
Chapter 8

Compressed Aggregations for
mobile OLAP

This chapter introduces the mobile Dwarf (m-Dwarf), a compressed data cube
physical structure, with no loss of semantic information and explicitly designed for
mobile environments [114]. m-Dwarfs are integrated in the FCLOS architecture.
Due to the achieved compression, a substantial reduction of access time, energy
consumption and bandwidth utilization against architectures which transmit STs
is observed.

The chapter is structured as follows: Section 8.1 gives the motivation behind
this work. In Section 8.2, we present related work in the area of data cube physical
structures and explain the involved tradeoff in the mOLAP domain. Section 8.3
presents the m-Dwarf data cube physical structure and provides an extensive per-
formance evaluation, while Section 8.4 describes how m-Dwarfs can be seamlessly
integrated in the FCLOS architecture. In Section 8.5, we present the results of the
experimental evaluation transmitting m-Dwarfs in mOLAP applications. Finally,
Section 8.6 provides an overview of the examined physical structures.

8.1 Motivation

Wireless bandwidth is not unlimited. Therefore, mobile applications, regardless
of the application domain, try to minimize the generated traffic. In mOLAP, the
transmitted structures are data cubes. There exist several physical implementa-
tions of the data cube, each of them exhibiting advantages and disadvantages.
Reasonably, the choice of the physical implementation of the transmitted data
cubes, directly influences, among others, the mOLAP generated traffic.

All discussed mOLAP systems so far transmit STs, the simplest data cube
physical structure. Although quite simple, STs have some characteristics which
suit to the mOLAP domain. Nevertheless, we argue that there is room for im-
provement, especially for FCLOS. Our motivation is aggravated by the results of
Fig. 6.9, which reveal that for FCLOS, TC , namely the time clients spent receiving

99

100 8. Compressed Aggregations for mobile OLAP

data from the downlink channel, comprises 53% of the total query access time.
In this chapter, we extend the FCLOS architecture, which enables dissemina-

tion of aggregated data in infrastructure based wireless networks, by integrating
the m-Dwarf, a compressed data cube physical structure. In short, the major
contributions of this chapter are:

• The introduction of the highly compressed data cube physical structure m-
Dwarf, explicitly designed to meet the requirements of mOLAP.

• The evaluation of the extended FCLOS architecture in conjunction with
m-Dwarfs.

8.2 Background and Related Work

8.2.1 Data Cube Physical Structures

In this section, we discuss existing data cube physical structures. A formal defi-
nition of the data cube is given in Section 2.3.

mOLAP systems, such as SBS and FCLOS, transmit plain materialized views,
also known as STs, the simplest data cube physical structure. STs are unindexed
relations which consist of all tuples of a corresponding fact table. Dimensions
are represented in their full cardinality. There are no precomputed and stored
aggregated data according to hierarchy levels within the structure.

Naturally, the DW research community has contributed with several advanced
data cube physical structures. In Cubetrees [131, 84], group-bys are mapped into
orthogonal hyperplanes of a multidimensional index. Common sort orders are
then used to cluster the points of each group-by into continuous disk space. A
packing algorithm guarantees full page utilization. Updates are handled through
a Merge-Packing algorithm that scans the old aggregates and merges them with
the update increment, which is sorted in compatible order.

Condensed-Cube [162] is based on the ideas of base single tuple and projected
single tuple compression. Cube tuples from the same set of fact table tuples are
condensed into one cube tuple, so that one cube tuple can answer many queries
without further aggregation. PrefixCube [47] identifies some still existing redun-
dancies in Condensed-Cubes to achieve a further compression.

Quotient Cube [88] creates a summary structure by partitioning the set of cells
of a data cube into classes, such that cells in a class have the same aggregate
measure value. In Quotient-Cube, only the upper bound and the lower bound of
a class are physically stored. QC-Tree [89] continues the work of Quotient-Cube
and proposes a compact data structure to organize Quotient-Cube, only storing
the upper bounds of Quotient-Cube classes.

