.4)
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where Θ is the Heaviside step function. Furthermore one can show that the
operators b̂†q (b̂q) raise (lower) the energy of an eigenstate of H0 by vF |q|,
leading to an interacting Hamiltonian in which all contributions are quadratic
in the bosonic operators

H =
∑
q 6=0

[(
vF + V1(q)

2π

)
|q|b̂†q b̂q + V2(q)

2π |q|
(
b̂†q b̂
†
−q + b̂−q b̂q

)]
, (2.5)

with V1(q) = vq and V2(q) = vq − v2kF .
For our purpose it is beneficial to introduce a real space representation in terms
of displacement field φ(x) and phase field θ(x)

φ(x) = 1
2i
∑
q 6=0

√
2π
L|q|

sign(q) eiqx
(
b̂q + b̂†−q

)
, (2.6)

θ(x) = 1
2i
∑
q 6=0

√
2π
L|q|

eiqx
(
b̂q − b̂†−q

)
. (2.7)

The displacement field φ(x) describes the local density fluctuations through

:nR(x) + nL(x): = ∂xφ(x)
π

(2.8)

and the phase field θ(x) is associated with the difference in density between
right and left movers,

nR(x)− nL(x) = ∂xθ(x)
π

. (2.9)

These bosonic fields obey the commutation relations [θ(x),∇φ(x′)] = −iπδ(x−
x′), which shows that the gradient of one field is the canonical conjugate mo-
mentum to the other up to a factor of −π [Giamarchi, 2004]. In terms of these
fields the Hamiltonian of the Luttinger model takes the form

H = vc
2π

ˆ
dx
{

1
K

(∂xφ(x))2 +K (∂xθ(x))2
}
, (2.10)

K =

√
2πvF + V1(0)− V2(0)
2πvF + V1(0) + V2(0) , (2.11)

vc =

√(
vF + V1(0)

2π

)2
−
(
V2(0)

2π

)2
, (2.12)

where K is the dimensionless interaction parameter, with K < 1 for repulsive
electron-electron interactions (K = 1 for a non-interacting system), and vc is
the charge velocity. Thus, one arrived at a remarkably elegant result: the low

13



energy excitations of the 1d electron system can be described by a quadratic
(i.e., exactly solvable) bosonic theory, irrespective of the interaction strength.
With that, the effect of electron-electron interactions in the model is reduced to
the Luttinger parameter K and the charge velocity vc.
One can also express the fermionic fields in terms of the bosonic ones as

ψ(x) = ψR(x) + ψL(x) , (2.13)

ψR/L(x) = 1√
2πλ

e±ikF xei[θ(x)±φ(x)] , (2.14)

where we neglect the Klein factors (which change the total number of left or
right moving electrons in the system respectively) and λ is a short distance
cutoff due to the finite band width [Giamarchi, 2004].
The basis of our field theoretic treatment is the canonical partition function of
the Luttinger liquid

Z = Tr
{
e−βH

}
, (2.15)

which can be evaluated as a functional integral

Z =
ˆ

D [Π, φ] exp (−S[Π, φ]) . (2.16)

Here, the Euclidean (imaginary time) action is obtained as [Giamarchi, 2004]

− S [Π, φ] =
ˆ β

0
dτ
ˆ

dx [iΠ(x, τ)∂τφ(x, τ)−H (φ(x, τ),Π(x, τ))] , (2.17)

where Π is the conjugate momentum of φ. Due to the commutation relations of
the bosonic fields we can write this as

− S [θ, φ] =
ˆ β

0
dτ
ˆ

dx
[
− i
π
∂xθ ∂τφ−

vc
2π

(
1
K

(∂xφ)2 +K (∂xθ)2
)]

, (2.18)

where we dropped the time and space labels for better readability.
After integrating out the θ-field (since φ and θ are hermitian operators, the
associated fields in functional integral representation are real), one obtains the
action of the bare LL in the φ-representation [Fisher and Glazman, 1997; Kane
and Fisher, 1992]

S0 =
ˆ
dr 1

2πK

[
1
vc

(∂τφ)2 + vc (∂xφ)2
]
. (2.19)

Here we introduced the short hand notations (x, τ) = r and
´ β

0 dτ
´
dx =

´
dr.
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The coupling to the sliding periodic potential in Eq. (2.1) gives the following
contribution to the Hamiltonian for q ∼ 2kF

HU =
ˆ
dxψ†(x)U(x)ψ(x) (2.20)

= V0

ˆ
dx
[
eiqx+iϑψ†R(x)ψL(x) + e−iqx−iϑψ†L(x)ψR(x)

]
,

where we omitted the terms that oscillate rapidly in space and hence vanish in
the integral.

Using the expression for the fermionic fields in Eqs. (2.13) and (2.14), and the
commutation relations [φ(x), θ(x′)] = iπ sgn(x − x′)/2, the periodic potential
contributes the sine-Gordon term

SU = 2V0

2πλ

ˆ
dr cos [2φ(x) + (2kF − q)x+ ϑ(t)] (2.21)

for x ∈ [−L/2, L/2] to the action, which we analyze thoroughly in the following.
The cosine in Eq. 2.21 couples the φ-field at different energies. Thereby higher
energy modes influence the effective properties of the lower energy ones, which
we are ultimately interested in. This causes the effective strength of the periodic
potential to be dependent on the energy scale of interest, which makes this a
suitable problem to be treated by a renormalization group (RG) approach, as
detailed below.

2.3 Coupling to periodic potential

2.3.1 Energy gap

The unit efficiency of the Thouless motor depends crucially on the presence of an
energy gap at the Fermi energy. In the absence of interactions, this gap has size
∆non-int. = 2V0. Interactions modify this gap. To start with, the sine-Gordon
term is a relevant perturbation over a wide range of interaction strengths, in-
dicating the formation of a gap. Consider ϑ(t) = 0 and perfect backscattering,
q = 2kF , and employ the usual momentum shell renormalization group (RG)
procedure for the sine-Gordon term in Eq. (2.21) [Giamarchi, 2004]. We show
the explicit derivation of the flow equation in a short technical interlude, which
can be skipped by readers either familiar with the technique or uninterested in
technical details.
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2.3.2 Technical interlude: RG perfect backscattering
We start with the LL action S0 + SU in the presence of the static perfect
backscattering potential, i.e. ϑ(t) = 0 and q = 2kF , in Eqs. (2.19) and (2.21).
The calculation here is analogous to the RG treatment of the sine-Gordon
term, e.g. in [Giamarchi, 2004]. We split the displacement field φ into slow
and fast modes φ< and φ>

φ(r) = φ<(r) + φ>(r) , (2.22)

where φ< contains frequencies and momenta inside the shell ||q|| =√
k2
m + (ωn/vc)2 < γ/b with b > 1 and γ being the ultraviolet momentum

cutoff, and φ> contains γ/b < ||q|| < γ. We integrate out the fast modes
by averaging cos [2φ(x)] over the fast modes up to first order in the cumulant
expansion

〈SU [φ<, φ>]〉0,> =
ˆ
dr V

2πλ

(
e2iφ<(r) 〈e2iφ>(r)〉0,> + h.c.

)
,

where 〈...〉0,> means averaging over the fast modes of the free LL action, which
is done in the Fourier decomposition

〈e±2iφ>(r)〉0,> = 1
Z0,>

∏
n,m>

ˆ
dφn,m exp

{
−
∑
n,m>

(
1

2πK ( 1
vc
ω2
n + vck

2
m)|φn,m|2

± 2i√
βL

φn,meiq·r
)}

, (2.23)

where (n,m >) is a shorthand notation for the fast Fourier modes. Doing the
Gaussian integral we obtain

〈e±2iφ>(r)〉0,> = exp
{
−
∑
n,m>

2Kπ
vc β L ((ωn/vc)2 + k2

m)

}
. (2.24)

For low temperatures and large volumes the sum over the fast momentum shell
can be evaluated as a two-dimensional integral leading to∑

n,m>

2Kπ
vc β L ((ωn/vc)2 + k2

m) = K

2π

ˆ
dϕ

ˆ
dq

q

q2 = K ln(b) , (2.25)

where q = |q| and ϕ = arg (km + i(ωn/vc)) is the angle in the q -plane. This
leads to the effective action

〈SU [φ<, φ>]〉0,> =
ˆ
dr 2V

2πλe
−K ln(b) cos [2φ(r)] , (2.26)

from which we derive the flow equation (2.27).
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Figure 2.3: Oscillations of the electron density around the minima of the peri-
odic potential corresponding to the action Eq. (2.28). Quantum fluctuations of
the electrons around the minima position lead to a down-scaling of the strength
of the periodic potential V as described by Eq. (2.34), resulting in the renor-
malized gap given by Eq. (2.36).

Integrating out the fast modes of the action S0 + SU in Eqs. (2.19) and (2.21)
in a momentum shell γ/b < |q| < γ (γ is the momentum cutoff, and rescaling
time τ ′ = τ/b and space x′ = x/b, with b = el, yields the familiar flow equation

dV (l)
dl

= (2−K)V (l) , (2.27)

for the strength of the periodic potential, while the free action S0 remains un-
changed to first order in the cumulant expansion. Thus the periodic potential is
a relevant perturbation for all K < 2 and the system flows to strong coupling.

For a large coupling strength V , the displacement field φ is trapped near a
minimum of the cosine. The electron density is commensurate and oscillates
about the minima of the periodic potential in Fig. 2.3.

The effective dynamics of φ can be obtained by expanding the action about this
minimum,

S ' S0 +
ˆ
dr 2V0

2πλ φ
2

=
∑
n,m

1
2πK

(
1
vc
ω2
n + vcq

2
m + 4V0K

λ

)
|φn,m|2 , (2.28)

where ωn is a bosonic Matsubara frequency and qm is the wave vector. Thus,
the system has a bare energy gap of size

∆0 =
√

4V0K vc
λ

, (2.29)

which can be understood as the pinning frequency of the classical Wigner crystal,
as we show explicitly in a short interlude.
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2.3.3 Interlude: Pinning frequency of Wigner crystal

The bare gap size ∆0 =
√

4V0K vc
λ Eq. (2.29) has an immediate physical mean-

ing in the classical Wigner crystal limitK → 0, where the interactions between
the electrons are so strong that already an arbitrarily small potential is strong
enough to pin the Wigner crystal into the minima of the potential.
We can directly calculate the oscillation frequency of the electrons around the
minima for the q = 0 mode of the collective excitations. In this mode, all
electrons oscillate in phase and hence the potential stemming from electron-
electron interactions does not contribute to the equations of motion of the
electrons. Expanding the potential around a minimum

U ' V0 [2kFx]2 (2.30)

leads to the equation of motion for each electron

mẍ = −∂xV0 [2kFx]2 = −8k2
Fx . (2.31)

Hence, the oscillation frequency of the q = 0 mode has a frequency

ωpin =
√

8k2
F

m
V0 . (2.32)

The q = 0 excitation is the lowest available mode, since all q 6= 0 modes have
higher energy due to electron-electron interactions, and therefore ωpin is the
energy gap of the Wigner crystal.
Using λ = 2π

kF
as the initial short distance cutoff in the bare gap size ∆0

reproduces ωpin up to a numerical prefactor stemming from the uncertainty in
choosing the initial cutoff

∆0 =
√

4V0K vc
λ

'
√

4V0k2
F

2πm , (2.33)

where we used vcK ' vF .

Quantum fluctuations of the electron density about the commensurate configu-
ration (cf. Fig. 2.3) effectively decrease the restoring force of the potential and
thus result in a downscaling of the effective gap. This effect is present even for
non-interacting electrons. Indeed, for non-interacting electrons K → 1, the bare
gap in Eq. (2.29) is different from ∆non-int. = 2V0. Repulsive interactions sup-
press the density fluctuations so that the downward renormalization becomes
weaker as the repulsive interactions increase. In the Wigner crystal limit K → 0
fluctuations are fully suppressed, so that the bare gap Eq. (2.29) represents the
actual gap of the system.

We account for the quantum fluctuations by integrating out the high energy
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modes while retaining the original units, so energies can be compared. This
leads to

dV (l)
dl

= −KV (l) . (2.34)

We can see that, as anticipated, the downwards scaling is stronger for less
repulsively interacting systems.
Integrating out modes down to the gap leads to a self-consistent equation for
the renormalized energy gap ∆ =

√
4V K vc/λ, with V obtained by integrating

the flow equation (2.34),

V = V0

(
2πvc
λ∆

)−K
. (2.35)

The resulting self-consistent equation for ∆ has the solution

∆ =
(

4V0K vc

(2πvcλ−1)K λ

)1/(2−K)

. (2.36)

This formula reproduces ∆non-int. = 2V0 for non-interacting electrons (up to a
numerical prefactor, as before). We also see explicitly that the gap is enhanced
for repulsive electron-electron interactions (K < 1),

∆(K)
∆ (K = 1) = K

(
π2vc/λ

2V0K

)(1−K)/(2−K)

> 1 . (2.37)

Here we used that πvc/λ� V0 is an energy of the order of the Fermi energy.
We can use the expanded action Eq. (2.28) to calculate the correlation function
〈φ(r)φ(0)〉, which decays exponentially for r/ξ � 1

〈φ(r)φ(0)〉 ∼ exp
(
−r
ξ

){
r−1/2 +O

(
r−3/2

)}
. (2.38)

Hence, as long as the region in which the periodic potential is applied exceeds
ξ = vc/∆, the fields at both ends can be regarded as uncorrelated.

2.3.4 Variations of the chemical potential

While the previous section considered the case of perfect commensurability
q = 2kF at the center of the gap µ = 0, the non-interacting Thouless motor
maintains optimal efficiency as long as the chemical potential remains within
the gap |µ| . V0 [Bustos-Marún et al., 2013]. In the following we investigate the
robustness of the gapped interacting system against variations of the chemical
potential.
A uniform chemical potential term Hµ = −µ

´
dx ∂xφ(x)/π can be absorbed

into the free LL Hamiltonian Eq. (2.10) by shifting the field

φ̃(x) = φ(x)− µK
vc
x . (2.39)
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This yields a compressed liquid with a changed density ∆n = µK/(vcπ). The
resulting density mismatch between the compressed LL and the applied periodic
potential leads to the coupling in Eq. (2.21)

SU [φ] = 2V
2πλ

ˆ
dr cos

[
2φ̃(x) + 2µK

vc
x

]
. (2.40)

The chemical potential µ thus introduces a constant gradient into the solutions
of φ̃ that minimize the cosine in order to adapt to the density dictated by the
periodic potential. The Hamiltonian of the compressed Luttinger liquid Eq.
(2.10) gives the associated elastic energy cost per unit length

εel = 1
2πK vc

(
µ
K

vc

)2
. (2.41)

This cost increases with µ and eventually leads to a depinning of φ̃ beyond a
critical µc, when adapting to the applied potential becomes too costly. To take
proper account of the renormalization of the potential due to quantum fluctua-
tions, we use the effective theory for the lowest available excitations developed
in Sec. 2.3.1. Since µ does not alter the renormalization of the potential Eq.
(2.34) (up to first order in the cumulant expansion), we can express the effec-
tive potential V for the lowest available modes in terms of the effective gap size
∆ =

√
4V K vc/λ, with ∆ given in Eq. (2.36). This leads to the effective low

energy action Seff

Seff[φ̃] = S0[φ̃] +
ˆ
dr ∆2

4πKvc
cos
[
2φ̃(x) + 2µK

vc
x

]
. (2.42)

The elastic energy cost Eq. (2.41) can be reduced by inserting a finite density
ns of π phase slips in φ̃ , which are described by soliton solutions of φ̃. This
leads to a reduced average gradient

g′ = −µK
vc

+ πns . (2.43)

Under assumption of a low soliton density the total energy cost of this configu-
ration can be estimated by adding the elastic energy cost of the reduced average
gradient g′ and the cost of ns solitons,

ε = εel(g′) + nsEsol . (2.44)

The soliton solution and its energy Esol = 2∆/(πK) can be derived from Eq.
(2.42) in the standard way [Rajaraman, 1987]. Using g′ Eq. (2.43), we find the
optimal soliton density by minimizing the total energy cost given by Eq. (2.44)
for a given chemical potential µ,

ns,opt = µK

πvc
− 2∆
π2vc

. (2.45)
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This soliton density becomes positive at the critical chemical potential

µc = 2
π

∆
K
, (2.46)

at which the system leaves the pinned regime. Since repulsive interactions en-
hance the effective gap size ∆ Eq. (2.36), electron-electron interactions also
increase the robustness of the system against variations of the chemical po-
tential. Note that the limit of vanishing electron-electron interactions K → 1
reproduces the critical chemical potential µc(K = 1) ∼ V0 of the non-interacting
case.

2.3.5 Sliding periodic potential

So far, we considered the motor degree of freedom to be at rest. In the absence
of interactions, the adiabatic variation of ϑ pumps a unit charge per cycle. The
same occurs in the interacting system. Restoring the time dependence of the
motor degree of freedom ϑ(τ) in Eq. (2.21), the coupling to the periodic potential
is

SU [φ] = 2V
2πλ

ˆ
dr cos [2φ(x) + ϑ(τ)] . (2.47)

This introduces an explicit time dependence into the solutions φmin that mini-
mize the cosine

φmin(x, τ) = −ϑ(τ)
2 (2.48)

(up to a constant that picks the specific minimum of the cosine). A time-
dependent displacement field φ implies current flow. Using the continuity equa-
tion, we obtain the current density

j(x, t) = − e
π
∂tφ(x, t) = e

2π∂tϑ(t) , (2.49)

which describes pumping of a quantized charge

QP =
ˆ T

0
dt j(t) = e (2.50)

when advancing the periodic potential by one period.
The interaction-enhanced gap also implies a larger range of validity of this adi-
abatic treatment. Comparing the kinetic term in the Lagrangian to the energy
gain due to the gap formation, we conclude that the adiabatic approximation
remains valid as long as |ϑ̇| � ∆, where ∆ is the renormalized gap of the
interacting system.
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Figure 2.4: The pinning condition φ = −ϑ/2 within the area of the periodic
potential reduces the coupling between motor degree of freedom and electrons
to a free LL with a constrained boundary condition φ(0, t) = −ϑ(t)/2 when the
area of the periodic potential is shrunk to a single point x = 0.

2.4 Reduced dynamics of the motor degree of
freedom

2.4.1 Bias voltage

As long as |µ| < µc and |ϑ̇| < ∆, the displacement field is locked to φ =
−µK x/(2vc) − ϑ/2 and the spectrum is gapped. Within the region of the
periodic potential, the electrons are locked to its minima, cf. Fig. 2.4, and the
electronic dynamics is effectively frozen out. As long as the length of the periodic
potential L is larger than ξ = vc/∆, the fields φ at the two ends of the periodic
potential lock to φ(x = ±L/2) = −ϑ/2, where we neglected the ϑ-independent
offset ∝ L for an incommensurate potential. Effectively, this allows us to shrink
the length of the periodic potential to a single point x = 0, at which the pinned
displacement field interacts with the free LL, as shown schematically in Fig. 2.4.

In a motor setup, the energy provided by the applied bias voltage V is used
to drive the motor degree of freedom. When φ is locked and the electronic
dynamics in the region of the periodic potential is frozen out, we can also shrink
the voltage drop to the point x = 0, which yields a contribution to the action

Sbias = −eV2

ˆ
dr sgn(x)∂xφ

π
= eV

π

ˆ
dτφ(0, τ) . (2.51)

Here we used the bosonized form of the normal ordered electron density given
in Eq. (2.8).
Integrating out all electronic degrees of freedom away from x = 0 under the
constraint φ(0, t) = −ϑ(t)/2, analogous to the treatment of a local impurity
in a LL [Kane and Fisher, 1992; Castro Neto and Fisher, 1996], leads to an
effective description of the dynamics of the motor degree of freedom, including

22



a non-conservative mean force stemming from the electronic bias, friction, and
a fluctuating force.

2.4.2 Motor dynamics for an infinite Luttinger liquid

We first treat the coupling to an infinite LL. Following earlier work [Kane and
Fisher, 1992], the LL can be integrated out. This calculation is shown in Ap-
pendix A.1 and leads to the effective action

Seff =
∑
n

(
Iω2

n

2 + |ωn|4πK

)
|ϑn|2 −

ˆ β

0
dτ
eV

2π ϑ , (2.52)

where we added the kinetic energy of the motor with some associated moment
of inertia I. The second term describes a dissipative contribution to the motor
dynamics and the third term a potential induced by the applied bias.
To obtain the explicit equation of motion we analytically continue the effec-
tive action to the Keldysh contour [Kamenev, 2011]. The effective action then
acquires the form

Seff =
ˆ
dω

2π (ϑ̄clω , ϑ̄qω) K̂(ω)
(
ϑclω
ϑqω

)
+ eV

π

ˆ
dt ϑq(t)

K̂(ω) =
(

0 KA(ω)
KR(ω) KK(ω)

)
. (2.53)

We performed a Keldysh rotation into the quantum ϑq = (ϑ+ − ϑ−)/2 and
classical component ϑcl = (ϑ+ +ϑ−)/2 of ϑ. The kernels KR(A)(ω) are the ana-
lytical continuations of the Matsubara correlator K(ωn) = Iω2

n/2 + |ωn|/(4πK)
in Eq. (2.52) to real frequencies KR(A)(ω) = −2K(iωn → ω ± iη) [Kamenev,
2011]. The Keldysh component follows from the fluctuation dissipation theorem
KK(ω) =

(
KR(ω)−KA(ω)

)
coth(ω/2T ) 1. Fourier transforming the action Eq.

(2.53) to real time we obtain

S =
ˆ
dt

{
− 2ϑq(t)

[
Iϑ̈cl(t) + ϑ̇cl(t)

2πK − eV

2π

]
+
ˆ
dt′KK(t− t′)ϑq(t)ϑq(t′)

}
, (2.54)

where we performed an integration by parts. The Fourier transform of the
Keldysh component reads

KK(t) = iT 2

K cosh (πTt)2 , (2.55)

1Due to the pinned LL on the length of the periodic potential, the free LL’s on the left
and right side are isolated and act as independent equilibrium baths for the motor degree of
freedom.
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yielding a coupling of the quantum fields nonlocal in time. This action de-
termines the reduced dynamics of the motor degree of freedom including all
quantum fluctuations.
The contribution quadratic in the quantum components leads to the fluctuating
Langevin force in the classical equation of motion of the motor. Its explicit
form can be obtained by decoupling the quantum components by a Hubbard-
Stratonovich transformation [Kamenev, 2011]

exp
(
i

ˆ
dω

2π K
K(ω)|ϑq(ω)|2

)
=

ˆ
D [ξ] exp

(ˆ
dω

2π

[
|ξ(ω)|2

iKK(ω) + 2iξ̄(ω)ϑq(ω)
])

, (2.56)

where ξ(t) is a real field. Introducing the integral over ξ Eq. (2.56) into the
Keldysh partition function Z =

´
D [ϑ] exp(iS) corresponding to the action S

Eq. (2.54) leads to the classical saddle point equation for ϑ

Iϑ̈cl(t) = eV

2π −
1

2πK ϑ̇cl(t) + ξ(t) (2.57)

with
〈ξ(t)ξ(t′)〉 = KK(t′ − t)

2i = T 2

2K cosh (πT [t′ − t])2 . (2.58)

In the classical limit for large T we can approximate cosh (πT [t′ − t])−2 '
2(πT )−1δ(t− t′) and hence the fluctuating force becomes delta-correlated, with
the magnitude of the correlator determined by temperature and the friction
coefficient

〈ξ(t)ξ(t′)〉 = 2γTδ(t− t′) . (2.59)

We see that while the mean force is unaffected by the electron-electron interac-
tions, the friction γ = (2πK)−1 and with it also the correlator of the fluctuat-
ing force are enhanced by repulsive electron-electron interactions. For K → 1
the effective dynamics Eq. (2.57) reproduce the non-interacting result of Ref.
[Bustos-Marún et al., 2013].
The steady state velocity of the motor follows from the equation of motion (2.57)
ϑ̇ = K eV . Since the pumped charge in Eq. (2.50) is the only charge transported
through the system, we can directly calculate the current I as pumped charge
per unit time

I = eϑ̇

2π = Ke2

2π~ V , (2.60)

where we reinserted ~ to bring the current in the usual form in terms of the dc
conductance. We can use this current at steady state to define the dc conduc-
tance of the motor gM = Ke2/h, which takes the value of an infinite, ideal LL
[Kane and Fisher, 1992].
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We use these results to investigate the efficiency η of the interacting Thouless
motor, which we define as the ratio between useful output power and input
power [Fernández-Alcázar et al., 2015]

η = Pout − Pdiss
Pin

. (2.61)

The useful power in the numerator is the work per cycle done by the mean force
in Eq. (2.57) Pout = eV/τ (τ the cycle period) minus the power dissipated due
to friction Pdiss = ϑ̇2/2πK. The electrical input power provided by the bias
Pin = IV is determined by the pumped current Eq. (2.60), which yields the
efficiency

η = 1− ϑ̇

eV K
. (2.62)

Thus for a given frequency, repulsive electron-electron interactions K < 1 de-
crease the efficiency of the Thouless motor as a consequence of the friction
enhancement.

