IOPScience

Home

Search Collections Journals About Contactus My IOPscience

Area laws and efficient descriptions of quantum many-body states

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2016 New J. Phys. 18 083026
(http://iopscience.iop.org/1367-2630/18/8/083026)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 87.77.118.212
This content was downloaded on 03/04/2017 at 08:47

Please note that terms and conditions apply.

You may also be interested in:

Concatenated tensor network states
R Hibener, V Nebendahl and W Dur

The detectability lemma and its applications to quantum Hamiltonian complexity
Dorit Aharonov, Itai Arad, Umesh Vazirani et al.

Local reversibility and entanglement structure of many-body ground states
Tomotaka Kuwahara, Itai Arad, Luigi Amico et al.

Renormalization and tensor product states in spin chains and lattices
J Ignacio Cirac and Frank Verstraete

iopscience.iop.org

Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems

Christian Gogolin and Jens Eisert

Continuum tensor network field states, path integral representations and spatial symmetries
David Jennings, Christoph Brockt, Jutho Haegeman et al.

Mutual information area laws for thermal free fermions
H Bernigau, M J Kastoryano and J Eisert

Characterizing symmetries in a projected entangled pair state
D Pérez-Garcia, M Sanz, C E Gonzalez-Guillén et al.

Algebraically contractible topological tensor network states
S J Denny, J D Biamonte, D Jaksch et al.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/18/8
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1367-2630/12/2/025004
http://iopscience.iop.org/article/10.1088/1367-2630/13/11/113043
http://iopscience.iop.org/article/10.1088/2058-9565/aa523d
http://iopscience.iop.org/article/10.1088/1751-8113/42/50/504004
http://iopscience.iop.org/article/10.1088/0034-4885/79/5/056001
http://iopscience.iop.org/article/10.1088/1367-2630/17/6/063039
http://iopscience.iop.org/article/10.1088/1742-5468/2015/02/P02008
http://iopscience.iop.org/article/10.1088/1367-2630/12/2/025010
http://iopscience.iop.org/article/10.1088/1751-8113/45/1/015309

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
24 February 2016

REVISED
23 May2016

ACCEPTED FOR PUBLICATION
31May2016

PUBLISHED
5 August 2016

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

NewJ. Phys. 18 (2016) 083026 doi:10.1088/1367-2630/18,/8,/083026

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER

Area laws and efficient descriptions of guantum many-body states

Yimin Ge' and Jens Eisert”’

! Max-Planck-Institut fiir Quantenoptik, D-85748 Garching, Germany
> Dahlem Center for Complex Quantum Systems, Freie Universitit Berlin, D-14195 Berlin, Germany
*  Author to whom any correspondence should be addressed.

E-mail: jenseisert@gmail.com

Keywords: entanglement, area laws, tensor network states, Kolmogorov complexity

Abstract

Itis commonly believed that area laws for entanglement entropies imply that a quantum many-body
state can be faithfully represented by efficient tensor network states—a conjecture frequently stated in
the context of numerical simulations and analytical considerations. In this work, we show that this is
in general not the case, except in one-dimension. We prove that the set of quantum many-body states
that satisfy an area law for all Renyi entropies contains a subspace of exponential dimension. We then
show that there are states satisfying area laws for all Renyi entropies but cannot be approximated by
states with a classical description of small Kolmogorov complexity, including polynomial projected
entangled pair states or states of multi-scale entanglement renormalisation. Not even a quantum
computer with post-selection can efficiently prepare all quantum states fulfilling an area law, and we
show that not all area law states can be eigenstates of local Hamiltonians. We also prove translationally
and rotationally invariant instances of these results, and show a variation with decaying correlations
using quantum error-correcting codes.

1. Introduction

Complex interacting quantum systems show a wealth of exciting phenomena, ranging from phase transitions of
zero temperature to notions of topological order. A significant proportion of condensed matter physics is
concerned with understanding the features emergent in quantum lattice systems with local interactions.
However, naive numerical descriptions of such quantum systems require prohibitive resources, for the simple
reason that the dimension of the underlying Hilbert space grows exponentially in the system size.