Dwarf [149] is a highly compressed structure for computing, storing and query-
ing data cubes. Dwarf identifies prefix and suffix structural redundancies and
factors them out by coalescing their storage. Comparisons show that Dwarfs out-
perform previous techniques on all relevant areas: storage space, creation time,

8.2 Background and Related Work 101

Table 8.1: Base fact table

A B C D Sales
1 3 1 3 10
1 3 2 2 20
1 3 3 1 10
2 1 4 2 40
2 1 4 3 30
2 1 5 2 20

query response time and updates of cubes. IceDwarf [104] combines the strength
of Iceberg-Cube [28] and Dwarf. It uses the Dwarf structure for cube tuple or-
ganization and only stores those cube tuples that satisfy the iceberg condition.
Obviously, our proposed structure, the m-Dwarf is based on Dwarfs, and thus
more details about Dwarfs are explained in Section 8.2.2.

However, all of these approaches were designed for traditional DWs. The cubes
are stored in and queried by powerful stationary machines, using a high speed
wired network. In this context, their major objective is to primarily enable query
response time, fast updates and secondarily reducing the storage size. Nowadays,
storage size for enterprise servers is not a real issue. On the contrary, for the
mOLAP domain we are primarily interested in reducing the generated traffic,
which translates in reduced storage size. Less generated traffic will positively
influence query access time and energy consumption.

8.2.2 The Dwarf Data Cube Physical Structure

In order to facilitate the presentation of the m-Dwarf, this section describes the
fundamentals of the Dwarf cube. Dwarf [149] is a highly compressed structure
for computing, storing and querying data cubes. The construction of a Dwarf is
preceded by a single sort on the fact table using one of the cube’s dimensions as the
primary key, and collating the other dimensions in a specific order. The choice of
the dimensions’ ordering has an effect on the total size of the Dwarf. Dimensions
with higher cardinalities are more beneficial if they are placed on the higher levels
of the Dwarf. Figure 8.1 depicts the fact of Table 8.1 (6 tuples, 4 dimensions, 1
measure resulting in a ST which occupies 120 bytes) physically implemented as
Dwarf.

The height of the Dwarf is equal to the number of dimensions, each of which
is mapped onto one of the levels shown in the figure. The root node contains cells
of the form [key; pointer], one for each distinct value of the first dimension. The
pointer of each cell points to the node below containing all the distinct values of
the next dimension that are associated with the cell’s key. The node pointed by
a cell and all the cells inside it are dominated by the cell. For example the cell

102 8. Compressed Aggregations for mobile OLAP

1 2 3

1 2

Dwarf

$10 $103 $10 $103

$20 $202 $20 $202

$10$101 $10$101

$20$202 $20$202

3 11

54 54

1 31 3

1 2 3 541 2 3 54

$90$602 $303 $90$602 $303

$40$202$101 $103 $40$202$101 $103 $70$202 4$101 $103 $130$105$70$202 4$101 $103 $70$202 4$101 $103 $130$105

$70$402 $303 $70$402 $303

Legend:

Pointer Value

All Value

Legend:

Pointer Value

All Value
Dimension A

Dimension D

Dimension C

Dimension B

Figure 8.1: Dwarf of Table 8.1

A1 of the root dominates the node containing the key B3 whereas the cell A2 the
node containing the key B1. Each non-leaf node has a special ALL cell, shown as
a small gray area to the right of the node, holding a pointer and corresponding to
all the values of the node.

The Dwarf data structure has the following properties [149]:

1. It is a directed acyclic graph with just one root node and has exactly D
levels, where D is the number of cube’s dimensions.

2. Leaf nodes contain cells of the form: [key; aggrV alues].

3. Nodes in levels other than the D-th level (non-leaf nodes) contain cells of
the form: [key; pointer]. A cell C in a non-leaf node of level i points to a
node at level i + 1, which it dominates. The dominated node then has the
node of C as its parent node.

4. Each node also contains a special cell, which corresponds to the cell with the
pseudo-value ALL as its key. This cell contains either a pointer to a non-leaf
node or to the aggrV alues of a leaf node.

5. Cells belonging to nodes at level i of the structure contain keys that are

8.2 Background and Related Work 103

values of the cube’s i-th dimension. No two cells within the same node
contain the same key value.

6. Each cell Ci at the i-th level of the structure, corresponds to the sequence
Si of i keys found in a path from the root to the cell’s key. This sequence
corresponds to a group-by with (D − i) dimensions unspecified. All group-
bys having sequence Si as their prefix, will correspond to cells that are
descendants of Ci in the Dwarf structure. For all these group-bys, their
common prefix will be stored exactly once in the structure.

7. When two or more nodes (either leaf or non-leaf) generate identical nodes
and cells to the structure, their storage is coalesced, and only one copy of
them is stored. In such a case, the coalesced node will be reachable through
more than one path from the root, all of which will share a common suffix.

