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The third law of thermodynamics in the form of the unattainability principle states that exact ground-state
cooling requires infinite resources. Here, we investigate the amount of nonequilibrium resources needed for
approximate cooling. We consider as a resource any system out of equilibrium, allowing for resources beyond
the independent and identically distributed assumption and including the input of work as a particular case.
We establish in full generality a sufficient and a necessary condition for cooling and show that, for a vast class
of nonequilibrium resources, these two conditions coincide, providing a single necessary and sufficient
criterion. Such conditions are expressed in terms of a single function playing a role for the third law similar to
the one of the free energy for the second law. From a technical point of view, we provide new results about the
concavity or convexity of certain Renyi divergences, which might be of independent interest.
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I. INTRODUCTION

Pure quantum states are indispensable resources for any
task in quantum information processing. However, the third
law of thermodynamics (more precisely, the unattainability
principle) states that cooling a system exactly to zero
temperature requires an infinite amount of resources,
whether it is in the form of time, space, work, or some
other resource [1-5]. Similarly, no-go theorems have been
put forward for the task of bit erasure—which is closely
related to ground-state cooling—showing that no unitary
process on a system and a finite-dimensional reservoir
can bring the system from a mixed to a pure state [6-8].
However, these no-go results do not say much about the
amount of resources needed for approximate cooling.
Indeed, in recent times, a sizable number of studies dealt
with different protocols to cool a small quantum system
by unitarily acting on a heat bath and a certain number of
systems out of equilibrium to be “used up” (known under
the name of algorithmic or dynamical cooling) [9-13] or
by studying particular models of refrigerating small
quantum systems [14-20], including ones that seem to
challenge the unattainability principle in terms of
required time [21-28].

In this work, we focus on quantifying, in full generality,
the expenditure of arbitrary systems out of equilibrium that
are needed for approximate cooling while having access to
a heat bath. Our scenario is similar to the one considered in
algorithmic cooling, but here we treat the full thermody-
namics of the problem by allowing for resources with

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

2160-3308/17/7(4)/041033(21)

041033-1

Subject Areas: Quantum Physics, Statistical Physics

nontrivial Hamiltonians and accounting for the energy
conservation of the total process. We do this in the resource
theoretic framework of quantum thermodynamics [29-33],
which has proven useful for answering a variety of
fundamental questions in quantum thermodynamics, such
as establishing an infinite family of second laws [34],
providing fundamental bounds to single-shot thermody-
namics [30,34-36], providing definitions of work for
quantum systems [30,37,38], generalizing fluctuation the-
orems [39,40], elucidating the thermodynamic meaning of
negative entropies [41], and elucidating the role of quantum
coherence in thermodynamics [42—-46].

Recently, there have also been studies on the problem of
cooling from this point of view [3—5]; however, they mostly
focused on providing necessary conditions in terms of
resources such as time, space, or Hilbert-space dimension.

The task of cooling that we are considering can be
phrased as finding a cooling protocol between an arbitrary
resource described by the state and Hamiltonian py and Hp,
respectively, and a target system described by pg and Hyg,
where pg approximates the ground state of Hg. We later
assume, for simplicity, that pg is a thermal state—in this
case, the goal is to bring its final temperature 7'y to a very
low value. We assume that the density matrix of the
resource has full rank because otherwise the problem
trivializes since one can, for example, simply swap with
a ground state [47]. We furthermore assume that the target
system is initially in thermal equilibrium with some
environment. Then, the transition, i.e., the cooling protocol,
can be performed by using a thermal bath at a fixed inverse
temperature £ and performing a global unitary that com-
mutes with the total Hamiltonian so that energy conserva-
tion is properly accounted for. These kinds of transitions
have been extensively studied, and they can be charac-
terized by families of functions M%, the so-called monot-
ones, so that a transition is possible if and only if [34,48,49]
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Ma(pR’HR) ZMa(pS7HS) Va. (1)

Hence, the problem at hand is, in principle, hard to
characterize since one needs to verify an infinite number
of conditions to conclude that a given transition is possible.
The main contribution of the present work is to show that,
in the limit where 7' is sufficiently close to zero—i.e., the
regime where the (un)attainability problem is formulated—
the infinite set of monotones appearing in Eq. (10) can
essentially be reduced to a single monotone. We call this
monotone the vacancy, and it is defined as

V(p, H) = S(wy(H)llp), )

where wj(H) is the Gibbs state at inverse temperature 4 and
S is the relative entropy defined as

S(plle) = Tr(plogp) — Tr(plog o), 3)

if supp(p) < supp(o), and it is equal to +oo otherwise.
We find that sufficient and necessary conditions for
cooling, respectively, are given by

Vs(pr. Hg) — K(pg. Hg.ps. Hg. p) > Vy(ps. Hg), (4)

Vs(pr- Hr) 2 Vy(ps, Hs), (5)

where K(pg, Hg,ps, Hg, f) — 0 as Ts — 0. Hence, in the
limit of very-low-temperature cooling, Vj(ps, Hg) is the
key quantity that determines the fundamental limitations.
Importantly, Vj(ps. Hy) diverges as Ts — 0. The necessary
condition (5) therefore shows that an infinite amount of
resources (as measured by Vj) is necessary for exact
ground-state cooling. Furthermore, we show that for a
vast class of resource systems—for example, thermal
states of coupled harmonic oscillators—the function
K(pg, Hg, ps, Hs, ) vanishes identically. Hence,

Vs(pr- Hr) 2 Vy(ps, Hs) (6)

becomes both a sufficient and necessary condition. That V;
plays an important role for the third law had previously
been found in the setting of independent and identically
distributed (IID) resources and qubits as target systems in
the seminal work of Ref. [29]. Here, we extend the
significance of the quantity V; to arbitrary scenarios.
Usually, the unattainability principle is formulated with
respect to time, arguing that an infinite amount of time (or
infinitely many cycles of a periodically working machine)
are needed to cool a system exactly to zero temperature.
Our results show, for example, that if the nonequilibrium
resources are simply hot thermal systems (as in the example
of a thermal machine that operates between two heat baths),
the system to be cooled and the cooling machine have
to effectively interact with infinitely many such resource

systems (or all parts of one infinitely large system). This
implies that an infinite amount of time is needed since each
such interaction takes a finite time (see Ref. [3] for a
thorough discussion of this point).

Our findings not only serve to pose limitations to
protocols of algorithmic cooling but also suggest a surpris-
ing symmetry between the second and third laws of
thermodynamics. The second law—in its averaged version
or in the version of the Jarzynski equality [50]—can be
expressed in terms of the free-energy difference defined as

APy, H) = 5 (pllay (). ™

In analogy, we show that the third law can be expressed
similarly in terms of Vy(p, H), which simply inverts the
arguments of the relative entropy in Eq. (7) and drops the
prefactor. This symmetry between the second and third
laws is quite surprising and hints at the fact that the second
and third laws can be related to the errors of the first and
second kinds in hypothesis testing [51]. We leave the
investigation of this deeper relation between the two for
future work.

From a technical point of view, our results rely on certain
convexity properties of the function a — S,(p||¢), where
S, are classical Renyi divergences [51]. We believe that
these results might be of independent interest.

II. SETUP AND A GENERAL
NECESSARY CONDITION

In the following, we use the setup of catalytic thermal
operations [29,30,34] applied to the task of cooling. In this
setup, we imagine possessing a resource given by a state
and Hamiltonian pair (pg, Hg). We can then use an
arbitrary thermal bath at inverse temperature f, that is, a
system in a Gibbs state wz(Hp) of a Hamiltonian Hp, and
finally an ancillary system, the so-called catalyst with an
arbitrary state and a Hamiltonian (o¢, H¢), in such a way
that the latter is returned in the same configuration and
uncorrelated from the rest of the systems after implement-
ing the protocol. The target system to be cooled is initially
assumed to be in thermal equilibrium with the thermal bath
and therefore described by a Gibbs state (wy(Hy), Hs).
The total compound RSBC is transformed by a cooling
protocol, which consists simply of a unitary transformation
U that commutes with the total Hamiltonian.

More formally, we say that there exists a cooling
protocol to pg using the resource (pg, Hg) if there exists
a fixed catalyst (o¢, Hc), and for any € > 0, there exists a
unitary U and a bath Hamiltonian Hp such that

Prs ® 06 = Trg(Upg ® ws(Hs) ® wy(Hg) @ ocUT)

(8)
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with Trg(pks) = ps and |loc — o¢|l; < €. The only con-
straint on the unitary U is that it conserves the global
energy, i.e.,

[U,HR+H3+HB+Hc}:O (9)

Note that this formulation of the cooling process con-
tains, as a particular case, partial cooling in which we do
not start with the target in a Gibbs state. In this case, the
initial system of S, if it is partially cooled before starting
the protocol, can be simply incorporated as part of the
resource R.

The problem of finding conditions for the existence of a
transitions of the form (8) has been studied in Ref. [34] for
diagonal states, that is, with [pg, Hg] = 0 and [pg, Hg| = 0.
Throughout this paper, we restrict ourselves to such
diagonal states, but we emphasize that the necessary
condition (5) also holds for nondiagonal states, as we will
see later.

Under the assumption that pp and pg are diagonal, one
can show that cooling to a state pg is possible if and only
if [34]

Sa(PR”CUﬂ(HR)) 2 Sa(/)S”wﬂ(HS)) Va>0, (10)

where S, are so-called Renyi divergences. The proof of this
statement relies simply on the results of Ref. [34] together
with the additivity of the Renyi divergences under tensor
products.