Yet, it has become clear in recent years that ground states—and a number of other natural states—usually
occupy only a tiny fraction of this Hilbert space. This subset, which is sometimes referred to as the ‘physical
corner’ of the Hilbert space (figure 3(a)), is commonly characterised by states having little entanglement. More
precisely, they are characterised by the area law [ 1]: entanglement entropies grow only like the boundary area of
any subset A of lattice sites

S(pa) = O(|0A]) (Y]

and not extensively like its volume |A| (figure 1). Such area laws have been proven for all gapped spin models in
D = 1[2-6].In D > 2, arealaws have only been proven in special cases, including free gapped bosonic and
fermionic models [7-9], ground states in the same gapped phase as ones satisfying an area law [10, 11], models
which have a suitable scaling for heat capacities [ 12], models whose Hamiltonian spectra satisfy related
conditions [13, 14], frustration-free spin models [ 15], and models exhibiting local topological order [16]. The
general expectation is that all gapped lattice models satisfy an area law. Proving a general area law for gapped
lattice modelsin D > 2 hasindeed become a milestone open problem in condensed-matter physics.
Arealaws are at the core of powerful numerical algorithms, such as DMRG [17]. In D = 1, the situation is
particularly clear: matrix-product states [ 18] essentially ‘parameterise’ those one-dimensional quantum states
that satisfy an area law for some Renyi entropy S, with « € (0, 1). They approximate all such states provably
well, which explains why essentially machine precision can be reached with such numerical tools [19, 20]. A

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) There exist quantum states on D-dimensional cubic latticesin D > 2 such that S, (p,) = O (|0A|) forall o > 0, but
which cannot be approximated by efficient tensor network states, such as (b) polynomial projected entangled pair states.

common jargon is that similarly, projected entangled pair states (PEPS) [21], can approximate all states satisfying
area laws in higher dimensions. In the same way, one expects those instances of tensor network states to capture
the ‘physical corner’.

In this work, we show that this jargon is not right: strictly speaking, area laws and the existence of efficient
tensor network descriptions are unrelated. We show that there exist states that satisfy an area law for every Renyi
entropy”

1

—

Sa(p) = ! log,tr(p®), «a € [0, c0), ()

but still, no efficient PEPS can be found. The same holds for multi-scale entanglement renormalisation (MERA)
ansatzes [22], as well as all classes of states that have a short description (the precise meaning of this will be
defined below). Not even a quantum computer with post-selection can efficiently prepare all states satisfying
area laws. Moreover, not all states satisfying area laws are eigenstates of local Hamiltonians.

These conclusions follow from the main result of this work: in D > 2, the set of states satisfying area laws for
all S, contains a subspace whose dimension scales exponentially with the system size. By considering a very
general notion of quantum state descriptions based on the theory of quantum Kolmogorov complexity [23], we
then infer that this large subspace cannot be captured by efficient tensor network states.

However, our results should not be seen to indicate that area laws are not appropriate intuitive guidelines for
approximations with tensor network states. We rather provide a significant step towards precisely delineating
the boundary between those quantum many-body states that can be efficiently captured and those that cannot.
We thus contribute to the discussion why PEPS and other tensor network states approximate natural states so
well. Area laws without further qualifiers are, strictly speaking, inappropriate for this purpose as the ‘corner’ they
parameterise is exponentially large. This work is hence a strong reminder that the programme of identifying that
boundary is not finished yet.

2. Classically efficiently described states

We first review the concept of efficient classical descriptions of quantum states. The focus is on tensor network
states, but the notion of efficient classical descriptions can be formulated in a much more general way. For our
purposes, the following definition of efficiently describable quantum states will suffice (see also [23] for
alternative definitions).