A traversal in the Dwarf always follows a path of length D, starting from the
root to a leaf node. It has the form 〈[N1.val|ALL], [N2.val|ALL], ..., [ND.val|ALL]〉,
meaning that the i-th key found in the path is either a value Ni.val of the i-th
dimension or the pseudo-value ALL.

8.2.3 The mOLAP Tradeoff: Compression vs. Client Processing

Since the primary application objective in mOLAP is to minimize query access
time, this chapter examines physical structures which can, indirectly, assist this
objective. It is important to underline that in mOLAP, query access time, as
defined in Section 6.5, refers to the total period of time that a client spends since
posing a query until the requested data is actually fetched in its local storage,
while in conventional desktop OLAP applications, query access time practically
refers to the response time of the OLAP server.

The choice of a data cube physical structure for mOLAP depends on the follow-
ing tradeoff: the more processed (more aggregated values contained) the dataset
is, the more space it occupies, and consequently less client processing for query
answering is necessary. Unprocessed datasets occupy less space at the expense of
increased client processing.

Moreover, even physical structures, which contain the same amount of aggre-
gated values, might occupy more or less space and might need more or less local
processing to produce query results, depending on the physical implementation.

Again consulting the results of Fig. 6.9, it appears rational to minimize as
much as possible generated traffic at the expense of increased local processing.
The experimental evaluation of Section 8.5 confirms this argument.

8.2.4 Coarse-grained Dwarfs

In the context of the aforementioned tradeoff, using STs in mOLAP has a given
advantage: the lack of precomputed aggregated values substantially reduces the

104 8. Compressed Aggregations for mobile OLAP

total size of the transmitted structure. Since the cost of wireless communication
is much higher than the computational cost of a client locally performing aggre-
gations, this design choice seems quite rational.

As seen in Section 5.3.4, the idea of transmitting Dwarfs instead of STs was
introduced by DV-ES [142]. It is there shown that in this way, a performance gain
is feasible. The key observation is that some sub-cubes occupy less space when
stored as STs, whereas others when stored as Dwarfs, even though Dwarfs contain
aggregated values too. Accordingly, the smaller in size structure is transmitted.
However this approach has two fundamental shortcomings:

1. The storage saving is highly dependent on the dataset.

2. Additional complexity is introduced, since clients have to handle different
structures.

In order to tackle with these problems, we introduce m-Dwarf, a physical struc-
ture which is based on coarse-grained Dwarfs. Dwarfs achieve impressive storage
savings by exploiting prefix and suffix redundancies [149]. Naturally, Dwarfs were
designed for desktop applications, where storage size is less important than query
performance. In order to improve query performance, the Dwarf structure contains
all aggregated values. Although this approach is rational for tera byte DWs, it is
ill-suited to mobile applications, since aggregated values represent a substantial
percentage of the total storage size.

8.3 The m-Dwarf Data Cube Physical Structure

8.3.1 Design

It is possible to create Dwarfs, which do not contain aggregate values. The amount
of aggregations can be controlled with the granularity parameter Gmin [149]. If
at some level of the Dwarf structure, the number of tuples that contributes to the
sub-dwarf beneath the currently constructed node of level L is less than Gmin,
then for that sub-dwarf, no aggregation cells are computed. Gmin = ∞ leads to
fully coarse-grained Dwarfs (fcg-Dwarfs), Dwarfs with no aggregated values at all).

Assume a data cube consisting of D dimensions. The m-Dwarf, exactly like
its corresponding Dwarf, consists of D levels. An m-Dwarf does not contain any
aggregation values. Conceptually, it is an fcg-Dwarf, but physically it is stored
in a different way. It looks more like a serializable structure than like a graph,
which makes a transmission more straightforward. Instead of pointers, it uses two
pseudo-separators:

• Dimension separator : It separates the dimensional levels of the data cube,
representing what Dwarf pointers to a lower level represent. An m-Dwarf
contains D − 1 dimension separators, one for each level (level D − 1 of the
structure does not need any dimension separator).

8.3 The m-Dwarf Data Cube Physical Structure 105

$10 $20

1 2 3

1 2

Fully coarse-grained Dwarf

3 2 $101

3

4

$402 $402

1

5

$202$303 $303

Figure 8.2: Fully coarse-grained Dwarf of Table 8.1

• Node separator : It separates cells of the same level. Cell values of the same
Dwarf node have an ascending order. Thus, a node separator separates
different sub-dwarfs. Node separators can exist in the levels {1, ..., D-1} of
the m-Dwarf. Due to the ascending order of values, level 0 (root) does not
need node separators.