2.4.3 Friction and energy current in an infinite Luttinger
liquid

It is interesting to obtain a more explicit description of the friction coefficient
γ. To this end, we compute the energy current carried by the LL for the time-
dependent boundary condition φ(0, t) = −ϑ(t)/2. The solution of φ under
this time-dependent constraint is shown in Appendix A.1 Eq. (A.14) and takes,
under assumption of a steady velocity, the form

φ(x, t) = −ϑ̇2

(
t− |x|

vc

)
. (2.63)

To see how this solution carries the dissipated energy away from the motor, we
investigate the energy current density jE corresponding to this solution. jE can
be derived from the Heisenberg equation of motion for the energy density

ρE = vc
2π

[
1
K

(∂xφ(x))2 +K (∂xθ(x))2
]
, (2.64)

which yields

∂tρ
E = i

[
H, ρE

]
= − v

2
c

2π∂x {∂xθ(x), ∂xφ(x)} , (2.65)

where we used the commutation relations of the bosonic fields introduced above
in Sec. 2.1 and {., .} denotes the anticommutator. From here we can directly
deduce the energy current via the continuity equation

∂tρ
E = −∇jE (2.66)
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Figure 2.5: Connecting FL leads causes backscattering of plasmons at the FL-LL
boundary.

which leads to

jE = v2
c

2π {∂xθ(x), ∂xφ(x)} . (2.67)

Since the gradient of θ if fully determined by the time dependence of φ, i.e.
∂tφ(x, t) = i [H,φ(x, t)] = −vcK∂xθ(x), we can write down the energy current
corresponding to the solution Eq. (2.63)

jE = ϑ̇2

4πK sgn(x) . (2.68)

Thus we can see that the dissipated power

− Pdiss = γϑ̇2 = jE(x > 0)− jE(x < 0) (2.69)

is evenly split between the two sides and sent to x = ±∞.

2.4.4 Contact to Fermi liquid leads

In the previous section we assumed an infinite LL which leads to enhanced dissi-
pation due to repulsive electron-electron interactions and the motor conductance
of an ideal infinite LL at steady state. It is well known that if a quantum wire
containing a LL is attached to FL leads, the normal dc conductance of the wire
is determined by the interactions in the attached leads and takes the value of
an ideal non-interacting channel g = e2/h [Maslov and Stone, 1995]. In this
section we investigate, whether by attaching FL leads also the dissipation of
the Thouless motor at steady velocity is reduced to the non-interacting value,
reproducing the non-interacting motor conductance gM = e2/h.
The connection to FL leads generates backscattering of plasmons at the FL-LL
boundary, which includes memory into the effective equation of motion of the
motor and results in reduced non-interacting dissipation at steady velocity, cf.
Fig. 2.5. The transition between LL and FL can be modeled as a change of
the interaction parameter K → 1 and the charge velocity vc → vF [Maslov
and Stone, 1995; Karzig et al., 2011]. We consider that the LL is connected to
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FL reservoirs at |x| = D/2, which yields in the φ-representation of the LL Eq.
(2.19)

S0 =
ˆ
dr 1

2π

[
(∂τφ)2

K(x) vc(x) + vc(x) (∂xφ)2

K(x)

]
, (2.70)

with

K(x) =
{

1 |x| ≥ D/2
K |x| < D/2

vc(x) =
{
vF |x| ≥ D/2
vc |x| < D/2 .

(2.71)

We obtain the effective action of the motor by integrating out the LL under
the constraint φ(0, t) = −ϑ(t)/2, as previously but now with attached FL leads.
The procedure amounts to solving the saddle point equation for the φ-field in
the presence of the appropriate boundary conditions for φ and ∂xφ, and is shown
in Appendix A.1. We find the effective action

S[ϑ]eff =
∑
n

M(ωn)
4πK |ωn| |ϑn|2 −

ˆ β

0
dτ
eV

2π ϑ . (2.72)

with

M(ωn) =
(

1 + 2
∞∑
n=1

e−n|ωn|T rnp

)
, (2.73)

where T = D/vc is the travel time of the plasmons from x = 0 to the FL-LL
boundary and back and rp = K−1

K+1 is the plasmon reflection amplitude.
To obtain the real time dynamics we analytically continue to the Keldysh con-
tour analogous to the infinite LL case above, where the kernels now take the
form

KR(A)(ω) = ±iω2πK

(
1 + 2

∞∑
n=1

e±niωT rnp

)
, (2.74)

andKK(ω) =
(
KR(ω)−KA(ω)

)
coth(ω/2T ). Fourier transforming to real time

shows that the plasmon scattering at the LL-FL boundary leads to a coupling
of the quantum field to earlier classical velocities at multiples of the travel time
T

Sdiss = Sqq−
ˆ
dt

2ϑq(t)
2πK (2.75)

×

(
ϑ̇cl(t) + 2

∞∑
n=1

ϑ̇cl(t− nT )rnp

)
.

Here

Sqq =
ˆ
dtdt′KK(t− t′)ϑq(t)ϑq(t′) (2.76)
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is the part of the dissipative action quadratic in the quantum fields. In contrast
to the infinite LL case above, the Keldysh kernel

KK(t) = iT 2

K

[ ∞∑
n=−∞

1
cosh (πT [t+ nT ])2 r

|n|
p

]
(2.77)

leads to a nonlocal coupling of the quantum fields also in the high temperature
limit, resulting in non-local correlations of the fluctuating force in time. As
before we combine the dissipative action with the free part and the bias in-
duced mean force and decouple the quantum fields via a Hubbard-Stratonovich
transformation, which yields the nonlocal classical saddle point equation

Iϑ̈cl(t) = eV

2π + ξ(t) (2.78)

− 1
2πK

[
ϑ̇cl(t) + 2

∞∑
n=1

ϑ̇cl(t− nT )rnp

]
.

The correlator of the fluctuating force is determined by

〈ξ(t)ξ(t′)〉 = T 2

2K

[ ∞∑
n=−∞

1
cosh (πT [t− t′ + nT ])2 r

|n|
p

]
(2.79)

which reduces in the high temperature limit to finite correlations at all multiples
of the travel time T

〈ξ(t)ξ(t′)〉 ' 2T
2πK

[ ∞∑
n=−∞

δ(t− t′ + nT ) r|n|p

]
. (2.80)

Since rp < 0, the non-local couplings to the velocity, i.e. the contribution ∝ rnp
in Eq. (2.78) caused by multiple plasmon reflections at the FL-LL boundary and
x = 0, have an alternating sign and a decaying amplitude ∝ |rp|n. Hence this
force damps the motion for all even multiples of the travel time and boosts the
motion for all odd ones, if we assume the velocity does not change sign. How
much energy gets dissipated in this process depends on the trajectory of ϑ.
At constant velocity, the effective dynamics described by Eq. (2.78) leads to
reduced dissipation and an enhanced velocity ϑ̇ = eV . This results in more
pumped charge per unit time

I = eϑ̇

2π = e2

2π~V , (2.81)

and hence the enhanced dc motor conductance of an ideal non-interacting chan-
nel, where we again reinserted ~. Therefore, analogous to the dc conductance
of an ideal LL channel in contact to FL reservoirs [Maslov and Stone, 1995],
also the dc motor conductance is governed by the interactions in the attached
reservoirs. Thereby also the efficiency of the Thouless motor is increased to the
non-interacting value K → 1 in Eq. (2.62).
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2.4.5 Friction and energy current with attached Fermi liq-
uid leads

To see explicitly how the energy current is modified by plasmon reflections
at the LL-FL boundary, we analyze the solution for φ under the constraint
φ(0, t) = −ϑ(t)/2 and the connection to FL leads. We analyze the dissipation
for different trajectories by considering two limiting cases: The behavior at
constant velocity ϑ(t) = ϑ̇t, and the case of a sudden step ϑ(t) = ϑ0Θ(t). With
the expression for the energy current derived above Eq. (2.67), we can directly
use the solution for φ given in the Appendix Eq. (A.25) to calculate the energy
current in these cases.
For a sudden step, the gradient and time derivative of φ determining the energy
current are strongly peaked δ-functions that can not interfere with each other.
That leads to a situation, in which after integrating in time over all multiple
scattering events all the energy of the initial excitation is released into the FL
reservoirs. Thus, the total dissipated energy Ediss =

´
dt[jE(x > 0)−jE(x < 0)]

is determined by the initial plasmon excitation and takes the value of an infinite
LL

Ediss = τ ϑ̇2

2πK . (2.82)

Here
´
dtϑ̇(t)2 = τ ϑ̇2 determines the dissipation caused by the initial plasmon

excitation and τ is the step duration.
In contrast to that, at steady velocity the reflected plasmons Eq. (A.25) interfere
with each other, leading to a constant gradient ∂xφ = Kϑ̇ sgn(x)/(2vc) and time
derivative ∂tφ = −ϑ̇ in the inside region |x| < D/2. This yields the reduced
energy current

jE = ϑ̇2

4π sgn(x) , (2.83)

which corresponds to the dissipated power with the reduced non-interacting
friction γ = (2π)−1

−Pdiss = 1
2π ϑ̇

2 = jE(x > 0)− jE(x < 0) . (2.84)

Therefore we can see that interference of the reflected plasmons (cf. Fig. 2.5)
leads to a decreased energy current at steady state and thus prevents the system
from releasing all the energy to the attached Fermi liquid leads.

2.5 Translation to magnetic system

The counter-propagating states of a single QSH edge (cf. Fig 2.1) can be de-
scribed as a Luttinger liquid analogous to the spinless quantum wire introduced
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in Sec. 2.1 [Wu et al., 2006]. The bosonization of the helical channels is obtained
from Eqs. (2.13) and (2.14) by replacing ψR → ψR,↑ and ψL → ψL,↓, while the
Hamiltonian in terms of the bosonic fields Eq. (2.10) remains unchanged. The
Zeeman coupling to the nanomagnet

HM = −J0

2

ˆ
dxΨ†~σΨ ·M (2.85)

leads to back-scattering of the helical channels whenever there is a component
of M in the x-y-plane, where ~σ is the vector of Pauli matrices that acts on Ψ =
(ψR,↑, ψL,↓)T . Assuming a strong easy-plane anisotropy in the x-y-plane, we
can parametrize the magnetization as Mx = M cos [ϑM ] and My = M sin [ϑM ],
which leads to a sine-Gordon term for the Zeeman coupling

SM =− J0M

2πλ

ˆ
dr (cos [ϑM ] cos (2kFx+ 2φ(x))− sin [ϑM ] sin (2kFx+ 2φ(x)))

=− J0M

2πλ

ˆ
dr cos (2φ(x) + 2kFx+ ϑM ) . (2.86)

Here kF measures the distance from the Dirac point k = 0 at which the system is
operated. Thus, the coupling of the nanomagnet to the helical edge states takes
the same form as the coupling of the sliding periodic potential to the spinless
LL in the quantum wire Eq. (2.21), enabling us to directly translate the results
of Sec. 2.3 and 2.4 to the magnetic case. For K < 2 the φ-field gets locked to
φ(x) = nπ− kFx−ϑM/2, which corresponds to ferromagnetic order of the spin
density

~s = 1
2(ψ†R,↑, ψ

†
L,↓)~σ

(
ψR,↑
ψL,↓

)
(2.87)

in phase with the in-plane magnetization of the nanomagnet

sx(x) = 1
2πλ cos (ϑM ) sy(x) = 1

2πλ sin (ϑM ) . (2.88)

A full precession of the magnetization leads to quantized charge pumping of one
electron per cycle in Eq. (2.50). Quantum fluctuations around the ferromagnet-
ically ordered state lead to an interaction dependent downward scaling of the
effective strength of the Zeeman coupling J , which results in an effective gap
size for the lowest available modes

∆M =
(

2J0MK vc

(2πvcλ−1)K λ

)1/(2−K)

. (2.89)

This formula reproduces the gap ∆non-int. = J0M for non-interacting helical
edge modes and shows the strong enhancement of the magnetically induced gap
by repulsive electron-electron interactions, cf. Eq. (2.37). The noninteracting
QSH edge remains insulating as long as the chemical potential remains within
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the gap that is opened by the magnet around the Dirac point k = 0. Section
2.3.4 shows that interactions also make the magnetic system more robust against
variations of the chemical potential and demonstrates that it remains gapped
as long as |µ| is smaller than µc = 2∆M/(πK), cf. Eq. (2.46).
In the case of a high easy-plane anisotropy energy DM2

z /2 (D > 0), the Landau-
Lifshitz-Gilbert equation governing the time evolution of the magnetization can
be reduced to an equation of motion for the angle of the in-plane magnetization
ϑM , in which the inverse anisotropy constant acts as an effective moment of
inertia I = D−1 [Bode et al., 2012a; Meng et al., 2014; Arrachea and von
Oppen, 2015]. We show the explicit derivation of this equation of motion in a
short section, which can be skipped by readers uninterested in technical details.

2.5.1 Technical section: Derivation of the equation of mo-
tion for a nanomagnet with strong easy-plane anisotropy

We assume a nanomagnet with strong easy-plane anisotropy, with an associated
potential U = DM2

z /2 (D > 0). For simplicity, we use units in which the
magnetization M has units of angular momentum. The equation of motion
for the magnetization can be directly derived from the Heisenberg equation of
motion for each component of the magnetization [Bode et al., 2012a]

Ṁj = i [H,Mj ] (2.90)

= −D2 εzjk (MzMk +MkMz) , (2.91)

where we used that the components of M commute like angular momenta

[Mi,Mj ] = iεijkMk . (2.92)

Combining the components of M, this leads to the free precession

Ṁ = −DMz M× ez = −∂MU , (2.93)

where ∂M =
∑
i ei∂Mi .

The coupling of the nanomagnet to electronic degrees of freedom induces a
back-action on the magnetization, analogous to the adiabatic reaction forces for
translational degrees of freedom [Bode et al., 2011, 2012b; Thomas et al., 2012].
Assuming that the many-body Hamiltonian of the electronic system H depends
on M, we can repeat the derivation of the equation of motion above and obtain
a Landau-Lifshitz-Gilbert (LLG) equation

Ṁ = M× (−DMz ez + Bel + δB) . (2.94)
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The back-action of the electronic degrees of freedom on the slowly changing
magnetization takes the form

Bel = 〈−∂MH〉M(t) = B0 − γ (M) Ṁ , (2.95)

with an additional fluctuating Langevin torque δB, which is determined by the
fluctuations of −∂MH. Here, B0 yields a spintransfer torque and corresponds
to the Born-Oppenheimer part of the current induced forces on translational
degrees of freedom, while γ (M) accounts for the first order corrections in Ṁ
and yields a damping torque.
In the case of a strong easy-plane anisotropy, the magnetization lies almost in
plane and we can use cylindrical coordinates M ' Mρeρ + Mzez and Ṁ '
Mρϑ̇Meϑ + Ṁzez, where ϑM is the in-plane angle of the magnetization and
Mρ is the in-plane projection of M. eρ, eϑ and ez are the unit-vectors in
radial, polar and z-direction. The small z-component Mz determines whether
the magnetization precesses above or below the easy plane and controls the
direction of the precession. Hence, it has to be kept in the equation of motion
when it is multiplied with the large anisotropy constant D.
Due to the magnetization being almost in plane, the coupling to the helical edge
can be assumed to occur only via the angle of the in-plane magnetization ϑM
in Eq. (2.86). Hence the induced effective magnetic field Bel = 〈−∂MH〉M(t)
and also its fluctuations point in eϑ-direction. Thereby the coupling of M to
the helical edge leads to a torque Tez driving the system out of its equilibrium
position in the easy plane, a damping torque −γϑ̇Mez damping it back, and a
Langevin torque ξez [Meng et al., 2014; Arrachea and von Oppen, 2015]. We
can approximate the equation of motion in Eq. (2.94) as

Mρϑ̇Meϑ + Ṁzez 'MρDMzeϑ +
(
T − γϑ̇M + ξ

)
ez . (2.96)

Thus, we get for the ez-component

Ṁz =
(
T − γϑ̇M + ξ

)
(2.97)

and for the eϑ-component

ϑ̇M
D

= Mz . (2.98)

InsertingMz into the ez-component of the LLG Eq. (2.97) leads to the equation
of motion for the angle of the in-plane magnetization ϑM

ϑ̈M
D

= T − γϑ̇M + ξ . (2.99)

This analysis shows that for strong easy-plane anisotropy, the LLG equation for
the magnetization dynamics can be reduced to a Langevin equation for the angle
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of the in-plane magnetization, in which the inverse anisotropy strength D−1 acts
as an effective moment of inertia for the rotational degree of freedom ϑM . The
derivation of T , γ and the correlator of the fluctuating torque is analogous to
the calculation for the rotational degree of freedom in Sec. (2.4).

2.5.2 Reduced dynamics in the magnetic system

With this we can readily translate the results for the effective dynamics Sec. 2.4
to the magnetic case, replacing ϑ → ϑM and I → D−1 . Thus, in the case of
an infinite helical liquid, one obtains

ϑ̈clM (t)
D

= eV

2π −
1

2πK ϑ̇clM (t) + ξ(t) . (2.100)

The dissipation is enhanced by repulsive interactions, leading to a reduced
current and reduced motor conductance gM = Ke2/h compared to the non-
interacting case in Eq. (2.60). When assuming contact of the helical edge to
Fermi liquid reservoirs as done in Sec. 2.4.4, the plasmon back-scattering at
the transition between helical liquid and reservoirs leads to an effective equa-
tion of motion including memory in Eq. (2.78) and the reduced dissipation of a
non-interacting helical liquid at steady state.

2.6 Conclusion

We investigated the effect of electron-electron interactions on the working prin-
ciple of a quantum motor that is based on a 1d Thouless pump operating in
reverse. Repulsive interactions, which gain importance due to the reduced di-
mensionality of the system, were shown to enhance the energy gap opened by
the coupling to the periodic potential. Thereby interactions also increase the
robustness of the system against variations of the chemical potential and in-
crease the velocity range in which the system evolves adiabatically, allowing for
an operation of the motor at higher speed. Therefore electron-electron inter-
actions support the working principle of the motor. While for infinite LLs the
friction is enhanced by repulsive electron-electron interactions, the connection
to FL reservoirs and the resulting plasmon reflections lead to an effective equa-
tion of motion including memory and the decreased non-interacting dissipation
at steady velocity. By that the effective motor conductance at steady state
is determined by the attached non-interacting reservoirs analogous to the dc
conductance in an ideal LL. We showed that the model of a nanomagnet with
strong easy-plane anisotropy coupled to the helical edge of a QSH system can
be readily mapped to the Thouless motor, leading to a possibly experimentally
more feasible realization of the developed model.
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3 | Quantum thermodynam-
ics of the resonant level
model

In the aim of investigating the thermodynamic relations of electronic nanoma-
chines, we consider the simplest possible example for such a device. We show in
a thorough analysis how to derive the thermodynamic relations in the presence
of strong hybridization with the surrounding bath. This chapter is based on
Ref. [Bruch et al., 2016].
The simplest toy model for an electronic nanomachine is the driven resonant
level model, which describes a single spinless electronic level (say, of a quan-
tum dot) coupled to one or more leads described as free-electron metals. This
system has long been studied as the simplest model for conducting nanoscopic
junctions involving molecular or quantum dot bridges. When the resonant level
energy and/or the level-lead coupling are driven by an external agent such as
a gate voltage, it becomes a model for a quantum nanoengine, for which the
thermodynamic relations be investigated. An outstanding issue is to derive a
consistent formulation for the non-equilibrium thermodynamics of such strongly
coupled systems. This requires proper accounting of energy conservation as well
a proper definition of entropy that will lead to entropy production consistent
with the second law of thermodynamics. In particular, the entropy production
is the central element in deriving efficiencies for various energy-conversion pro-
cesses and characterizes the irreversibility of the process. It is thus an essential
aspect of the non-equilibrium thermodynamics of nanoscale devices [Esposito
et al., 2010; Deffner and Lutz, 2011]. Our goal is to formulate a consistent
non-equilibrium thermodynamic theory that will hold beyond the quasi-static
limit in which the system remains in equilibrium and strictly follows the driving
adiabatically.
Finding a consistent thermodynamic description of the driven resonant level
model is non-trivial.[Ludovico et al., 2014; Esposito et al., 2015b] First, the level-
lead coupling itself has to be accounted for. Second, the strong hybridization
of the dot level with the lead electronic states makes it necessary to develop an
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energy-resolved (or quantum) description of the dynamic processes, which goes
beyond the kinetic (master-equation) schemes and stochastic approaches that
are usually derived in the weak-coupling (or classical) limit.
Esposito et al.[Esposito et al., 2015b] pointed out these difficulties and, ad-
dressing the general case (i.e., including the driving in both the level energy
and the level-lead coupling), formulated the basic laws of thermodynamics in
a manner which includes the effects of irreversible driving through a modified
spectral density. While satisfying the laws of thermodynamics, this formulation
does not yield the known equilibrium forms of these thermodynamic functions
in the quasistatic limit, already in the wide band limit and for time-independent
level-lead coupling.
Here we present an alternative formulation of the non-equilibrium thermody-
namics of the driven resonant level model, albeit for the more restricted case
where the driving affects only the level energy. In developing a consistent ther-
modynamic description of this model, we are guided by several basic require-
ments: The thermodynamic functions must (i) reduce to the correct quasistatic
(equilibrium) limit, (ii) fulfill particle and energy conservation at each order,
(iii) predict a positive entropy production reflecting the irreversibility of the
transformations, and (iv) correctly connect to the forces experienced by the
driving (see Refs. [Bode et al., 2011] and [Bode et al., 2012b] for a general dis-
cussion and calculations of these forces). In departure from attempts to address
the thermodynamic functions of the dot itself, which are marred by the need
for a proper partitioning of the dot-lead coupling between the various subsys-
tems, [Ludovico et al., 2014; Esposito et al., 2015b,a] we focus on the changes
in the thermodynamic properties of the overall system (dot and lead) which
result from local changes in parameters (i.e., the energy of the resonant level
in the present context). This circumvents the need to address the contribution
of the system-bath coupling to the thermodynamic functions of the dot, and
instead defines the ’system’ as that part of the ’world’ which is influenced by
the dynamics of the externally driven resonant level. We will henceforth refer
to this part of the overall system as the extended resonant level.1

This chapter is organized as follows. In Sec. 3.1, we introduce the resonant level
model. Section 3.2 contains a derivation of the equilibrium thermodynamics of
the extended resonant level from the grand potential. Section 3.3 extends these
thermodynamic functions to finite driving speed. This is done on the basis
of non-equilibrium Green’s functions within the gradient expansion, which we
introduce in the technical section 3.3.1. To derive the non-equilibrium form of
the thermodynamic functions of interest, we start with their representations in
terms of quasistatic expectation values of operators, obtained in Sec. 3.2, and
expand these to linear order in the driving speed with the help of the developed
non-equilibrium Green’s functions. In Sec. 3.4, we show that for weak level-
lead coupling, our theory approaches the expected classical Master equation

1Note that, as we work in the grand canonical ensemble framework, the metal lead in
our ’world’ is assumed to be weakly open to an equilibrium bath of given temperature and
electronic chemical potential.
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Figure 3.1: The driven resonant level model under consideration: strong cou-
pling of the time-dependent single electronic level to a free electron metal leads
to broadening given by the escape rate Γ. If Γ is comparable to or larger than the
temperature T , which determines the width of the distribution function of the
electrons in the metal depicted on the right, an energy resolved (i.e. quantum)
description of the dynamic processes becomes necessary. We aim at describing
the thermodynamic changes when the level is moved linearly by an external
agent in this strong coupling regime.

limit. We conclude in Sec. 3.5. We have relegated most explicit calculations to
separated technical sections and a series of appendices in order not to break the
flow of the main arguments.