Definition 1 (Classical descriptions). A classical description of a pure quantum state |1)) € S((C*)*N)isa
Turing machine that outputs the coefficients of |1/) in the standard basis { |x): x € [d]" } and halts. The length of

4 Here, S; = lim, |;S, = S is the familiar von-Neumann entropy and S, the binary logarithm of the Schmidt rank.
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the classical description is the size of the Turing machine’. We say that the description is polynomial if its length
is polynomial in N.

We emphasise that for a polynomial classical description we only require the size of the Turing machine to be
polynomial, but not the run-time (which is necessarily exponential). Notice that the shortest length of a classical
description for a given quantum state is a natural generalisation of the Kolmogorov complexity® to quantum
states [23].

Example 2 (Tensor networks). States that can be written as polynomial tensor networks (i.e., they are defined on
arbitrary graphs with bounded degree, have at most O (poly(IN')) bond-dimension and their tensor entries’
Kolmogorov complexity is at most O (poly(N))) are polynomially classically described states in the sense of
definition 1. In particular, PEPS and MERA states with O (poly(IN)) bond-dimension and tensor entries of at
most O (poly(N)) Kolmogorov complexity are polynomially classically described states.

As a further interesting special case, we highlight that states that can be prepared by polynomial quantum
circuits, even with post-selected measurement results, fall under our definition of classically described states.

Example 3 (Quantum circuits with post-selection). Suppose that |¢) can be prepared by a quantum circuit of
O (poly(N)) gates from |0)2© ®°Y(N) where we allow for post-selected measurement results in the
computational basis. Then, a Turing machine that classically simulates the circuit constitutes a polynomial
classical description in the sense of definition 1.

Example 4 (Eigenstates of local Hamiltonians). Suppose that |1)) is an eigenvector of a local Hamiltonian with
bounded interaction strength. Such Hamiltonians can be specified to arbitrary (but fixed) precision with
polynomial Kolmogorov complexity. Thus, a Turing machine that starts from a polynomial description of the
Hamiltonian and computes |) by brute-force diagonalisation constitutes a polynomial classical description of
[1) in the sense of definition 1.

3. Arealaws and the exponential ‘corner’ of Hilbert space

Throughout the remainder of this work, we consider quantum lattice systems of local dimension d, arranged on
a cubiclattice [L]? of fixed dimension D > 1,where[L] := {0,...,L — 1}. We show in this section that the set
of states satisfying area laws for all S, contains subspaces of exponential dimension. This result is then used in
section 4 to conclude that such states in general do not have an efficient classical description. The case D = 1is
excluded since in this case, the question at hand has already been settled with the opposite conclusion [19, 20].
The local dimension is small and taken to be d = 3 for most of this work. There is no obvious fundamental
reason, however, why such a construction should not also be possible for d = 2.

In the focus of attention are states that satisfy an area law for all -Renyi entropies, in particular also
fora < 1.

Definition 5 (Strong area laws). A pure state 1)) € S( (CH?L") is said to satisfy a strong area law if there exists a
universal constant ¢ such that for all regions A C [L]P, wehave Sy (1) < c|0A|, where ¢y = trz |¢¥)v].

Since S, (p) < So(p) forall > 0, strongarea law states in this sense also exhibit area laws for all Renyi
entropies. Definition 5 is hence even stronger than the area laws usually quoted [1, 19, 20]. Here and later, we
write ¢ = [¢)¢|. For simplicity, we will for the remainder of this paper restrict our consideration to cubic
regions only. It should be clear, however, that all arguments generalise to arbitrary regions A C [L]".

We now turn to showing that the ‘physical corner’ of states satisfying area laws in this strong sense is still very
large: it contains subspaces of dimension exp (2(LP~!)). We prove this by providing a specific class of quantum
states that have that property. At the heart of the construction is an embedding of states defined ona (D — 1)-
dimensional qubit lattice into the D-dimensional qutrit one. Denote with 7, C span{|1), |2) }®X" " the
subspace of translationally invariant states (with respect to periodic boundary conditions) ona (D — 1)-

For readers who are not familiar with Turing machines, a less formal but for our purposes equivalent definition is that a classical description
of |¢) is a (classical) computer program that computes the coefficients of |/) in the standard basis. The length of the description is then

simply the length of the program.