Figures 8.2, 8.3 depict the fact of Table 8.1 physically implemented as fcg-Dwarf
and m-Dwarf, respectively. All cells (numerical values, indices, pseudo-separators)
are mapped to integer data (4 bytes).

The corresponding Dwarf occupies 376 bytes. In the fcg-Dwarf, all aggregated
values of the Dwarf have been eliminated, decreasing its size to 120 bytes. The
corresponding m-Dwarf achieves a higher compression occupying 104 bytes. The
m-Dwarf contains 3 dimension separators and 1 node separator. In the second
level of the structure, there is no node separator between the cell with the value 3
and the cell with the value 1, since this can be inferred by the descending order.
However, a node separator is necessary between the cell with the value 3 and
the cell with the value 4, since despite the ascending order, these cells belong to
different sub-dwarfs.

The ascending order of values in Dwarf nodes enables a massive saving of node
separators which results in a substantial storage reduction.

This trivial example shows the potential of the approach. The savings in bigger
(and more realistic) datasets are much higher, as seen in following sections.

8.3.2 Construction

m-Dwarfs are constructed in a two step procedure. The first step is realized by
the CreatermDwarf algorithm (Alg. 8.3.1). Essentially, it is a modified version
of the CreateDwarfCube algorithm [149]. The temporary structure rm-Dwarf has
almost the same nodes and cells as the corresponding Dwarf. The difference is

106 8. Compressed Aggregations for mobile OLAP

$10 $20

1 3 4

2

m-Dwarf

3 2 $101

1

2

$402

3 1

5

$303

Dimension Separator

Node Separator

Legend:

Dimension Separator

Node Separator

Legend:

$202

Figure 8.3: m-Dwarf of Table 8.1

that the special cells have a different meaning: they point to the next node, which
in this context translates to the next node to be sequentially stored in the eventual
array. We therefore call them nextNodeCells. The produced rm-Dwarf and the
sequence in which nodes are constructed are depicted in Fig. 8.4.

Algorithm 8.3.1: CreateRMDwarf(F)

Input : FactTable F
Output : rmDwarf
create all nodes and cells for the first tuple
last tuple← first tuple of F
while more tuples exist unprocessed

do


current tuple← extract next tuple from F
P ← common prefix of current tuple, last tuple
{D − |P | − 1 new nodes created}
create nextNodeCells from previous nodes to new
created nodeslast tuple← current tuple

create nextNodeCells to all rightmost nodes in all dimensions

The second step of the construction is realized by the CreatemDwarf algo-
rithm (Alg. 8.3.2), which takes as input the already constructed rm-Dwarf. The
algorithm simply traverses the rm-Dwarf starting from root node and going from
left to right. The nextNodeCells of the rm-Dwarf were created exactly in order
to simplify this traversal. During the traversal, the m-Dwarf is constructed as an
array which can be directly stored in a file.

8.3 The m-Dwarf Data Cube Physical Structure 107

$10 $20

1 2 3

1 2

rm-Dwarf

3 2 $101

3

4

$402 $402

1

5

$202$303 $303

Legend:

nextNodeCell
(1)

(2)

(3)

(4) (5) (6) (9) (10)

(7)

(8)

Figure 8.4: An example of the temporary structure rm-Dwarf

Algorithm 8.3.2: CreatemDwarf(rmDwarf)

Input : rmDwarf
Output : mDwarf
mDwarf ←ø
nextNode←ø
for each dimension D

do



for each node n in Nd

do


write all cells n into mDwarf
nextNode← readNextNode()
if (nextNode exists and nextNode is in dimension d
and last cell in n < first cell in nextNode)
then write NS into mDwarf

write DS into mDwarf

8.3.3 Evaluation

In this section, we use both semi-synthetic and real datasets to evaluate the storage
savings achieved by m-Dwarfs. We compare our proposal against STs and fully
coarse-grained Dwarfs (fcgD).

Tables 8.2, 8.3, 8.4 demonstrate the superiority of the m-Dwarf structure, in
regard to storage size. All of them refer to the semi-synthetic datasets described
in Section 6.6.1. SST , SfcgD and SmD stand for the mean size of the ST, the fcg-
Dwarf and the m-Dwarf, respectively. The columns SmD < SST (SmD < SfcgD

) refer to the percent of all sub-cubes, which occupy less space when stored as
m-Dwarf rather than ST (fcg-Dwarf).