3.1 Model

We consider a single localized electronic level coupled to a free electron metal
at temperature T and chemical potential µ. The Hamiltonian of the full system
is

H = HD +HV +HB , (3.1)

where HD, HB , and HV denote the Hamiltonians of the dot,

HD = εd(t)d†d , (3.2)

of the metal lead,
HB =

∑
k

εkc
†
kck , (3.3)

and of the lead-dot coupling,

HV =
∑
k

(
Vkd

†ck + h.c.
)
. (3.4)
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Here, d annihilates an electron in the dot level, ck an electron with momentum
k and energy εk in the lead, and Vk denotes the coupling strength between dot
level and lead.
The dot energy εd (t) is driven by an external force. Our goal is to elucidate
the effect of this driving on the thermodynamic properties of the system. We
limit ourselves to the simplest situation of a single driven dot level, a single
macroscopic lead, and the wide band approximation. (Alternative coupling
models, see, e.g. Ref. [Ajisaka et al., 2012], can be considered.) Apart from
the driving, the lead is assumed to be in thermal equilibrium characterized by
a temperature T and an electronic chemical potential µ. In the wide band
approximation the retarded dot self-energy

ΣR(ε) = lim
η→0

∑
k

|Vk|2

ε− εk + iη
= − i2Γ (3.5)

can be taken as purely imaginary and energy independent for energies ε well
within the bandwidth of the lead and vanishes for energies outside the band
(see Appendix B.1). It is furthermore proportional to the decay rate of the dot
electrons into the lead Γ = 2π

∑
k |Vk|

2
δ (ε− εk). Consequently, the spectral

function associated with the dot’s electronic state is a Lorentzian of width Γ
centered at εd,

A (ε) = Γ
(ε− εd)2 + (Γ/2)2 . (3.6)

The broadening necessitates an energy resolved description of the electronic
response to changes in the level energy and is responsible for the quantum
nature of the problem. In Sec. 3.4 we show that our quantum results reduce to
their classical counterparts in the limit Γ � T . As already mentioned, strong
hybridization of dot and lead results in a reaction of the lead to changes in the
level energy. This makes the definition of thermodynamic quantities associated
with the driven subsystem alone a difficult task. We overcome this problem by
considering as the driven system the entire part of the ’world’ that is affected
by changes in the dot level, as shown in the next section.

3.2 Equilibrium Thermodynamics

When εd(t) moves infinitely slowly, the change induced by the driving is qua-
sistatic and reversible.2 The system stays in equilibrium at all times and fol-
lows the change in εd adiabatically. The desired thermodynamic functions can
then be calculated from equilibrium thermodynamics. We do this in the grand
canonical framework, where our ’full’ system (i.e., dot and lead) is coupled to
a reservoir that controls its temperature T = β−1 and chemical potential µ. In

2The velocity of the level is measured by ε̇d/Γ and in the strong coupling regime the
corrections to the equilibrium occupation f given in Eq. (3.46) need to be small at each
energy yielding the adiabaticity condition ε̇d/Γ � T .
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the free electron model, the grand partition function Ξ and the grand potential
Ω = −T ln Ξ can be evaluated exactly, yielding

Ωtot = −T
ˆ

dε

2πρ (ε) ln
(

1 + e−β(ε−µ)
)
, (3.7)

where the label ’tot’ stands for this being the grand potential of the total system.
We emphasize that the total system comprises everything that is described by
the Hamiltonians (3.2)-(3.4), namely the dot, the lead, and their coupling. In
Eq. (3.7), ρ (ε) is the density of states of the system as given by the trace of the
spectral function,

ρ (ε) =
∑
n

Ann(ε) . (3.8)

Here, Ann(ε) = −2 ImGRnn(ε) with the retarded Green’s function

GRnn′(t, t′) = −iΘ(t− t′)
〈{
cn(t), c†n′(t

′)
}〉

. (3.9)

The index n enumerates all single-particle states (lead and dot). For better
comparison with the recent work of Ref. [Esposito et al., 2015b], we present
the calculation of the density of states beyond the wide band limit in a small
technical interlude, which can be skipped by readers uninterested in technical
details.
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3.2.1 Technical interlude: density of states
In the following we calculate the part of the density of states that changes when
the dot level is moved, which in turn determines the relevant thermodynamic
quantities of the extended resonant level. This derivation is presented without
using the wide band limit to achieve better comparison with the recent work
of Ref. [Esposito et al., 2015b]. This density of states is given by the trace of
the spectral function ρ (ε) =

∑
n Ann(ε), where Ann(ε) = −2 ImGRnn(ε). In

the basis of uncoupled dot (d) and lead free electron states (k) this gives

ρ (ε) = Add(ε) +
∑
k

Akk(ε) . (3.10)

The spectral function of the dot electrons in the presence of the coupling takes
the well known form

Add(ε) = −2 ImΣR(ε)
(ε− εd − ReΣR(ε))2 + ( ImΣR(ε))2 (3.11)

where ΣR(ε) =
∑
k |Vk|

2
gRk (ε) is the retarded self energy of the dot state due

to its coupling to the leads and gRk (ε) is the retarded Green’s function of a
free lead electron in state k. Due to the strong coupling of the dot to the lead
electrons, also the density of states of the surrounding responds upon changes
in the dot level. To calculate Akk we start from the Dyson equation for GRkk(ε)

GRkk(ε) = gRk (ε) +
(
gRk (ε)

)2 |Vk|2GRdd(ε) . (3.12)

Summing over k and using ΣR(ε) =
∑
k |Vk|

2
gRk (ε) we can write the second

term on the right of Eq. (3.12) in terms of the retarded self energy, leading to
the total density of states

ρ (ε) = Add(ε)
(

1− d

dε
ReΣR(ε)

)
+ 2ReGRdd(ε)

d

dε
ImΣR(ε) + ν(ε) , (3.13)

where ν(ε) = −2
∑
k Im gRk (ε) is the density of states of the free metal.

The total density of states

ρ (ε) =Add(ε)
(

1− d

dε
ReΣR(ε)

)
+ 2ReGRdd(ε)

d

dε
ImΣR(ε) + ν(ε) , (3.14)

determines the grand potential and its εd-dependent part arises from the first
three of the four terms in Eq. (3.14). In the wide band limit, the second and third
terms on the right hand side of Eq. (3.14) vanish, and the εd-dependent part
of the density of states ρεd is given by the spectral function A(ε), Eq. (3.6). In
the general (non-wide-band) case, the εd-dependent part of the density of states
is similar to the modified spectral function proposed in Ref. [Esposito et al.,
2015b], with the difference that the energy derivative in the third term is taken
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of the imaginary part of the self energy, while Esposito et al. have a contribution
−2 ImΣR∂εReGRdd(ε) to their modified spectral function. This leads to different
thermodynamic functions calculated with the help of the density of states, also
in the wide band limit. We refer to the εd-dependent part of the system as the
extended resonant level, since it accounts for the change of the surrounding in
response to changing the level energy.
We now use the εd-dependent part of the density of states ρεd (ε) = A(ε) to
calculate the εd-dependent contribution to the grand potential Ω, which in turn
yields the corresponding εd-dependent contributions to all the thermodynamic
functions of the system. In particular, we calculate the entropy S(0), the inter-
nal energy E(0), and the particle number N (0) of the extended resonant level in
equilibrium, i.e., for a frozen dot level, and show how they evolve when the dot
level is changed quasistatically by an external force. We use superscripts on the
thermodynamic functions to indicate to which order in the level velocity ε̇d they
are calculated. Furthermore we show how these quantities can be represented,
in the model considered, as quasistatic expectation values of operators. This
observation provides a convenient route for extending the quasistatic thermo-
dynamic quantities to non-equilibrium, i.e., to situations where the dot level is
moved at finite speed (see Sec. 3.3).
In the following, the notation Ω, S(0), E(0), N (0) and the corresponding names
grand potential, entropy, energy, and particle number always refer to the εd-
dependent parts of these functions. The grand potential takes the form

Ω = −T
ˆ

dε

2πA ln
(

1 + e−β(ε−µ)
)
. (3.15)

Here and in the following, we omit energy arguments for better readability. The
particle number, entropy and energy are given by

N (0) = −∂Ω
∂µ

=
ˆ

dε

2πAf , (3.16)

S(0) = −∂Ω
∂T

=
ˆ

dε

2πA
[
β (ε− µ) f + ln

(
1 + e−β(ε−µ)

)]
=
ˆ

dε

2πA [−f ln f − (1− f) ln (1− f)] , (3.17)

and
E(0) = Ω + µN (0) + TS(0) =

ˆ
dε

2π εAf , (3.18)

where f is the Fermi-Dirac distribution. In the wide band limit, the grand po-
tential as well as the internal energy depend on the bandwidth D and diverge in
the limit D →∞. However, this only affects the reference point from which the
grand potential and the internal energy are measured. Here, we are interested
in the thermodynamic relations between changes in these quantities as the dot
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level εd varies. These changes converge to bandwidth-independent values in the
limit of an infinite bandwidth (see the detailed discussion in App. B.1).
Equation (3.16) implies that, in the wide band limit, the εd-dependent part of
the equilibrium particle number N (0) is given by the quasistatic dot occupation
N (0) =

〈
d†(t)d(t)

〉(0), namely the equilibrium occupation for the instantaneous
value of εd . The contribution to the energy, Eq. (3.18), explicitly shows that
the coupling to the environment affects the energy cost associated with changes
of the bare dot energy εd, as it cannot be represented as an expectation value
of HD only. Equation (3.17) is the energy resolved version of the Gibbs entropy
of a single fermionic level with equilibrium occupation probability f , weighted
by the spectral function of the dot electrons. For T → 0, the term in square
brackets in Eq. (3.17) for S(0) tends to zero for ε 6= µ and to ln 2 for ε = µ,
reflecting the degeneracy at the Fermi edge. Integrating over energy leads to a
vanishing equilibrium entropy S(0) of the extended resonant level for T → 0.
It is important to note that the equilibrium energy of the extended resonant
level, namely the εd-dependent part of the total (dot plus lead) internal en-
ergy, can be expressed as a sum of contributions from the different terms in
the Hamiltonian (3.1). In particular, as shown in App. B.3, the part of the
internal energy E(0) given by Eq. (3.18) can be represented by the quasistatic
expectation value E(0) = 〈HD〉(0) + 1

2 〈HV 〉(0). This appears to indicate that,
in the model considered, half the energy associated with the coupling HV can
be attributed to the extended resonant level. This interpretation, however, is
an oversimplification as may be realized from the following: Calculating the εd-
dependent part of the averages of HD, HV , and HB from the grand potential,
Eq. (3.15), we obtain 〈HB〉εd = −

´
dε
2π (ε− εd) Af , 〈HV 〉εd = 2

´
dε
2π (ε−εd)Af ,

and 〈HD〉εd = εd
´
dε
2πAf (see App. B.3). It is interesting to note that not only

〈HV 〉 but also 〈HB〉 has an εd-dependent part and together with 〈HD〉 they
add up to E(0), Eq. (3.18). In fact, the contributions of HV and HB add to
〈HB〉εd + 〈HV 〉εd = 1

2 〈HV 〉(0), which shows the intricate physical origin of the
symmetric splitting.
An apparent symmetric splitting of the coupling energy in the wide band limit of
the resonant level model between an effective driven system HD + 1

2HV and an
effective bath HB+ 1

2HV was also found in the case of periodic driving.[Ludovico
et al., 2014] It should be emphasized that this separation, namely assigning parts
of the calculated thermodynamic functions to the different subsystems is not
needed in the present analysis of the equilibrium thermodynamics. We allude
to it both because it has been considered in recent discussions [Ludovico et al.,
2014] and because it can help building intuition about the system behavior.
Furthermore it serves as a convenient starting point for the Green’s function
based calculation of the internal energy when the level moves at finite velocity.
Next, we consider the evolution of the thermodynamic functions when changing
the dot level quasistatically. In particular, we examine the different contribu-
tions to the reversible energy change dE(0), the reversible work dW (0), the heat
dQ(0), and the chemical work µdN (0). These satisfy energy conservation as
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expressed by the first law,

dE(0) = dW (0) + dQ(0) + µdN (0) , (3.19)

when applied to the extended resonant level. Note that this equation relates
properties of the full system (dot + lead). But because the individual terms
result from changes in the bare dot energy εd, they are often referred to as
changes in the corresponding dot property.
The reversible work is given by the change in the grand potential upon changing
the level energy, dW (0) = dεd ∂εdΩ. Expressed as an equation for the power
Ẇ (1), this takes the form

Ẇ (1) = ε̇dN
(0) (εd) = ε̇d

〈
d†(t)d(t)

〉(0)
. (3.20)

It is frequently the case that the time dependence of εd (t) reflects the dynamics
of some external coordinate, εd (t) = Mxd (t) with a coupling parameter M.
The quantity F = −M

〈
d†(t)d(t)

〉(0) is then the quasistatic force needed to
change the level energy. General expressions for such forces were obtained in
the context of adiabatic reaction forces.[Bode et al., 2011, 2012b]
The quasistatic heat leaving or entering the system is calculated from dQ(0) =
Tdεd ∂εdS

(0), with S(0) given by Eq. (3.17). By noting that A(ε) depends only
on (ε− εd) and integrating by parts, the corresponding quasistatic heat current
takes the form

Q̇(1) = T ε̇d
∂S(0)

∂εd
= ε̇d

ˆ
dε

2π (ε− µ)A∂εf. (3.21)

With N (0) in Eq. (3.16), the quasistatic particle current Ṅ (1) = ε̇d∂εdN
(0) is

given by
Ṅ (1) = ε̇d

ˆ
dε

2πA∂εf . (3.22)

The quasistatic change in the system’s energy associated with the change in εd
is given by

Ė(1) = ε̇d
∂E(0)

∂εd
= ε̇d

ˆ
dε

2π ε
∂A

∂εd
f (3.23)

and is easily seen to indeed satisfy the first law, Eq. (3.19), since Ė(1) = Ẇ (1) +
Q̇(1)+µ Ṅ (1). Note that the quasistatic power Ẇ (1), the currents Ṅ (1) and Q̇(1),
and the rate of energy change Ė(1) are linear in the driving speed, as indicated
by the superscript.
We end our discussion of quasistatic (equilibrium) processes with several com-
ments:
(a) The integrand of Ṅ (1) can be understood as an energy resolved particle
current J (1)(ε) = ε̇dA∂εf and the right hand side of Eq. (3.21) can be expressed
in terms of the same current

Q̇(1) =
ˆ

dε

2πJ
(1)(ε) (ε− µ) . (3.24)
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Consequently, J (1)
Q (ε) = J (1) (ε) (ε− µ) can be identified as the energy resolved

heat current, providing physical insight into the nature of this current. It is
important to note that identifying the integrand of an energy integral such as
the particle current Ṅ (1) in Eq. (3.22) as an energy resolved current is open
to ambiguity. Other expressions could also be chosen following integration by
parts. Considering the particle and heat currents together serves to resolve this
ambiguity.

(b) For quasistatic processes, we could calculate the particle, energy, and heat
currents without assigning these variables to expectation values of the dot op-
erators themselves. Especially the quasistatic heat current, Eq. (3.21), was
obtained without relying on any specific forms for the energetic properties of
the dot itself. In particular the symmetric splitting of the coupling Hamiltonian
between dot and lead, discussed above, was not used. It can, however, also be
calculated from expectation values using the symmetric splitting into effective
bath and system introduced above. Indeed, we show in App. B.4 that to lowest
order in the level speed, the adiabatic heat current Q̇(1) given in Eq. (3.21) is
reproduced by the change of the energy of the effective bath HB + 1

2HV minus
the chemical contribution of the particle flow,

Q̇(1) = − d

dt

〈
HB + 1

2HV

〉(0)
− µ d

dt
N (0) . (3.25)

Eq. (3.25) confirms, for the present model and the wide band limit, the con-
sistency of the symmetric splitting of the coupling Hamiltonian HV into an
effective bath and an effective driven system. This will serve as a convenient
starting point for the calculation of the heat current at finite level speed. Note,
however, that for more general models (e.g., beyond the wide band approxima-
tion and with variations in the level-lead coupling), the possibility to express
the change in thermodynamic variables in terms of expectation values of ’system
operators’ is an open problem and subject to several difficulties.[Esposito et al.,
2015a]

(c) In the quasistatic process, the entropy change Ṡ(1) = ε̇d ∂εdS
(0) is given

by the corresponding heat current, Q̇(1) = T Ṡ(1), indicating that no entropy
is produced. This is not the case when the level moves at finite speed and
dissipation sets in, as discussed in the next section.

We have described the equilibrium thermodynamics of the resonant level model
and calculated the reversible change of the thermodynamic quantities in the
wide band limit. We represented all thermodynamic quantities of the extended
resonant level as quasistatic expectation values of operators. Next we extend
our discussion to the non-adiabatic regime and consider the effect of moving the
dot level energy at a small, but finite speed.
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3.3 Non-equilibrium Thermodynamics

In this section, we consider the changes in thermodynamic quantities when the
dot level moves at finite speed. For this non-equilibrium process we cannot use
the equilibrium grand potential as a starting point. Instead, we extend our
quasistatic results to finite speed processes by expanding the expectation val-
ues of the operators associated with the thermodynamic variables in powers of
the level velocity, using the non-equilibrium Green’s function approach together
with the gradient expansion in the Wigner representation. Our theory should
follow three guidelines: First, all non-equilibrium quantities should converge to
their equilibrium forms, obtained in the previous section, in the limit of vanish-
ing speed. Second, higher order corrections should satisfy conservation of energy
and particle number at the corresponding order. Third, the non-equilibrium en-
tropy of the extended resonant level should lead to positive entropy production
characterizing the irreversibility of the process. Note that the corrections ob-
tained below are of different orders in the level speed. The corrections to the
equilibrium values of the thermodynamic variables themselves are linear in ε̇d,
while the correction to their fluxes are quadratic. The corresponding order is
again indicated by the superscript assigned to the different variables. We also
assume a linear motion of the dot level, ε̈d = 0.
We briefly introduce the non-equilibrium Green’s functions formalism under-
lying this chapter in the following technical section, which can be skipped by
readers either familiar with the topic or uninterested in technical details.

3.3.1 Technical section: Non-equilibrium Green’s func-
tions

This section gives a brief introduction into the non-equilibrium Green’s functions
formalism to provide the technical foundation underlying the present chapter.
Since a detailed derivation of all necessary quantities is beyond the scope of this
work, we refer the interested reader to the book by [Haug and Jauho, 1996],
from which we benefited a lot throughout our work.
We want to describe the time evolution of the electronic system under a time-
dependent drive: a genuine non-equilibrium problem. The central objects in this
effort are electronic expectation values of the kind 〈d†(t)d(t′)〉, where d is an
electronic annihilation operator (e.g. of the single level). The goal is to capture
the time evolution of these expectation values under the time-dependent drive
(here the gate voltage) and a perturbation (here the coupling to the surrounding
metallic bath).
In the effort of calculating the expectation values, one usually constructs a
time-evolution to refer to the state of the system in the distant past t = −∞
in absence of the perturbation, which is assumed to be known. From there the
perturbation is adiabatically switched on, which forms the technical basis to cal-
culate the desired expectation values in a perturbation theory. In equilibrium,
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Figure 3.2: Time contour for the time evolution in the contour ordered non-
equilibrium Green’s function.

the only time dependence is the one of the adiabatic switch-on and the per-
turbation theory can be founded on the assumption that the system goes back
to the initial state, when the perturbation is adiabatically turned off again. In
contrast, in non-equilibrium systems this assumption is not satisfied, since there
is an actual time-dependence additionally to the adiabatic switch-on of the per-
turbation. This necessitates the introduction of a more complex time-contour
along which we consider the evolution of system from the distant past, where
the perturbation was absent, to the present, where both time-dependent drive
and perturbation act on the system, and back to the distant past again where
the perturbation is switched off. The central object for this theory is the contour
ordered Green’s function

G(t, t′) = −i 〈TC
[
d(t)d†(t′)

]
〉 (3.26)

describing the expectation value calculated with the time evolution along the
described contour, where TC is the time ordering operator on the contour (that
ensures that the operator with times that are passed first on the contour appears
to the right). Depending whether t and t′ are on the forward (C1) or backward
(C2) part of the contour, this Green’s function contains four different functions
for times along a single time axis

G(t, t′) =


−i 〈T

[
d(t)d†(t′)

]
〉 t, t′ ∈ C1

i 〈d†(t′)d(t)〉 = G<(t, t′) t ∈ C2, t
′ ∈ C1

−i 〈d(t)d†(t′)〉 = G>(t, t′) t ∈ C1, t
′ ∈ C2

−i 〈T̃
[
d(t)d†(t′)

]
〉 t, t′ ∈ C2

, (3.27)

where T is the normal time-ordering operator and T̃ is the anti-time ordering
operator. These Green’s functions can be combined to build the retarded and
advanced Green’s function, which will be needed for our later analysis

GR(t, t′) = Θ(t− t′)
[
G>(t, t′)−G<(t, t′)

]
= −iΘ(t− t′)

〈{
d(t), d†(t′)

}〉
(3.28)

GA(t, t′) = Θ(t′ − t)
[
G<(t, t′)−G>(t, t′)

]
= iΘ(t′ − t)

〈{
d(t), d†(t′)

}〉
,

(3.29)

where {.., ..} denotes the anti-commutator. Our central object of interest in the
following will be the lesser Green’s function G< that determines the occupation
of the single level when evaluated at equal times.
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The central appeal of introducing the contour ordered Green’s function is that
its perturbation theory takes the same form as for equilibrium Green’s functions.
One can thus capture the effect of the perturbation in terms of a self energy Σ
in a Dyson equation for the contour ordered Green’s function

G(t, t′) = g(t, t′) +
ˆ
C

dt1

ˆ
C

dt2g(t, t1)Σ(t1, t2)G(t2, t′) , (3.30)

where g is the Green’s function in absence of the perturbation and all time
integrals occur along the contour. All that is left to do is to relate the contour
ordered Green’s function to our quantity of interest: the lesser component, which
is needed to calculate system properties such as occupation and energy.
The rules of analytical continuation from the contour to the desired lesser com-
ponent are also known as Langreth rule, and take the form

C =
ˆ
C

AB → C< =
ˆ
t

[
ARB< +A<BA

]
, (3.31)

D =
ˆ
C

ABC → D< =
ˆ
t

[
ARBRC< +ARB<CA +A<BACA

]
, (3.32)

where we omitted the explicit time labels and convolutions along the contour
(
´
C
) or the real axis (

´
t
) are implicit. With this rather technical introduction we

build the foundation to calculate the evolution of the desired system properties
under time-dependent drives.
We obtain the desired lesser component from the Dyson equation Eq. 3.30 with
the rules of analytical continuation 3.32

G< = g< + gRΣRG< + gRΣ<GA + g<ΣAGA (3.33)
= g<

(
1 + ΣAGA

)
+
(
gR
)

Σ<GA + gRΣRG< . (3.34)

Reinserting G< yields

G< =
(
1 + gRΣR

)
g<
(
1 + ΣAGA

)
+
(
gR + gRΣRgR

)
Σ<GA + gRΣRG< .