Recall that the Kolmogorov complexity of a classical string w is the size of the shortest Turing machine (or computer program) that outputs

wand halts. It can be thought of as the shortest possible (classical) description of w. For an introduction to Turing machines and Kolmogorov
complexity, see e.g. [24].
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Figure 2. Schematic drawing of [1;) in D = 2. |¢;) is an arbitrary translationally invariant state vector on LP~! qubits with basis
states |1), |2) in (D — 1)-dimensions. Schmidt decompositions for |1/, ) with respect to bi-partitions of the lattice can be readily
obtained from the corresponding Schmidt decompositions of |, ).

dimensional cubic lattice of L~ ! qubits. It is easy to show that dim (H;) > 2L '/LP~!. We start from the
simplest translationally invariant construction on H := (C?)*L” and discuss rotational invariance and decaying
correlations below.

Theorem 6 (States satisfying strong area laws). There exists an injective linear isometry f: Hy — H with the
property that forall |¢;) € Hy, f (|¢,)) satisfies a strong area law and is translationally invariant in all D directions.

Proof. Given a state vector |¢;) € Hy, define
[Yin) = 10)°6 D @ o) @ 0)°E P € A, (3)
with | ¢, ) at the kth hyperplane of the lattice (figure 2). Define

L
o) = L7V i) )
k=1
which is translationally invariant. Any such state vector will satisfy a strong area law (in fact, a sub-area law): for
any cubic subset A = [}]]X -+~ X [Ip], we have for the reduced state (¢)y)4 = trz |17 ) |that

D
So((Yr)a) <log,(2"o-1lp + 1) <23 [T I = 10Al (5
j=1k,k=j
where we used that the Schmidt rank with respect to the bi-partition A, A for each |ty ) with k € [Ip]isat most
2h-++Io-1 and that since | ¢, ) is only supported on span { | 1), |2) }, the Schmidt vectors of |1/ ;) and |1/} ;) are
orthogonal for k = k' € [Ip] such that in the distinguished Dth direction, the contribution to the Schmidt rank
is additive and thus linear in Ip. Setting f (|¢;)) := |11), we see that fhas the desired properties.

4. Area laws and approximation by efficiently describable states

We now precisely state what we call an approximation of given pure states by polynomially classically described
states.

Definition 7 (Approximation of quantum many-body states). A family of pure states |1/ ) can be approximated
by polynomially classically described statesif for all € > 0, there exist a polynomial p and pure states |w; ) witha
classical description of length at most p (L) such thatforall L, || [ X0 | — |wiXwr||h < e.

Note that this is exactly the sense in which matrix-product states provide an efficient approximation of all
one-dimensional states that satisfy an area law for some S, with a € (0, 1) [19]. We remark that definition 7 can
be weakened without altering the results. We now turn to the main result:

Theorem 8 (Impossibility of approximating area law states). Let 7{; be a Hilbert space of dimension
exp(Q(poly(L))). Then there exist states in H; that cannot be approximated by polynomially classically described
states. In particular, not all translationally invariant strong area law states can be approximated by polynomially
classically described states.

Theorem 8 can be easily proven using a counting argument of € -nets. Indeed, the number of states that can
be parameterised by O (poly(L)) many bits is at most 2° ®°Y') However, an € -net covering the space of pure
states in C? requires at least (1,/£)2@ elements [25], which is much larger than 20 Py () jf
q = exp(£2(poly(L))) (see also [26, 27] on the topic of e-nets for many-body states). Thus, the set of quantum
states in 7{; that have a polynomial classical description cannot form an e-net for 7, which proves theorem 8.

4
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We nevertheless also review the more involved proof from [23] using communication complexity in appendix A.
This proof could, due to its more constructive nature, provide some insight into the structure of some strong
area law states that cannot be approximated by polynomially classically described states.

