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Abstract
It is commonly believed that area laws for entanglement entropies imply that a quantummany-body
state can be faithfully represented by efficient tensor network states—a conjecture frequently stated in
the context of numerical simulations and analytical considerations. In this work, we show that this is
in general not the case, except in one-dimension.We prove that the set of quantummany-body states
that satisfy an area law for all Renyi entropies contains a subspace of exponential dimension.We then
show that there are states satisfying area laws for all Renyi entropies but cannot be approximated by
states with a classical description of small Kolmogorov complexity, including polynomial projected
entangled pair states or states ofmulti-scale entanglement renormalisation.Not even a quantum
computer with post-selection can efficiently prepare all quantum states fulfilling an area law, andwe
show that not all area law states can be eigenstates of localHamiltonians.We also prove translationally
and rotationally invariant instances of these results, and show a variationwith decaying correlations
using quantum error-correcting codes.

1. Introduction

Complex interacting quantum systems show awealth of exciting phenomena, ranging fromphase transitions of
zero temperature to notions of topological order. A significant proportion of condensedmatter physics is
concernedwith understanding the features emergent in quantum lattice systemswith local interactions.
However, naive numerical descriptions of such quantum systems require prohibitive resources, for the simple
reason that the dimension of the underlyingHilbert space grows exponentially in the system size.

Yet, it has become clear in recent years that ground states—and a number of other natural states—usually
occupy only a tiny fraction of thisHilbert space. This subset, which is sometimes referred to as the ‘physical
corner’ of theHilbert space (figure 3(a)), is commonly characterised by states having little entanglement.More
precisely, they are characterised by the area law [1]: entanglement entropies growonly like the boundary area of
any subsetA of lattice sites

( ) (∣ ∣) ( )r = ¶S O A 1A

and not extensively like its volume ∣ ∣A (figure 1). Such area laws have been proven for all gapped spinmodels in
D=1 [2–6]. In D 2, area laws have only been proven in special cases, including free gapped bosonic and
fermionicmodels [7–9], ground states in the same gapped phase as ones satisfying an area law [10, 11], models
which have a suitable scaling for heat capacities [12], models whoseHamiltonian spectra satisfy related
conditions [13, 14], frustration-free spinmodels [15], andmodels exhibiting local topological order [16]. The
general expectation is that all gapped latticemodels satisfy an area law. Proving a general area law for gapped
latticemodels in D 2 has indeed become amilestone open problem in condensed-matter physics.

Area laws are at the core of powerful numerical algorithms, such asDMRG [17]. InD=1, the situation is
particularly clear:matrix-product states [18] essentially ‘parameterise’ those one-dimensional quantum states
that satisfy an area law for someRenyi entropy Sαwith ( )a Î 0, 1 . They approximate all such states provably
well, which explains why essentiallymachine precision can be reachedwith such numerical tools [19, 20]. A
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common jargon is that similarly, projected entangled pair states (PEPS) [21], can approximate all states satisfying
area laws in higher dimensions. In the sameway, one expects those instances of tensor network states to capture
the ‘physical corner’.

In this work, we show that this jargon is not right: strictly speaking, area laws and the existence of efficient
tensor network descriptions are unrelated.We show that there exist states that satisfy an area law for everyRenyi
entropy4

( ) ( ) [ ) ( )r
a

r a=
-

Î ¥a
aS

1

1
log tr , 0, , 22

but still, no efficient PEPS can be found. The same holds formulti-scale entanglement renormalisation (MERA)
ansatzes [22], as well as all classes of states that have a short description (the precisemeaning of this will be
defined below). Not even a quantum computer with post-selection can efficiently prepare all states satisfying
area laws.Moreover, not all states satisfying area laws are eigenstates of localHamiltonians.

These conclusions follow from themain result of this work: in D 2, the set of states satisfying area laws for
all Sα contains a subspacewhose dimension scales exponentially with the system size. By considering a very
general notion of quantum state descriptions based on the theory of quantumKolmogorov complexity [23], we
then infer that this large subspace cannot be captured by efficient tensor network states.