An important tool that appears in Eq. (10) is the concept
of a monotone of (catalytic) thermal operations [29,30].
This is any function f that can only decrease under
(catalytic) thermal operations. The functions S, appearing
in (10) are monotones under catalytic thermal operations
and, more generally, under any channel that has the Gibbs
state as a fixed point. Importantly, any monotone f,
possibly different from S,,, allows us to construct necessary
conditions for a given transition. We now show that V; is
also a monotone under catalytic thermal operations, and we
derive the corresponding necessary condition for cooling.

Theorem 1 (Monotonicity and necessary condition).
The vacancy is an additive monotone under catalytic
thermal operations. This has as an implication that for
any target (pg, Hg) and resource (pg, H )—not necessarily
diagonal states—the condition

Vﬂ(ﬂR’HR) Zvﬂ(pS7HS) (11)

is necessary for cooling.

Proof.—Let us first show that V; is a monotone under
catalytic thermal operations. Let us consider an arbitrary
transition from state p to state p'—both with Hamiltonian
H—by catalytic thermal operations; then, we show
that Vﬁ(p’ H) > Vﬁ(p/, H)

First, note that the vacancy diverges for a state p without
full rank; thus, the inequality V4(p, H) > Vy(p'. H) is
satisfied trivially for those states. Let us therefore assume
that p is a full-rank state. As was shown in Ref. [34], for any
0 < a <2, the Renyi divergences

Sa(pllwﬂ(H)) =

Clog Tr(ptay(H)')  (12)
a_
are monotonic under (catalytic) thermal operations for

arbitrary states p. In other words, we have the necessary
condition

Sa(pllws(H)) 2 So(p'llwp(H)) VO<a<2,  (13)
By simple algebra, one can show that

5 Supllay() = Vo) 0. (14

Taylor expanding Eq, (13) on both sides for any a > 0 and
dividing by a then yields

Valp, H) + O(a) 2 Vy(p', H) + O(a),  (15)

where O(a) indicates that it is of first order in a. Taking
a arbitrarily small then yields V(p, H) > V4(p', H). This
proves monotonicity under catalytic thermal operations.
Additivity follows directly from the additivity of the
relative entropy under tensor products.

Since we established that the vacancy is a monotone
under catalytic thermal operations, we can now derive the
necessary condition for cooling by simply applying this
condition to the transition that SR undergo in the cooling
process:

Vi(pr ® ws(Hs), Hg + Hyg)
> Vy(pgs- Hg + H)
> Vy(wp(Hg) ® ps, Hg + Hy).

The last inequality follows from the fact that one can
always replace the state on any system by an uncorrelated
thermal state at the heat bath’s temperature using a
thermal operation. Using additivity of the vacancy and
the fact that Vs(w4(H), H) = 0, we obtain the necessary
condition (11) .

We emphasize that the necessary condition (11) is
derived in full generality, and it applies to any full-rank
state pp and any state pg, possibly not diagonal in the
eigenbasis of Hy.

The monotone V; was first introduced in Ref. [29]. Its
relevance for the unattainability principle is clear since
if pg does not have full support, then the right-hand side
of Eq. (11) diverges. Hence, exact cooling is impossible
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unless the resource py does not have full support either. In

the particular case of pg = ® o' where ¢' has full support,
i=1

the condition (11) already tells us that we need infinite
resources—infinite n in this case—for exact cooling.
Hence, such a simple analysis already suggests that the
quantity Vs plays a crucial role for the limitations on
cooling.

To summarize, we have seen, building upon previous
literature, that the vacancy 1 establishes completely general
necessary conditions for cooling. However, for necessary
and sufficient conditions, one should, in principle, verify an
infinite number of inequalities given by Eq. (10). Our
contribution will be to show that these infinite numbers
of inequalities can be reduced to a single one, which can also
be expressed in terms of the vacancy for a sufficiently cold
final state pg. Furthermore, we show that for a large family
of resource systems, the single sufficient condition that we
find coincides with the necessary condition (11). Hence,
the limits on cooling are entirely ruled by the function V.
This holds for large classes of finite systems, with possibly
correlated and interacting subsystems.

III. GENERAL SUFFICIENT CONDITIONS
FOR COOLING

The process of cooling laid out in the previous section
can, in principle, be applied to any final state pg. We now
assume, for simplicity, that the final state, as it corresponds
to a cooling process, is of the form pg = wy (Hy) with S
very large. We can then derive the following completely
general sufficient condition for cooling.

Theorem 2 (General sufficient condition for cooling).
For every choice of # and H g, there is a critical ., > 0 such
that, for any fs > f., and full-rank resource (pg, Hg), the
condition

Vs(pr. Hg) — K(Bs. B.pr. Hr, Hg) > Vy(wp (Hs). Hs)
(16)

is sufficient for cooling. The positive semidefinite function
K has the property K(fs, B, pr, Hg) = 0 as iz — oo for
any fixed S, Hg, pr > 0 and Hg.

The proof of the theorem is given in Sec. VL
Nonetheless, we provide a sketch of the main ideas
involved in such a proof at the end of this section. The
function K is given by

K(ﬂs’ﬁvavHR7HS)
2

.0
= max {O, —5(,35)(122&) @ Sa(pR ||wﬂ(HR)) }v

where

8(Bs) =1og(Zp)/Vy(@p,(Hs), Hs) 20,  Zy=Tr(e"").

The bound (16) applies for any possible (diagonal) resource
state; however, finding K(fs, 3, pr, Hg, Hg) involves a
minimization, which, although feasible for low-
dimensional systems, might be an obstacle for practical
purposes when dealing with large systems and for values of
B, s0 K(Bs, f, pr,» Hg, Hg) cannot be neglected. That said,
we will investigate resource systems pgr, Hp for which
K(Bs,p,pr, Hg, Hs) = 0. In those cases, the general suf-
ficient condition given by Eq. (16), taken together with the
necessary condition (6), will imply that a necessary and
sufficient condition is given simply by

Vs(pr, Hg) 2 Vy(wp,(Hs), Hy). (17)

In particular, we see in Sec. V that this holds true for large
classes of thermal nonequilibrium resources. Let us also
note that K(fs,p,pr, Hg, Hs), just as the vacancy, is
additive over noninteracting and uncorrelated resources.
We use this property in the next section to investigate the
setting of IID resources.

In the result given above, we have focused on thermal
target states. This is, in fact, unnecessary. We show in
Appendix E that a completely analogous result holds for
states of the form

pe = (1 =€)|0)(0] + ep™, ex1, (18)
where p* is any density matrix that has full rank on the
subspace orthogonal to the ground state |0) and commutes
with Hy.

A. Sketch of the proof of Theorem 2

As we have seen in the previous section, a set of
sufficient conditions for a transition with catalytic thermal
operations is given by the infinite set of inequalities of
Eq. (10). The main idea behind the proof is that when the
target system is sufficiently cold (fg > f.,), it suffices to
check the conditions (10) for very small a. This follows
from the fact that for Sy > f., the right-hand side of
Eq. (10), given by S, (psllws(Hs)), rapidly saturates to its
maximum value as we increase «, and it is concave (see
Fig. 1). Given that one only needs to consider small values
of a, it is possible to make a Taylor expansion around o = 0
of S, of the form

Sa<pRIIwﬂ<HR>>m@nwmeW )

+ka?. (19)

This reduces the infinite inequalities of Eq. (1) to a single
one that depends on the derivate of S, and an error term &,
which is related to the error term appearing in Theorem 2
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FIG. 1. The figure shows the behavior of S, (wp, (Hs)llws(Hs))
(orange line) and S, (pg|lws(Hg)) (blue line). The left plot shows
a target state that is not very cold, together with an insufficient
resource. The transition is not possible since the blue line is below
the orange line for @ < 1.25. The right plot shows the behavior
when pg becomes very cold. The function becomes more similar
to a step function. The fact that S, (pg|lws(Hg)) (blue curve) is
larger than the orange curve, which implies that the transition is
possible, is determined by the behavior at very small values of a,
and up to a small error, by the fact that the derivate of the blue
curve is larger than that of the orange curve at a = 0.

denoted by K. This expansion can be further simplified by
noting that S,_o(p|lws(H)) = 0. The vacancy comes into
play because of the identity

9S4(pllo)

« | =Sl =Sl (20

which inverts the arguments of the second term on the
right-hand side of Eq. (19). Taking all these elements into
account and accounting properly for the precision of the
Taylor approximations, we arrive at an inequality involving
only the vacancy and a vanishing error term as determined
by Theorem 2.

B. Short comment on catalysts

As laid out in Sec. II, we define the catalytic thermal
operations by including the possibility that the catalyst
changes during the transition, as long as this change can be
made arbitrarily small, as is standard in recent literature on
the resource theoretic approach to thermodynamics [34].
This formulation is a form of exact catalysis, in the sense
that as the error has to be arbitrarily small, the catalyst is
returned arbitrarily unchanged. However, it is possible to
consider other forms of catalytic thermal operations that
are either more restrictive about the change of the catalyst
(where no error—not even arbitrarily small—is allowed
for) or less restrictive, in the sense that the catalyst is
allowed to change by a finite amount. We consider both
alternatives in Appendixes F and G, respectively. First, we
study the case in which one requires that the catalyst is
always returned exactly in the same state, that is, taking
¢ = 0 in the definitions laid out in Sec. II. In this case, it is
no longer valid that a set of sufficient conditions is given by
positive values of a in Eq. (10), but one also has to consider
Renyi divergences for negative a. This case is analyzed in

Appendix F, where we show that, in this scenario, (i) the
general necessary condition of Theorem 2 holds and (ii) a
general sufficient condition similar to the one of Theorem 2
is derived. This general sufficient condition only differs
on a multiplicative constant—independent of the final
temperature to which one cools—from the one derived
in Theorem 2. Finally, in Appendix G, we furthermore
discuss the case of approximate catalysts. We put forward
a consistent method to allow for finite errors on the
catalyst while maintaining the validity of the third law
of thermodynamics.