4.1. Tensor network states
We saw that our definition of polynomial classical descriptions encompasses all efficient tensor network
descriptions. Thus

Corollary 9 (Tensor network states cannot approximate area law states). There exist translationally invariant
strong area law states that cannot be approximated by polynomial tensor network states in the sense of example 2. In
particular, not all translationally invariant strong area law states can be approximated by polynomial PEPS or MERA
states.

Notice the restriction to tensor networks whose tensor entries have a polynomial Kolmogorov complexity.
This is required to ensure that the tensor network description is in fact polynomial. Indeed, a classical
description depending on only polynomially many parameters \;, ..., Ao poly(ny) (€-8.» @ PEPS with polynomial
bond-dimension) is not necessarily already polynomial—for the latter, it is also necessary that each of the )\;
themselves can be stored efficiently. The notion of Kolmogorov complexity allows for the most general
definition of tensor networks that can be stored with polynomial classical memory.

4.2. Quantum circuits
Example 3 shows that states prepared by a polynomial quantum circuit with post-selected measurement results
have a polynomial classical description. Thus

Corollary 10 (Post-selected quantum circuits cannot prepare area law states). There exist translationally
invariant strong area law states that cannot be approximated by a polynomial quantum circuit with post-selection in
the sense of example 3.

In the light of the computational power of post-selected quantum computation [28], this may be
remarkable.

4.3. Eigenstates of local Hamiltonians
Example 4 shows that eigenstates of local Hamiltonians with bounded interaction strengths also have a
polynomial classical description. Thus

Corollary 11 (Arealaw states without parent Hamiltonian). There exist translationally invariant strong area law
states that cannot be approximated by eigenstates of local Hamiltonians.

5. Rotationally invarant states and area laws

So far, the states in consideration were translationally but not rotationally invariant. However, by taking the
superposition of appropriate rotations of (4), one can alter the above argument such that all involved states are
also rotationally invariant, i.e. remain invariant under 90° rotations of the lattice. The details of this construction
are given in appendix B.

Corollary 12 (Approximation for translationally and rotationally invariant states). There exist translationally
and rotationally invariant strong area law states that cannot be approximated by polynomially classically described
states. In particular, corollaries 9—11 also hold for translationally and rotationally invariant states.

6. Decaying correlations and area laws

One might wonder whether an exponentially dimensional subspace of strong area law states can be constructed
while imposing decaying two-point correlations for distant observables, a property known to occur in ground
states of local gapped Hamiltonians [29, 30]. It follows immediately from their definition that the states
constructed in theorem 6 (and theorem 16 in appendix B) already satisfy an algebraic decay. Indeed, for all L and
alllocal observables A, B on disjoint supports separated by an arbitrary distance Z,
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(Y1l AB |¢pr) — (Yl A [r)(¥r] B [¢) = O™ =0 . (6)

Using quantum error-correcting codes, it is however also possible to construct variations of the previous results
such that for all L and all local observables A, B with disjoint supports,

(Yol AB |r) — (Yol A [Yr)(r| B |¢r) = 0. 7

The details of this construction are given in appendix C.

Corollary 13 (Approximation for area law states with vanishing correlations of local observables). There exist
strong area law states with vanishing two-point correlations of all local observables on disjoint supports that cannot be
approximated by polynomially classically described states. In particular, corollaries 9—11 also hold for states with
vanishing correlations of local observables on disjoint supports.

The translationally and rotationally invariant construction only gives algebraic decay (equation (6)).
However, we conjecture that there also exist strong area law states which are translationally and rotationally
invariant and simultaneously have exponentially small correlations for all local observables, but still cannot be
approximated by polynomially classically described states.