However, our results should not be seen to indicate that area laws are not appropriate intuitive guidelines for
approximationswith tensor network states.We rather provide a significant step towards precisely delineating
the boundary between those quantummany-body states that can be efficiently captured and those that cannot.
We thus contribute to the discussionwhy PEPS and other tensor network states approximate natural states so
well. Area lawswithout further qualifiers are, strictly speaking, inappropriate for this purpose as the ‘corner’ they
parameterise is exponentially large. This work is hence a strong reminder that the programme of identifying that
boundary is not finished yet.

2. Classically efficiently described states

Wefirst review the concept of efficient classical descriptions of quantum states. The focus is on tensor network
states, but the notion of efficient classical descriptions can be formulated in amuchmore general way. For our
purposes, the following definition of efficiently describable quantum states will suffice (see also [23] for
alternative definitions).

Definition 1 (Classical descriptions).A classical description of a pure quantum state ∣ (( ) ) yñ Î Äd N is a
Turingmachine that outputs the coefficients of ∣yñ in the standard basis {∣ [ ] }ñ Î dx x: N and halts. The length of

Figure 1. (a)There exist quantum states onD-dimensional cubic lattices in D 2 such that ( ) (∣ ∣)r = ¶aS O AA for all a > 0, but
which cannot be approximated by efficient tensor network states, such as (b) polynomial projected entangled pair states.

4
Here, = =a aS S Slim1 1 is the familiar von-Neumann entropy and S0 the binary logarithmof the Schmidt rank.
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the classical description is the size of the Turingmachine5.We say that the description is polynomial if its length
is polynomial inN.

We emphasise that for a polynomial classical descriptionwe only require the size of the Turingmachine to be
polynomial, but not the run-time (which is necessarily exponential). Notice that the shortest length of a classical
description for a given quantum state is a natural generalisation of theKolmogorov complexity6 to quantum
states [23].

Example 2 (Tensor networks). States that can bewritten as polynomial tensor networks (i.e., they are defined on
arbitrary graphswith bounded degree, have atmost ( ( ))O Npoly bond-dimension and their tensor entries’
Kolmogorov complexity is atmost ( ( ))O Npoly ) are polynomially classically described states in the sense of
definition 1. In particular, PEPS andMERA states with ( ( ))O Npoly bond-dimension and tensor entries of at
most ( ( ))O Npoly Kolmogorov complexity are polynomially classically described states.

As a further interesting special case, we highlight that states that can be prepared by polynomial quantum
circuits, evenwith post-selectedmeasurement results, fall under our definition of classically described states.

Example 3 (Quantumcircuits with post-selection). Suppose that ∣yñcan be prepared by a quantum circuit of
( ( ))O Npoly gates from ∣ ( ( ))ñÄ0 O Npoly , wherewe allow for post-selectedmeasurement results in the

computational basis. Then, a Turingmachine that classically simulates the circuit constitutes a polynomial
classical description in the sense of definition 1.

Example 4 (Eigenstates of localHamiltonians). Suppose that ∣yñ is an eigenvector of a localHamiltonianwith
bounded interaction strength. SuchHamiltonians can be specified to arbitrary (but fixed) precisionwith
polynomial Kolmogorov complexity. Thus, a Turingmachine that starts from a polynomial description of the
Hamiltonian and computes ∣yñby brute-force diagonalisation constitutes a polynomial classical description of
∣yñ in the sense of definition 1.

3. Area laws and the exponential ‘corner’ ofHilbert space

Throughout the remainder of this work, we consider quantum lattice systems of local dimension d, arranged on
a cubic lattice [ ]L D offixed dimension >D 1, where [ ] ≔ { }¼ -L L0, , 1 .We show in this section that the set
of states satisfying area laws for all Sα contains subspaces of exponential dimension. This result is then used in
section 4 to conclude that such states in general do not have an efficient classical description. The caseD=1 is
excluded since in this case, the question at hand has already been settledwith the opposite conclusion [19, 20].
The local dimension is small and taken to be d=3 formost of this work. There is no obvious fundamental
reason, however, why such a construction should not also be possible for d=2.