108 8. Compressed Aggregations for mobile OLAP

Table 8.2: Storage size vs. # of tuples

of
tuples

SST

[KB]

SfcgD

[KB]

SmD

[KB]

SmD−SST
SST

[%]

SmD−SfcgD

SfcgD

[%]

SmD <
SST

[%]

SmD <
SfcgD

[%]

10K 127 129 78 38.72 33.13 100 93.18
50K 502 466 281 43.83 32.44 100 91.79
100K 976 875 528 45.58 32.08 100 91.93
200K 1719 1504 891 47.56 32.89 100 92.04
300K 2428 2097 1239 48.19 32.63 100 91.79
500K 3574 2932 1809 48.57 30.34 100 90.07
750K 5234 4242 2603 49.28 29.80 100 90.64
1000K 6554 5347 3193 50.04 31.13 100 90.71

Table 8.3: Storage size vs. dimensionality

of
dime-
nsions

SST

[KB]

SfcgD

[KB]

SmD

[KB]

SmD−SST
SST

[%]

SmD−SfcgD

SfcgD

[%]

SmD <
SST

[%]

SmD <
SfcgD

[%]

4D 533 460 314.56 37.07 21.11 100 87
5D 640 573 330.97 46.77 33.15 100 92.57
6D 976 875 528.65 45.58 32.08 100 91.93
7D 1309 1240 753.35 43.15 33.31 100 94.05
8D 1405 1426 749.32 47.31 42.43 100 97.18

In Table 8.2, while keeping the dimensionality fixed to 6, we vary the number
of tuples of the fact table from 10K to 1000K. In Table 8.3, while keeping the
number of tuples to 100K, we analyze the effect of dimensionality. Table 8.4
investigates the effect of data skewness, controlled by the parameters of a self-
similar distribution [55] on the produced data cube size. Self-similar distributions
are explained in Section 6.6.1. The results reveal the superiority of our approach.
m-Dwarfs are always smaller in size than the respective STs and smaller than the
respective fcg-Dwarfs in more than 90% of the cube’s sub-cubes.

In order to further evaluate the storage savings of the m-Dwarf structure, we
also test bigger dataset. Apart from the real dataset, which is used as default
throughout every experiment, we also test a semi-synthetic dataset of 500K tuples
and 6 dimensions, as described in Section 6.6.1. Figures 8.5, 8.6 depict the storage
savings of the m-Dwarf against STs and fcg-Dwarfs, for the semi-synthetic and the
real dataset, respectively. For both datasets, the observations are quite similar.

8.4 m-Dwarfs in FCLOS 109

Table 8.4: Storage size vs. data distribution

Self-
Simi-
larity

SST

[KB]

SfcgD

[KB]

SmD

[KB]

SmD−SST
SST

[%]

SmD−SfcgD

SfcgD

[%]

SmD <
SST

[%]

SmD <
SfcgD

[%]

Uniform 1899 2003 1344 31.27 27.59 100 89.96
60/40 1840 1902 1194 36.55 31.12 100 92.07
70/30 1566 1511 925 41.85 31.85 100 92.39
80/20 976 875 528 45.58 32.08 100 91.93
90/10 390 351 196 47.34 35.73 100 90.75

Evidently, the m-Dwarf occupies less space for every sub-cube compared to STs.
However, for 10% of the sub-cubes the fcg-Dwarf occupies less space than the
respective m-Dwarf. Naturally, the reduction is dependent on the sub-cube. In
Fig. 8.6, we make the same comparison the semi-synthetic dataset. The result is
similar.

However, it is important to underline that the compression achieved by the
m-Dwarf comes at the cost not only of no aggregated values, but also of poor
indexing. While in traditional desktop DWs, compression without indexing is
practically useless, we argue that for the purpose of transmitting data through
a network channel, indexing requirements can be relaxed. Additional indexing
structures can be constructed upon reception of the data.

8.4 m-Dwarfs in FCLOS

In Chapter 6, we introduced FCLOS, a mOLAP architecture, explicitly designed
for dissemination of aggregated data in infrastructure based wireless networks.
FCLOSmD is an extension, which instead of STs, transmits m-Dwarfs.