7. Conclusion and outlook

We have shown that the set of states satisfying an arealawin D > 2 comprises many states that do not have an
efficient classical description: they cannot be described by efficient tensor networks, cannot be prepared by
polynomial quantum circuits with post-selected measurements, and are also not eigenstates of local
Hamiltonians. We have hence proven that the connection between entanglement properties and the existence of
an efficient description is far more intricate than anticipated. These results are based on the simple observation
that an arbitrary quantum state in (D — 1) dimensions that is embedded into D dimensions satisfies a D-
dimensional area law, thus implying that the set of area law states contains a subspace of exponential dimension.
In other words, in D > 2, itis possible to ‘dilute’ the entanglement content and still arrive at a strong area law.
We also demonstrated that the exponential scaling persists even if various physical properties, such as
translational and rotational invariance, or decaying correlations of local observables, are imposed. We note
however that while the latter can be extended to non-local observables of size O (LP~1), our notion of decaying
correlations is weaker than the exponential clustering property for ground states of gapped Hamiltonians, since
this can involve all regions of unbounded size [5, 29]. It remains open whether our results are impeded if the
stronger notion of exponential decay of correlations is imposed.

Arealaws indeed suggest the expected entanglement behaviour of naturally occurring ground states.
However, when put in precise contact with questions of numerical simulation, it turns out that satisfying an area
law alone is not sufficient for efficient approximation. Picking up the metaphor of the introduction, the ‘corner
of states that can be efficiently described’ is tiny compared to the ‘physical corner’ (figure 3).

A particularly exciting perspective arises from the observation that states with small entanglement content
can go along with states having divergent bond dimensions in PEPS approximations. This may be taken asa
suggestion that there may be states that are in the same phase if symmetries are imposed, but are being classified
as being in different phases in a classification of phases of matter building upon tensor network descriptions [31—
33]. Itis the hope that the present work can be taken as a starting point of further endeavours towards
understanding the complexity of quantum many-body states.
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Appendix A. Proof of theorem 8 using communication complexity

We now review the alternative proof of theorem 8 using communication complexity, which was given in [23].
Suppose two distant parties, Alice and Bob, each possess an n-bit string, X and y, respectively. No
communication between Alice and Bob is allowed, but they can communicate with a third party, Charlie, whose
task is to guess whether or not x = y. We demand that Charlie may guess the wrong answer with a small (fixed)
probability of at most 6 > 0. This s called the equality problem, which we denote by EQ (7). We now state some

6
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Figure 3. (a) The set of area law states is a tiny ‘corner’ of the many-body Hilbert space. (b) The set of states that can be efficiently
described is tiny compared to the ‘corner’ of area law states.

known results [23, 34, 35] on the communication complexity, i.e. the minimum amount of communication
required for solving the equality problem.

Lemma 14 (Equality problem for classical communication). If Alice and Bob can only send classical information
to Charlie, at least Q) (/1) bits of communication are required to solve EQ (n).

Lemma 15 (Quantum solution to equality problem).

(1)If Alice and Bob can send quantum information to Charlie, there exists a protocol for EQ(n) using only O (logn)
qubits of communication that is of the following form: Alice and Bob each prepare O (log n) qubit states |h (X))
and’ |h(y)), respectively, which they send to Charlie. Charlie then applies a quantum circuit to |h(x)) |k (y) ) |0),
followed by a measurement of a single qubit whose outcome determines Charlie’s guess.

(2) There exists an € > 0 independent of n such that the protocol in (1) still works if instead, Alice and Bob send states
to Charlie which are &-close in trace distance’ to |h (x)) and | h(y)).

We now turn to the proof of theorem 8 .

Proof of theorem 8. We prove the claim by contradiction. Suppose that every state vector in 7; can be
approximated by polynomially classically described states. Then in particular, all M-qubit states can be
approximated by states with a classical description oflength O (poly(IN)), where M := [ log,dim (Hy) J Fix

6 € (0, 1)andlete > Obeasinlemma 15 (2). Bylemma 15 (1), we can choose nwith logn = © (M) such that
M qubits of communication suffice to solve EQ(n).