IV. I.I.LD RESOURCES AND SCALING OF THE
TARGET TEMPERATURE

Theorem 2, together with the necessary condition (11),
provides completely general sufficient and necessary con-
ditions, respectively, for cooling a system to target temper-
ature Ty = 1/f (setting kz = 1) using a given resource
(pr» Hg). Thus, they characterize the possibility of cooling
in full generality. To obtain results for concrete physical
situations and find out how the target temperature 7'y scales
with physical key quantities of the resource—such as the
system size of the resource—one has to choose a particular
resource and calculate its vacancy as well as the error term
K. Then, one has to check how these quantities depend on
the physical properties of interest.

We now focus on the scaling between the size of the
resource and the final temperature of the target system.
We assume that the resource is given by a number of
identically and independently distributed copies. Later, we
also discuss other assumptions we can make about the
resource. Thus, we consider the case where the resource
state is given by pg = ¢%" and Hamiltonian Hy = >_,H,
Wher@H%:ﬂ] ®"'®|]l'_] ®hR®|]i+l ®®|]”

Let us now consider the following task: Given fixed o,
Hy, p, Hg, find the minimum # so that it is possible to cool
down the target state to inverse temperature f.

By using Theorem 1, together with the additivity of Vg,
we obtain that the necessary number of copies n"*(f;)
fulfills

Vi(wp,(Hs), Hy)
Vﬂ(QRa hR)

n"(fs) = (1)

By using Theorem 2 in the IID, we also obtain a sufficient
number of copies n*"T. The condition (F2) takes the form

n[vﬁ(QR7hR) - K(ﬁSHB’ QR’hR7HS)} 2 Vﬂ(wﬁg(HS)’HS)'

Since this condition is sufficient, but not always necessary,
we obtain

suff V//’(wﬂs (HS)’ HS)
T fs) < V(. hr) — K(Bs. . 0g- hg. Hg)

(22)
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Since the correction K goes to zero as fig — oo (with the
target temperature going to zero), we see that

suff
lim Py (23)
ps—co n"(Bs)
It is also interesting to reexpress the previous conditions
to obtain a more transparent relation between the final
achievable temperature and the number of copies. We see
next that n"¢(By) and n™(By) scale as By for large fs.
Thus, the target temperature approaches zero as 1/n.

A. Scaling of the target temperature

In the special case where the target state is a thermal
state, one can reformulate the vacancy in terms of non-
equilibrium free energies. Indeed, the vacancy of a thermal
state at temperature g simply takes the form

Vp(wp (H). H) = psAFy (wp(Hs), Hs).  (24)

with AF(p. H) = (H), = (H); — (S(p) — S(wp)) /-
In this case, the condition (11) reads

Vs(prs Hr) 2 PsAF (wp(Hs), Hy). (25)

From Eq. (24), we see that for large fg, we have
(assuming vanishing ground-state energy)

Vﬁ(a)ﬁs(H), H) = ﬂSEﬁ — S/j, as ﬁS — 0. (26)
Assuming again a resource system of n noninteracting
identical particles each described by (og,hg), we then
obtain that the minimum achievable temperature T(S">
scales as

m_1_ B
T Vplen )’ n> 1. (27)
This result is similar to the asymptotic result of Janzing
et al. [29].

Lastly, let us point out that the above scaling relation
implies that the probability p to find the system in the
ground state after the cooling procedure increases expo-
nentially to 1 with n. For example, if the target system is a
d + 1-dimensional system with gap A above a unique
ground state, we have (for large n)

p> 1/(1 + de—ﬂSA) ~1— de_"vﬁ(a’/ﬁg(hR)shR)[(A)/E/S;]'
Thus, while an exact third law holds in the sense that
n — oo for Ty — 0, the ground-state probability asymp-
totically converges very quickly to unity.

The above relations demonstrate how one can obtain
quantitative expressions of the unattainability principle

from Theorems 1 and 2 by making assumptions about
the given resources.

B. Scaling of the vacancy with system size

In the case of IID resources with noninteracting
Hamiltonians, the vacancy is an extensive quantity in the
sense that it scales linearly with the number of particles.
However, for arbitrary quantum systems with correlated
and interacting constituents, it is, in general, difficult to
calculate the vacancy and hence estimate directly how it
scales with the number of particles. Nonetheless, we can
use the relation (24) to argue that the vacancy will be
extensive for large classes of many-body systems.

In particular, let us assume that the resource is in a
thermal state of some local Hamiltonian. In other words,

= a)/;(I:IR), where Hy is any local Hamiltonian (pos-

sibly differing from Hy) and /3 is finite. In this case, one can
use Eq. (24) to write

V/f(PthR) :BAFﬁ(wﬁR(HR)J:IR)- (28)

From the fact that the von Neumann entropy is subadditive,
and from the locality of the Hamiltonians Hy and H R» 1t
then follows that the vacancy V(pg. Hg) scales (at most)
linearly with the system size. As a consequence, the
minimal final temperature T(S") scales (at best) inversely
proportional to the volume of the resource.

In light of the previous considerations, it seems likely
that a similar scaling holds for any resource (potentially
under reasonable physical assumptions, such as clustering
of correlations). We leave the general characterization of
many-body systems such that the vacancy is extensive as an
interesting future research direction.

V. THERMAL RESOURCES

As discussed after the statement of Theorem 2, it is
useful to find general conditions under which the error
term K disappears and the sufficient condition coincides
with the general necessary condition. Naturally, it is
necessary to make additional assumptions about the
resources to achieve this.

We now consider as resource state pr a (possibly
multipartite) thermal state of some Hamiltonian Hp at
inverse temperature f;. In the following, we derive a simple
expression that allows us to check whether

K(ﬁS?ﬂva7HR7HS):0’ V/}S>0’HS7 (29)
and hence, Eq. (11) becomes a necessary and sufficient
condition. The reasoning is based on showing that

Sa(PR = wﬂR(HR)”a)ﬂ(HR)) (30)
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is convex for a given range of a < 1, which implies
Eq. (29). The convexity of Eq. (30) can be determined
by looking at the convexity of the average energy as a
function of the inverse temperature of the resource,

x> ER = Tr(w, (Hg)Hy). (31)

In particular, we see that if fr < f and the function
x> ER is convex for x € [fg,p|, then the function
Sa(ws, (Hg)llws(Hp)) is convex for all a < 1.

Theorem 3. For resources of the form (wg, (Hg). Hg)
that are hotter than the bath, that is, with gz < f3, if EF =
Tr(w,(Hg)Hy) is convex in the range x € [fg, f], then
Eq. (11) is a sufficient and necessary condition for low-
temperature cooling.

This theorem considerably simplifies the task of for-
mulating bounds on the third law since the average energy
is a much more accessible quantity than the Renyi
divergences. In Sec. VA, we discuss several classes of
physically motivated conditions that imply that E® =
Tr(w,(Hg)Hg) is convex. We emphasize, however, that
the convexity of the energy is not a necessary condition
for the correction K to vanish: There are cases for which
x — ER is not convex for the whole range of inverse
temperatures [fg, ], and Eq. (11) is nevertheless a suffi-
cient and necessary condition for cooling.

Lastly, let us mention that condition (29) is fulfilled if,
for a fixed fg, the bath’s inverse temperature S is suffi-
ciently large, without any extra assumption on the con-
vexity of E,. This implies that, for sufficiently cold baths,
Eq. (11) is also a sufficient and necessary condition. This is
shown in Appendix B, together with several properties of
the Renyi divergences for thermal states that might be of
independent interest and also include a proof of Theorem 3.

A. Systems for which the energy is convex

As implied by Theorem 3, Eq. (11) becomes a sufficient
and necessary condition for cooling if the resource is a
thermal state hotter than the bath and its average energy is
convex in the inverse temperature. We now see that the
convexity of the energy is fulfilled by a wide range of
physical models.

We first reexpress the convexity in terms of the heat
capacity. This allows us to check whether EX is convex for
a vast family of systems, as the heat capacity as a function
of the temperature is an intensively studied quantity for
many-body systems. Using the definition of heat capacity
C, = [(dER)/dT], with T =1/x, we find that the con-
vexity of the energy, as formulated in the condition of
Theorem 3, can be expressed as

dx? x2

X dx

d?ER 1 /C, dC
X (x X)Zo with x € [Bg, f]. (32)

Equivalently, this condition can be expressed as

1 1

7 Cow =g Cr 20 (33)
for all fr < ' < B. In most thermodynamics systems, the
heat capacity is monotonically increasing with the temper-
ature; hence, [(dC,)/dx] <0 and Eq. (32) is satisfied. A
seminal exception to this case is given by the so-called
Schottky anomaly, which is present in certain solid states at
very low temperatures [52]. We thus see that for thermo-
dynamic systems, the convexity of the energy is a very
natural property. Nevertheless, it can fail—in particular,
in finite systems. We now show that even for large classes
of finite systems, the energy is convex because of the
following lemma, which we prove in the Appendix C.

Lemma 4 (Equidistant levels). Consider any Hamiltonian
with equidistant and nondegenerate energy levels. Then, the
function  — Ej is convex.