In the focus of attention are states that satisfy an area law for allα-Renyi entropies, in particular also
for a < 1.

Definition 5 (Strong area laws).Apure state ∣ (( ) ) yñ Î Äd LD
is said to satisfy a strong area law if there exists a

universal constant c such that for all regions [ ]ÌA L D, we have ( ) ∣ ∣y ¶S c AA0 , where ∣ ∣¯y y y= ñátrA A .

Since ( ) ( )r raS S0 for all a > 0, strong area law states in this sense also exhibit area laws for all Renyi
entropies. Definition 5 is hence even stronger than the area laws usually quoted [1, 19, 20]. Here and later, we
write ∣ ∣y y y= ñá . For simplicity, wewill for the remainder of this paper restrict our consideration to cubic
regions only. It should be clear, however, that all arguments generalise to arbitrary regions [ ]ÌA L D.

We now turn to showing that the ‘physical corner’ of states satisfying area laws in this strong sense is still very
large: it contains subspaces of dimension ( ( ))W -Lexp D 1 .We prove this by providing a specific class of quantum
states that have that property. At the heart of the construction is an embedding of states defined on a (D−1)-
dimensional qubit lattice into theD-dimensional qutrit one. Denote with {∣ ∣ } Ì ñ ñ Ä -

span 1 , 2L
LD 1

the
subspace of translationally invariant states (with respect to periodic boundary conditions) on a (D−1)-

5
For readerswho are not familiar with Turingmachines, a less formal but for our purposes equivalent definition is that a classical description

of ∣yñ is a (classical) computer program that computes the coefficients of ∣yñ in the standard basis. The length of the description is then
simply the length of the program.
6
Recall that theKolmogorov complexity of a classical stringw is the size of the shortest Turingmachine (or computer program) that outputs

w and halts. It can be thought of as the shortest possible (classical) description ofw. For an introduction to Turingmachines andKolmogorov
complexity, see e.g. [24].

3
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dimensional cubic lattice of -LD 1qubits. It is easy to show that ( )  --
Ldim 2L

L D 1D 1
.We start from the

simplest translationally invariant construction on ≔ ( )  ÄL3 D
and discuss rotational invariance and decaying

correlations below.

Theorem6 (States satisfying strong area laws).There exists an injective linear isometry  f : L with the
property that for all ∣ f ñ ÎL L, (∣ )f ñf L satisfies a strong area law and is translationally invariant in all D directions.

Proof.Given a state vector ∣ f ñ ÎL L, define

∣ ≔ ∣ ∣ ∣ ( )( ) ( ) y fñ ñ Ä ñ Ä ñ ÎÄ - Ä -- -
0 0 , 3k L

k L
L

L k L
,

1 D D1 1

with ∣f ñL at the kth hyperplane of the lattice (figure 2). Define

∣ ≔ ∣ ( )åy yñ ñ-

=

L , 4L
k

L

k L
1 2

1
,

which is translationally invariant. Any such state vector will satisfy a strong area law (in fact, a sub-area law): for
any cubic subset [ ] [ ]= ´ ´A l lD1 , we have for the reduced state ( ) ∣ ∣¯y y y= ñátrL A A L L that

(( ) ) ( ) ∣ ∣ ( )  å y + = ¶
= ¹

-S l l Alog 2 1 2 , 5L A
l l

D
j

D

k k j
k0 2

1 ,

D1 1

wherewe used that the Schmidt rankwith respect to the bi-partition ¯A A, for each ∣y ñk L, with [ ]Îk lD is atmost
¼ -2l lD1 1, and that since ∣f ñL is only supported on {∣ ∣ }ñ ñspan 1 , 2 , the Schmidt vectors of ∣y ñk L, and ∣y ñ¢k L, are

orthogonal for [ ]¹ ¢ Îk k lD such that in the distinguishedDth direction, the contribution to the Schmidt rank
is additive and thus linear in lD. Setting (∣ ) ≔ ∣f yñ ñf L L , we see that f has the desired properties.