(3.35)
With the Dyson equation for the retarded component

GR = gR + gRΣRGR , (3.36)

we can see that the first bracket resembles
(
1 +GRΣR

)
upon further iteration,

while the term in the third bracket resembles GR. This yields upon repeated
iteration

G< = [1 +GrΣr] g< [1 + ΣaGa] +GrΣ<Ga . (3.37)
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For non-interacting electrons we can write
[
1 +GRΣR

]
g< = GR

(
gR
)−1

g< = 0
and thereby neglect the initial occupation of the dot at t = −∞ and the transient
dynamics induced by the adiabatic switch on of the coupling between level and
metallic bath. This yields the desired form of the lesser component [Jauho et al.,
1994]

G<(t, t′) =
ˆ
dt1dt2G

R(t, t1)Σ< (t1, t2)GA(t2, t′) , (3.38)

where Σ< is the lesser component of the self energy.
Now we have everything at hand to evaluate the necessary elements of the non-
equilibrium Green’s functions for the driven resonant level model. We utilize the
gradient expansion to take advantage of the model assumption that the driving
speed is slow relative to the electronic relaxation rates.
We start by deriving the form of the retarded dot Green’s function at finite
speed. The equation of motion for the retarded Green’s function can be written
in the form

δ(t− t′) =
ˆ
dt1G

R(t, t1)
[
i∂t1δ(t1 − t′)− εd(t1)δ(t1 − t′)− ΣR(t1 − t′)

]
,

(3.39)
with the retarded self energy ΣR(t, t′) =

∑
k |Vk|

2
gRk (t, t′) induced by the cou-

pling to the electrons in the lead. To perform an adiabatic expansion it is
beneficial to switch to a description in terms of Wigner transforms

G (ε, t) =
ˆ
dτ G (t1, t2) eiετ , (3.40)

where t = t1+t2
2 and τ = t1− t2 and the corresponding inverse transform. Using

that the Wigner transform of a convolution can be written as
ˆ
C (t1, t3)D (t3, t2) dt3 =

ˆ
dε

2π e
−iετC (ε, t) ∗D (ε, t) (3.41)

with C (ε, t) ∗ D (ε, t) = C (ε, t) exp
[
i
2

(←
∂ ε ~∂t−

←
∂ t ~∂ε

)]
D (ε, t), we take the

Wigner transform of Eq. (3.39) and expand the exponential up to first order to
obtain

1 = GR(ε, t)
[
ε− εd(t) + 1

2 iΓ
]

+ i

2
[
∂εG

R(ε, t) [−ε̇d(t)]− ∂tGR(ε, t)
]
,(3.42)

where we used the wide band limit ΣR = − 1
2 iΓ. Thus the retarded Green’s

function of the dot electrons is, up to first order in the velocity, given by the
frozen form GR(ε, t) = (ε − εd(t) + iΓ

2 )−1. An analogous calculation gives for
the advanced Green’s function GA(t, t′) = iΘ(t′− t)

〈{
d(t), d†(t′)

}〉
the Wigner

transform GA(ε, t) = (ε− εd(t)− iΓ
2 )−1.

Now we can use the form of the lesser Green’s function derived above in Eq.
(3.38), take again the Wigner transform of this convolution and expand it up
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to first order in the velocity. We obtain at the different orders

G<(0)(ε, t) = GRΣ<GA , (3.43)

G<(1)(ε, t) = i

2
(
∂εG

R∂tΣ< − ∂tGR∂εΣ<
)
GA

+ i

2
[
∂ε
(
GRΣ<

)
∂tG

A − ∂t
(
GRΣ<

)
∂εG

A
]
. (3.44)

Using ∂tGR/A = −ε̇d∂εGR/A, Σ<(ε) = if (ε) Γ and ∂εGRGA −GR∂εGA = iA
2

Γ
this yields

G<(ε, t) = iA f − i ε̇d2 ∂εf A
2 . (3.45)

3.3.2 Induced non-equilibrium thermodynamics

We use the results of the Green’s functions calculation above to explore the
induced non-equilibrium effects in the thermodynamic functions of the resonant
level.
Particle number. We extend the calculation of the particle number of the reso-
nant level to finite speed by expanding the lesser Green’s function

〈
d†(t)d(t)

〉
=

−iG<dd(t, t) to linear order in the level speed, as shown above. Alternatively, the
effect of the level speed on the dot occupation can be expressed through a non-
equilibrium distribution function φ (as done in Ref. [Esposito et al., 2015b]),
which is related to the Wigner transform of the lesser Green’s function via
G< = iAφ. The equation of motion for φ and its solution are given in App. B.2,
and the final result for the non-equilibrium distribution φ is

φ = f − ε̇d
2 ∂εfA . (3.46)

Both approaches are equivalent and lead to G< = iA
(
f − ε̇d

2 ∂εf A
)
and there-

fore to a correction to the particle number linear in the velocity,

N (1) = − ε̇d2

ˆ
dε

2π∂εf A
2 . (3.47)

This correction in the particle number accounts for the fact that the dot popu-
lation lags behind the equilibrium value since electrons are not exchanged fast
enough with the leads. The time derivative of Eq. (3.47) now yields the correc-
tion Ṅ (2) = d

dtN
(1) to the quasistatic current, Ṅ (1), that takes the form

Ṅ (2) = − ε̇
2
d

2

ˆ
dε

2π∂
2
εf A

2 . (3.48)

One might be tempted to identify the integrand of Ṅ (2) as the second order
correction to the energy resolved particle current. However, this cannot be done
unambiguously because other expressions can be obtained after integration by
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parts. As before, more information can be obtained by considering the particle
and heat currents together as further discussed below.
Work. The quasistatic work per unit time Ẇ (1) = ε̇dN

(0) can be extended to
finite level speed with the correction to the dot occupation N (1), Eq. (3.47).
With this we readily obtain the extra power that the external driving has to
provide for moving the level at finite speed by multiplying N (1), Eq. (3.47), by
the level speed

Ẇ (2) = − ε̇
2
d

2

ˆ
dε

2π∂εf A
2 . (3.49)

Ẇ (2) thus corresponds to the power dissipated by driving the system at finite
speed. When considering the time dependence of εd (t) as reflecting the dynam-
ics of some external coordinate, εd (t) = Mxd (t), the dissipated power is caused
by a friction force acting on the external coordinate Ffric = −MN (1) = −γẋd.
This yields the friction coefficient

γ = −M
2

2

ˆ
dε

2π∂εf A
2 . (3.50)

The same expression for the friction in the resonant level model was found in
Ref. [Bode et al., 2012b].
Internal energy. We showed above that the equilibrium internal energy of the
extended resonant level can be represented as the quasistatic expectation value
E(0) = 〈HD〉(0) + 1

2 〈HV 〉(0). Expanding the expectation values to first order in
the velocity (see App. B.3), we obtain the first order correction to the internal
energy,

E(1) = −ε̇d2

ˆ
dε

2π ε∂εfA
2 . (3.51)

Heat flux. Taking the next order correction to the expression of the quasistatic
heat flux, Eq. (3.25), in terms of the energy change in the effective bath and the
chemical contribution (shown in App. B.4) gives the correction to the heat flux
that originates from moving the level at finite speed,

Q̇(2) = − ε̇
2
d

2

ˆ
dε

2π (ε− µ) ∂2
εf A

2 . (3.52)

As in the case of the quasistatic heat current, the integrand of the correction Q̇(2)

can be understood as heat (ε− µ) carried into the lead by the energy resolved
particle current J (2)(ε), Q̇(2) =

´
dε
2π (ε−µ)J (2)(ε). The energy resolved particle

current J (2)(ε) in turn is the properly chosen integrand in Ṅ (2) =
´
dε
2πJ

(2)(ε)
as given by Eq. (3.48). This unambiguously defines the second order correction
to the energy resolved particle current as J (2) = − ε̇

2
d

2 ∂
2
εf A

2.
Consistency checks. The consistency of our thermodynamic description should
be examined by its behavior in the quasistatic limit, by satisfying particle conser-
vation, and by its adherence to the first law (energy conservation). Furthermore
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the entropy, discussed below, should give a consistent second law. Indeed, our
expressions go over to the equilibrium (quasistatic) limit by construction, and
taking the time derivative of the first order correction to the internal energy
E(1), Eq. (3.51), shows (see App. B.3) that also the expressions for the first
order corrections of particle number, internal energy, work, and heat satisfy the
first law Ė(2) = Ẇ (2) + Q̇(2) + µ Ṅ (2).
As an additional check, we show in the following that the corrections to work,
heat, and particle number exhibit the correct behavior under transformations
between equilibrium points, corresponding to a path-independent change of in-
ternal energy and particle number. To this end, we consider a path between
two points that essentially represent a system in equilibrium, namely the dot
level εd moving from a position far below µ, where it is completely occupied, at
time t1 to a position far above µ, where it is completely empty, at time t2. The
change of the particle number associated with this transformation is thus path-
independent, requiring that the non-equilibrium correction Ṅ (2) in Eq. (3.48)
vanishes when integrated along this path

∆N (2) =
ˆ t2

t1

dtṄ (2) = 0 . (3.53)

We show in App. B.5 that this is indeed the case. Furthermore, also the change
in internal energy ∆E cannot depend on the path and must therefore be given by
its adiabatic value, i.e., as an integral over time of Ė(1) in Eq. (3.23). This must
hold although the instantaneous value of E = E(0) +E(1) is velocity dependent,
cp., Eq. (3.51). Thus, the extra work exerted for moving the level along this
path at finite speed needs to appear as additional heat given to the leads,

ˆ t2

t1

dtẆ (2) = −
ˆ t2

t1

dtQ̇(2) . (3.54)

We show in App. B.6 that this equality is indeed satisfied by the second order
quantities Eqs. (3.49) and (3.52).
Entropy. In addition to the consistency checks discussed above, the non-equilibrium
correction to the entropy should comply with the second law of thermodynamics.
A consideration of this issue requires a proper definition of the non-equilibrium
entropy. In Sec. 3.2 we showed that the equilibrium entropy S0 of the extended
resonant level (cp., Eq. (3.17)) is an integral over the energy resolved version
of the Gibbs entropy of a single fermionic level with equilibrium occupation
probability f . In order to extend this result to finite level speeds, we follow
Esposito et al.,[Esposito et al., 2015b] and use Eq. (3.17) as an ansatz for the
non-equilibrium entropy after replacing the equilibrium distribution f by its
non-equilibrium counterpart φ given in Eq. (3.46),

S =
ˆ

dε

2πA (−φ lnφ− [1− φ] ln [1− φ]) . (3.55)

Note that in contrast to Esposito et al.,[Esposito et al., 2015b] we define the non-
equilibrium entropy with the standard broadened spectral function A (ε) of the
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dot electrons. Consequently, our form of the non-equilibrium entropy smoothly
connects to the equilibrium limit S(0) given in Eq. (3.17) above. Expanding Eq.
(3.55) up to first order in ε̇d leads to the form S = S(0) +S(1), where S(0) is the
equilibrium entropy Eq. (3.17) and S(1) is the first order correction,

S(1) = −ε̇d2

ˆ
dε

2π

(
ε− µ
T

)
∂εfA

2 . (3.56)

From Eq. (3.56) the correction to the entropy evolution (quadratic in the veloc-
ity) is given by

Ṡ(2) = ε̇2
d

2T

ˆ
dε

2π (ε− µ) ∂εf ∂εA2 . (3.57)

While the change of the equilibrium entropy Ṡ0 = ε̇d ∂εdS0 is solely given by
the corresponding heat current, Q̇0 = T Ṡ0, the second order correction dS

dt

(2)

cannot be written only in terms of the heat current Q̇(2)/T in Eq. (3.52). We
identify the remaining entropy change as the entropy production Ṡ(2),

dS

dt

(2)
= Q̇

T

(2)

+ Ṡ(2) . (3.58)

The entropy production can be related to the dissipated power, Eq. (3.49),

Ṡ(2) = Ẇ (2)

T
≥ 0 . (3.59)

Therefore the non-equilibrium entropy defined above obeys the second law of
thermodynamics and the entropy production vanishes for quasistatic driving.
Furthermore, the entropy production calculated for finite driving speeds is prop-
erly related to the dissipated power. We have thus found, for this model, a con-
sistent extension of quantum thermodynamics to this non-equilibrium situation.

3.4 Classical limit

Here we show that the energy resolved thermodynamic quantities obtained
above reduce to their classical equivalents in the limit Γ� T . Thus, the quan-
tum thermodynamics framework developed here is consistent with the familiar
classical limit in which the dot level is well described by a Pauli master equation.
The latter takes the form of a rate equation for the occupation probability of
the resonant level p,

dp

dt
= −Γ [1− f(εd)] p+ Γf(εd) [1− p] . (3.60)

We first consider the thermodynamic implications of this dynamics. To this end,
we solve Eq. (3.60) to linear order in the velocity in terms of a static solution
f(εd) plus a velocity dependent correction,

p = N (0) +N (1) = f(εd)−
ε̇df
′(εd)
Γ , (3.61)

52



with f ′(εd) = ∂εf |εd . As in the strongly coupled quantum system considered
above, the power that the external driving needs to provide is set by the dot
occupation Ẇ = ε̇dN . Eq. (3.61) then directly yields the power up to second
order as Ẇ (1) + Ẇ (2) = ε̇d p. In this weak coupling case, the εd-dependent
part of the thermodynamic properties of the overall system are well represented
by those that are usually assigned to the dot itself. This leads directly to the
classical internal energy, E = εdN , up to first order in the velocity

E(0) + E(1) = εd

(
f(εd)−

ε̇df
′(εd)
Γ

)
, (3.62)

and to the heat flux between the dot and its environment, Q̇ = (εd − µ) Ṅ , up
to second order in the velocity

Q̇(1) + Q̇(2) = (εd − µ)
(
ε̇df
′ (εd)−

ε̇2
d

Γ f ′′(εd)
)
. (3.63)

Finally, the εd-dependent part of the entropy in this weak coupling limit is again
given by the dot entropy itself. Assuming the latter is given by the Gibbs form

S = − (p ln p+ (1− p) ln (1− p)) , (3.64)

one obtains

Ṡ(1) = Q̇(1)

T
and Ṡ(2) = Q̇(2)

T
+ Ẇ (2)

T
, (3.65)

where Ẇ (2) = − ε̇
2
d

Γ f
′(εd).

This weak coupling thermodynamics can be directly reproduced from the ther-
modynamic quantities of the resonant level model derived in Secs. 3.2 and 3.3
by taking the limit Γ � T . In this limit, the spectral function A becomes
strongly peaked around εd so that we can neglect the variation of the Fermi dis-
tribution within the broadened level and, in case the thermodynamic function
contains the spectral function A to the first power, replace it by a δ-function,
A→ δ(ε− εd). Expressions that contain higher powers of A have to be handled
more carefully by performing the integral over the spectral functions explicitly.
Thus, for example, Eq. (3.52) leads to

Q̇(2) = −
ˆ

dε

2π (ε− µ) ε̇
2
d

2 ∂
2
εf A

2

→ −(εd − µ) ε̇
2
d

2 f
′′(εd, µ) 2

Γ , (3.66)

which is identical to the quadratic contribution in Eq. (3.63). It is readily
realized that the weak coupling limit of all the thermodynamic quantities in
Secs. 3.2 and 3.3 are identical to the expressions Eqs. (3.61)-(3.65) derived form
the rate equation (3.60).
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3.5 Conclusion

We have developed a consistent non-equilibrium quantum thermodynamics of
the driven resonant level model where the effects of the driving are evaluated
within the framework of non-equilibrium Green’s functions and the gradient
expansion. Our construction is consistent with the first and second laws of
thermodynamics and with particle conservation. The problem of taking proper
account of the strong system-bath coupling was circumvented by considering
the extended resonant level – the part of the overall system, or the ’world’,
that is affected by local changes in the level energy. The method developed
here of representing these equilibrium thermodynamic functions by quasistatic
expectation values of operators and subsequently extending the model to finite
level speed with the help of the non-equilibrium Green’s functions formalism can
provide a guideline for future thermodynamic treatments of strongly coupled
quantum systems. It should be kept in mind, however, that our model was
restricted to a particular kind of driving – a time-dependent level energy – and
our calculations were done in the wide band limit. Extending our treatment
to more general situations may require further theoretical considerations, with
some difficulties already pointed out in Ref. [Esposito et al., 2015a]. Another
interesting problem is the inclusion of interactions of the dot electron with the
electrons in the lead. Some thermodynamic properties have been been studied
including these interactions, in particular the specific heat and susceptibility in
the context of Kondo systems [Tsvelick and Wiegmann, 1983] and the ohmic
two-state system.[Nghiem et al., 2016; Weiss, 2008] However, an inclusion of
interactions into the full thermodynamic description of the driven level remains
an open issue.
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4 | The extended resonant
level model:
Energy fluctuations and
behavior beyond the wide
band limit

In this chapter, we study the limitations of the approach developed above in
Chapter 3. As discussed above, an interesting observation about this model
is that when the metal is described in the wide band approximation, the εd-
dependent part of the energy can be identified as the energy of an effective
subsystem characterized by the Hamiltonian

Heff = HD + 1
2HV . (4.1)

This observation was made for the average of the internal energy. It leaves open
the question whether Heff has an intrinsic fundamental meaning as the subsys-
tem Hamiltonian, or is it only 〈Heff〉 that happens to yield the εd-dependent
part of the energy for this model. It is also interesting to explore the possibil-
ity that such a (not necessarily symmetric) splitting may lead to a consistent
thermodynamic theory in more general situations. At first we study the equilib-
rium energy distribution of the extended resonant level and compare this with
the predictions made with the symmetric splitting of the interaction term. We
find that even in the simple case of a single resonant level interacting with a
wide band bath, the effective system Hamiltonian describes only the average
of the internal energy, but fails to recover higher moments of the equilibrium
energy distribution. In a second step we show that beyond the wide band limit,
any splitting of the coupling Hamiltonian already fails to reproduce the mean
internal energy.
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4.1 Fluctuations of the internal energy

We can compute the second moment of the energy distribution and therefore cal-
culate the fluctuations with respect to its mean value, by introducing a rescaling
parameter λ in the Hamiltonian

H(λ) =λ(HD +HV +HB), (4.2)

with the consequent rescaling of the partition function Ξ(λ) = tr{e−β(λH−µN)}
and grand potential Ω(λ) = −β−1 ln Ξ(λ). As illustrated in Appendix C.1,
rescaling the Hamiltonian amounts to rescaling of the spectral function A of
the dot electrons, which represents the εd-dependent part of the total density
of states in the wide band limit, see Sec. 3.2.1. The energy fluctuation for the
extended resonant level is obtained by differentiation of the grand potential

〈H2〉 − 〈H〉2 =− 1
β

∂2

∂λ2 Ω
∣∣∣∣
λ=1

, (4.3)

which can be computed with the help of the relation

∂

∂λ
A = −Γ ∂

∂ε
ReGR − εd

∂

∂ε
A. (4.4)

Taking into account only the εd-dependent part of the grand potential

Ω = −T
ˆ

dε

2πA(ε) ln(1 + e−β(ε−µ)) , (4.5)

we obtain the variance of the internal energy of the extended resonant level
model

〈H2〉 − 〈H〉2 =
ˆ

dε

2π ε
2A(ε)f(ε)(1− f(ε)). (4.6)

In a similar fashion, one can determine the energy fluctuations for a subsystems
associated with a part of the Hamiltonian. To this end we use the rescaled
Hamiltonian

H(λD, λB , λV ) = λDHD + λBHB + λVHV . (4.7)

This readily yields the different variances from the scaled grand potential

− 1
β

∂2

∂λ2
i

Ω
∣∣∣∣
λ→1

= 〈H2
i 〉 − 〈Hi〉2. (4.8)

The parameters in the spectral function of the dot electrons A

A(ε, εd,Γ) = Γ
(ε− εd)2 + (Γ/2)2 (4.9)
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change accordingly, i.e. A(ε, εd,Γ) → A(ε, λDεd, λ−1
B λ2

V Γ) (see Appendix C.1).
Direct computation yields

∂

∂λD
A =− εd

∂

∂ε
A, (4.10)

∂

∂λB
A =λ−2

B λ2
V Γ ∂

∂ε
ReGR, (4.11)

∂

∂λV
A =− 2λ−1

B λV Γ ∂

∂ε
ReGR. (4.12)

As discussed above in Chapter 3, the average thermodynamic properties of
the extended resonant level subsystem can be accounted for in this model by
assigning to it the effective Hamiltonian Heff defined in Eq. (4.1), corresponding
to a symmetric splitting of the interaction Hamiltonian between system and
environment. Next we check if fluctuations in the energy derived from Heff
are equivalent to those given by Eq. (4.6) as far as their dependence on εd is
concerned. To this end, we adopt a rescaling of the form

H(λeff, λB , λ′V ) = λeffHeff + λBHB + (1/2)λ′VHV . (4.13)

Comparing to the rescaling in Eq. (4.7), one finds that the parameters in the
spectral function change as A(ε, εd,Γ)→ A(ε, λeffεd, λ−1

B ([λeff + λ′V ]/2)2Γ), see
Appendix C.1. In addition, we obtain from Eqs. (4.10)-(4.12) the following
identity

∂A

∂λeff
= −λ−1

B Γ(λeff + λ′V )
2

∂

∂ε
ReGR − εd

∂A

∂ε
. (4.14)

With Eq. (4.8), this yields the energy variance of the effective Hamiltonian

〈(Heff)2〉 − 〈Heff〉2 =ˆ
dε

2π ε
2A(ε)f(ε)(1− f(ε))− 1

2β

ˆ
dε

2π (ε− εd)A(ε)f(ε). (4.15)

If the Hamiltonian Heff of Eq. (4.1) was a consistent choice for the extended
resonant level Hamiltonian, the εd-dependence of Eqs. (4.6) and (4.15) (i.e.
their derivatives with respect to εd) should have been the same. Writing the
difference between the Eq. (4.6) and Eq. (4.15) as a function of the level energy

g2(εd) = 1
2β

ˆ
dε

2π (ε− εd)A(ε)f(ε), (4.16)

and calculating its derivative with respect to εd1

∂g2(εd)
∂εd

= 1
2

ˆ
dε

2π (εd − ε)A(ε)f(ε)(1− f(ε)), (4.17)

1The derivative is taken in order to focus on the part of this difference that is associated
with the extended resonant level and to discard parts that are independent of εd and thus
irrelevant for the description of the extended resonant level. The derivative would be zero if
the presence of the dot had the same effect on the fluctuations described by Eqs. (4.6) and
(4.15)
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we find that the effective Hamiltonian Heff predicts a different behavior in the
fluctuations upon changes in local parameters of the extended resonant level.
The discrepancy between the thermodynamic energy distribution of the ex-
tended resonant level, as described by the grand potential Eq. (4.5), and the
one of the effective Hamiltonian Eq. (4.1), appears also in higher moments of
the energy distribution. For example, the dependence on εd of the third mo-
ment (skewness) for the extended resonant level can be calculated using the
rescaling for the Hamiltonian in Eq. (4.2) and by differentiation respect to λ of
the rescaled grand potential〈

(H − 〈H〉)3
〉

= 1
β2

∂3Ω
∂λ3

∣∣∣∣
λ→1

,

and in terms of the εd-dependent part of the grand potential in Eq. (4.5)〈
(H − 〈H〉)3

〉
=
ˆ

dε

2π ε
3A(ε)f(ε)(1− f(ε))(1− 2f(ε)). (4.18)

This result can be compared to that obtained from the third moment of the
energy distribution associated with the effective dot Hamiltonian Eq. (4.1). The
latter is obtained using the rescaling for the Hamiltonian in Eq. (4.13) and by
differentiation respect to λeff〈

(Heff − 〈Heff〉)3
〉

= 1
β2

∂3Ω
∂λ3

eff

∣∣∣∣
λ→1

=
ˆ

dε

2π ε
3A(ε)f(ε)(1− f(ε))(1− 2f(ε))

− 3
2β

ˆ
dε

2π ε(ε− εd)A(ε)f(ε)(1− f(ε)). (4.19)

Once again, direct comparison between Eqs. (4.18) and (4.19) demonstrates
that the effective Hamiltonian Heff does not predict the energy distribution of
the extended resonant level correctly. In fact, the difference g3(εd) of the third
moment of the energy of the extended resonant level and the one of the effective
Hamiltonian and its derivative respect to εd

g3(ε) = 3
2β

ˆ
dε

2π ε(ε− εd)A(ε)f(ε)(1− f(ε)) (4.20)

∂

∂εd
g3(ε) = 3

2β

ˆ
dε

2π (ε− εd)A(ε)f(ε)(1− f(ε))

−3
2

ˆ
dε

2π ε(ε− εd)A(ε)f(ε)(1− f(ε))(1− 2f(ε)), (4.21)

reveal that upon driving in the level energy, the εd-dependent part of the skew-
ness is incorrectly predicted by Heff.
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4.2 Energy splitting beyond the wide band limit

The effective Hamiltonian in Eq. (4.1) was found above in Chapter 3 to correctly
represent the dependence of the average system energy on εd in the wide band
approximation. We now consider the extended resonant level model when this
approximation regarding the bath is relaxed. In this case the retarded self
energy of the dot electrons becomes a complex function of the energy, with a
finite real part (Lamb shift Λ) and an energy-dependent imaginary part, which
is the energy-dependent decay rate Γ. The εd-dependent part of the grand
potential reads

Ω̃ =− 1
β

ˆ
dε

2πρεd(ε) ln(1 + e−β(ε−µ)) , (4.22)

with ρεd(ε)

ρεd(ε) =Ã(ε)(1− ∂εΛ(ε))− ReGR∂εΓ(ε), (4.23)

setting the form of the complete equilibrium thermodynamics of the extended
resonant level, see Sec. 3.2.1. Here Ã is the spectral function of the dot electrons
beyond the wide band limit

Ã(ε) = Γ(ε)
(ε− εd − Λ(ε))2 + (Γ(ε)/2)2 . (4.24)

In particular, the εd-dependent part of the internal energy E can be calculated
from Ω̃ as follows

E =
(
∂

∂β
− µ

β

∂

∂µ

)
βΩ̃ =

ˆ
dε

2π ερεd(ε)f(ε) . (4.25)

The important observation (see Appendix C.2)

∂

∂εd
ρεd(ε) =− ∂

∂ε
Ã(ε), (4.26)

has the consequence that the quasistatic work

dW =dεd
∂

∂εd
Ω̃ = dεd

ˆ
dε

2π Ã(ε)f(ε), (4.27)

connects correctly to the force experienced by external driving also beyond the
wide band limit. That can be seen by considering that the time-dependent dot
level is associated with some external coordinate, in which case the quasistatic
work is the work done by the external coordinate against the quasistatic part of
the adiabatic reaction forces generated by the coupling to the electronic system
[Bode et al., 2011, 2012b].
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Figure 4.1: Splitting factors α1 (blue, dashed) and α2 (red, solid) defined in
Eqs. (4.28) and (4.30) respectively, as a function of the energy level εd for a
resonant level with Lorentizian decay rate Γ and the corresponding Lamb shift
(Eqs. (4.33) and (4.34)). Parameters for this model are: Γo = 0.1eV , µ = 0,
W = 0.5eV , EB = 0.2eV , T = 10K.