Immediate examples of Hamiltonians with equidistant
energy levels are two-level systems or harmonic oscillators.
But in fact, the lemma covers a much wider class of models
since the vacancy is unitarily invariant and additive over
noninteracting subsystems.

It follows that any harmonic system and any system
described by free fermions also have a convex energy
function since free bosonic and fermionic systems can
always be made noninteracting by a normal-mode decom-
position. In such a normal-mode decomposition, they
simply correspond to a collection of noninteracting har-
monic oscillators or two-level systems, respectively.

These systems include highly correlated (even
entangled) systems, and no thermodynamic limit needs
to be taken. A particularly interesting resource that is
included in these results is that of hot thermal light, which
has been considered before as a valuable resource for
cooling [18].

It can furthermore be checked that for large but finite
many-body systems whose density of states in the bulk is
well approximated by u(e) = 7% the average energy Ej
is convex in S [53].

Finally, for every finite system, there is a critical 3. such
that E; is convex for all > .. Thus, as soon as
p > fr > P, the sufficient condition (11) holds for small
enough target temperatures. This means that if an experi-
menter has a mechanism to precool the environment to a
very low temperature, well below 1/f., and the resource
has a temperature larger than that of the environment
but still smaller than 1/4,., then condition (11) holds as
a sufficient and necessary condition.

B. Source of work

Our formalism can also incorporate a source of work as a
particular case of a resource for cooling. The limitations on
cooling as a function of the input of work have been studied
in Ref. [3]. There, it is shown that the fluctuations of work,
rather than its average value, have to diverge when the
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target state reaches vanishing final temperature and if the
heat bath has finite heat capacity. Here, we derive a result
similar in spirit using Theorem 2, although we employ a
different model for the work source. Importantly, our result
implicitly allows for infinite heat capacity in the heat bath.
It should thus be viewed as being complementary to the
results in Ref. [3].

Let us model the work source by a system R with

Hamiltonian
Ex\ /Ex
d dl|

One can see this Hamiltonian as a d-dimensional harmonic
oscillator with energies bounded between E/2 and —E/2.
We are interested in the limit of d — oo. In this case, R is
similar to the model put forward in Refs. [3,16], with the
difference that here we consider a finite value of E. We
enforce the condition that the battery acts as a energy
reservoir and not as an entropy sink (which would make the
task of cooling trivial) by assuming the work source to be in
state pj = [/d (we can also interpret this as the work source
being at temperature +o0). These assumptions on the work
source are justified by the fact that it fulfills the second law
of thermodynamics.

In other words, suppose we want to use a nonequilibrium
state p of some system S with Hamiltonian Hg to extract
work and put it into the work source as the average energy.
To do this, we implement a (catalytic) thermal operation
on the heat bath, system S, and the work source R. Then,
the increase of energy on the work source (i.e., the work)
AEp is bounded by the nonequilibrium free energy of the
system as

a2
= S
x=—d/2 d

(34)

AER < AFy(p, Hy). (35)

This is shown in Appendix D.

Now, we show that the third law can be obtained, in the
sense that both E and d have to diverge in order to be able
to use R to cool down a system to zero final temperature.
Let us first recall that by Lemma 4, a sufficient and
necessary condition for cooling for such a resource is
given by Eq. (11). Furthermore, the vacancy of the work
source is given by

Vs(pk-Hy) = S(wg(Hy)II1/d)
= Tr(ws(Hg)[log (ws(Hy) —log(l/d))])
= —pTr(ws(Hy)Hy) +log(d) —log (Z(H))
<—pBE/2+log(d)—log (Zﬂ(H%)). (36)

The partition function can be upper bounded as

d/2
Zy(HY) = Z e PlEX)/d] (37)
x=—d/2
> ePE2 4 (d—1)ePE? (38)
1 d-1
= eﬁE/Zd(;l +— e—ﬁE>. (39)

Hence, we find that

1 d-1
Vi ) < —tog (3 + e ). o)

Combined with Eq. (11), this implies that a necessary
condition for cooling to a state pg is given by

1 d-1
Vilps.Hy) < =tog (5 + 4. @)

Most importantly, note that in order to obtain a state pg that
is close to a Gibbs state at zero temperature, the right-hand
side of Eq. (41) has to diverge. For this to be possible, both
E and d have to diverge since

[}i_)rgovﬁ(ﬂ}g, Hy) < BE, (42)
Elim Vs(pg. Hy) < log(d). (43)

This implies the unattainability principle, in the sense that
an infinitely dense spectrum with unbounded energy is
needed for cooling to absolute zero.

Before coming to the proof of Theorem 2 and our
conclusions, let us briefly comment on a different model of
work and a possible source of confusion that might arise. A
model of work known as a work bit has been used in the
literature of thermal operations [30,34]. In this model, it is
assumed that the work source is a two-level system with
energy gap W that undergoes a transition from the excited
state |W) to the ground state |0) to implement a transition
on system S. Using the results of Ref. [30], one can show
that it is possible to cool a system to the ground state in this
model as long as W > log Z, where Z; is the partition
function of the system S. This means that there exists a
(catalytic) thermal operation that implements cooling, in
the sense that

wp(Hs) ® [W)(W[ = [0)(0] @ [0)(0.  (44)

At first, this seems to be in conflict with our results.
However, using the vacancy, it is easy to show that the
above process is extremely unstable: It only works for pure
initial states of the work bit. Indeed, one can use condition
(11) to establish limits on cooling if the initial state on the
work bit is any full-rank state that approximates the excited
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state |W)(W| to arbitrary but finite precision. A simple
calculation for an initial state of the work system as
p=(1-¢€)|W)(W|+¢€|0)(0] with Hamiltonian Hy =
W|W)(W| yields the bound

Vsl Hy) < —log (e(1-€) YW.  (45)
This implies that perfect cooling is impossible for any value

of W—even diverging—if the initial state of the work bit is
a full-rank state.

VI. PROOF OF THEOREM 2

We will now prove Theorem 2. Before we go into the
details, let us first explain the general logic behind the
result. It is clear that to obtain a single necessary and
sufficient condition for cooling at low temperatures, we
have to show that the infinite set of second laws in Eq. (10)
collapses to a single condition. The first important step in
the proof is the following lemma.

Lemma 5 (Concavity at low temperatures). Let f > 0
and a Hamiltonian Hg be given. There exists a critical
inverse temperature f. such that for all g > f,,

o= Sg(wﬁs(Hs)”wﬁ(Hs)) <0 (46)
and

Soo(wﬂs(Hs)”wﬁ(Hs)) <logZ. (47)
Here, the critical value 5(f) is given by

B log(Z;)

Proof.—See Appendix A. O
Using this result, we can now upper bound the Renyi
divergence on the target by its linear approximation at
the origin in this parameter regime. Since S;(p|lws(H)) =

S(wy(H)llp) = Vs(p. H). we get

Sa(wps(Hs)llwp(Hs)) < Vg(wp (Hs). Hs)a, Ya<a,.

(49)

Second, for small enough target temperatures, we also
have S, (wp,(Hs)llwg(Hs)) < Vg(wy(Hs), Hg)a,. Since
a — S, is monotonously increasing, the second laws in
Eq. (10) are hence also satisfied if
Sa(prllws(Hg)) > Vs(wp(Hs), Hs)a, Va<a. (50)
For small temperatures, we can further restrict the range of
a to the interval [0, 5(fs)), where &(fs) is given by

 Se(wp (Hg)llwp(Hs))
olfs) = Vy(wp,(Hs), Hg) 51

The final step is now given by bounding the Renyi
divergence of the resource S, (pg|lws(H)). In particular, if
we knew that it was convex (such as in the case of a thermal
resource with Eg being convex), we could lower bound it
by its linear approximation at the origin and obtain the
necessary and sufficient condition (11).

In the general case, S,(prllwg(Hg)) will not be convex.
But we only have to check small values of a < &§(fs)
and simply Taylor expand S, (pg|lws(H)). Using Taylor’s
theorem, we then obtain

S.(prllwg(HR)) = Vy(pr. Hr)a — k(Bs. p. pr. Hg)a?.
(52)

This yields as a new sufficient condition

Vi(pr. Hr)a — k(Bs. B. pr. Hr)o* = V(wp (Hs), Hs)a,

for all 0 < a < 5(fg). The function k(fs, f, pr, Hg) > 0 is
given by

k(Bs, P, pr, Hg) = max {0’ - g;bf}l )Slolt(pR”wﬂ(HR))}‘
a< S

We can now divide the sufficient condition by « and, since
k(Bs,B,pr, Hg) > 0, replace a by 5(fg) to arrive at the
final sufficient condition

Vy(prs Hr) — K(Bs. B, prs Hr. Hg) 2 Vg(wp (Hs), Hy),

with K(Bs.p.pr. Hg, Hs) = k(Bs. . pr. Hg)3(Ps). This
finishes the proof. O

VII. SUMMARY

In this work, we have investigated the limits on low-
temperature cooling when arbitrary systems out of equi-
librium are used as a resource. We provide sufficient and
necessary conditions that establish novel upper and lower
bounds on the amount of resources that are needed to cool
a system close to its ground state. We found that the
limitations are ruled by a single quantity, namely, the
vacancy. This is remarkable since at higher temperatures,
there is an infinite family of “second laws” that need to
be checked to determine whether a nonequilibrium state
transition is possible.