4. Area laws and approximation by efficiently describable states

Wenowprecisely state whatwe call an approximation of given pure states by polynomially classically described
states.

Definition 7 (Approximation of quantummany-body states).A family of pure states ∣y ñL can be approximated
by polynomially classically described states if for all e > 0, there exist a polynomial p and pure states ∣w ñL with a
classical description of length atmost ( )p L such that for all L, ∣ ∣ ∣ ∣  y y w w eñá - ñáL L L L 1 .

Note that this is exactly the sense inwhichmatrix-product states provide an efficient approximation of all
one-dimensional states that satisfy an area law for some Sαwith ( )a Î 0, 1 [19].We remark that definition 7 can
beweakenedwithout altering the results.We now turn to themain result:

Theorem8 (Impossibility of approximating area law states). Let ̃L be aHilbert space of dimension
( ( ( )))W Lexp poly . Then there exist states in ̃L that cannot be approximated by polynomially classically described

states. In particular, not all translationally invariant strong area law states can be approximated by polynomially
classically described states.

Theorem 8 can be easily proven using a counting argument of  -nets. Indeed, the number of states that can
be parameterised by ( ( ))O Lpoly many bits is atmost ( ( ))2O Lpoly . However, an  -net covering the space of pure
states in q requires at least ( ) ( )e W1 q elements [25], which ismuch larger than ( ( ))2O Lpoly if

( ( ( )))= Wq Lexp poly (see also [26, 27] on the topic of ε-nets formany-body states). Thus, the set of quantum
states in ̃L that have a polynomial classical description cannot form an ε-net for ̃L, which proves theorem8.

Figure 2. Schematic drawing of ∣y ñL inD=2. ∣f ñL is an arbitrary translationally invariant state vector on -LD 1 qubits with basis
states ∣ ∣ñ ñ1 , 2 in (D−1)-dimensions. Schmidt decompositions for ∣y ñL with respect to bi-partitions of the lattice can be readily
obtained from the corresponding Schmidt decompositions of ∣f ñL .

4
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Wenevertheless also review themore involved proof from [23] using communication complexity in appendix A.
This proof could, due to itsmore constructive nature, provide some insight into the structure of some strong
area law states that cannot be approximated by polynomially classically described states.

4.1. Tensor network states
We saw that our definition of polynomial classical descriptions encompasses all efficient tensor network
descriptions. Thus

Corollary 9 (Tensor network states cannot approximate area law states).There exist translationally invariant
strong area law states that cannot be approximated by polynomial tensor network states in the sense of example 2. In
particular, not all translationally invariant strong area law states can be approximated by polynomial PEPS orMERA
states.

Notice the restriction to tensor networks whose tensor entries have a polynomial Kolmogorov complexity.
This is required to ensure that the tensor network description is in fact polynomial. Indeed, a classical
description depending on only polynomiallymany parameters ( ( ))l l¼, , O N1 poly (e.g., a PEPSwith polynomial
bond-dimension) is not necessarily already polynomial—for the latter, it is also necessary that each of the li

themselves can be stored efficiently. The notion of Kolmogorov complexity allows for themost general
definition of tensor networks that can be storedwith polynomial classicalmemory.

4.2.Quantum circuits
Example 3 shows that states prepared by a polynomial quantum circuit with post-selectedmeasurement results
have a polynomial classical description. Thus

Corollary 10 (Post-selected quantum circuits cannot prepare area law states).There exist translationally
invariant strong area law states that cannot be approximated by a polynomial quantum circuit with post-selection in
the sense of example 3.