By assumption, |k (x)) and |k (y)) can be e-approximated by states which have an O (poly(M)) classical
description. Bylemma 15 (2), these states can be used instead of | i (x)) and |k (y)) in the quantum protocol to
solve EQ(n). Now consider an alternative protocol using only classical communication to solve EQ(#) as
follows: Alice and Bob send the classical description of their states to Charlie, who simulates the quantum circuit
and the measurement from lemma 15 using the classical descriptions of the states. This protocol solves EQ(#)
using only O (poly(M)) = O (poly(log n)) bits of communication, contradicting lemma 14. Finally, by setting
Hy = f (Hp) with fand H; as in theorem 6, the second part of theorem 8 follows. O

Appendix B. Translationally and rotationally invariant states

Corollary 12 follows directly from theorem 8 and the following theorem.

7 The exact form of |h(x)) and |k (y)) is not important for our purpose—we will only need that they consist of O (log 1) qubits. Interested
readers are referred to [35].

This was argued in [23] for the Euclidean vector distance but it is clear that the same holds for the trace distance.

7
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Theorem 16 (Translationally and rotationally invariant area law states). There exists an injective linear
isometry g: G — H with dim(Gy) = exp(QLP~Y)) such thatforall|¢;) € Gr, g(|$;)) satisfies a strong area
law and is translationally and rotationally invariant in all D directions.

Theorem 16 can be proven with a minor modification of the proof of theorem 6. To start with, we replace
| ;) for each L by state vector on the translationally invariant subset H; C (C2)®L”"" which is also mirror
symmetric, i.e. invariant under reflections, in all (D — 1) directions. Notice that the exact choice of the plane of
symmetry in a given direction does not matter since we assume | ¢, ) to be translationally invariant. With |, ) as
in (4), we then consider, for the entire [L] lattice, state vectors of the form

D
[U1) = D~Y23 "R |4r), (B1)
=1
where I = R, ..., Rp rotate the entire lattice system such that | ¢, ) is arranged along each line of the cubic lattice
in dimension D. Such a state is translationally and rotationally invariant, following from mirror symmetry.
These states satisfy a strong area law: for any cubic subset A C [L]P,

D
(W = tra [Yr)(erl= D' Y e a(Rlvn) (Wil R, (B2)

=1

since for j = k,

ARl (Y RY = 0. (B3)

This can be seen by taking the partial trace with respect to a set C first. For simplicity of notation, for D = 2,
consider w.l.o.g. distinguished subsets A C [L]P forwhich A N C = @ for C := L x [L]. Then

tra(lyr) (Vi RY = trave D (xlvr) (Vi Rx )=0, (B4)
xe$
where § = {x| 3j: x; = 0 A xx = 0 Vk € [L]\ {;} }. Ananalogous argument holds for any dimension D.
From these considerations, it follows that the area law is inherited by the area law valid for each individual
R|¢r). Itis furthermore clear that the exponential scaling of the dimension is not affected by restricting to the
subspace G; C Hp of mirror symmetric states. O

Appendix C. States with vanishing two point correlation functions for local observables

To prove corollary 13, consider a non-degenerate [#, k, AJ-quantum error-correcting code C with

k/n = ©(1)and A/n = O(1) [36]. Here n denotes the block size and k the number of encoded qubits. A is the
so-called distance of the code. Since Cis non-degenerate, the reduced density matrix of any A — 1 qubits of any
state in the code space of Cis maximally mixed. By choosing n = LP~!and considering

[¢1) = |C(xp)) ® [0)E-DE", (C1)

where |C (;)) is an arbitrary state vector in the code space of C, we see that for all L and all observables A, B with
disjoint support and whose joint support in the top hyperplane contains less than A = © (LP~1)sites,

(¥l AB |9r) — (Y| A [¥)9r] B |¢r) = 0. (C2)

In particular, equation (C2) holds for local observables A, B. Clearly, states of the form (C1) obey a strong area
law and since k = ©(LP~"), we obtain a subspace of dimension exp (2(L”~!)) of strong area law states with
vanishing correlations of local observables. Corollary 13 now follows from theorem 8. O
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