FCLOSmD retains the scheduling function of FCLOS without any modifica-
tion. This means that given an incoming queue, the two schedulers would serve
the requests exactly in the same order. This happens because the size of the view
is never involved in the decision process. The only element in the scheduling deci-
sion that is related to the sub-cube is its dimensionality (in the SM = R×W ×D
metric), which is yet independent of the physical implementation.

Unlike DV-ES, which transmits STs and Dwarfs, FCLOSmD transmits only
one physical structure, m-Dwarfs. This alleviates clients from having to handle
with two physical structures. Moreover, it simplifies the scheduling decisions.

Naturally, the impact of the new structure on the client should also be consid-
ered. According to the cost model of Section 6.5, TL = TDR + TAggr, where TAggr

represents the time a client spends aggregating a dataset in order to create the

110 8. Compressed Aggregations for mobile OLAP

20 161 678 1648 2512 2799
−80

−60

−40

−20

0

20

40

60

hDCL sub-cube identifier

Si
ze

 re
du

ct
io

n
[%

]

m−Dwarf vs Summary Table
m−Dwarf vs fcg−Dwarf

D=5 D=6D=3 D=4D=2

Figure 8.5: m-Dwarf storage savings for a semi-synthetic dataset (identifiers as in
Fig. 2.5)

16 117 431 911 1199
−80

−60

−40

−20

0

20

40

60

hDCL sub-cube identifier

Si
ze

 re
du

ct
io

n
[%

]

m−Dwarf vs Summary Table
m−Dwarf vs fcg−Dwarf

D=5D=3 D=4D=2

Figure 8.6: m-Dwarf storage savings for a real dataset (identifiers as in Fig. 2.5)

8.5 Experimental Evaluation 111

results of its initial query, and TDR represents the necessary time to retrieve the
data from the hard disk to the RAM.

Regarding TDR, it is clear that the smaller in size the structure is the less
TDR will be. As far as TAggr is concerned, plausibly m-Dwarfs require increased
processing due to the lack of aggregated values and indices.

Depending on the application scenario there are two options:

1. Clients store and process the physical structure received (ST or m-Dwarf).
This option avoids uncompression upon receptions, but might result in inef-
ficient query processing.

2. Clients transform upon reception the compressed structure into a more ad-
vanced one, suitable for local answering (e.g., fcg-Dwarf or Dwarf). On
the one hand, the advantages of advanced physical structures (query perfor-
mance, updates) can be handled. On the other hand though, an uncompres-
sion overhead is introduced.

We argue that uncompression upon reception is a more rational choice, but ob-
viously this depends on the application scenario. If the client does not want to
pose any additional queries, uncompression poses an unnecessary overhead. For
intensive analysis, uncompression is eventually beneficial.

8.5 Experimental Evaluation

The simulation environment is exactly the same used in Section 6.6.1. We evaluate
the performance of FCLOSmD, against the existing mOLAP dissemination archi-
tectures FCLOS, h-FCLOS, SBS [141] and DV-ES [142]. h-FCLOS is an FCLOS
extension, which exactly as DV-ES, employs a hybrid approach of transmitting
Dwarfs and STs [111].

Generated Traffic

Generated traffic is a very important metric, since other applications may be
running through the wireless gateway. Figures 8.7, 8.8, 8.9 depict the per query,
per broadcast and total generated traffic, respectively. All of them reveal the
superiority of FCLOSmD on the one hand, and on the other hand, an almost
negligible reduction for the hybrid approach h-FCLOS compared to FCLOS. The
reduced traffic of FCLOSmD comes without any surprise, since the transmitted
structure (m-Dwarf) occupies less space than the respective ST. The reduction of
the total generated traffic compared to FCLOS is 32%.

DV-ES despite transmitting more compressed structures, performs slightly
worse than SBS. This can be justified by the fact that the scheduling compo-
nent which they share, uses a metric directly influenced by the size of the sub-
cubes. Therefore, the integration of any other physical structure provokes different
scheduling decisions, and thus the effect of the transmitted structure cannot be

112 8. Compressed Aggregations for mobile OLAP

50 100 150 200
0

50

100

150

200

250

of clients

M
ea

n
pe

r
qu

er
y

tr
af

fic
 [k

B
] FCLOS

h−FCLOS
SBS
DVES
FCLOSmD

Figure 8.7: Mean per query generated
traffic (Trq)

50 100 150 200 250
2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

of clients

M
ea

n
pe

r
br

oa
dc

as
t t

ra
ff

ic
 [K

B
]

FCLOS
h−FCLOS
FCLOSmD
SBS
DVES

Figure 8.8: Mean per broadcast gener-
ated traffic (Trb)

isolated. On the contrary, the FCLOS scheduling component relies on the dimen-
sionality of the sub-cube, which is independent of the physical implementation.