Next we address the question whether beyond the wide band limit a splitting
of the interaction Hamiltonian between effective bath and effective system can
properly account for the internal energy of the extended resonant level. If some
consistent, not necessarily symmetric, splitting exists, then we can reproduce
this energy as expectation value of the effective Hamiltonian 〈HD+α1HV 〉 = E.
Using Eq. (4.25) for E and solving for α1 yields

α1 =
´
dε
2π ερεd(ε)f(ε)− 〈HD〉

〈HV 〉
, (4.28)

where the resulting α1 should be constant (εd-independent). Alternatively, the
validity of the splitting would be implied by a weaker criterion—that the de-
pendence on εd of the averaged effective Hamiltonian and of E (Eq. (4.25)) are
the same. This implies

∂

∂εd
〈HD〉+ α2

∂

∂εd
〈HV 〉 = ∂

∂εd
E. (4.29)

This leads to

α2 =
∂
∂εd

´
dε
2π ερεd(ε)f(ε)− ∂

∂εd
〈HD〉

∂
∂εd
〈HV 〉

. (4.30)

Note that the attempt to reproduce the quasistatic heat current leaving the
extended resonant level via the energy flow into the effective bath HB + (1 −
α2)HV leads to the same equation for α2 Eq. (4.30). Again, if splitting works,
the resulting α2 would be a constant, independent of εd. The expectation values
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of HD and HV can be either calculated from the grand potential Ω̃ as described
in Appendix C.2 and C.3 respectively, or directly by computing 〈HD〉 and 〈HV 〉
within the Green function formalism. They take the form

〈HD〉 =εd
ˆ

dε

2π Ã(ε)f(ε), (4.31)

〈HV 〉 =2
ˆ

dε

2π (ε− εd)Ã(ε)f(ε). (4.32)

In the wide band limit, ρεd(ε) → A(ε) and Ã(ε) → A(ε) leads to α1 → 1/2
in Eq. (4.28), independent of local parameters. Figure 4.1 shows the splitting
factors α1 and α2 calculated from Eqs. (4.28) and (4.30) plotted against εd, for
a model with a Lorentzian form of the decay rate and the corresponding Lamb
shift

Γ(ε) =Γo
W 2

W 2 + (ε− EB)2 , (4.33)

Λ(ε) =Γo
2

W (ε− EB)
W 2 + (ε− EB)2 , (4.34)

where W and EB are the width and the center of the band, respectively, and
Γo is the decay rate at the center of the band. Clearly, the symmetric splitting
fails to predict the εd-dependence of the system energy. Moreover, the fact
that the calculated splitting parameters depend on the dot level εd implies that
there does not exist a splitting factor that can be used to write an effective dot
Hamiltonian in the general non-wide-band model.

4.3 Conclusion

For the resonant level model, splitting the system-bath interaction symmetri-
cally and taking Eq. (4.1) to represent the system Hamiltonian has been useful
in analyzing the average thermodynamic properties in the wide band approxi-
mation, as shown above in Chapter 3. The present analysis indicates that this
symmetric splitting does not reflect any fundamental physics and fails when con-
sidering higher moments of the energy distribution even in the wide band limit.
In particular, we observe that the width and the asymmetry of the distribution
are not reproduced with the split Hamiltonian.
The equilibrium thermodynamics for the strongly coupled resonant level model
can be extended to situations beyond the wide band limit based on the equi-
librium grand potential as shown above. However, a simple representation of
the internal energy of the extended resonant level in terms of the expectation
value of an effective system Hamiltonian that splits the coupling Hamiltonian
between system and bath does not generally exist. With that also an extension
to finite velocity transformations with the help of the nonequilibrium Green’s
functions formalism, analogous to Chapter 3, is impossible. Hence the approach
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developed above in Chapter 3 is strongly limited and does not provide a general
tool to treat the thermodynamics of nanoelectronic machines.
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5 | Landauer-Büttiker approach
to strongly coupled quantum
thermodynamics and inside-
outside duality of entropy
evolution

We showed in Chapter 4 that the approach to strongly coupled thermodynamics
developed in Chapter 3 is limited to the resonant level model in the wide band
limit. To treat more general electronic nanomachines, we develop a new ap-
proach that is not afflicted by these limitations and instead provides full thermo-
dynamic description, applicable to arbitrary non-interacting electron systems.
This formalism is based on the Landauer-Büttiker theory of quantum transport
and describes the evolution of the thermodynamic functions from an outside
persepective. A key advantage of this approach is that it naturally avoids the
system-bath distinction, the central problem in the Green’s functions approach
above and the strong coupling regime in general [Hänggi et al., 2008; Campisi
et al., 2009; Hilt and Lutz, 2009; Esposito et al., 2010; Gallego et al., 2014; Stras-
berg et al., 2016; Perarnau-Llobet et al., 2016, 2017]. Moreover, it reproduces
the results for the resonant level model presented above in Chapter 3.
To introduce the Landauer-Büttiker approach to strongly coupled quantum ther-
modynamics we at first take a step back: In an elementary thermodynamic
transformation, an external agent performs work on a system by changing its
Hamiltonian, constituting a single “stroke” of a quantum engine. For electronic
nanomachines, this is achieved by changing the potential in a finite region which
is coupled to electronic reservoirs. This type of machine can for instance be re-
alized by a quantum dot connected to leads and subject to a time-dependent
gate potential. If the gate potential is changed slowly, the coupling to the reser-
voir ensures thermal equilibrium at all times and the transformation occurs
quasistatically. We assume that the total system consisting of dot and lead(s)
is weakly coupled to an auxiliary bath, so that we can neglect the associated
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coupling Hamiltonian in the description. This bath sets the temperature T
and chemical potential µ of the system. Under quasistatic transformations, the
density operator is at all times given by the grand-canonical equilibrium form

ρeq = e−β(H−µN)

Z
, (5.1)

where β = T−1 and H is the total Hamiltonian of the system including dot and
lead(s). The change of the von-Neumann entropy

S[ρ] = −Tr (ρ ln ρ) , (5.2)
associated with the equilibrium state of the system is proportional to the heat
dQ = TdS released into the bath

dS [ρt] = −Tr (dρ ln ρeq) (5.3)

= 1
T
Tr
(
dρ
[
Ĥ − µN

])
= dQ

T
(5.4)

where we used Tr (dρ) = 0. For a more extensive discussion of the connection
between thermodynamics and quantum statistical mechanics we refer to the
book by Balian [Balian, 2007].
This should be contrasted with the entropy evolution of a closed quantum sys-
tem. Its purely unitary time evolution implies that the von-Neumann entropy
remains unchanged at all times, since S is constant under any unitary dynamics,
specifically under unitary dynamics determined by the von-Neumann equation,
which describes the time evolution of closed systems

dρ

dt
= −i [H, ρ] . (5.5)

This yields a vanishing time derivative of the associated von-Neumann entropy

d

dt
S[ρ] = Tr

(
dρ

dt
(ln ρ+ 1)

)
(5.6)

= iTr (H [ρ, ln ρ]) , (5.7)

since [ρ, ln ρ] = 0.
Here we want to discuss the entropy evolution of simple electronic nanomachines,
which combine fully coherent quantum dynamics with contact to baths and can
involve strong coupling between system and reservoir. In this problem, quantum
effects such as coherences, hybridization, and entanglement are expected to
become important.
Such electronic nanomachines effectively constitute setups of mesoscopic physics
which are elegantly described by the Landauer-Büttiker formalism. This frame-
work combines coupling to equilibrium reservoirs and fully coherent quantum
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Figure 5.1: The scattering potential in the central region, e.g. a quantum dot,
gets slowly changed by an external parameter X(t). This leads to a net heat
and entropy current in the leads, which are subject of this paper.

dynamics. One considers a scattering region connected to ideal leads, as de-
picted in Fig. 5.1, where non-interacting electrons propagate freely and under
fully coherent quantum dynamics. Relaxation is accounted for by connecting
the leads to electronic reservoirs at well defined temperatures and chemical po-
tentials, which determine the distribution of incident electrons. This allows one
to calculate quantities such as energy or particle currents in the leads by ac-
counting for in- and outgoing electrons. With energy and particle conservation,
these currents permit one to deduce the change of energy and particle number in
the scattering region from an outside perspective, while above in Chapter 3, we
described the thermodynamic transformations of the system from an inside per-
spective, i.e., in terms of the thermodynamic variables of the single level. Since
the von-Neumann entropy S is conserved under coherent unitary dynamics,
also the change of entropy in the scattering region can also be inferred from the
entropy currents carried by the scattered electrons. The subsequent relaxation
processes in the bath are complicated and require electron-electron interactions.
This relaxation, however, is external to the Landauer-Büttiker formalism: The
reservoirs are macroscopic and retain their equilibrium distribution, such that
excitations entering a reservoir never return.

In the past the Landauer-Büttiker approach has been used intensively to study,
among others, electron pumping [Brouwer, 1998], heat transport and current
noise [Büttiker, 1992; Moskalets and Büttiker, 2002, 2004a; Avron et al., 2001],
and entanglement creation [Beenakker et al., 2003; Samuelsson et al., 2004].
Here we extend the formalism to describe the entropy evolution generated by
time-dependent potentials. In an adiabatic expansion around the quasistatic
equilibrium it provides a detailed understanding of the connection between en-
tropy and heat currents. Combined with the forces experienced by the driving
[Bode et al., 2011, 2012b; Thomas et al., 2012], which determine the work, this
provides a full thermodynamic description from an outside perspective.

In the following technical section we introduce the Landauer-Büttiker formalism,
which can be skipped by readers familiar with it.
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Figure 5.2: The scattering setup: a scattering region is attached to one or several
ideal leads, which are connected to equilibrium reservoirs.

5.1 Technical section: introduction to scatter-
ing theory

We briefly introduce the most important aspects of scattering theory needed for
the present work. Since a derivation of all the needed properties is beyond the
scope of this thesis, we refer the interested reader to the work of Büttiker, e.g.
Ref. [Büttiker, 1992], and the book by Moskalets [Moskalets, 2012].
We consider a scattering region in contact to ideal leads, in which the electrons
can propagate freely and fully phase coherent. The leads are moreover connected
to macroscopic equilibrium reservoirs, which set the distribution of the incoming
electrons. The motion in the leads is unbound in longitudinal and confined in
transverse direction, such that far away from the scatterer the wave function of a
scattering state m in lead a is given by a plane wave in longitudinal direction xa
and a transverse wave function function φm(ya) in the orthogonal directions ya,
see Fig. 5.2. The different transverse wave functions describe different scattering
channels. Therefore, the wave function in channel m and lead a reads far away
from the scatterer

ψin(out)
am (ε, r) = 1√

v(ε)
e∓ikam(ε)xaφm(ya) , (5.8)

where vam(ε) = ∂ε/∂kam = kam(ε)/m is the group velocity. The corresponding
eigenenergies are

ε = εam + k2

2m , (5.9)

where εam is the eigenenergy of the transverse wave function, which sets the
threshold energy needed to populate the scattering channel. The longitudinal
wavevector kam(ε) is fixed by the total energy of the scattering state kam(ε) =
2m
√
ε− εam. We normalize the states to carry unit flux in the longitudinal

direction, from which follows directly the orthogonality relation

〈ψinan(ε′)|ψinbm(ε)〉 = 2πδ(E − E′)δabδmn . (5.10)
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An incident wave typically causes reflected waves in all channels n of lead a, and
and transmitted waves in all channels of all other attached leads. Introducing the
operators a (b) that annihilate an electron in the incoming (outgoing) channel,
we can write the fermionic field operators as

ψ̂(r, t) =
∑
am

ˆ
dε

2π

[
ψinam(ε, r)âam(ε) + ψoutam(ε, r)b̂am(ε)

]
e−iεt , (5.11)

with the anti-commutation relations

{
a†am(ε), abn(ε′)

}
=
{
b†am(ε), bbn(ε′)

}
= 2πδabδmnδ(ε− ε′) . (5.12)

While the reservoirs determine the distribution of the incoming uncorrelated
equilibrium channels

〈a†am(ε)abn(ε′)〉 = δabδmnfa(ε)2πδ(ε− ε′) , (5.13)

the subsequent scattering event mixes incoming states and thereby redistributes
the electrons between the outgoing scattering channels. This is captured by the
exact scattering matrix of the time-dependent problem S b11(ε)

...
bNn(ε)

 =
ˆ
dε′

2π S(ε, ε′)

 a11(ε′)
...

aNn(ε′)

 . (5.14)

On this basis we derive the particle current in the lead, to investigate the cur-
rents generated in the scattering event. The general form of the current density
operator follows immediately from the continuity of the equation of the particle
density

∂t

(
ψ̂†ψ̂

)
+∇ · j = 0 . (5.15)

With the Heisenberg equation of motion this yields

∂t

(
ψ̂†ψ̂

)
= 1
i

[
ψ̂†Hψ̂ −Hψ̂†ψ̂

]
(5.16)

= ∇
(
−1
2mi

[
ψ̂†∇ψ̂ −∇ψ̂†ψ̂

])
. (5.17)

Hence, the current operator takes the form

ĵ = 1
2mi

[
ψ†∇ψ −∇ψ†ψ

]
. (5.18)

Using the fermionic field operator in terms of in- and outgoing scattering states
in Eq. 5.11, we can calculate the particle current operator ÎNa =

´
dya ĵxa(ε, r)
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through any cross-section of lead a far away from the scatterer. Since the trans-
verse wave functions are orthonormal

´
dyφm(y)φ∗n(y) = δmn, only operators of

the same scattering channel contribute and we obtain

ÎNa (t, xa) = 1
2mi

∑
m

ˆ ˆ
dε1
2π

dε2
2π

ei(ε1−ε2)t√
vam(ε1)vam(ε2)

ˆ
dy2
a|φm(ya)|2

×
{
∂x

[
a†am(ε1)e−ikam(ε1)xa + b†am(ε1)eikam(ε1)xa

] (
aam(ε2)eikam(ε2)xa + bam(ε2)e−ikam(ε2)xa

)
−
[
a†am(ε1)e−ikam(ε1)xa + b†am(ε1)eikam(ε1)xa

]
∂x

(
aam(ε2)eikam(ε2)xa + bam(ε2)e−ikam(ε2)xa

)}
.

With this at hand, we calculate the expectation value of the current in lead a.
Assuming a slowly changing scattering potential and small bias voltages, the
contributing energies are restricted to |ε1 − ε2| � ε1 ∼ EF , where EF is the
Fermi energy. Under this condition, we can approximate vam(ε1) ≈ vam(ε2) and
kam(ε1) ≈ kam(ε2)1, which yields the current

〈ÎNa (t, x)〉 =
∑
m

ˆ ˆ
dε1
2π

dε2
2π ei(ε1−ε2)t 〈b†am(ε1)bam(ε2)− a†am(ε1)aam(ε2)〉 ,

(5.19)
where we used vam(ε1) = kam(ε1)/m.
To make use of the assumption of a slowly changing potential, we write the
current in the Wigner representation by going to sum and difference energies
ε̃ = ε2 − ε1 and ε = (ε1 + ε2)/2, which leads to the particle current

INa (t) = 〈Îa(t, x)〉 =
∑
α∈a

ˆ ˆ
dε

2π
dε̃

2π e−iε̃t 〈b†α(ε− ε̃

2)bα(ε+ ε̃

2)− a†α(ε− ε̃

2)aα(ε+ ε̃

2)〉

=
∑
α∈a

ˆ
dε

2π
[
φoutαα (ε, t)− φinαα(ε, t)

]
, (5.20)

where we combined channel and lead index for notational simplicity, so that the
sum goes over all scattering channels in lead a. The distribution matrix φ is a
Wigner transform

φoutαβ (t, ε) =
ˆ

dε̃

2π e
−iε̃t 〈b†β

(
ε− ε̃

2

)
bα

(
ε+ ε̃

2

)
〉 , (5.21)

which can be expanded in powers of velocity, analogous to the lesser Green’s
function above in Sec. 3.3.1.

1With ε1 − ε2 = ω, the corrections from the wavevector mismatch are of order ω/vF , while
the pre-factor v(ε2)−1/2 gives corrections of order ω/EF .
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The same procedure can be repeated for the energy current. Using that the
scattering states are free states deep in the lead (up to the constant threshold
energy needed to populate the channel), we can use the kinetic energy density

ε̂kin = ψ†(r)
(
− 1

2m∇
2
)
ψ(r) (5.22)

to derive the energy current density from a continuity equation with the same
steps as above

ĵE = −1
i (2m)2

[
ψ†∇3ψ −∇ψ†∇3ψ

]
. (5.23)

Using the same approximations as above this yields the energy current through
lead a

IEa (t) = 〈ÎEα (t, x)〉 =
∑
α∈a

ˆ
dε

2π ε
[
φoutαα (ε, t)− φinαα(ε, t)

]
. (5.24)

With this we have everything at hand to calculate the heat current in the leads
induced by the time-dependent scattering potential and to connect it to the
entropy carried by the scattering states.

5.2 Entropy current carried by scattering states

The heat current IQa = IEa −µaINa carried by the electrons in lead a is the com-
bination of particle current INa into the corresponding reservoir with chemical
potential µa and the energy current IEa . Thus, with Eqs. (5.20) and (5.24), we
can express the total heat current in terms of the diagonal elements of the dis-
tribution matrix, i.e. the slowly changing occupations of the scattering channels

IQtot(t) =
ˆ ∞
−∞

dε

2π (ε− µ)trc
{
φout(t, ε)− φin(ε)

}
, (5.25)

where the trace runs over channel and lead space. Here, for simplicity we assume
the same chemical potential µ in all reservoirs.
In quasistatic equilibrium the heat Q and entropy S are directly connected via
dQ = TdS, which implies the same relation for the associated currents carried
by the scattering states

IS(1) = IQ(1)

T
, (5.26)

where the superscripts counts the order of velocity and quasistatic currents
are of first order. However, in general out-of-equilibrium situations this is not
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necessarily the case. In terms of the thermodynamic changes of a subsystem, the
second law states that the entropy change of the subsystem is greater than the
heat absorbed from the reservoir Ṡ ≥ Q̇/T , marking the onset of dissipation and
irreversibility. This suggests also a deviation in the relation between entropy
and heat currents carried by the scattering states from the relation IQ = T IS .
However, in the quasistatic limit the developed entropy current needs to go back
to the known equilibrium form Eq. 5.26.
To obtain the general entropy current, we begin by considering the entropy of a
single incoming channel. For a given energy the channel can be either occupied
or empty, according to fα(ε), and contributes with

σ [fα(ε)] = −fα(ε) ln [fα(ε)]− (1− fα(ε)) ln [1− fα(ε)] (5.27)

to the system entropy. By analogy with the particle current, Eq. (5.20), we
write the incoming entropy current as

IS in
α =

ˆ ∞
−∞

dε

2π σ [fα(ε)] . (5.28)

Hence, as expected [Pendry, 1983], each of the incoming channels carries an
entropy current of πT/6 towards the scattering region.
Scattering redistributes the electrons between the outgoing channels, thereby
modifying the entropy flow into the leads. The scattering-induced correlations
between outgoing scattering states [Moskalets and Büttiker, 2002, 2004a] are
encoded in the non-diagonal distribution matrix φoutαβ (t, ε) for the outgoing elec-
trons. As we show below, the natural extension of Eq. (5.28) reads

IS in(out)(t) =
ˆ ∞
−∞

dε

2π trc
{
σ[φin(out)(t, ε)]

}
. (5.29)

Here σ Eq. (5.27)is a matrix-valued function of the distribution matrix φin(out)

and thereby depends on its off-diagonal elements.
To motivate Eq. (5.29) we derive the non-interacting fermionic density matrix
for a given distribution matrix φ̄αβ = Tr[ρc†βcα]. In the scattering setup the in-
coming operators describe particles of an equilibrium reservoir and the outgoing
operators are linear functions of the incoming ones, cf. Eq. (5.14). Hence, all av-
erages can be calculated via Wick’s theorem and the single-particle correlations
described by φ fully determine all expectation values.
Our derivation exploits the maximum entropy principle that yields the most
general density matrix given certain single-particle correlations [Jaynes, 1957].
(We obtain the same result following the approach of Ref. [Peschel, 2003].) The
Lagrangian for maximizing the von-Neumann entropy under the constraints
Trρ = 1 and φ̄αβ = Tr[ρc†βcα] reads

L = −Tr [ρ ln ρ] +
∑
αβ

λαβ

(
Tr
[
ρc†βcα

]
− φ̄αβ

)
− γ (Trρ− 1) , (5.30)
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where Tr denotes the many-particle trace over all possible occupations and γ
as well as the λ’s are Lagrange multipliers. It is convenient to diagonalize the
Hermitian matrix φ̄ and introduce a rotated basis, namely

φ̄ = UΛU† and cα =
∑
c

Uαcdc , (5.31)

where U is a unitary matrix and Λαβ = Λαδαβ is diagonal containing the real
eigenvalues of φ̄. In the rotated basis the Lagrangian L allows us to maximize
the von-Neumann entropy with the given constraints. This yields the density
matrix

ρ =
∏
α

(1− Λα)
(

Λα
1− Λα

)n̂α
, (5.32)

where n̂α is the occupation of mode α in the rotated basis. We calculate the
entropy S of this density matrix by summing over all possible occupations in
the rotated basis,

S =
∑
α

σ[Λα] = tr (σ[Λ]) , (5.33)

where the sum over the diagonal elements of Λ is included through the single-
particle trace tr. Finally, rotating back to the original basis, Λ = U†φ̄U , we find
the entropy in terms of the distribution matrix φ̄,

S = tr
(
σ[φ̄]

)
. (5.34)

For a slowly changing scattering potential, we associate the entropy with the
time-dependent distribution matrix φαβ(t, ε) of the scattering states in Eq.
(5.21), for which the single-particle trace represents an integral over energy
and a trace trc over channel and lead indices.
By combing in- and outgoing entropy currents we write the total entropy current
into the leads as

IStot(t) =
ˆ ∞
−∞

dε

2π trc
{
σ[φout(t, ε)]− σ[φin(ε)]

}
. (5.35)

In the case of a static scatterer between two biased reservoirs at zero tempera-
ture, the entropy current can be used to quantify the entanglement of outgoing
electron-hole pairs created in a tunneling event. Indeed, we verify that an im-
mediate generalization of Eq. (5.35) reproduces the quantum mutual informa-
tion between outgoing scattering channels on the left and right as obtained in
Ref. [Beenakker et al., 2003]. This we show explicitly in the following interlude.