In the light of the computational power of post-selected quantum computation [28], thismay be
remarkable.

4.3. Eigenstates of localHamiltonians
Example 4 shows that eigenstates of localHamiltonians with bounded interaction strengths also have a
polynomial classical description. Thus

Corollary 11 (Area law states without parentHamiltonian).There exist translationally invariant strong area law
states that cannot be approximated by eigenstates of local Hamiltonians.

5. Rotationally invarant states and area laws

So far, the states in considerationwere translationally but not rotationally invariant. However, by taking the
superposition of appropriate rotations of (4), one can alter the above argument such that all involved states are
also rotationally invariant, i.e. remain invariant under 90° rotations of the lattice. The details of this construction
are given in appendix B.

Corollary 12 (Approximation for translationally and rotationally invariant states).There exist translationally
and rotationally invariant strong area law states that cannot be approximated by polynomially classically described
states. In particular, corollaries 9–11 also hold for translationally and rotationally invariant states.

6.Decaying correlations and area laws

Onemight wonder whether an exponentially dimensional subspace of strong area law states can be constructed
while imposing decaying two-point correlations for distant observables, a property known to occur in ground
states of local gappedHamiltonians [29, 30]. It follows immediately from their definition that the states
constructed in theorem6 (and theorem16 in appendix B) already satisfy an algebraic decay. Indeed, for all L and
all local observables A B, on disjoint supports separated by an arbitrary distance ℓ,

5
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ℓ∣ ∣ ∣ ∣ ∣ ∣ ( ) ( ) ( )y y y y y yá ñ - á ñá ñ = =- -AB A B O L O . 6L L L L L L
1 1

Using quantum error-correcting codes, it is however also possible to construct variations of the previous results
such that for all L and all local observables A B, with disjoint supports,

∣ ∣ ∣ ∣ ∣ ∣ ( )y y y y y yá ñ - á ñá ñ =AB A B 0. 7L L L L L L

The details of this construction are given in appendix C.

Corollary 13 (Approximation for area law states with vanishing correlations of local observables).There exist
strong area law states with vanishing two-point correlations of all local observables on disjoint supports that cannot be
approximated by polynomially classically described states. In particular, corollaries 9–11 also hold for states with
vanishing correlations of local observables on disjoint supports.

The translationally and rotationally invariant construction only gives algebraic decay (equation (6)).
However, we conjecture that there also exist strong area law states which are translationally and rotationally
invariant and simultaneously have exponentially small correlations for all local observables, but still cannot be
approximated by polynomially classically described states.

7. Conclusion and outlook

Wehave shown that the set of states satisfying an area law in D 2 comprisesmany states that do not have an
efficient classical description: they cannot be described by efficient tensor networks, cannot be prepared by
polynomial quantum circuits with post-selectedmeasurements, and are also not eigenstates of local
Hamiltonians.We have hence proven that the connection between entanglement properties and the existence of
an efficient description is farmore intricate than anticipated. These results are based on the simple observation
that an arbitrary quantum state in (D−1) dimensions that is embedded intoD dimensions satisfies aD-
dimensional area law, thus implying that the set of area law states contains a subspace of exponential dimension.
In otherwords, in D 2, it is possible to ‘dilute’ the entanglement content and still arrive at a strong area law.
We also demonstrated that the exponential scaling persists even if various physical properties, such as
translational and rotational invariance, or decaying correlations of local observables, are imposed.Wenote
however that while the latter can be extended to non-local observables of size ( )-O LD 1 , our notion of decaying
correlations is weaker than the exponential clustering property for ground states of gappedHamiltonians, since
this can involve all regions of unbounded size [5, 29]. It remains openwhether our results are impeded if the
stronger notion of exponential decay of correlations is imposed.

Area laws indeed suggest the expected entanglement behaviour of naturally occurring ground states.
However, when put in precise contact with questions of numerical simulation, it turns out that satisfying an area
law alone is not sufficient for efficient approximation. Picking up themetaphor of the introduction, the ‘corner
of states that can be efficiently described’ is tiny compared to the ‘physical corner’ (figure 3).