50 100 150 200 250
50

100

150

200

250

300

of clients

To
ta

l t
ra

ff
ic

 [M
B

] FCLOS
h−FCLOS
FCLOSmD
SBS
DVES

Figure 8.9: Total amount of generated
traffic (Trsum)

50 100 150 200 250
1000

2000

3000

4000

5000

6000

of clients

M
ea

n
qu

er
y

ac
ce

ss
 ti

m
e

[m
s]

FCLOS
h−FCLOS
FCLOSmD
SBS
DVES

Figure 8.10: Mean query access time
(Tall)

Query Access Time

In addition to that, we compare the mean query access time. Figure 8.10 shows the
results. Increasing the number of mobile clients increases the experienced access
time. This was expected, since the schedulers have to serve much more clients,
substantially prolonging the time a request has to spend in the queue. FCLOSmD

outperforms its competitors by exhibiting a reduction of around 40% compared to
FCLOS. The energy consumption results are similar.

Figure 8.11 shows the percentage of each factor TQ, TC and TL to the sum Tall.
As expected, the difference between FCLOSmD and FCLOS is not huge. However,

8.6 Evaluation of examined physical structures 113

41%

53%

6%

FCLOS

TQ
TC
TL

FCLOSmD

43%

44%

13%

Figure 8.11: Percentage of TQ, TC and TL to Tall

Table 8.5: Evaluation of examined physical structures
SM Dwarf fcg-Dwarf m-Dwarf

Storage - - - + ++
Query performance - ++ - - -

Updates - + + -
Construction time 0 + ++ +

mOLAP - - - + ++

there is a substantial reduction of TC , due to the transmission of m-Dwarfs, as
well as an increase of TC , due to the extra processing overhead.

8.6 Evaluation of examined physical structures

Having presented m-Dwarf and exhibited its suitability for the mOLAP domain,
we conclude the analysis of this chapter by providing an overview of the examined
physical structures. We use the typical domain evaluation metrics storage, query
performance and construction time, in addition to mOLAP suitability. Although
these structures are not generally comparable, Table 8.5 attempts a comparison
in the context of the mOLAP domain. The criteria are weighed again using the
symbols of Table 4.1.

As already underlined, it is evident that m-Dwarf is a compressed physical
structure, designed to occupy minimized space. Inevitably, achieving the compres-
sion, other metrics such as query performance deteriorate. However, in mOLAP
the wireless channel is the bottleneck and minimized structures can be dissemi-
nated faster. Upon reception, clients can transform m-Dwarfs in whatever other
data cube physical structure, suited for local processing.

114 8. Compressed Aggregations for mobile OLAP

8.7 Summary

This chapter deals with efficient dissemination of multidimensional, aggregated
data in wireless networks, by means of compression. We introduced the m-Dwarf,
a highly compressed data cube physical structure, explicitly designed for mOLAP.
The m-Dwarf is by no means a general data cube physical structure; it is definitely
unsuitable for traditional desktop based DWs. The achieved compression comes
at the cost not only of no aggregated values, but also of poor indexing. While
in traditional desktop DWs, compression without indexing is practically useless,
we argue that for the purpose of transmitting data through a network channel,
indexing requirements can be relaxed.

In mOLAP, the wireless channel is usually the bottleneck. Consequently, com-
pression of transmitted data at the expense of increased client processing improves
the overall performance. The m-Dwarf structure can be seamlessly integrated into
the FCLOS architecture. Experimental evaluation reveals a substantial reduction
of query access time, generated traffic and energy consumption. The reduction of
the total generated traffic achieved by FCLOSmD compared to FCLOS is 32%,
whereas compared to SBS 68%.

In the resulting architecture, scheduling decisions are completely separated
from the size of the objects being handled. This not only allows the selection
between different data cube physical structures, but also constitutes the architec-
ture quite extendable. Any future data cube physical structure can be seamlessly
incorporated.