5.3 Interlude: Entanglement creation and en-
tropy current

The developed form of the entropy current carried by the scattering states allows
us to quantify the the correlations between different scattering channels created
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in the scattering event. If we regard the case of two attached leads (L and R),
we can measure the correlations created by the scattering event in terms of the
quantum mutual information between outgoing channels to the left and right

I(L : R) = SL + SR − Stot , (5.36)

where SL/R is the von-Neumann entropy of the reduced density matrix of the
left (right) lead and Stot is the total entropy of the outgoing states, including
correlations between L andR. In the case of a pure state of the composite system
Stot = 0, and I(L : R) reduces to twice the entanglement entropy F = SL = SR
created in the scattering event.
The reduced density matrix and the corresponding entropy of the outgoing states
in the left and right lead can be obtained by a method developed by Peschel
[Peschel, 2003, 2012], which takes the form of the argument presented in the
main text above, but confined to the subspace of interest. This results in the
entropy of the reduced density matrix of subsystem A

SA = trc
(
σ[φA]

)
. (5.37)

where φA is the submatrix of the full distribution matrix φ, defined on subspace
A only. Applied to outgoing scattering states analogous to the derivation in the
main text, we obtain from Eq. (5.36) a mutual information current

IMI = ISred,L + ISred,R − I
S,out
tot , (5.38)

as a measure of the correlations created per unit time. Here

IS,outtot =
ˆ ∞
−∞

dε

2π trc
{
σ[φout(t, ε)]

}
, (5.39)

is the outgoing component of the total entropy current Eq. (5.35). The entropy
current corresponding to the reduced density matrix of the electrons in the left
(right) lead ISred,L(R) takes the form

ISred,L(R) =
ˆ ∞
−∞

dε

2π trc
{
σ[φout,L(R)(t, ε)]

}
, (5.40)

with φout,L(R) being the submatrix of the distribution matrix φout defined on
the left (right) subspace only.
The simplest case to which we can apply this developed formalism is the case
of a static scatterer between two reservoirs at zero temperature with an applied
bias voltage, which was investigated as a device to create entangled electron-hole
pairs in Ref. [Beenakker et al., 2003]. Considering two channels on each side
(the authors of Ref. [Beenakker et al., 2003] consider a quantum Hall setup, in
which the two channels can either represent two spin channels within the same
Landau level or two different Landau levels), the scattering matrix,

S =
(
r t′

t r′

)
, (5.41)
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is a 4× 4 matrix, with the 2× 2 submatrices r,r′, t, t′ describing the reflection
and transmission from the left or right respectively. Here we neglect the energy
dependence of the scattering matrix in the bias window and drop the energy
labels for better readability.
For a static scatterer, the outgoing distribution matrix can be obtained by a
simplified version of Eq. (D.6)

φout(ε) = S φin(ε)S† . (5.42)

Hence in the static case φout is obtained from φin by a unitary transformation
given by the frozen scattering matrix S. At zero temperature, the incoming
electrons are either fully occupied or empty at each energy fL = Θ(µ+ eV − ε)
and fR = Θ(µ− ε), and hence carry no entropy

IS in
tot =

ˆ ∞
−∞

dε

2π trc
{
σ[φin(ε)]

}
= 0 . (5.43)

φout in Eq. (5.42) then shows that full outgoing entropy current also vanishes

IS out
tot =

ˆ ∞
−∞

dε

2π trc
{
σ[φout(ε)]

}
= 0 , (5.44)

since the unitary transformation with the frozen scattering matrix leaves the
incoming pure states pure at each energy.
For the reduced entropy currents we calculate the outgoing distribution matrix
from Eq. (5.42)

φout = Θ(µ− ε)Î + Θ(µ+ eV − ε)Θ(ε− µ)% , (5.45)

with

% =
(
rr† rt†

tr† tt†

)
. (5.46)

Inserting φout into the mutual information current Eq. (5.38) leads to

IMI = eV

2π trcσ
[
rr†
]

+ eV

2π trcσ
[
tt†
]

(5.47)

= 2eV2π trcσ
[
tt†
]

(5.48)

= 2eV2π (σ(T1) + σ(T2)) , (5.49)

where T1, T2 ∈ (0, 1) are the eigenvalues of the transmission matrix product
t†t = Î − r†r, which reproduces the entanglement entropy or entanglement of
formation F = IMI/2 calculated in Ref. [Beenakker et al., 2003].
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5.4 Entropy current induced by a dynamic scat-
terer

The entropy and heat currents generated by a slowly changing scattering poten-
tial V [X(t)] are obtained by expanding the scattering matrix and the outgoing
distribution matrix about the frozen configuration in powers of the velocity Ẋ
[Bode et al., 2011, 2012b; Thomas et al., 2012, 2015]. Up to first order, the
Wigner transform of the scattering matrix can be expressed in terms of the
frozen scattering matrix S and its first order correction A, S(ε, t) = S + ẊA.
This expansion is well motivated in the regime where X(t) changes on a charac-
teristic time scale much longer than the electronic dwell time in the scattering
region. Accordingly, we write φout as

φout ' Î f + φout(1) + φout(2) , (5.50)

where Î is a unit matrix in channel and lead space and the superscript stands
for the order in Ẋ. (We omit time and energy labels for better readability.)
Similarly, we expand σ[φout(ε)] up to second order about the uncorrelated equi-
librium

σ[φout] ' Îσ [f ] + Î
dσ [f ]
df

(
φout(1) + φout(2)

)
+ 1

2 Î
d2σ [f ]
df2

(
φout(1)

)2
. (5.51)

Note that the second order contribution proportional to d2σ [f ] /df2 = (T∂εf)−1

is always negative due to the concavity of σ. By inserting the above expression
in Eq. (5.35) we obtain

IStot =
ˆ ∞
−∞

dε

2π trc
{
ε− µ
T

(
φout(1) + φout(2)

)
+ 1

2T∂εf

(
φout(1)

)2
}
, (5.52)

where we have used that φin = Î f(ε). By the same token, Eqs. (5.25) and (5.50)
give

IQtot =
ˆ ∞
−∞

dε

2π (ε− µ) trc
{
φout(1) + φout(2)

}
. (5.53)

These expressions nicely elucidate the connection between heat and entropy
currents, and the departure from dQ = TdS beyond the quasistatic limit. At
first order in Ẋ, corresponding to the quasistatic regime, the entropy current is
entirely given by the heat current over temperature IS(1)

tot = I
Q(1)
tot /T , i.e., the

proposed form of the entropy current correctly connects to the quasistatic equi-
librium. In contrast, at second order an additional negative correction appears

I
S(2)
tot = I

Q(2)
tot
T

+
ˆ ∞
−∞

dε

2π
1

2T∂εf
trc
{(

φout(1)
)2
}
. (5.54)
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Since trc{(φout(1))2} contains all off-diagonal elements of φout(1), it encodes the
correlations created by the dynamic scatterer. These correlations determine by
how much the entropy current in the leads is smaller than the corresponding
heat current over temperature. This net inflow of entropy into the scattering
region reflects the local dissipation-induced increase of entropy.
We calculate φ explicitly within the gradient expansion [Bode et al., 2011, 2012b;
Thomas et al., 2012]. Assuming that fα(ε) = f(ε), one writes φout(1) in terms
of the frozen scattering matrix S,

φout(1) (ε, t) = iẊ∂εf S∂XS
† . (5.55)

Inserting φout(1) into the entropy current Eq. (5.54), we obtain the entropy
current up to second order

IStot = IQtot
T
− Ẇ (2)

T
. (5.56)

with
Ẇ (2) = −Ẋ

2

2

ˆ ∞
−∞

dε

2π∂εf(ε)trc
(
∂XS

†∂XS
)
≥ 0 . (5.57)

Remarkably, Ẇ (2) = γẊ2 is exactly the dissipated power that the external agent
pumps into the system as a result of the time-dependent system Hamiltonian.
Ẇ (2) was derived in Refs. [Bode et al., 2011, 2012b; Thomas et al., 2012] in terms
of the friction coefficient γ of the back-action force that needs to be overcome
by the external agent. Thus, from our outside perspective, dissipation leads to
an inflow of entropy into the scattering region in addition to the heat-current
contribution.
We are now ready to discuss the inside-outside duality of entropy evolution: We
utilize the acquired knowledge about the entropy current (outside perspective)
to draw conclusions about the evolution of the entropy s of the strongly coupled
subsystem located in the scattering region (inside perspective). To calculate the
thermodynamic functions of such a subsystem directly has proven problematic in
the past due to difficulties in taking proper account of the coupling Hamiltonian
and the presence of strong hybridization [Ludovico et al., 2014; Esposito et al.,
2015b; Bruch et al., 2016; Ochoa et al., 2016]. These problems are naturally
avoided within the Landauer-Büttiker formalism. Since this formalism considers
fully coherent unitary dynamics in both the leads and the scattering region,
the von-Neumann entropy associated with the scattering states is conserved in
a scattering event. Hence, an additional inflow of entropy is reflected in an
increased entropy s stored in the scattering region. As a result, the entropy is
source-free

ds

dt
+ IStot = 0 . (5.58)

We can use this continuity equation and Eq. (5.56) to infer the evolution of s.
Invoking energy and particle conservation, we identify Q̇ = −IQtot as the heat
leaving the scattering region from the inside perspective. Thus, the entropy

75



evolution can be expressed in terms of the thermodynamic functions of the
(strongly) coupled subsystem as

ds

dt
= Q̇

T
+ Ẇ (2)

T
. (5.59)

Therefore, dissipation leads to a local increase of entropy, which is provided by
the scattered electrons. This constitutes the inside-outside duality of entropy
evolution. Integrated over a full cyclic transformation of X, the entropy current
needs to vanish, as it derives from a source-free thermodynamic state function,
see Eq. (5.58). Averaged over a cycle, Eq. (5.56) thus implies that all extra
energy pumped into the scattering region Ẇ (2) eventually has to be released as
heat into the leads

I
Q(2)
tot = Ẇ (2) . (5.60)

5.5 Application to the resonant level model: inside-
outside duality

To emphasize the advantage of the outside approach over calculating the ther-
modynamic functions of a subsystem directly, we connect here to the thermo-
dynamics of the resonant level model derived earlier from an inside perspective.
This model consists of a single localized electronic level HD = εd(t)d†d, which
can be changed in time by an external agent. It is coupled to a free electron
metal HB =

∑
k εkc

†
kck via a coupling Hamiltonian HV =

∑
k

(
Vkd

†ck + h.c.
)

and was intensively studied in the past [Ludovico et al., 2014; Ochoa et al.,
2016], with difficulties in Ref. [Esposito et al., 2015b] pointed out and overcome
in Chapter 3.
The inside approach demands a splitting of the coupling Hamiltonian HV be-
tween effective system and bath, which strongly limits its applicability to the
resonant level model in the wide band limit of energy-independent hybridiza-
tion, see Chapter 4. In contrast, the here developed outside approach yields the
strong coupling thermodynamics for arbitrary non-interacting electron systems
and furthermore reproduces the results for the resonant level. Deriving the dis-
tribution matrix φ for this model explicitly, we show order by order that both the
heat current IQ in Eq. (5.53) and the entropy current IStot in Eq. (5.52) exactly
reproduce the absorbed heat Q̇ = −IQtot and entropy change ṡ = −IStot from
the inside perspective in Chapter 3 (see Technical interlude below). Thereby
we also explicitly confirm the inside-outside duality of entropy evolution: The
dissipated power Ẇ (2) was shown to lead to a local increase of entropy for the
resonant level in Chapter 3, and we demonstrate here that this is reflected in
an additional inflow of entropy IStot carried by the scattering states, leaving the
entropy source-free, Eq. (5.58).
We show the derivation of the resonant level model explicitly in a technical
interlude that can be skipped by readers uninterested in technical details.
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5.6 Technical interlude: Application to the res-
onant level model

Here we derive the distribution matrix φ for the resonant level model. In this
case the scattering matrix can be reduced to a single element, the reflection
coefficient, which can be obtained via the Mahaux-Weidenmueller formula Eq.
(D.9)

S(ε, t) = 1− iΓ
ε− εd(X) + iΓ/2 . (5.61)

Here Γ is the decay rate of the dot electrons into the lead Γ =
2π
∑
k |Vk|

2
δ (ε− εk), and the A-matrix Eq. (D.10) vanishes [Bode et al.,

2012b]. The distribution matrix φ only contains a single element describ-
ing the occupation of the in- and outgoing scattering channel. The first order
and second order contribution Eqs. (5.55) and (D.18) take the form

φout(1) (ε, t) = −Ẋ∂εf
∂εd
∂X

Add , (5.62)

φout(2) (ε, t) = Ẋ2 1
2∂

2
ε f

(
∂εd
∂X

)2
A2
dd , (5.63)

where Add = Γ/
(
[ε− εd(X)]2 + Γ2/4

)
is the spectral function of the dot elec-

trons. With this we show that the heat current in the leads IQ in Eq. (5.53) is
identical to the heat that leaves the extended level from the inside perspective
Q̇ in Eqs. (3.21) and (3.52) order by order

IQ(1) = −ε̇d
ˆ ∞
−∞

dε

2π (ε− µ)∂εfAdd = −Q̇(1), (5.64)

IQ(2) = 1
2 ε̇

2
d

ˆ ∞
−∞

dε

2π (ε− µ)∂2
ε fA

2
dd = −Q̇(2) , (5.65)

where we wrote Ẋ ∂εd
∂X = ε̇d to directly compare to the quantities in Chapter 3.

The inside-outside duality of entropy evolution, Eq. (5.58), can be explicitly
checked order by order by inserting φout Eqs. (5.62) and (5.63) into IStot in Eq.
(5.52) and comparing it to the change of the entropy s of the resonant level
in Eqs. (3.21) and (3.57)

IS(1) = −ε̇d
ˆ ∞
−∞

dε

2π
(ε− µ)
T

∂εfAdd = −ds

dt

(1)
(5.66)

IS(2) = ε̇2
d

ˆ ∞
−∞

dε

2π

{
(ε− µ)
T

1
2∂

2
ε fA

2
dd + ∂εf

2T A2
dd

}
= −ds

dt

(2)
. (5.67)

Thereby we reproduced the results presented in Chapter 3 with the here de-
veloped outside perspective.
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5.7 Conclusion

We developed a Landauer-Büttiker approach to entropy evolution in strongly
coupled fermionic systems, which considers fully coherent quantum dynamics in
combination with coupling to macroscopic equilibrium baths. This formalism
naturally avoids the system-bath distinction and is applicable to arbitrary non-
interacting electron systems. We showed that the entropy current generated
by a dynamic scatterer depends on the correlations between different scattering
channels, which are generated in the scattering event. At quasistatic order, the
entropy current is just the heat current over temperature, while at next order
the dissipation induced by the finite velocity transformation yields a net inflow
of entropy into the scattering region. This inflow reflects the dissipation-induced
local increase of entropy constituting the inside-outside duality of entropy evo-
lution.
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6 | Interlude: Fluctuation
theorems

At small scales the thermodynamic quantities necessarily acquire strong fluctu-
ations, as introduced in Section 1.3. These fluctuations can be very elegantly
characterized by fluctuation theorems describing the probability distribution
of the concerning thermodynamic quantities [Jarzynski, 1997; Crooks, 1999;
Talkner et al., 2007; Jarzynski, 2011; Hänggi and Talkner, 2015]. In the follow-
ing, we show the validity of the Jarzynsiki equality for non-interacting electron
systems under slow driving. We start by a short introduction into work fluctu-
ation theorems and demonstrate the validity of the Jaryzynski equality for slow
transformations in Sec. 6.1.
Remarkably, thermodynamic inequalities such as the rule that the workW done
on a path has be larger than the free energy difference ∆F between start and
end point,

W ≥ ∆F , (6.1)

can be turned into equalities for the distribution of the fluctuating thermody-
namic quantities [Jarzynski, 2011]. Jarzynski showed that the distribution of
the classical non-equilibrium work along a certain protocol is directly related to
the free energy difference between start and end point,

〈e−βW 〉 = e−β∆F , (6.2)

where 〈...〉 refers to averages over many realizations of the same protocol. Here
the system is assumed to be initially in thermal equilibrium and ∆F is the free
energy difference between initial equilibrium state and a hypothetical equilib-
rium state with the initial temperature and the parameters at the end of the
protocol. Crooks later derived the slightly more general fluctuation theorem
[Crooks, 1999]

PF (W )
PR(−W ) = exp

(
W −∆F

T

)
, (6.3)

where PF (W ) is the probability distribution of the non-equilibrium work along
the forward protocol, and PR(−W ) the distribution along the reversed protocol.
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The Crooks relation immediately leads back to the Jarzynski equality Eq. 6.2
by solving Eq. (6.3) for PF (W ) exp (W/T ) and integrating over W . The initial
fluctuation theorems were derived for classical systems. Later, Campisi et al.
[Campisi et al., 2009] generalized the Crooks relation to open quantum systems
at arbitrary coupling strengths.
Both the Jarzynski and the Crooks relation Eqs. (6.8) and (6.3) relate the full
non-equilibrium work distribution to the free energy difference. Expanding the
exponential in the Jarzynsiki equality yields a relation for the cumulants of the
work distribution. Starting from the Jarzynski equality Eq. (6.8),

∆F = − 1
β

ln 〈e−βW 〉 (6.4)

we can expand the right-hand side in terms of the cumulants of W , since
ln 〈e−βW 〉 is the cumulant generating function of the random variableW [Jarzyn-
ski, 1997]. This yields

ln 〈e−βW 〉 =
∞∑
n=1

(−β)n ωn
n! (6.5)

where ωn is the nth cumulant of the non-equilibrium work distribution.
For a Gaussian work distribution we hence obtain

∆F = − 1
β

ln 〈e−βw〉 (6.6)

= 〈W 〉 − β σ
2
W

2 (6.7)

where σ2 = 〈W 2〉−〈W 〉2 is the variance (second cumulant) of the non-equilibrium
work distribution. Since the difference between the non-equilibrium work and
the equilibrium free energy difference is the dissipated work 〈W 〉 − ∆F =
〈Wdiss〉, this can be expressed as a fluctuation dissipation relation

〈Wdiss〉 = β
σ2
W

2 . (6.8)

Below we show that for slow transformations this form of the Jarzynski equality
is ensured by the fluctuation dissipation theorem of the adiabatic reaction forces
[Bode et al., 2011, 2012b; Thomas et al., 2012, 2015].

6.1 Work fluctuations

To make the connection between the Jarzynski equality and the fluctuation
dissipation theorem of the adiabatic reaction forces explicit, we again con-
sider the setting of a quantum dot with energy levels changing slowly in time
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due to the coupling to an external coordinate X, HD =
∑
n,n′ d

†
nhn,n′(X)dn′ ,

which is coupled to leads HL =
∑
η εηc

†
ηcη via a coupling Hamiltonian HT =∑

η,n c
†
ηWηndn + h.c.. We define the operator of work done between two times

under slow transformations as

W (t1t2) =
ˆ t2

t1

dt
∂H

∂t
(t) =

ˆ t2

t1

dtẊ(t)
∑
nm

d†n(t)ΛX,nmdm (t) , (6.9)

where ΛX = ∂h(X)/∂X. Here, −d†ΛXd is the force operator of the coupling
induced forces acting on the slow degree of freedom X. The coupling to the
electronic degrees of freedom induces a mean force F , friction characterized by
γ and an associated fluctuating force ξ [Bode et al., 2011, 2012b]

MẌ = F (t)− γ(t)Ẋ + ξ(t) , (6.10)

where the correlator of the fluctuating force on time scales long compared to
electronic relaxation rates is in absence of a bias given by the fluctuation dissi-
pation theorem

〈ξ(t)ξ(t′)〉 = 2Tγ(t)δ(t− t′) . (6.11)

Due to fluctuations of the force, the resulting work done on a path is also a
fluctuating quantity. To calculate its variance, we at first express the average
work done by the external drive between t1 and t2 in terms of the lesser Green’s
function

〈W (t1, t2)〉 =
ˆ t2

t1

dtTr
[
iΛXG< (t, t)

]
. (6.12)

The resulting variance σ2
W =

〈
W 2〉− 〈W 〉2, with〈

W (t1t2)2
〉

=−
ˆ t2

t1

ˆ t2

t1

dtdt′Ẋ(t)Ẋ(t′) (6.13)

×
∑

nm,n′,m′

〈
d†n(t)ΛX,nmdm (t) d†n′(t

′)ΛX,n′m′dm′ (t′)
〉
,

can be expressed as trace over the lesser and greater dot Green’s function

σ2
W =

ˆ t2

t1

ˆ t2

t1

dtdt′Ẋ(t)Ẋ(t′)Tr
[
ΛXG>(t, t′)ΛXG<(t, t′)

]
. (6.14)

The variance of the non-equilibrium work distribution is determined by the
correlator of the fluctuating force

ξ̂(t) = −d†(t)ΛXd(t) 〈d†(t)ΛXd(t)〉 (6.15)
〈ξ̂(t)ξ̂(t′)〉 = Tr

[
ΛXG>(t, t′)ΛXG<(t′, t)

]
, (6.16)

so that
σ2
W =

ˆ t2

t1

ˆ t2

t1

dtdt′Ẋ(t)Ẋ(t′) 〈ξ̂(t)ξ̂(t′)〉 . (6.17)
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For the integral over a slow transformation, the contributions in σ2
W for which

t− t′ is smaller than typical electronic relaxation times are negligible. With this
we can write the lowest order work fluctuations in terms of the equal time noise
correlator Eq. (6.11)

σ2
W '

ˆ t2

t1

dtẊ(t)2 2T γ(t) = 2T 〈Wdiss〉 , (6.18)

where we used that the dissipated work is the time integral over the dissipated
power

〈Wdiss〉 =
ˆ t2

t1

dt Ẋ(t)2γ(t) . (6.19)

Hence, the Jarzynski equality for a Gaussian work distribution in Eq. 6.8 is
automatically fulfilled by the fluctuation dissipation theorem of the adiabatic
reaction forces at each point of the protocol. In a final technical interlude, we
show how the delta-correlated noise follows from the energy dependence of the
electronic Green’s functions.
For slow transformations, the noise is delta-correlated on time scales much
larger than typical electronic relaxation times, Eq. (6.11). To make that ex-
plicit, we express the noise correlator Eq. (6.16) in terms of the Wigner trans-
forms and keep only terms to lowest order in Ẋ

G>(t, t′)G<(t, t′) =
ˆ

dε

2π e
−iετG>(0)(t, ε)

ˆ
dε′

2π e
iε′τG<(0)(t, ε′) (6.20)

=
ˆ

dε

2π

ˆ
d δε

2π e
iδε(t−t′)G>(0)(t, ε)G<(0)(t, ε+ δε) ,

where we used δε = ε′−ε. Due to the oscillating factor only times and energies
|(t − t′)δε| � 1 contribute to the integral. For time scales long compared to
the electronic ones |t − t′| � Γ−1, where Γ is a typical electronic relaxation
rate, the contribution of the integrals is restricted to δε � Γ. Since δε � Γ
is an energy scale on which the dot Green’s functions barely change, we can
approximate G<(0)(t, ε+ δε) ' G<(0)(t, ε) and obtain the noise correlator Eq.
(6.16)