We have only focused on the amount of nonequilibrium
resources, as we assume access to an infinite heat bath, and
we leave considerations about the time and complexity of
the cooling protocol aside. These other kinds of resources
have been explored in other complementary works on the
third law [3-6]. It would be interesting to see if the vacancy
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plays a role to express the limitations on the size of the heat
bath or any other resources that diverge when cooling a
system to absolute zero. More particularly, it is an interest-
ing question for future work to obtain the optimal sufficient
scaling of the size of the heat bath and the potential
“catalyst” 7 that is needed to cool the system to the final
low temperature [54]. In this work, we have required the
catalyst to be returned exactly. The necessary condition
(11) and the resulting quantitative unattainability principle
are, however, stable when one instead requires that the
vacancy of the catalyst only changes a little (see
Appendix G for a discussion of approximate catalysts).
We leave studying how the sufficient condition behaves in
such an approximate scenario to future work.

The results of Sec. V suggest that for a large class of
physically relevant systems, the third law can be expressed
simply as the monotonicity of the vacancy. It would be of
interest to specify more general assumptions on a many-
body system so that this is the case. On the other hand, there
exist systems for which the vacancy is not a sufficient
condition. This opens the possibility to have families of
resources that, although out of equilibrium, are useless for
cooling. We leave this as an open question for future work.

Lastly, we note that, in this work, we have focused on
the expenditure of nonequilibrium resources for low-
temperature cooling, which are precisely the resources that
are employed in laser cooling [55]. An interesting open
research direction is to analyze protocols of laser cooling in
the light of the bounds obtained here.
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APPENDIX A: PROOF OF CONCAVITY
OF RENYI DIVERGENCE FOR
LOW TEMPERATURES

In this section, we prove Lemma 5, which is about the
concavity of the Renyi divergence at low temperatures. The
lemma holds for any Hamiltonian with a pure point
spectrum, a gap above the ground state, and the property
that the partition sum exists for any positive temperature.

Lemma 6 (Concavity at low temperatures). Let f > 0
and a Hamiltonian Hg with ground-state degeneracy g, be
given. There exists a critical inverse temperature .. such
that, for all g > .. and for all 0 < a < §(fi5), we have

a > Sy(wg lwg) <0 (A1)

and

Here, the critical value §(fg) is given by
log(Zy)
5(Bs) = 4 <. (A3)

Vy(wp (Hs), Hy)

Proof.—Let us first prove that the max-Renyi divergence
is upper bounded by the partition function at the bath’s
temperature . Suppose that fg > f3, and let us write

S (wﬁs (Hs)”wﬁ(Hs))
—pE;

(§]
log <de (Ps=F Zﬁ/zﬂs) Z—ﬂ

)

1
3 ]og <e_(’(ﬁs_/})E0 (Z/J'/Zﬂs)a

BE;
Xde ﬂS E EO) Zﬂ)

where E; denotes the different energies of Hg, with
degeneracies g;. Assuming without loss of generality
Ey =0, we write this as

Sa(wp (Hs)llwg(Hy))
“ 1log(Zﬂ/ZﬂS)

log < + Ze‘“ Ps=P)E

i>0

(AS)

Z[; > (A6)

It is now obvious that, in the limit, we obtain
Seo(wp (Hs)llws(Hg)) = JLIEOS(I(G)/%(HS)||60ﬁ(HS))

= log(Zs) —log(Zy,) <log Z.
(A7)
As a second step, let us find the condition for which
6(Bs) < 1. We express the vacancy as

Vi(wps(Hs), Hs) = PsEs — Sp+1log Zg . (A8)
where we write S == S(ws(Hg)). We thus need

Relaxing to the sufficient criterion fgEy — Sy > log Z; =
— PE, we thus obtain

5 > 250 = PE;
N E[} .

Let us now turn to the concavity. We use the represen-
tation of S/, proven in the next section, which is given by

(A10)
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2
Si(apllop) = (= 55 (10w 25, —loa 2y,
+ (B = Ble) By

~ (Bs - Bl Var(H);, ). (ALD)

Se(wpllwg) <logZg + (Bs

- B(a) )Eﬁ(a)

where (a) = (1 — a) + affs. Since we are only interested
in a < 8(fs) < 1, we have f§ < (a) < ffs. We therefore
have to show that the terms in the parentheses are negative.
Let us use the fact that the average energy is monotonic
with f and that Z o) > 110 bound these terms as

- (Bs —ﬁ(a))ZVaY(H)/}(a)

<logZ; + (Bs—B)Es — (Bs — [}(a))QVar(H)/;(a>

<log(d) +

Now, we bound f3(a) by using f(a) < B(5(Bs)) = B (Bs)-
It is clear that if we can bound ﬁ* (fs) by a constant, the
terms in the parentheses become negative for some S since
the second-order term in /¢ dominates. To see that ﬁ* (Ps) is
indeed upper bounded by a constant, we again write the
vacancy as

Vp(wp,(Hs). Hs) = =S(wp) + sEp +log Zy,  (A13)
to obtain
pr= lim B (ps)
:/fiﬂoﬂ(l_ 8(Ps)) + 0(Bs)Ps (Al4)
I /f}woo BsEp + loglgf Z_ﬁ S(wj(Hy)) Ps
_ﬂ+10§ﬁ2ﬁ' (A15)

This finishes the proof that . exists as claimed in the
lemma. We also note that the function 5 (fs) is monoton-

ically decreasing for all fg such that *(8s) < 1. Finally,
note that Eq. (A12) allows us to give upper bounds on f,
once we have lower bounds on the energy variance for
inverse temperatures in the interval [, *]. O

|

(ﬁS_ ) max (ﬂS

B(a))? min Var(H),.
x€[p.p(a)]

(A12)

[

APPENDIX B: RENYI DIVERGENCE BETWEEN
THERMAL STATES

Here, we specialize to the situation where the resource
states are thermal, with inverse temperature fr. We now
calculate the Renyi divergence for a < 1 in this case. We
first write

a
Salwpllwp) = —— 1logZ/,»R +log Z,
1
1logTr(f:_ﬂlf”'”’e‘ﬂ”'(l“")) (B1)
a 1
=== 1log Zy, +logZs + po log Zi,—ppasp  (B2)

a—1 1
== 1log Zy, +logZs + p— log(Z(ﬁR_ﬁ)aHj/ZﬁR)

(B3)

= l0g(Zy/Zy,) + (B4)

1
P (Z(pe-pra+p! Zpy)-
We now show that the function is convex, provided
Pr < B and that the function x — Ez .. is convex for

0 <x<p—pg For the second derivative [with §=
(Br — B)a + 1, we obtain

2 2 1
Sa(wﬁR“a)ﬁ)//:mlogZﬁR—mlogZﬁ—zﬁa IOgZ + 3 IOgZ (BS)
e g7y~ logZs =2 (B = fR)Es — —— (B — ) Var(H), (B6)
(I—a) 8 " (1—ay B9 Ti—ap W T PRE T TV TR Z
2 (1 ) 2
= (T [108 s, 0wy = (1 = @) = Br)Ej =5 (b= o) Var(H); | (B7)
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Utilizing (1 — a)(f — fr) = ff — fx. we can write this as

2 ~
Sa(a)ﬂkllwﬂ>// — m |:10g ZﬂR - IOg Zﬁ — (ﬂ _:BR)E/}

_(B-pr)?

5 Var(H)ﬁ} : (B8)

Here, we have introduced the average energy Ej and the
variance Var(H); = (H?); — (H);, which fulfill 9.E,

—Var(H),. With these expressions at hand, we now show
Theorem 3 and another result about the convexity of Renyi
divergences for sufficiently large reference temperature /.

1. Proof of Theorem 3

We need to show that the right-hand side of Eq. (B8)
is positive with the premise that x — E, is convex in
X € [fr. P, Pr <P, and a < 1. This last condition on a
implies that we need to show that

(ﬂ /3R)

log Z;, —log Z; > (- ﬁR) Var(H);

i
(B9)

We use an integral representation on the left-hand side:

b d
logZs, —log Zﬂ = - | dxlogZﬂRde
B
- A Ej .idx (B10)
Hence, we conclude that
pb ; (B = Pr)’
[ Esarz G- g + L L vy
(B11)

Whether this inequality is satisfied, and thus,
Sq(prllog(H)) is convex, is entirely determined by the
function x — E,. This is due to the fact that the derivative
of E, is given by —Var(H),, so the right-hand side can
be seen as a linear approximation to the function E,. A
geometrical interpretation is provided in Fig. 2, showing
that it is trivially satisfied when E, is convex. This finishes
the proof.

As a final remark, although not useful to obtain bounds
on the third law, we note that a completely analogous
argument implies thatif @ < 1, E, is convex, but in contrast
to the previous case, ffp > f, then we get

fe By §

FIG. 2. The left-hand side of Eq. (B11) is represented by the red
striped area under the curve. The right-hand side corresponds to
the blue striped region. This can be seen by noting that the blue
striped region can be decomposed into a rectangle of sides f — iz
and E 7 (light blue), which corresponds to the first term on the
right-hand side of Eq. (B11), and a triangle that corresponds to
the second term. If the function is E, convex, the red region is
always larger than the blue region.

(B = pr)?

> Var(H);

p
(B12)

B—Pr ~
A Ep, 1xdx < (B = Br)E; +

This shows that, in the case of resources colder than the
bath, the function S, (pgllws(H)) is concave.

2. Very cold heat baths

We now show that in the case of very cold heat baths
(very large f3), we also have that S, (w;, [|@s) is convex, and
hence, Eq. (11) becomes sufficient and necessary.

Theorem 7. For any resource of the form
(wp,(Hg), Hg), given a fixed fig, there exists a sufficiently
large value of f§ such that Eq. (11) is a sufficient and
necessary condition for low-temperature cooling.

Proof—We only give a sketch and show that
Sa(wg,llwg) is convex for values of a<a,, where a, <1
is chosen arbitrarily. Recalling Eq. (B11), we then need to
show that

(B - Br)?