A particularly exciting perspective arises from the observation that states with small entanglement content
can go alongwith states having divergent bond dimensions in PEPS approximations. Thismay be taken as a
suggestion that theremay be states that are in the same phase if symmetries are imposed, but are being classified
as being in different phases in a classification of phases ofmatter building upon tensor network descriptions [31–
33]. It is the hope that the present work can be taken as a starting point of further endeavours towards
understanding the complexity of quantummany-body states.
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AppendixA. Proof of theorem8using communication complexity

Wenow review the alternative proof of theorem8using communication complexity, whichwas given in [23].
Suppose two distant parties, Alice and Bob, each possess an n-bit string, x and y , respectively. No
communication betweenAlice and Bob is allowed, but they can communicate with a third party, Charlie, whose
task is to guess whether or not =x y .We demand that Charliemay guess thewrong answerwith a small (fixed)
probability of atmost d > 0. This is called the equality problem, whichwe denote by ( )nEQ .We now state some
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known results [23, 34, 35] on the communication complexity, i.e. theminimumamount of communication
required for solving the equality problem.

Lemma14 (Equality problem for classical communication). If Alice and Bob can only send classical information
to Charlie, at least ( )W n bits of communication are required to solve ( )nEQ .

Lemma15 (Quantum solution to equality problem).

(1)If Alice and Bob can send quantum information to Charlie, there exists a protocol for ( )nEQ using only ( )O nlog
qubits of communication that is of the following form: Alice and Bob each prepare ( )O nlog qubit states ∣ ( )ñh x
and7 ∣ ( )ñh y , respectively, which they send to Charlie. Charlie then applies a quantum circuit to ∣ ( ) ∣ ( ) ∣ñ ñ ñh hx y 0 ,
followed by ameasurement of a single qubit whose outcome determines Charlie’s guess.

(2)There exists an e > 0 independent of n such that the protocol in (1) still works if instead, Alice and Bob send states
to Charlie which are e-close in trace distance8 to ∣ ( )ñh x and ∣ ( )ñh y .

Wenow turn to the proof of theorem 8 .

Proof of theorem8.Weprove the claim by contradiction. Suppose that every state vector in ̃L can be
approximated by polynomially classically described states. Then in particular, allM-qubit states can be
approximated by states with a classical description of length ( ( ))O Npoly , where ≔ ( ˜ )⎢⎣ ⎥⎦M log dim L2 . Fix

( )d Î 0, 1 and let e > 0 be as in lemma 15 (2). By lemma 15 (1), we can choose nwith ( )= Qn Mlog such that
M qubits of communication suffice to solve ( )nEQ .

By assumption, ∣ ( )ñh x and ∣ ( )ñh y can be ε-approximated by states which have an ( ( ))O Mpoly classical
description. By lemma 15 (2), these states can be used instead of ∣ ( )ñh x and ∣ ( )ñh y in the quantumprotocol to
solve ( )nEQ . Now consider an alternative protocol using only classical communication to solve ( )nEQ as
follows: Alice andBob send the classical description of their states toCharlie, who simulates the quantum circuit
and themeasurement from lemma 15 using the classical descriptions of the states. This protocol solves ( )nEQ
using only ( ( )) ( ( ))=O M O npoly poly log bits of communication, contradicting lemma 14. Finally, by setting
˜ ≔ ( ) fL L with f andL as in theorem6, the second part of theorem8 follows. ,

Appendix B. Translationally and rotationally invariant states

Corollary 12 follows directly from theorem 8 and the following theorem.

Figure 3. (a)The set of area law states is a tiny ‘corner’ of themany-bodyHilbert space. (b)The set of states that can be efficiently
described is tiny compared to the ‘corner’ of area law states.