〈ξ̂(t)ξ̂(t′)〉 '
ˆ

dε

2πTr
[
ΛXG>(0)(t, ε)ΛXG<(0)(t, ε)

] ˆ dδε

2π e
i(δε)τ

= D(t)δ(t− t′) . (6.21)

In absence of an electronic bias, the equal time noise correlator is determined
by the fluctuation dissipation theorem D(t) = 2γ(t) [Bode et al., 2011, 2012b],
which yields Eq. (6.11).
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7 | Conclusion and outlook

In this thesis we investigated how electron-electron interactions and strong
system-bath coupling influence the working principles of electronic nanoma-
chines.
First we derived the properties of an electronic quantum motor, in which the
electron-electron interactions gain importance due to reduced dimensionality:
a one-dimensional electron system coupled to a slowly changing mechanical or
magnetic degree of freedom. This model is realized for instance in a quantum
wire proximitized by a slowly sliding periodic potential and a QSH edge coupled
to a precessing nanomagnet. In a fully field theoretic treatment, we derived
how the coupling to the interacting electron system leads to directed motion.
We demonstrated in an RG treatment that the repulsion between the electrons
enhances the energy gap opened by the sliding periodic potential of the Thouless
motor, and analogously the gap opened by the nanomagnet in the QSH edge.
Thereby electron-electron interactions increase the robustness against variations
of the chemical potential, allow for higher operating speeds, and protect the
quantum motor against leakages, which would decrease its output power. On
the other hand, the friction of the motor is enhanced by repulsive interactions
for infinite one-dimensional electron systems. Nevertheless, a closer look shows
that putting the system into contact with 3d electronic reservoirs, such as a
battery to drive the motor, reduces the dissipation to the non-interacting value
at steady velocity. This phenomenon is caused by plasmon reflection at the
boundary of the 1d system, which feed part of the dissipated energy back into
the motor degree of freedom. Thereby the motor exhibits the conductance of an
ideal non-interacting channel at steady velocity, analogous to the dc conductance
of a Luttinger liquid with attached Fermi liquid leads [Maslov and Stone, 1995].
In the second part we showed how to describe the thermodynamic transfor-
mations of electronic quantum machines in the strong coupling regime. To
overcome the problems posed by the strong system-bath coupling, we at first
thoroughly investigated the simplest possible case: the driven resonant level
model. By considering everything which is influenced by local changes of the
level as ’system’, and everything that is not as ’bath’, the equilibrium thermo-
dynamics of this model could be derived from standard statistical mechanics.
Going beyond the quasistatic equilibrium to treat finite velocity transformations
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demands a representation of the thermodynamic quantities in terms of expecta-
tion values. For the resonant level model in the wide band limit, this leads to a
symmetric splitting of the coupling Hamiltonian between system and bath. On
this basis, the full characterization of the thermodynamic transformations to
first order beyond the quasistatic equilibrium were derived, including a positive
entropy production given by the dissipated power.
However, we subsequently found that the symmetric splitting of the coupling
Hamiltonian is limited to the mean value of the internal energy and fails to
correctly predict its fluctuations. And furthermore, moving away from the wide
band limit entirely precludes a simple accounting for the coupling energy by
dividing the Hamiltonian between system and bath, even for the mean value.
To treat more general electronic nanomachines we hence developed an approach
that is based on a formalism, which naturally avoids this system-bath distinc-
tion: the Landauer-Büttiker theory of quantum transport. Invoking energy,
particle, and—due to the fully coherent quantum dynamics—also entropy con-
servation, we showed that the thermodynamic evolution of the strongly coupled
subsystem can be inferred from the associated currents in the attached leads.
In an expansion around the quasistatic equilibrium, we showed that the onset
of dissipation leads to a local increase of entropy and a deviation from the equi-
librium relation dQ = TdS. The developed approach provides an efficient tool
to the theoretical treatment of electronic nanomachines, as it is applicable to
arbitrary non-interacting electron systems under slow driving. In a last step,
we demonstrated the validity of the Jarzynsiki equality in these systems.
An exciting next step would be to combine several strokes of a quantum en-
gine, which we can now describe thermodynamically in the strong coupling
regime, to a full cyclic transformation as in the Carnot heat engine in Sec. 1.3.
Thereby one could follow the full thermodynamic evolution of a simple elec-
tronic quantum engine in the strong coupling regime. Furthermore, the effects
of electron-electron interactions on the thermodynamic properties in the strong
coupling regime pose an interesting direction of future research.
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A | Appendices: An inter-
acting adiabatic quan-
tum motor

A.1 Effective action of the motor degree of free-
dom

In the following we derive the effective action of the motor degree of freedom
ϑ that results from the coupling to the LL at the boundary of the periodic
potential, given by the pinning condition φ(0, t) = −ϑ(t)/2. Since the coupling
to an applied bias Eq. (2.51) ∝ φ(0, τ) is already given in terms of the field
at x = 0 only, it is not affected by the integrating out procedure. We can
directly impose the constraint φ(0, τ) = −ϑ(τ)/2 and obtain its contribution to
the effective action of ϑ

Sbias = −
ˆ β

0
dτ
eV

2π ϑ(τ) . (A.1)

To obtain the dissipative part of the effective dynamics, we integrate out the
fields of the LL under the constraint φ(0, τ) = −ϑ(τ)/2, which we implement
via a functional delta function

δ

[
φ(0, τ) + ϑ(τ)

2

]
=
ˆ
D[κ] exp

(
−i
ˆ β

0
dτ κ(τ)

[
φ(0, τ) + ϑ(τ)

2

])
, (A.2)

where we introduced an additional real-valued field κ(τ). With that we can
write effective action Sdiss[ϑ] as

exp(−Sdiss[ϑ]) =
ˆ
D[φ] δ

[
φ(0, τ) + ϑ(τ)

2

]
exp (−S0) =

ˆ
D[φ]D[κ] exp (−S) .

(A.3)
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Using Eq. (A.2), the exponent −S reads

S = 1
2π

ˆ
dr

[
1

K(x) vc(x) (∂τφ)2 + vc(x)
K(x) (∂xφ)2

]
+i
ˆ β

0
dτ κ(τ)

(
φ(0, τ) + ϑ(τ)

2

)
,

(A.4)
where the space-dependent charge velocity and interaction parameter Eq. (2.71)
model the contact to the FL leads. We find the effective action by solving the
saddle point equations under a variation of φ and κ, which enables us to to take
proper account of the boundary conditions at the intersections of FL and LL
and the constraint φ(0, τ) = −ϑ(τ)/2 . For that we write down the saddle point
equation under a variation of φ

1
π

(
ω2
n

K(x) vc(x) − ∂x
vc(x)
K(x)∂x

)
φ(x, ωn) = −iκ(ωn)δ(x) . (A.5)

We can solve this equation by writing the solutions for each region of constant vc
andK and solving for their coefficients by taking proper account of the boundary
conditions as shown below. Inserting the implicit solution of the saddle point
equation into the action (A.4) leads to

S = i

2

ˆ
dτκ(τ)φ(0, τ) + i

ˆ β

0
dτ κ(τ)ϑ(τ)

2 , (A.6)

where φ(0, τ) is the solution of the saddle point equation. From there we can
later obtain the saddle point equation for κ to reach the desired dissipative
action of the motor.

Infinite Luttinger liquid We start with the infinite LL case. To find the
explicit solution for φ(0, τ) we write down the solution of Eq. (A.5) for x > 0
and x < 0

φ(x, ωn) =
{
βe
|ωn|
vc

x x < 0
δe−

|ωn|
vc

x 0 < x ,
(A.7)

where we directly omitted the part of the solution that grows for x → ±∞.
The appropriate boundary conditions follow from the saddle point equation Eq.
(A.5) and are given by the continuity φ(x = 0+) = φ(x = 0−), which directly
gives β = δ, and

vc
πK

∂xφ(x, ωn)|x=0+

x=0− = iκ(ωn) (A.8)

→ β = − iκ(ωn)πK
2|ωn|

= φ(0, ωn) . (A.9)

We use the solution for φ(0, ωn) and insert it into S Eq. (A.6)

S = 1
4
∑
ωn

|κ(ωn)|2πK
|ωn|

+ i
∑
ωn

(
κ(ωn)ϑ(−ωn)

2

)
. (A.10)
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A variation of κ(ωn) leads to the saddle point equation

κ(−ωn) = −iϑ(−ωn)|ωn|
πK

. (A.11)

Inserting κ Eq. (A.11) into the action Eq. (A.10) yields the dissipative action
used in the main text Eq. (2.52)

Sdiss[ϑ] =
∑
ωn

|ωn|
4πK |ϑn|

2 . (A.12)

Furthermore we can use the solution for κ(−ωn) Eq. (A.11) to determine β =
−ϑ(ωn)/2 in Eq. (A.9) and write down the real space solution for φ

φ(x, ωn) =
{
−ϑ(ωn)

2 e
|ωn|
vc

x x < 0
−ϑ(ωn)

2 e−
|ωn|
vc

x 0 < x .
(A.13)

Analytical continuation to real frequencies |ωn| → −iω and taking the Fourier
transform to real time leads to

φ(x, t) =

−
ϑ(t+ x

vc
)

2 x < 0

−ϑ(t− x
vc

)
2 0 < x .

(A.14)

Thus, the boundary condition travels with ±vc on the right (left) side.

Contact to Fermi liquid leads In the case of a finite LL in contact to FL
leads, we need to write down the solution of the saddle point equation (A.5) in
the various regions

φ(x, ωn) =


Ae
|ωn|
vF

x
x < −D/2

[β + γ/2] e
|ωn|
vc

x + [β − γ/2] e−
|ωn|
vc

x −D/2 < x < 0
[δ + ε/2] e

|ωn|
vc

x + [δ − ε/2] e−
|ωn|
vc

x 0 < x < D/2
F e−

|ωn|
vF

x
D/2 < x ,

(A.15)

where we again directly omitted the part of the solution that grows for x→ ±∞.
Additionally to the boundary condition at x = 0 Eq. (A.8) we get at x = D/2
an additional condition from the saddle point Eq. (A.5)

− 1
π

vc(x)
K(x)∂xφ(x, ωn)|x=0+

x=0− = 0 (A.16)

vc
K
∂xφ

(
D

2

−
, ωn

)
= vF∂xφ

(
D

2

+
, ωn

)
, (A.17)
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where φ has to be continuous and the analogous condition at x = −D/2. Solving
for the coefficient β = φ(0, ωn)/2 leads to

φ(0, ωn) = − iκ(ωn)πK
2|ωn|M(ωn) (A.18)

M(ωn) =
(
1 + 1

K

)
e
|ωn|D

2vc +
(
1− 1

K

)
e−
|ωn|D

2vc(
1 + 1

K

)
e
|ωn|D

2vc −
(
1− 1

K

)
e−
|ωn|D

2vc

=
(

1 + 2
∞∑
n=1

e
−n|ωn|D

vc

[
K − 1
K + 1

]n)

=
(

1 + 2
∞∑
n=1

e−n|ωn|T rnp

)
, (A.19)

where we used the plasmon or charge reflection amplitude rp = K−1
K+1 and the

travel time of the plasmons from x=0 to the FL-LL boundary and back T =
D/vc. Using the explicit solution for φ(0, τ) in Eq. (A.6) yields

S = 1
4
∑
ωn

πK

|ωn|M(ωn) |κ(ωn)|2 + i
∑
ωn

(
κ(ωn)ϑ(−ωn)

2

)
. (A.20)

A variation of κ(ωn) leads to

κ(−ωn) = −iϑ(−ωn)|ωn|M(ωn)
πK

, (A.21)

which we insert into the action Eq. (A.20) to obtain the dissipative action used
in the main text Eq. (2.72)

Sdiss[ϑ] =
∑
ωn

|ωn|M(ωn)
4πK |ϑn|2 . (A.22)

Finally we use κ(−ωn) Eq. (A.21) to obtain the solution of φ under the constraint
φ(0, t) = −ϑ(t)/2. We focus here on the inner part |x| < D/2, since the outer
parts do not provide any additional insight. Inserting κ(−ωn) Eq. (A.21) into
Eq. (A.18) and using the relations between the coefficients of φ Eq. (A.15) that
we obtained from matching the boundary conditions, we get

φ(x, ωn) = −ϑ(ωn)
4

{
[1 +M ] e

|ωn|
vc

x + [1−M ] e−
|ωn|
vc

x −D/2 < x < 0
[1−M ] e

|ωn|
vc

x + [1 +M ] e−
|ωn|
vc

x 0 < x < D/2
(A.23)

= −ϑ(ωn)
4

{[
2 + 2

∑∞
n=1 e−n|ωn|T rnp

]
e
|ωn|
vc

x − 2
[∑∞

n=1 e−n|ωn|T rnp
]
e−
|ωn|
vc

x

−2
∑∞
n=1 e−n|ωn|T rnp e

|ωn|
vc

x +
(
2 + 2

∑∞
n=1 e−n|ωn|T rnp

)
e−
|ωn|
vc

x ,

(A.24)
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where we used Eq. (A.19). Analytical continuation to real frequencies |ωn| →
−iω and Fourier transformation to real times leads to

φ(x, t) = −1
2

ϑ
(
t+ x

vc

)
−
∑∞
n=1 ϑ

(
t− x

vc
− T n

)
rnP +

∑∞
n=1 ϑ

(
t+ x

vc
− T n

)
rnP

ϑ
(
t− x

vc

)
−
∑∞
n=1 ϑ

(
t+ x

vc
− T n

)
rnP +

∑∞
n=1 ϑ

(
t− x

vc
− T n

)
rnP ,

(A.25)

where the upper line is again for x ∈ [−D/2, 0] and the lower one for x ∈ [0, D/2].
Here we can see that additionally to the initial excitation that travels with ±vc
to the right (left) side, φ contains the field that gets reflected with amplitude
−rp at the LL-FL boundary and is subsequently reflected with amplitude −1 at
x = 0 and so on, which leads to the reduced uniform energy current Eq. (2.83)
in the main text.
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B | Appendices: Quantum
thermodynamics of the
resonant level model

B.1 Density of states in the wide band limit

In this work, we use the term wide band limit in the following sense: We consider
a large bandwidth 2D in the lead with a constant product of coupling matrix
element |Vk|2 and lead density of states ν(ε),

Γ = 2πν(ε)|V (ε)|2, (B.1)

for energies ε within the bandwidth of the lead. This leads to the retarded dot
self energy

ΣR(ε) = lim
η→0

∑
k

|Vk|2

ε− εk + iη
= Γ

2π ln |D + ε

D − ε
| − iΓ2 Θ (D − |ε|) , (B.2)

where Θ is the Heaviside function.

For energies ε� D, we can approximate the real part as ΣR(ε) ' 2ε/D, which
gives small corrections to the quasiparticle weight, the level energy εd, and the
level width Γ. Neglecting this contribution in the limit D → ∞, we find the
approximation used in the bulk of the paper.

Strictly speaking, this approximation leads to divergences. To see that these
divergences do not lead to complications in our discussion of the thermodynam-
ics, one needs to treat the wide band limit somewhat more carefully. From Eq.
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(3.14) in the main text we obtain the density of states in the wide band limit

ρ (ε) = ΓΘ (D − |ε|)(
ε− εd − Γ

2π ln |D+ε
D−ε |

)2
+
( 1

2ΓΘ (D − |ε|)
)2
(

1− Γ
2π

d

dε
ln |D + ε

D − ε
|
)

−

(
ε− εd − Γ

2π ln |D+ε
D−ε |

)
(
ε− εd − Γ

2π ln |D+ε
D−ε |

)2
+
( 1

2ΓΘ (D − |ε|)
)2 d

dε
ΓΘ (D − |ε|) + ν(ε) .

(B.3)

The large but finite bandwidth of the lead reduces the energy interval in which
the density of states takes finite values to ε ∈ [−D,D]. The energy dependence
of the self energy that arises from the finite bandwidth leads to additional con-
tributions to the density of states of the extended resonant level (the full density
of states ρ minus the unperturbed density of states in the bath ν) for energies
close to the band edge ε ∼ ±D. To calculate the influence of these additional
terms on the thermodynamic quantities, we consider their contribution to the
quasistatic energy E(0) = Ω + µN (0) + TS(0) Eq. (3.18), the quantity with the
largest contribution from the band edge. The correction to the internal energy
δE1 originating from the term ∝ d

dε=ΣR(ε) vanishes,

δE1 = −
ˆ

dε

2π εf(ε)

(
ε− εd − Γ

2π ln |D+ε
D−ε |

)
(
ε− εd − Γ

2π ln |D+ε
D−ε |

)2
+
( 1

2ΓΘ (D − |ε|)
)2 d

dε
ΓΘ (D − |ε|) = 0 .

(B.4)

The correction δE2 from the term ∝ d
dε<ΣR(ε) takes the form

δE2 =
ˆ

dε

2π εf(ε) −ΓΘ (D − |ε|)(
ε− εd − Γ

2π ln |D+ε
D−ε |

)2
+
( 1

2ΓΘ (D − |ε|)
)2 Γ

2π
2D

D2 − ε2
,

(B.5)

where we used d
dε ln |D+ε

D−ε | =
2D

D2−ε2 . To estimate the correction from the band
edge, consider the contribution from the upper edge ε ∼ D. The divergence of
Γ
2π ln |D+ε

D−ε | dominates the denominator when

D .
Γ
2π ln |D + ε

D − ε
| (B.6)

2De−D/Γ . D − ε. (B.7)

Hence we can separate the energy integral in δE2 into the two parts,

δE2 '
ˆ D−2De−D/Γ dε

2πDf(D)−Γ
D2

Γ
2π

2D
2D(D − ε)

+
ˆ D

D−2De−D/Γ

dε

2πDf(D) −Γ( Γ
2π ln |D−ε2D |

)2 Γ
2π

2D
2D(D − ε) . (B.8)
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Estimating the integrals leads to

δE2 ' −f(D) Γ
(2π)2 − Γf(D) . (B.9)

The contribution from the lower edge ε ∼ −D follows analogously and yields an
analogous result with f(D) replaced by f(−D). Thus, the contribution to the
density of states ∝ d

dε<ΣR(ε) gives a finite cutoff-dependent correction to the
internal energy that does not vanish in the limit D →∞.
However, the thermodynamics actually relates changes in the thermodynamic
state functions, and not the state functions themselves. We can similarly con-
sider how these changes are affected by starting with a finite bandwidth. To be
specific, consider the change of the internal energy upon moving the dot level
d
dεd
δE. By analogy with the above, the contribution ∝ d

dε=ΣR(ε) yields

d

dεd
δE2 =

ˆ
dε

2π εf(ε)
−2ΓΘ (D − |ε|)

(
ε− εd − Γ

2π ln |D+ε
D−ε |

)
((

ε− εd − Γ
2π ln |D+ε

D−ε |
)2

+
( 1

2ΓΘ (D − |ε|)
)2)2

Γ
2π

2D
D2 − ε2

(B.10)

' −2f(D)Γ
(2π)2

D
+ 4πΓf(D)

2D → 0 for D →∞ . (B.11)

Hence for the changes of the thermodynamic quantities, the corrections associ-
ated with the energy dependence of the self energy vanish in the limit D →∞
. The specific choice of the bandwidth D merely sets the reference point from
which the grand potential Ω and the internal energy E(0) of the extended res-
onant level are being measured – all changes of thermodynamic quantities and
non-equilibrium corrections are converging to cutoff-independent results in the
limit D → ∞. This leads to the wide band limit expression for the density of
states of the extended resonant level in the limit of large D

ρεd(ε) = Γ
(ε− εd)2 + (Γ/2)2 (B.12)

used in the main text, which leaves the dependence on D that sets the reference
point of the internal energy E(0) and the grand potential Ω implicit.

B.2 An alternative derivation of the non-equilibrium
Green’s functions in terms of a quantum ki-
netic equation

Here we present an alternative derivation of the non-equilibrium properties
of the dot electrons. Instead of deriving the lesser component of the non-
equilibrium Green’s function using the Langreth rule in the Keldysh integral
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formulation, one can equivalently derive the non-equilibrium occupation of the
level using the a quantum kinetic (Kadanoff-Baym or Quantum Boltzmann)
equation in first order gradient approximation,[Haug and Jauho, 1996] as it is
done in Ref. [Esposito et al., 2015b] and [Kita, 2010]. For the description of a
single electronic level in contact to leads these approaches are equivalent and
we explicitly show both here to clarify the connection of our work to Ref. [Es-
posito et al., 2015b]. For a single electronic level, the retarded Green’s function
of the dot electrons takes the frozen form GR(ε, t) = (ε − εd(t) + iΓ

2 )−1 when
considering the gradient expansion of the Dyson equation up to second order.
Thereby also the form of the spectral function A(ε) = −2 ImGR(ε) is set and
all effects of the level speed up to linear order can be cast in a non-equilibrium
distribution function φ, related to the lesser Green’s function via G< = iAφ.
The non-equilibrium distribution function of the dot electrons in contact to one
lead satisfies the equation of motion [Kita, 2010]

{G−1
0 − ReΣR, Aφ} − {Γf, ReGR} = AΓ(f − φ) , (B.13)

where {C, D} = ∂εC ∂tD−∂tC ∂εD is the Poisson bracket and G−1
0 = ε−εd(t).

1 Using the wide band limit we solve this equation for φ consistently up to linear
in the velocity to obtain

φ = f − ε̇d∂εf
(

1
Γ + ∂εReGR

)
= f − ε̇d

2 ∂εfA , (B.14)

which is identical to the solution above obtained via the Langreth rule for the
lesser component of the Green’s function Eq. (3.45).

B.3 Calculation of the internal energy

As mentioned in the main text, the internal energy of the extended resonant
level model can be, at different orders i, represented as expectation value of the
Hamiltonian of the effective system HD + 1

2HV

E(i) = 〈HD〉(i) + 1
2 〈HV 〉(i) . (B.15)

To calculate 〈HV 〉 we write

〈HV 〉 =
∑
k

(
Vk 〈d†ck〉+ V ∗k 〈c

†
kd〉
)

(B.16)

=2
∑
k

Im
(
V ∗k G

<
d,k(t, t)

)
, (B.17)

1Eq. (B.13) differs from Eq. (4.19) in Ref. [Kita, 2010], used in Ref. [Esposito et al., 2015b],
in the second Poisson bracket on the left, as our expression involves f rather than φ. We believe
that our form is correct, but in any case both forms are equivalent up to the first order in
velocity considered here and both lead to the same solution for φ Eq. (B.14).
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with G<d,k(t, t′) = i
〈
c†k(t′)d(t)

〉
and where we used G<d,k(t, t) = −

(
G<k,d(t, t)

)∗
.