	Titlepage
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Problem Statement
	1.2 Contribution
	1.3 Thesis Overview

	I Background Technologies
	2 Multidimensional Databases
	2.1 Multidimensional Space
	2.2 Conceptual Multidimensional Models
	2.3 Data Cube
	2.4 Aggregation Lattices
	2.5 Derivability - Subsumption
	2.6 Query Mapping to Aggregation Lattices
	2.7 Querying Multidimensional Data
	2.8 Summary

	3 Data Management in Mobile Environments
	3.1 Limitations
	3.2 Wireless Information Broadcast
	3.2.1 Broadcast Structure
	3.2.2 Broadcast Architectures

	3.3 Mobile Databases
	3.3.1 Transaction Processing
	3.3.2 Query Processing
	3.3.3 Caching
	3.3.4 Replication

	3.4 Summary

	II Related Work
	4 Broadcast Systems
	4.1 General Data Broadcast Systems
	4.1.1 On-demand
	4.1.2 Push-based
	4.1.3 Hybrid
	4.1.4 Evaluation of Data Broadcast Modes

	4.2 Database Broadcast Systems
	4.3 Mobile OLAP Suitability
	4.4 Summary

	5 Distributed Multidimensional Data
	5.1 Distributed Data Warehousing
	5.1.1 Distributed Storage and OLAP
	5.1.2 Caching

	5.2 Mobile Data Warehousing
	5.3 Mobile OLAP Architectures
	5.3.1 Criteria
	5.3.2 STOBS
	5.3.3 SBS
	5.3.4 DV-ES
	5.3.5 Evaluation of mOLAP Architectures

	5.4 Summary

	III The FCLOS Architecture
	6 Mobile OLAP in Wireless Infrastructure Based Networks
	6.1 Motivation
	6.2 Requirements
	6.3 System Architecture
	6.3.1 Data Model
	6.3.2 Server Architecture
	6.3.3 Client Architecture

	6.4 The Scheduling Algorithm
	6.4.1 Steps
	6.4.2 Analysis

	6.5 Cost Model
	6.6 Experimental Evaluation
	6.6.1 Simulation Environment
	6.6.2 Basic Evaluation
	6.6.3 Further Evaluation

	6.7 Summary

	7 Optimal Query Mapping
	7.1 Motivation
	7.2 Derivability in Aggregation Lattices
	7.3 Query Mapping in mobile OLAP Architectures
	7.4 An Analytical Model for Subsumption Probabilities
	7.4.1 Model
	7.4.2 Ancestor Probabilities in DCL
	7.4.3 Ancestor Probabilities in hDCL

	7.5 Experimental Evaluation
	7.5.1 Exploitation of Subsumption
	7.5.2 Evaluating mOLAP Dissemination Systems

	7.6 Summary

	8 Compressed Aggregations for mobile OLAP
	8.1 Motivation
	8.2 Background and Related Work
	8.2.1 Data Cube Physical Structures
	8.2.2 The Dwarf Data Cube Physical Structure
	8.2.3 The mOLAP Tradeoff: Compression vs. Client Processing
	8.2.4 Coarse-grained Dwarfs

	8.3 The m-Dwarf Data Cube Physical Structure
	8.3.1 Design
	8.3.2 Construction
	8.3.3 Evaluation

	8.4 m-Dwarfs in FCLOS
	8.5 Experimental Evaluation
	8.6 Evaluation of examined physical structures
	8.7 Summary

	9 Ad hoc mobile OLAP
	9.1 Introduction
	9.2 Background
	9.2.1 Architecture
	9.2.2 Ad hoc vs. Infrastructure based
	9.2.3 Requirements

	9.3 Related Work
	9.3.1 Distributed Data in MANETs
	9.3.2 Ad hoc mOLAP Suitability

	9.4 Problem Formalization
	9.4.1 Generated Traffic
	9.4.2 Query Access Time
	9.4.3 Energy Consumption

	9.5 Query and Disseminate under Global View
	9.5.1 Data Model and Query Mapping
	9.5.2 View Exchange
	9.5.3 Query Propagation
	9.5.4 Runtime Connection Handling
	9.5.5 Data Dissemination

	9.6 Experimental Evaluation
	9.6.1 Simulation Environment
	9.6.2 Reference Application
	9.6.3 Basic Evaluation
	9.6.4 Further Evaluation

	9.7 Open Issues
	9.8 Summary

	IV Conclusion
	10 Conclusion and Future Work
	10.1 Overview
	10.2 Comparison of mOLAP Architectures
	10.3 Future Work

	References
	Appendices
	Further Experimental Results
	Summary in German
	Erklärung