5 Var(H);

5
(B13)

B—Pr ~
[ Byt (- poE; +

Note that in the limit of large f, the scaling of the right-hand
side of Eq. (B13) is such that g — fig = (1=a)(f—Pr)
scales proportionally to f8, while E; and Var(H); scale
as e . Therefore, the right-hand side of Eq. (B13)
approaches zero as f# — oo, whereas the left-hand side
grows monotonically with . Hence, Eq. (B13) is fulfilled,
which concludes the proof. U
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APPENDIX C: EQUIDISTANT LEVELS

Here, we consider the particular case of a system with
M + 1 equidistant levels and show that the function Ej is
convex. The energy gap between subsequent levels is A,
and we set the ground-state energy to zero. The energy Ej
then takes the form

1 M+1
A A T eMHDAR A.

In particular, for M — co, we obtain results for the
harmonic oscillator, and for M = 1, we obtain results for
a qubit. We have to prove that the second derivative is
positive, i.e.,

g1 sinh(fA)
Er=3 A7 sinh(BA/2)*
_ (Mt 1) sinh ((M + 1)BA) >0, (C2)

sinh (M + 1)pA/2)*| ~

=f(f.M+1)

For M = 0, this is clearly true. We set M + 1 =: y and show
that 9, f(f,7) < 0. We have

[yBA(2 + cosh(ypA))

(C3)

1
ayf(ﬂv Y) = —J’ZW
— 3sinh(ypA)].

In the following, set yBA = x. Because of the negative
prefactor, we are done if we can show

x(2 + cosh(x)) — 3sinh(x) > 0. (C4)
We show this using a Taylor expansion:
2x + x cosh(x) — 3 sinh(x)
= 2 2n+1 _
x+;x <(2n)! (2n + 1);) (C5)
. 2n+ 1) —3)(2n)!
=2 2n+1 ((
x+;x ( (2n)!(2n + 1)! (Co)

2 e ((2n+1) =3)(2n)!
:2x—2x+2x2 1< (2n)!(2”+1)! ) (C7)

n=1

> 0. (CB)

APPENDIX D: WORK-SOURCE MODEL

Here, we show that a work source of the form (p, HY)
as given in the main text fulfills the second law of
thermodynamics. Let us consider an arbitrary system
(ps, Hg), and let us consider catalytic thermal operations
on SW. We show that the maximum amount of mean
energy that one can store on the work source is bounded by
the initial nonequilibrium free energy of S. Let us recall
(see, for instance, Ref. [16]) that the free-energy difference
is given by

AF(p. H) = 1/pS(pllwg(H)) = F(p, H) - F(wy(H)),
(D1)

where F(p, H) = Tr(pH) — (1/5)S(p) is the free energy.
The protocol of work extraction is a transition of the
form
Phw = ps ® Pk = Py = E(Pky).  (D2)
where £ is any channel that has the Gibbs state as a fixed
point. Monotonicity of AF; under channels of the form £
implies that

AF‘; = AFy(psR/, Hg + Hg) < AFy(pip, Hs + Hg)
= AF ’ﬁ (D3)
Combining this last equation with superadditivity and
additivity of the relative entropy, one can easily find,
following a similar reasoning as in Ref. [16], that
AER < AFj(ps. Hy), (D4)
where AEp = Tr(l @ Hyphe) — Tr(1 ® Hyipiy) is the
mean energy stored in the work source R.

APPENDIX E: ARBITRARY TARGET STATES
CLOSE TO THE GROUND STATE

In this section, we prove a result similar to our general
sufficient condition for cooling, but we consider target
states of the form

pe = (1=¢€)|0)(0] + ep*, e<x1, (E1)
where pt is a density matrix that has full rank on the
subspace orthogonal to the ground state |0) and commutes
with the Hamiltonian Hy.

Theorem 8 (General sufficient condition for cooling).
For every choice of 8, Hg, and p* as above, there is a
critical e, > 0 such that for any € < ¢, the condition

Vﬂ(pR’HR) + k(e’ﬁva’HR’HS’pL) 2 Vﬂ(pe’HS) (EZ)
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is sufficient for cooling. The function K has the property
K(e, B, pr. Hg. pt) = 0as e — oo for any fixed 8, Hg, pg.
p*, and Hy.

The proof of this theorem is essentially identical to the
one of Theorem 2. The only difference is that instead of
Lemma 5, we use the following lemma:

Lemma 9 (Concavity close to ground state). Let Hg be
a d-dimensional Hamiltonian with ground state |0) and
H|0) = 0. Let > 0 be fixed, and consider the state

pe = (1-€)[0)(0] + ep. (E3)
with rank(pt) = d — 1, p*|0) = O and [p*, Hg] = 0. Then,
there exists an e, > 0 such that for all a < §(¢),

2

Suplla(Hs) <0, Ve<e.  (B4)
Here, 5(€) fulfills
log Z,
Se) =————L—~<1, Ve<e,. (E5)
V/}(pevHS) ¢

We now prove this lemma. Let us express the Renyi
divergence as

Sulpellaoy(Hs)) = —log((1 =€)
+ e Tr((p* e Ps1-)) ) + log(Zs)
(E6)
= ——log(f(@) +log(Zs).  (ET)

As is apparent from the expression, in the following, we
often encounter the functions

Fla) = Te((p*) e M=), (E8)

fol@) = Tr(pre10=9) = (1 = )" + ef (). (E9)
It is useful to remember from the main text that p is a
normalized quantum state that commutes with H and has
rank d — 1. In the following, we also often write S, instead
of S,(pellws(Hy)) and simply f. or f,, instead of f,(a) to
simplify the notation (similarly for ]; ). While f, and f are
structurally essentially the same, it is important to keep in
mind that only f,, and not f, depends on e.

We now have to prove that S, is concave for small
enough ¢; i.e., we have to show that there exists a €., > 0
such that its second derivative is negative for ¢ < €. The
second derivative of S, can be computed straightforwardly,
and it gives

Sa=— log fe—

2 fo. 1 fe\? fe
<1—a>2£+1—a<(:> 7)

(E10)

2
(1-a)’

To proceed, we need to establish a few properties of
functions like f, and f We collect these properties in a
series of lemmata.

Lemma 10. Let p be a quantum state and o be a
positive semidefinite operator with [p, o] = 0. Define
f(a@) = Tr(p*c'~). Then,

(f2=f'f<0, O<a<l. (E11)
Proof—A simple calculation shows that

f'(@) = Tr[p*(log(p) - log(e))o' ], (E12)

f"(a) = Tr[p*(log(p) —log(0))*s'~*].  (EI3)

We now use the Cauchy-Schwarz inequality |Tr(ABp)[> <
Tr(ATAp)Tr(BBp) with A = p=*/2(log(p) — log(c))c*/?
and B = p~*?¢*/?> to obtain (note the change from «a
tol—a)

f(1=a)?=Tr {p—aﬂ( log(p) — 1og(a))ga/2p—a/2aa/2p] ’

<Tr

p-(log(p) - log<o>)za“p] Tr(ptop)

Ty {pl-auog(p) - 1og<a>>2aa} Tr(p'-0%)

=f"1-a)f(1 -a). (E14)
U
Lemma 11. Let H be a Hamiltonian with ground-state
energy E, = 0 and let ¢ be a quantum state with |6, H] = 0.
Then,
fla) = Tr(c%ePHl-0) < 7,

0<a<l. (EI5)

Proof.—From the calculation of the previous lemma, we
see that the second derivative of f is the trace of a product
of positive commuting operators. Hence, it is always
positive, and therefore f is convex. But since H > 0, we
have f(0) =Z > 1= f(1), and from convexity, we get
fla) £ Z. O

Note that because of our assumption about the
ground-state energy, we have Zg > 1, and from the above
lemma, we know f. < Zs. We now show that for every
0 <a.<1,wehave 1 < f.(a) < Zg if ¢ is small enough
and a < al.
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Lemma 12. For any 0 < o < 1, there exists a critical
el > 0, such that for all € < ¢,,, we have

fe(a) := Tr(pZePHI-0)) > 1, 0<a<d. (EI6)

Proof.—Assume some 0 < a < .. Using the fact thatf
is independent of ¢ and positive, we can lower bound it by

some foin > 0. Also, (1 — a)* is monotonically decreasing
with a for 0 < a < 1. We therefore get the lower bound

fel@) = (1=e)* +efla) 2 (1 =€) + e Fin

=1 +e(€ " frn—1). (E17)
Thus, for e<e.(a)): (fmm)[l/(l_“")], we  have
fela) 2 1. 0

Remark 13. Because of the preceding lemma, in the
following, we take the (somewhat arbitrary) choice o), =
1/3 and only consider a < al as well as values of
€ < €.(a.). Since later we are only interested in arbitrarily
small values of € and a < §(¢), this is not an obstruction.

Lemma 14. For all a <. and € <€), we have
fe(a) <0.

Proof-—TIt follows from the condition that f.(a) > 1
for all a <a. together with the facts that f.(1) =1,
fe(0) = Zg and that f, is convex. O

We are now in a position to proceed with the proof of the
asymptotic concavity. First, we further restrict the values of
a by arbitrarily choosing a, < a, = 1/3 and restricting to
a < a,. The reason for this will become clear later in
the proof.