The equation of motion for the mixed Green’s function G<d,k and analytical
continuation from the Keldysh contour to the lesser component leads to [Jauho
et al., 1994]

〈HV 〉 = 2
∑
k

Im
(ˆ

dt′|Vk|2
[
GR(t, t′)g<k (t′, t) +G<(t, t′)gAk (t′, t)

])
= 2 Im

(ˆ
dt′
[
GR(t, t′)Σ<(t′, t) +G<(t, t′)ΣA(t′, t)

])
. (B.18)

Moving to the Wigner transform we obtain

〈HV 〉 = 2 Im
(ˆ

dε

2π
[
GR(ε, t) ∗ Σ<(ε) +G<(ε, t) ∗ ΣA

])
. (B.19)

Note that G<(ε, t) ∗ ΣA = G<(ε, t) 1
2 iΓ does not contribute, since it is purely

real. This leads up to linear order in the velocity to

〈HV 〉 = 2 Im
(ˆ

dε

2π

[
GR(ε, t)if(ε)Γ− i

2∂tG
R(ε, t)i∂εf(ε)Γ

])
. (B.20)

From the fact that GR does not have a correction linear in the velocity it follows
that the first term on the right contributes only in zero order, and yields the
quasistatic coupling energy 〈HV 〉(0)

〈HV 〉(0) =
ˆ

dε

2π 2f(ε)ΓReGR(ε) (B.21)

= 2
ˆ

dε

2πf(ε)(ε− εd)A , (B.22)

which leads, using the result for 〈HD〉(0) = εd 〈d†d〉
(0) from Eq. (3.45), to the

quasistatic internal energy of the extended resonant level given in the main text
Eq. (3.18)

E(0) = 〈HD〉(0) + 1
2 〈HV 〉(0) =

ˆ
dε

2π εfA . (B.23)

The first order correction to the coupling energy is obtained from the second
term on the right of Eq. (B.20) and takes the form

〈HV 〉(1) =
ˆ

dε

2π∂εfΓ Im ∂tG
R(ε) (B.24)

= ε̇d
2

ˆ
dε

2π∂εfΓ∂εA . (B.25)

With 〈HD〉(1) = εd 〈d†d〉
(1) from Eq. (3.45) we obtain the correction to the
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internal energy Eq. (3.51) from the main text

E(1) = 〈HD〉(1) + 1
2 〈HV 〉(1) = ε̇d

ˆ
dε

2π

(
−εd2 ∂εfA

2 + 1
4Γ∂εf∂εA

)
(B.26)

= −ε̇d2

ˆ
dε

2π ε∂εfA
2 , (B.27)

where we used ∂εA = −2(ε−εd)
Γ A2. Taking the time derivative of this correction

leads to the second order contribution to the internal energy change per unit
time

d

dt
E(1) = Ė(2) = ε̇2

d

2

ˆ
dε

2π ε∂εf∂εA
2 (B.28)

= ε̇2
d

2

ˆ
dε

2π
(
−∂εfA2 − ε∂2

εf A
2) , (B.29)

where we integrated by parts. Note again that throughout the entire paper
we assume a linear motion of the dot level ε̈d = 0. With the corresponding
expressions given in the main text Eq. (3.49), (3.52) and (3.48) it can be seen
that the derived corrections satisfy the first law Ė(2) = Ẇ (2) + Q̇(2) + µ Ṅ (2).

Note however that even though the symmetric splitting into effective system
and bath gives a correct representation of the εd-dependent part of the internal
energy (the internal energy of the extended resonant level model), it does not
mean that 〈HB〉 has no εd-dependent part. This can be seen explicitly by
calculating the εd-dependent part of the lead Hamiltonian, which we call 〈HB〉εd
in the following, via a scaled version of the grand potential of the extended
resonant level Ω Eq. (3.15) (the εd-dependent part of the grand potential). We
use the scaled Hamiltonian

Hλ = HD + λHB +HV (B.30)

to calculate 〈HB〉εd from the associated scaled grand potential Ωλ

〈HB〉εd = ∂Ωλ
∂λ

∣∣
λ=1, (B.31)

evaluated at λ = 1. The scaled lead Hamiltonian changes the density of states
of the bath electrons νλ(ε) = ν(ε)/λ and the scaled spectral function of the dot
electrons Aλ reads

Aλ = Γ
(ε− εd)2 +

( Γ
2λ
)2 . (B.32)
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This sets the form of the scaled grand potential Ωλ from which we obtain

〈HB〉εd = −1
β

∂

∂λ

ˆ
dε

2π
Γ

(ε− εd)2 +
( Γ

2λ
)2 ln

(
1 + e−β(ε−µ)

)
(B.33)

= − 1
β

(
− Γ
λ2

)ˆ
dε

2π
(ε− εd)2 −

( Γ
2λ
)2[

(ε− εd)2 +
( Γ

2λ
)2]2︸ ︷︷ ︸

−∂εReGR(ε)

ln
(

1 + e−β(ε−µ)
)

λ→ 1

(B.34)

= 1
β

ˆ
dε

2πΓReGR (ε) ∂ε ln
(

1 + e−β(ε−µ)
)

(B.35)

= −
ˆ

dε

2π (ε− εd) Af (ε) . (B.36)

Note that an analogous calculation for HD and HV reproduces the direct ex-
pectation values 〈HV 〉εd = 〈HV 〉(0) Eq. (B.21) and 〈HD〉εd = εd 〈d†d〉

(0) from
Eq. (3.45). Thus the εd-dependent part of all three Hamiltonian reproduces the
adiabatic internal energy of the extended resonant level from above

〈HD〉(0) + 〈HV 〉(0) + 〈HB〉(0)
εd

=
ˆ

dε

2π εfA , (B.37)

while the sum 〈HV 〉(0)+〈HB〉(0)
εd

gives the ’half splitting’ contribution 1
2 〈HV 〉(0).

B.4 Calculation of the energy fluxes

Using the results of Section 3.3.1, we calculate the different energy fluxes con-
tributing to the heat current at different orders from the non-equilibrium Green’s
functions formalism. Since the energy fluxes Wα = i 〈[Htot, Hα]〉 between the
different parts of the system α must satisfy

WB +WV +WD = 0 , (B.38)

and because the energy change of the total system is given by the power pro-
vided by the external driving Ėtot = 〈∂Hd∂t 〉, there are in principle two ways of
calculating the energy flow into the effective bath (needed for the evaluation of
the heat flow at different orders):

Q̇ = −
(

1
2WV −WB

)
− µṄ or (B.39)

Q̇ = WD + 1
2WV − µṄ . (B.40)

We present the calculation via the energy flux leaving the effective systemWD+
1
2WV , since it takes a simpler form in the non-equilibrium Green’s functions
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formalism. Note however that a calculation via WB is also possible and leads
to the same result.
We calculate the heat flux via

Q̇ = WD + 1
2WV − µṄ

= εdṄ + 1
2
d

dt
〈HV 〉 − µṄ . (B.41)

This leads with Ṅ (1) Eq. (3.22) and 〈HV 〉(0) Eq. (B.21) to the quasistatic heat
current linear in the velocity

Q̇(1) = εdṄ
(1) + 1

2
d

dt
〈HV 〉(0) − µṄ (1)

= εdε̇d

ˆ
dε

2πA∂εf − ε̇d
ˆ

dε

2πfΓ∂εReGR − µ
ˆ

dε

2πA∂εf (ε)

= ε̇d

ˆ
dε

2π (ε− µ)A∂εf (ε) , (B.42)

where we used ΓReGR = (ε − εd)A and integrated by parts. Therefore the
calculation of the first order heat current via the energy flux into the effective
bath reproduces the adiabatic heat current Eq. (3.21) from the main text. To
calculate the non-equilibrium correction we use Ṅ (2), Eq. (3.48), and 〈HV 〉(1),
Eq. (B.24), and obtain

Q̇(2) = εdṄ
(2) + 1

2
d

dt
〈HV 〉(1) − µṄ (2)

= −εd
ˆ

dε

2π
ε̇2
d

2 ∂2
εf A

2 − ε̇2
d

4

ˆ
dε

2πΓ∂εf∂2
εA− µ

ˆ
dε

2π
ε̇2
d

2 ∂2
εf A

2

= −
ˆ

dε

2π (ε− µ) ε̇
2
d

2 ∂2
εf A

2 , (B.43)

where we integrated by parts and used Γ∂εA = −2(ε− εd)A2. This is the form
of the non-equilibrium correction to the heat current given in the main text Eq.
(3.52).

B.5 Particle conservation of the finite speed cur-
rent

In the following we show that the correction Ṅ (2) = d
dtN

(1) to the quasistatic
current is obeying particle conservation upon moving on a path between two
states with a well defined particle number. We need to show that

∆N (2) =
ˆ t2

t1

dtṄ (2) = 0 , (B.44)
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with εd(t1) well below and εd(t2) well above µ. Assuming a constant velocity
ε̇d we obtain

∆N (2) = −
ˆ t2

t1

dt

ˆ
dε

2π
ε̇2
d

2 ∂
2
εf A

2

=
ˆ ε2

ε1

dεd
ε̇d
2

ˆ
dε

2π ∂εf∂εA
2, (B.45)

where we did an integration by parts in the second line. Now we use that A is
a function of ε− εd and therefore ∂εA = − ∂εdA to obtain

∆N (2) =− ε̇d
2

ˆ
dε

2π ∂εf
ˆ ε2

ε1

dεd
∂A2

∂εd

=− ε̇d
2

ˆ
dε

2π ∂εfA
2|ε−ε2ε−ε1

=0 ,

where we used that the derivative of the fermi distribution ∂εf restricts the
ε-interval in which the integrand is non-zero to a finite range ∼ T around µ. As
long as ε1 is well below and ε2 is well above it, A2(ε, ε1/2) is zero everywhere,
where ∂εf is nonzero, from which follows the last line.

B.6 Energy conservation of the corrections to
heat current and the extra work

In the following we show that all the extra work paid for moving the level at
finite speed is given as extra heat to the leads

ˆ t2

t1

dtẆ (2) = −
ˆ t2

t1

dtQ̇(2) , (B.46)
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(6.3)where again εd(t1) is well below and εd(t2) is well above µ. With analogous
steps as above we obtain assuming a constant level speed

ˆ t2

t1

dtẆ (2) =−
ˆ t2

t1

dtQ̇(2)

−
ˆ t2

t1

dt

ˆ
dε

2π
ε̇2
d

2 ∂εf A
2 =
ˆ t2

t1

dt

ˆ
dε

2π ε
(
ε̇2
d

2 ∂
2
εf A

2
)

ε̇d

ˆ ε2

ε1

dεd

ˆ
dε

2π ε∂ε
(
∂εf A

2) =ε̇d
ˆ ε2

ε1

dεd

ˆ
dε

2π ε∂
2
εf A

2

ˆ ε2

ε1

dεd

ˆ
dε

2π ε∂εf ∂εA
2 =0

−
ˆ

dε

2π ε∂εf
ˆ ε2

ε1

dεd∂εdA
2 =0

−
ˆ

dε

2π ε∂εf A
2|ε−ε2ε−ε1 =0 ,

where the last equality is fulfilled due to the finite range where ∂εf is non-zero,
as above.
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C | Appendices: The extended
resonant level model: En-
ergy fluctuations and be-
havior beyond the wide
band limit

C.1 Derivation of Eqs. 4.3 and 4.6

In this Appendix we derive the expression for the local energy fluctuations of
the extended resonant level. We consider the rescaled Hamiltonian in Eq. (4.2)
and grand potential in Eq. (4.5), with rescaling parameter λ and evaluate

− 1
β

∂2

∂λ2 Ω(λ) = − 1
β2

(
1
Ξ
∂Ξ
∂λ

)2
+ 1
β2

1
Ξ(λ)

∂2Ξ(λ)
∂λ2 (C.1)

Setting λ = 1 we obtain Eq. (4.3). Next, we notice that the rescaled Hamiltonian
has effective level energy λεd, system-bath coupling parameter λVk and bath
electron energies λεk. Accordingly, the rescaled electron decay rate Γ̃ in the wide
band limit is Γ̃ = 2π

∑
k |λVk|2δ(ε−λεk) = 2πλ2×(λ−1)

∑
k |Vk|2δ(λ−1ε−εk) =

λΓ, and the level spectral function depends on λ as follows

A = λΓ
(ε− λεd)2 + (λΓ/2)2 . (C.2)

Evaluating the derivatives of A with respect to λ, as well as the derivatives of
A and ReGR with respect to the energy ε we obtain Eq. (4.4). Also, Eqs. (4.5),
(4.3) and (4.4) readily yield

∂2

∂λ2 Ω
∣∣∣∣
λ=1

=
ˆ

dε

2π ε
2A

∂

∂ε
f(ε), (C.3)
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which is Eq. (4.6) of the main text.
More generally, the above discussion shows that by identifying how the parame-
ters of the Hamiltonian change after rescaling, we can determine the functional
form of the spectral function A on the rescaling parameters λi, then use its
derivatives with respect to these scaling parameters to find averages and higher
moments of other relevant local quantities expressed in terms of energy deriva-
tives of A and ReGR.

C.2 Derivation of Eqs. 4.26 and 4.31

Here we derive the relation ∂
∂εd

ρεd(ε) = − ∂
∂ε Ã(ε) used in Sec. 4.2. Let B(ε) =

(ε− εd − Λ)2 + (Γ/2)2, such that Ã = Γ/B and ReGR = (ε− εd − Λ)/B. Thus

∂

∂εd
Ã = 1

B2 2 (ε− εd − Λ) Γ, (C.4)

∂

∂εd
ReGR = 1

B2

{
(ε− εd − Λ)2 − (Γ/2)2

}
. (C.5)

The energy derivative of the extended resonant level spectral function Ã is

∂

∂ε
Ã = 1

B2

{(
(ε− εd − Λ)2 + (Γ/2)2

)
∂εΓ

−
(
2 (ε− εd − Λ) (1− ∂εΛ) Γ + 2(Γ/2)2∂εΓ

)}
(C.6)

=∂εΓ
∂

∂εd
ReGR − (1− ∂εΛ) ∂

∂εd
Ã (C.7)

=− ∂

∂εd
ρεd(ε) , (C.8)

where we used Eq. (C.4) and (C.5) in (C.6) in order to identify ρεd(ε) as given
by Eq. (4.23).

To obtain 〈ĤD〉 in Eq. (4.31), just notice that 〈ĤD〉 = εd〈d̂†d̂〉 = εd∂εdΩ̃ =
εd
´
dε
2π Ãf(ε) , where we have used (4.26).

C.3 Derivation of Eq. 4.32

To obtain the expression for 〈HV 〉 in Eq. (4.32) we defined the rescaled Hamil-
tonian

Ĥ(λ) = ĤD + λVHV + ĤB , (C.9)
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and observe that Γ and Λ rescale as Γ = λ2
V Γ and Λ = λ2

V Λ, respectively. The
rescaled retarded Green function and spectral density are

ReGR(ε, εd,Γ,Λ;λV ) = ε− εd − λ2
V Λ

(ε− εd − λ2
V Λ)2 + (λ2

V Γ/2)2 (C.10)

Ã(ε; εd,Γ,Λ;λV ) = λ2
V Γ

(ε− εd − λ2
V Λ)2 + (λ2

V Γ/2)2 (C.11)

and the derivative of ρεd with respect to the rescaling parameter λV is

∂

∂λV
ρεd(ε) =

(
∂

∂λV
Ã

)
(1− ∂εΛ)− Ã(2/λV )∂εΛ

−
(

∂

∂λV
ReGR

)
∂εΓ− ReGR(2/λV )∂εΓ. (C.12)

Equations (C.10) - (C.12) lead to

∂

∂λV
ρεd(ε) = 2

B2 Γ(ε− εd − Λ)(2/λV )Λ(1− ∂εΛ)

− (2/λV ) ∂
∂ε

(
ÃΛ
)

+ (2/λV )Λ
(
∂

∂ε
Ã

)
− (2/λV ) ∂

∂ε

(
ΓReGR

)
− 1
B2 (2/λV )

[
(ε− εd − Λ)2 − (Γ/2)2]Λ∂εΓ. (C.13)

The first, third and fifth terms in the r.h.s of Eq. (C.13) mutually cancel. There-
fore

∂

∂λV
ρεd(ε) = − 2

λV

{
∂

∂ε

(
ΓReGR

)
+ ∂

∂ε

(
ÃΛ
)}

. (C.14)

Finally, the expression in Eq. (C.14) can be used to calculate 〈HV 〉:

〈HV 〉 = ∂

∂λV
Ω̃
∣∣∣∣
λV =1

(C.15)

=− 1
β

ˆ
dε

2π

(
∂

∂λV
ρεd(ε)

)
λV =1

ln
(

1 + e−β(ε−µ)
)

(C.16)

=2
ˆ

dε

2π (ε− εd)Ãf(ε), (C.17)

which is the result in Eq. (4.32). This result can also be derived from the Green’s
functions formalism (see Sec. B.3).
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D | Appendices: Landauer-
Büttiker approach to strongly
coupled quantum ther-
modynamics

D.1 Calculation of the outgoing distribution ma-
trix in the gradient expansion

In the following we derive the adiabatic expansion for the outgoing distribution
matrix Eq. (5.21). With the expression of the outgoing operators b in terms of
the incoming ones a via exact scattering matrix of the time-dependent problem
S, Eq. (5.14), we obtain

〈b†β (ε2) bα (ε1)〉 =
∑
γδ

ˆ
dε3
2π

ˆ
dε4
2π
〈
S∗βγ(ε2, ε3)a†γ(ε3)Sαδ(ε1, ε4)aδ(ε4)

〉
.

We use that the incoming scattering states are uncorrelated equilibrium channels

〈a†i (ε1)aj(ε2)〉 = δij2πδ(ε1 − ε2)fi(ε1) (D.1)

and get

〈b†β (ε2) bα (ε1)〉 =
∑
γ

ˆ
dε3
2π

ˆ
dε4
2π

{
Sαγ(ε1, ε3)f̃γ(ε3, ε4)S†γβ(ε4, ε2)

}
, (D.2)

with f̃γ(ε3, ε4) ≡ 2πδ(ε3 − ε4) f(ε3). The Wigner transform of a convolution

G (ε1, ε2) =
ˆ
dε3
2π C(ε1, ε3)D(ε3, ε2) (D.3)

takes the form of a Moyal product of Wigner transforms

G (ε, t) = C (ε, t) ∗D (ε, t) (D.4)
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where C (ε, t)∗D (ε, t) = C (ε, t) exp
[
i
2

(←
∂ ε ~∂t−

←
∂ t ~∂ε

)]
D (ε, t). Hence, we get

φoutαβ (ε, t) =
ˆ

dε̃

2π e
−iε̃t

〈
b†β(ε− ε̃/2)bα(ε+ ε̃/2)

〉
(D.5)

=
∑
γ

[
Sαγ(ε, t) ∗ f̃γ(ε, t)

]
∗ S†γβ(ε, t) . (D.6)

Expanding the exponential gives the different orders of velocity, which is called
the gradient expansion. The Wigner transform of the incoming distribution
in channel γ f̃γ(ε3, ε4) = 2πδ(ε3 − ε4) fγ(ε3) is just the Fermi function of the
associated reservoir f̃γ(ε, t) = fγ(ε). The Wigner transform of the full scattering
matrix

S(ε, t) =
ˆ

dε̃

2π e
−iε̃tS(ε+ ε̃

2 , ε−
ε̃

2) (D.7)

can be written as an expansion in powers of velocity (assuming Ẍ = 0)[Moskalets
and Büttiker, 2004b; Bode et al., 2011]

S(ε, t) = St(ε) + ẊAt(ε) + Ẋ2Bt(ε) , (D.8)

where S is the frozen scattering matrix, A is the A-matrix, its first order cor-
rection, and B is its second order correction. All these matrices depend para-
metrically on time and from now on we drop their energy and time labels for
better readability. The second order contribution to the scattering matrix B
never contributes to the distribution matrix up to second order in Ẋ in absence
of a bias fα = f∀α, as we show below.
In the setting of a quantum dot HD =

∑
n,n′ d

†
nhn,n′(X)dn′ coupled to leads

HL =
∑
η εηc

†
ηcη via a coupling Hamiltonian HT =

∑
η,n c

†
ηWηndn + h.c., the

frozen scattering matrix S can be expressed in terms of the frozen retarded
Green’s function of the of the quantum dot GR and the coupling matrices W
between the dot and the attached leads

S = 1− 2πiνWGRW † , (D.9)

where ν is the density of states in the leads. This formula is called the Mahaux-
Weidenmueller formula.
In the case of an energy-independent hybridization the A-matrix can be written
as [Bode et al., 2011]

A = πνW
(
∂εG

RΛXGR −GRΛX∂εGR
)
W † , (D.10)

where ΛX = ∂h(X)/∂X.

D.1.1 Zeroth order

At zeroth order only the frozen scattering matrix in the zeroth order gradient
expansion contributes
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φ
out(0)
αβ =

∑
γ

SαγfγS
†
γβ . (D.11)

In the absence of voltage and temperature bias f inα = f∀α, this simplifies to

φ
out(0)
αβ = f

∑
γ

SαγS
†
γβ = f

[
SS†

]
αβ

. (D.12)

For f inα = f∀α, we can at each order simplify the expression for the outgoing
distribution function φoutαβ by the unitarity of the scattering matrix at different
orders. At zeroth order this condition is just the unitarity of the frozen scattering
matrix

SS† = 1̂ , (D.13)
which leads to the zeroth order outgoing distribution matrix diagonal in channel
lead space, identical to the incoming distribution matrix

φ
out(0)
αβ = δαβf = φinαβ . (D.14)

We derive the unitarity conditions for the first and second order below in Sec.
D.1.4.

D.1.2 First order

At first order there are contributions both from the zeroth order gradient expan-
sion with the first order correction to S(ε, t), ẊAXt in Eq. (D.8), and the first
order gradient expansion with the frozen scattering matrix S, which is simplified
by the fact that the incoming distribution function fγ has no time dependency.
We obtain

φ
out(1)
αβ = Ẋ

∑
γ

[
AαγfγS

†
γβ + SαγfγA

†
γβ

+ i

2

{
∂εSαγ∂XS

†
γβ − ∂XSαγ∂εS

†
γβ

}
fγ

+ i

2

{
−∂XSαγ∂εfγS†γβ + Sαγ∂εfγ∂XS

†
γβ

} ]
, (D.15)

where we used ∂tS = Ẋ∂XS.
If we assume fα = f∀α we get

φ
out(1)
αβ

Ẋ
= f

∑
γ

[
AαγS

†
γβ + SαγA

†
γβ + i

2

{
∂εSαγ∂XS

†
γβ − ∂XSαγ∂εS

†
γβ

}]
+ ∂εf

∑
γ

i

2

{
−∂XSαγS†γβ + Sαγ∂XS

†
γβ

}
. (D.16)
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This can be simplified by the unitarity condition at first order Eq. (D.23)

φ
out(1)
αβ = Ẋ∂εf

∑
β=LR

i

2

{
−∂XSαγS†γβ + Sαγ∂XS

†
γβ

}
= Ẋ∂εf i

[
S∂XS

†]
αβ

(D.17)

where we used ∂X
(
SS†

)
= ∂X Î = 0 .

D.1.3 Second order

At second order there are contributions by the zeroth order gradient expansion
with Ẋ2B in Eq. (D.8), the first order gradient expansion with ẊA and the
second order gradient expansion with S. Using Eq. (D.24) we can simplify the
expression to

φ
out(2)
αβ

Ẋ2
= 1

2∂
2
ε f
[
∂XS∂XS

†]
αβ

(D.18)

+ ∂εf
i

2

[
A∂XS

† + S∂XA
† + i

2
(
∂2
XS∂εS

† + ∂εS∂
2
XS
† − ∂ε∂XS∂XS† − ∂XS∂X∂εS†

)]
αβ

.

D.1.4 Unitarity condition at different orders

The unitarity of the full scattering matrix∑
n

ˆ
dε

2πSmn(ε′, ε)S†nk(ε, ε′′) = 2πδ(ε′ − ε′′)δmk (D.19)

leads to different conditions at each order in velocity. Taking the Wigner trans-
form of this expression leads to

1δmk =
∑
n

Smn(ε, t) ∗ S†nk(ε, t) . (D.20)

We insert the adiabatic expansion of the scattering matrix Eq. (D.8) and con-
sistently collect the terms order by order in the velocity.

Zeroth order To zeroth order in the velocity we obtain the unitarity condition
for the frozen scattering matrix

δmk =
∑
n

SmnS
†
nk . (D.21)
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First order Up to first order in the velocity Eq. (D.20) reads

δmk =
∑
n

[
SmnS

†
nk + ẊAmnS

†
nk + ẊSmnA

,†
nk(ε)

+ i

2

(
∂Smn
∂ε

∂S†nk
∂t
− ∂Smn

∂t

∂S†nk
∂ε

) ]
. (D.22)

Using that the frozen scattering matrix S is unitary and ∂tS = Ẋ∂XS this
yields

∑
n

[
AXmnS

†
nk + Smn(ε)AX,†nk

]
= −

∑
n

i

2

(
∂Smn
∂ε

∂S†nk
∂X

− ∂Smn
∂X

∂S†nk
∂ε

)
.

(D.23)

Second order Up to second order in the velocity one obtains upon using Eqs.
(D.21) and (D.23)

0 = Ẋ2
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