7
The exact formof ∣ ( )ñh x and ∣ ( )ñh y is not important for our purpose—wewill only need that they consist of ( )O nlog qubits. Interested

readers are referred to [35].
8
This was argued in [23] for the Euclidean vector distance but it is clear that the same holds for the trace distance.
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Theorem16 (Translationally and rotationally invariant area law states).There exists an injective linear
isometry  g: L with ( ) ( ( )) = W -Ldim expL

D 1 such that for all ∣ f ñ ÎL L, (∣ )f ñg L satisfies a strong area
law and is translationally and rotationally invariant in all D directions.

Theorem 16 can be provenwith aminormodification of the proof of theorem 6. To start with, we replace
∣f ñL for each L by state vector on the translationally invariant subset ( ) Ì Ä -

L
L2 D 1

which is alsomirror
symmetric, i.e. invariant under reflections, in all (D−1) directions. Notice that the exact choice of the plane of
symmetry in a given direction does notmatter sincewe assume ∣f ñL to be translationally invariant.With ∣y ñL as
in (4), we then consider, for the entire [ ]L D lattice, state vectors of the form

∣ ≔ ∣ ( )å yY ñ ñ-

=

D , B1L
j

D

j L
1 2

1

where   = ¼, , D1 rotate the entire lattice system such that ∣f ñL is arranged along each line of the cubic lattice
in dimensionD. Such a state is translationally and rotationally invariant, following frommirror symmetry.
These states satisfy a strong area law: for any cubic subset [ ]ÌA L D,

( ) ∣ ∣ ( ∣ ∣ ) ( )¯ ¯ † åy y y y y= ñá = ñá-

=

Dtr tr , B2L A A L L
j

D

A j L L j
1

1

since for ¹j k,

( ∣ ∣ ) ( )¯ † y yñá =tr 0. B3A j L L k

This can be seen by taking the partial trace with respect to a setCfirst. For simplicity of notation, forD=2,
consider w.l.o.g. distinguished subsets [ ]ÌA L D for which Ç = ÆA C for ≔ [ ]´C L L . Then

(∣ ∣ ) ∣ ∣ ∣ ( )¯ † ¯ ⧹
† åy y y yñá = á ñá ñ=

Î

x xtr tr 0, B4A L L A C
S

L L
x

2 2

where { ∣ [ ]⧹{ }}= $ ¹  = " ÎS j x x k L jx : 0 0j k . An analogous argument holds for any dimensionD.
From these considerations, it follows that the area law is inherited by the area law valid for each individual

∣ y ñj L . It is furthermore clear that the exponential scaling of the dimension is not affected by restricting to the
subspace  ÌL L ofmirror symmetric states. ,

AppendixC. Stateswith vanishing twopoint correlation functions for local observables

Toprove corollary 13, consider a non-degenerate  Dn k, , -quantum error-correcting codeCwith
( )= Qk n 1 and ( )D = Qn 1 [36]. Here n denotes the block size and k the number of encoded qubits.Δ is the

so-called distance of the code. SinceC is non-degenerate, the reduced densitymatrix of anyD - 1qubits of any
state in the code space ofC ismaximallymixed. By choosing = -n LD 1 and considering

∣ ≔ ∣ ( ) ∣ ( )( )y cñ ñ Ä ñ - -
C 0 , C1L L

L L1 D 1

where ∣ ( )c ñC L is an arbitrary state vector in the code space ofC, we see that for all L and all observables A B, with
disjoint support andwhose joint support in the top hyperplane contains less than ( )D = Q -LD 1 sites,

∣ ∣ ∣ ∣ ∣ ∣ ( )y y y y y yá ñ - á ñá ñ =AB A B 0. C2L L L L L L

In particular, equation (C2) holds for local observables A B, . Clearly, states of the form (C1) obey a strong area
law and since ( )= Q -k LD 1 , we obtain a subspace of dimension ( ( ))W -Lexp D 1 of strong area law states with
vanishing correlations of local observables. Corollary 13 now follows from theorem8. ,
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