Considering Eq. (E10) and using Zg > f. > 1 as well
as Lemma 10, we can now upper bound the second
derivative as

" f/e 1 / 11
Sas_(l_a)zﬁ+(1_a) g((fe)z_fsfe) (EIS)
2 f/e 1 / 11
S_mﬁ+z_§((fe)2_f€f€)' (E19)

One might be tempted to use Lemma 10 and simply upper
bound the second term by zero, but that bound would be too
weak since the first term diverges as log(1/¢). Therefore,
we now have to do a more detailed calculation. We first
compute the derivatives of f,:

fra=(1-€)log(l —€) +log(e)e?f, + e*fr,  (E20)

(fra)? = (1 —€)*log(1 —€)? + log(€)2e* fo + 2(f,,)?
+2(1 — €)% log(1 — €) log(€)e® f
+ 2(1 - €)a log(l - e)ea.f:l + 2 log(€)€2a]~ca.f:r

(fra)? = flac™fo = (1 —€)*log(1 —€)? + log(e)%e2 £ + *(f,)> + 2(1 — €)log(1 — ¢) log(€)ef,,
+2(1 =€) log(1 — €)e“ i, + 2log(€) e f o fo

=log(1 —€)(1=e)*((1 =€) = ef,) + €(fa)?

+((fo) = fulo)-

Hence, we have

(f/e,a)z _f/e/,(x a = _(1 - €)af€,a// + 10g<1 - 6)2(1 - e)a((l - e)a - eafa)

(E21)
! =(1—¢)log(1 —¢)? + log(e)%e?f,
+ 2log(e)e fl, + e*f, (E22)
These give
|
— e, ((1 - €)*log(1 — €)% + log(e)?ef,, + 2log(e)efl, + €7f7) (E23)
+2(1 — €)% log(1 — €) log(€)e®f, + 2(1 — €)* log(1 — €)e®f!, — 2" 1, (E24)
=log(1 - €)2(1 —€)*((1 — €)* — e*f,) + 2(1 — )" log(1 — €)e” (log(€) fo + €“f2)
(E25)
+2(1 —e)?log(1 — e)e*(log(€) fu + € fe) + € ((fo)? = fufa)- (B26)

Note, in particular, that the last term is negative semidefinite because of Lemma 10.
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Let us now also write 0 < 1/k, := (1 —a,.)? < 1. Inserting the previous result into Eq. (E18), we then obtain

1
SZ < _chfé,a + ? ((fé‘,a)z - fg,a (1) (E27)
< _2kcfé',a + % [_(1 - 6) é‘l.a + log(l - 6)2(1 - e)a((l - e)a - €a.fa)
+2(1 - ) log(1 — e)e(log(€e)f + €2 | (E28)

< Sl t 73 [~(1= Ly + o1 = P(1 = (1= O)f.)
+2log(1 —€)(log(e) f + €2*(1 — €)" f;)] (E29)
We now lower bound f. and f” as
fea 2 10g(1 =€) +log(e)f s+ fa (E30)
fed' = (1 =€) log(1 —€)? + log(e)%e™ f, + 21og(e)e [}, + ef . (E31)

Note that we cannot easily bound the terms involving fﬁl since we do not know the sign of f; However, we emphasize again
that f is independent of ¢ and can hence essentially be treated as constant. Putting in the bounds then yields

St < —=2k.(log(1 — ) +log(€) fo + fo) — 1 Z_ze ((1—€)log(1 - €)* + log(e)?e™ f, + 2 log(e)e* [, + €f )

+ % [Iog(l —e)*(1 = (1 —e)ef,) +2log(1 —e)(log(e) f, + €(1 - e)“j‘;)] (E32)

- (2 1- Floo1- 2
=log(¢)f, <2210g(1 —€)— Zzeze“j;a - Zzelog(e)e"f - (1—%)2)
2 1 —¢)? 1—(1-¢)ef 2 -,

+log(1 —¢) <— 0—a)y ( Zze) log(1 —€) +%log(l —€) +?€2“(1 - e)“fa)
2 7 (1 - 6)6 7

_(1_ C)Qfa_ 2 fa (E33)

- (2 l—e. fi 1-¢
Slog(e)fa<?log(l—e)— 7 26“];—— 7

log(e)e — ﬁ) T M(e.HoB.pb) — Kla Hpop"),  (E34)

where M goes to zero as € goes to zero and K is independent of €. Also note that M is bounded and independent of «

(because of the boundedness of fa and its derivatives). Let us define m(a.) = maxas%ﬁx / fa. Since a, < 1/2, we can
simplify the bound to

Sy < log(e)% (2log(1 —€) = 2(1 —€)e*m(a,) — (1 — €) log(e)e* — 8Z%) + M(e, H, B, p*) — K(a., H, B, p*).  (E35)

Clearly, S can be made negative by taking ¢ and a, arbitrarily small since the dominant term in the brackets goes as
—log(e). However, since our objective is to upper bound S, by V4(p,, Hg)a for all @ < a,, we also need Vy(p,, Hg)a, >
log Zg and hence a, > log(Zs)/Vs(pe. Hs). Hence, we choose a. = 6(e) = log Zs/Vy(p.. Hy) and hope for the best. The
vacancy is given by
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1 Z¢—1
Vi(pe, Hg) = —log(1 — €)Z—S+ SZS log(1/€)

+Cl(vaﬁvHS)’ (E36)
where C; does not depend on e. Hence,
limed(€) = L and
e—0 Z[(ZS)/ZS_I]
s
lim — (1 —¢) log(e)e’®) = +co. (E37)

Since the other terms in the first brackets in S, go to zero as
€ — 0 and K is independent of €, we can find a finite €.,
such that

Si<0,a <68(e.,). (E38)

This finishes the proof. U

APPENDIX F: EXACTLY CONSERVED
CATALYSTS

In this section, we analyze the scenario where the
catalyst always has to be returned without any error. In
other words, the cooling protocol considers a process like
the one described in Sec. II but taking ¢ = 0. First, note that
the vacancy is also automatically a monotone in this setting
since we are considering a subset of free operations. Hence,
the inequality

Vis(pr, Hg) 2 V(ps. Hs) (F1)

is also a necessary condition for this set of free operations.
In the following, we consider, for simplicity, only the case
where the target system is thermal, pg = @y (Hy).

We now prove the following theorem, which provides a
sufficient condition for cooling and which coincides with
that in our general Theorem 2 up to a multiplicative factor.

Theorem 15 (Sufficient condition under exact cataly-
sis). Assume thermal operations with exact catalysts. Then,
for every choice of f and H, there is a critical ., > 0 such
that for any fg > . and full-rank resource (pg, Hg)
(diagonal in the energy eigenbasis), the condition

Vﬂ(pR’HR) - K(ﬂS?ﬂ?ﬂR’HR’HS)
> r(p. H)Vy(wp,(Hs). Hy) (F2)

is sufficient for cooling. The positive-semidefinite function
K is identical to that in Theorem 2, and the constant
r(p, Hy) is independent of pg, Hg, and ffg and given by

E..—E
r(B.Hg) = 14222 7/ (F3)
Eg

where E, ., is the largest eigenvalue of Hg and we assume
that the ground-state energy of Hy is zero.

Before presenting the proof, let us briefly discuss the
implications that the correction given by r(f3, Hg) has over
the sufficient condition Theorem 2. This is better explained
if we look at the scaling results of Sec. IV. There, we
showed that the sufficient condition of Theorem 2 provides
an upper bound on the number of copies of a resource that
are sufficient to implement a cooling process, as given
by n**f in Eq. (22). The sufficient condition laid out in
Theorem 15 implies simply that we need r times more
systems to implement the cooling protocol, where
r = r(f, H). Note importantly that » does not depend on
the final temperature, so employing (B, Hg) x ™ is
always sufficient for cooling. We emphasize that we believe
that the factor r(f, Hg) can be made much closer to 1 by
more elaborate proof techniques, but we leave this as an
open problem.

Proof.—It was shown in Ref. [34] that a transition
p — p' between two diagonal states is possible with exact
preservation of the catalyst if and only if the Renyi
divergences

S.plly (1) = 2E1

log Tr(p* [y (H)'=)  (F4)

do not increase for all a € (—o0,+o0). The sufficient
condition in Theorem 2 covers all @ > 0. We thus have
to check that we can fulfill all the inequalities for @ < 0
using the multiplicative factor r(f, Hg). To do this, we
provide new lower and upper bounds for the Renyi
divergences for negative a. We begin with a lower bound.
Consider any state p with eigenvalues p; in the energy
eigenbasis. Then, we have

1 ~la| 1+|al
1 § ) ; , (F5

where w; = e #Ei/ Z; are the eigenvalues of the thermal
state. Using concavity of the logarithm, we can bound
this as

S_ja (Pl (H))

1
S H)) > > wilog (p} Wi
||(p”wﬂ( )) = |a‘+1 i wilog\p; W,

= |a|0;|_ I Z(Wi log(w;) — w;log(p;))
(F6)
= |a||6:|— 1 Vs(p. H). (F7)

We can thus lower bound all the Renyi divergences for
negative a by a simple function. Later, we apply this bound
to the resource.
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We now derive a similar upper bound for the target
system, i.e., assuming a system in a thermal state. First, we
rewrite the Renyi divergences as

S_‘a| (O)ﬂs (HS) ”wﬂ(HS))

|a]
- la] + llog(Zﬂs) —log(Zy)
+ log Tr(ePs—P)lalHso—pHs ) F8
1+ |a] g Tr( ) (F8)

which can be verified by direct calculation. We now use the
log-sum inequality. It states that for any two sets of d non-
negative numbers {a;} and {b,}, we have

a a; a;
< -t _t
logb Ei log X (F9)

with @ =) ,a; and b =) ,b;. Let E; be the energy
eigenvalues of Hg. Then, we set

e_/}Ei
, b, = , (F10)
Zp

al. e e(ﬂs_ﬂ)‘a‘E[e_ﬂEi e e_ﬁ(a)Ei

where ﬁ(a) = f — (s — f)|al. Using the log-sum inequal-
ity, we then obtain

S (s (Hs) g () < —1%log(Z,,) — log(Zy) + — Ze_ﬁ(am log (eVs)elEiZy) (F11)
—la|\Wp LS p\LS)) = |6¥| +1 Ps p 1+ |a| : Zﬁ(a) s
lal || e PE,
= log(Z;.) —log(Z - E;. F12
Denoting by E .. the maximum energy, we then get the bound
|a]
S—\a\ (a)ﬂs(HS)llwﬂ(HS>) < |(X| +1 (log(zﬂs) - log(zﬂ) =+ (ﬁS _ﬁ)Emax)' (F13)

Let us recall from Eq. (24) that for thermal states, the vacancy can be expressed as a function of the nonequilibrium free

energy as

Vy(wp(Hg), Hg) = BsAFy (ws(H), H) = fsEg — Sy + log(Z, ),

(F14)

where Ej; and S; denote the thermal energy expectation value and von Neumann entropy at inverse temperature . Using
this result, together with —log Z; = fE; — S, we can rewrite the upper bound on the Renyi divergences as

|a| Emax - E/}
H H <— Hq),H 1 — fB(E -F F1

S_|(1|(C()/,’S( S)”wﬂ( S)) = |a| +1 V/}(C()/)’S( S)’ S) + AF/}S(C()/)’(H),H) ﬁ( max /}) ( 5)

|a| |: Emax - E/} :|
<—Vy(wy (Hg),Hg) |1 + . F16
|a‘ +1 ﬁ( /33( S) S) AF/,’S(CU/;(H),H) ( )

Since we have
1

AFy (wp(H), H) = Eg = Ego =~ (Sp = Spy), (F17)

Ps

itis always possible to find a critical inverse temperature f§ such that AF; (ws(H), H) > Eg/2 for all B > . Then, for all
P larger than this critical temperature, we can bound the Renyi divergences as

|a]

S_ ot (ps (H)lop(H)) < UV, (@ (H). H) [1 2

la] + 1

Emax_E
”] Uy (g (Hy) H)r(p H). (FIS)

E, "ol + 1

Using the lower bound (F6) for the resource, we then find that the inequalities for negative a are fulfilled if
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Vsl Hi) > 1 Vil (H). H)r (5. Hy).

|a|
la| + 1

(F19)

Canceling the prefactors, the sufficient condition for
negative values of a is the inequality

Vi(pr. Hg) 2 Vs(wp(Hs), Hs)r(B. Hy). (F20)
Combining this with the sufficient condition for
positive @, which is the sufficient condition provided by

Theorem 2, then yields the claimed sufficient condition in
the theorem. |

1. Catalysts can always be chosen with full rank

Before finishing this section, let us point out that in the
case of exact catalysis, one can always choose the catalyst
to have full rank. In other words, the actual implementation
of the cooling protocol, which is guaranteed to exist under
the conditions of Theorem 15, never requires that we
employ a catalyst that is not full rank.

To see this, consider a bipartite system with noninter-
acting Hamiltonian H; 4+ H,. Then, consider the initial
state psp @ o and apply an energy-preserving unitary
operation U that results in the state pj,~ with pl. = oc.
Here, we imagine that pgp also includes the state of the heat
bath, and thus there can be a buildup of correlations
between the catalyst and pgp. Furthermore, assume that
psg has full rank and that o, is supported only on a
subspace P C H, with complement Q =1 — P (we iden-
tify the vector space and the projector on the space). Thus,
P =} :|j){Jjl, where the sum is over the eigenstates of 6.
Let the spectrum of pgz and oc be {p,} and {gq;},
respectively. Then, the final state

Prsc = Y _pad;Ula)(al @ [j)(jlUT  (F21)

a,j

is a convex sum of the positive semidefinite operators
Ula){a| ® |j){jlUT. The sum has support only within
1 ® P since otherwise the reduced state p’c would also
be supported outside of P. Hence, every summand is also
supported within 1® P. Using 1Q P=)_, ;@) (j| ® |/){j
we then obtain

b

1®QUI®P)U' =18 0> Ula){(jl®|){jlU" =0.

a.j

(F22)

In other words, we have (1 ® Q)U(1 ® P) =0 and, by a
similar calculation, also (1 ® P)U(1 @ Q) = 0. Thus, the
unitary U is block diagonal. In particular, the operator V =
(1® P)U(1 ® P) considered as an operator on the Hilbert
space ‘H; @ P is unitary. Since U is energy preserving by

assumption, we can deduce that P = span{|E;)} for some
subset of energy eigenstates |E;) of the Hamiltonian H, of
the catalyst.

Then, V commutes with the Hamiltonian H; + H,|p,
where H,|p denotes the Hamiltonian of the catalyst, but
restricted to the subspace P.

We can thus obtain an equivalent catalyst with full rank
and a corresponding thermal operation by restricting o
and H, to the subspace P on which o has full rank and
using the thermal operation defined by V:

Vpsg ® oclpV' = pspcligr- (F23)
In particular, note that the above analysis also shows that,
in the case of exact catalysis, pure catalysts are useless:
If a transition can be done with a pure catalyst, it can also be
done without a catalyst.

APPENDIX G: APPROXIMATE CATALYSIS

In this article, we have assumed that catalysts are
returned arbitrarily close to their initial state (or, exactly,
in the last section). Here, we discuss possible relaxations of
this assumption to include approximate catalysts.

First, we note that the problem of allowing for finite
errors—in some suitable measure—between the initial and
final states of the catalyst is a delicate one, especially in the
context of the third law of thermodynamics. The challenge
is caused by the fact that the statement of the unattainability
principle is not stable under arbitrarily good approxima-
tions: It compares the case where the state of the target
system is exactly the ground state with the case of
approximating the ground state to arbitrary precision. In
the former case, infinite resources are needed, while in the
latter case, finite resources are needed (however, diverging
with the approximation precision). This is the ultimate
reason why a discontinuous measure of resources (like the
vacancy) is necessary to capture the third law in the
resource theoretic setting.

With this in mind, let us discuss the problem of
approximate catalysts. If one demands that the catalyst is
returned in approximately the same state, it is crucial how
one measures “approximately.” In the context of thermal
operations, this problem has been studied in Refs. [34,54].
It has been shown in Ref. [34] that if one requires only
that the catalyst is returned up to an arbitrarily small but
fixed error in trace distance, any transition can be imple-
mented using a thermal operation to arbitrary precision—
without any resource. In particular, this implies that perfect
cooling can be achieved without using any resource state.
Therefore, it is clear that stronger conditions are necessary
so as not to trivialize the problem of cooling.

A second way to define approximate catalysts is to
require that the catalyst is returned up to an error ¢/log(d)
in trace distance, where d is the dimension of the catalyst,
and € > 0 is arbitrarily small but fixed for all catalysts.
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Intuitively, this definition requires that the error is small
even when multiplied by the number of particles in the
catalyst. In this case, transitions can be implemented to
arbitrary precision if the nonequilibrium free energy
decreases [34]. This would lead to requiring a constant
amount of resources to cool a given system to arbitrary low
temperatures—hence, the unattainability principle is also
violated in this case.

Because of the arguments above, it seems that allowing
for a finite erro—measured in trace distance—in the
catalyst seems to be too forgiving. However, Ref. [34]
also hints at a solution to this problem: One should measure
the error in terms of a quantity that is meaningful for
the problem at hand. In Ref. [34], the authors consider the
problem of work extraction and demand in turn that the
catalyst is returned with approximately the same “work
distance,” where the work distance measures the potential
of one state to produce work. In our case, we are concerned
with the task of low-temperature cooling. Indeed, the
vacancy itself plays the role of the cooling potential since
the limitations for low-temperature cooling of Theorem 1
are expressed in terms of the vacancy. We can thus require
that the catalyst has to be returned with a vacancy that
differs only by an amount ¢ from the initial vacancy. If we
adopt this definition of approximate catalysts, the general
necessary condition (11) is modified only slightly. This can
be seen in the following way. First, note that this notion
requires that catalysts all have finite vacancy; i.e., they must
have full rank. In this case, we can simply evaluate the
vacancy of the resource, system, and target before and after
the cooling protocol has been applied. Let us assume that
the initial state of the catalyst is o, while the final state is ¢’.
Since the vacancy is an additive monotone of thermal
operations and vanishes on thermal states, we then obtain

Vs(pr ® wp(Hg) @ 6, Hg + Hg + He)

= Vy(pr. Hg) + V(0. He) (G1)
> Vﬁ(a)ﬂ(HR) ®ps ® o' Hp + Hg + HC)
= Vy(ps, Hg) + V(o' He). (G2)
Hence, we obtain, as a new necessary condition,
Vs(pr, Hg) + € 2 Vy(ps, Hy), (G3)

with € = Vj(6,Hc) — V4(6', He) being the error in the
catalyst measured by the vacancy.

Thus, the necessary condition and hence the quantitative
unattainability principle is stable under approximate cata-
lysts if defined consistently: allowing a fixed but small error
measured by the vacancy difference.

It seems plausible that under this definition of catalysts,
the sufficient condition in Theorem 2 also simplifies to
Eq. (G3) for arbitrary resources—at least for low enough

target temperatures. However, proving this statement rig-
orously seems to require further technical innovations
beyond the scope of this work. We therefore leave this
as an open problem.
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