
Chapter 7

Optimal Query Mapping

Similarly to previous mOLAP systems, FCLOS maps incoming queries to the cor-
responding nodes of the aggregation lattice. Query mapping is employed in order
to reduce the number of handled data items and to exploit sub-cube derivability.
This chapter deals with the issue of optimal mapping multidimensional queries to
aggregation lattices. Previous related work in mOLAP systems has not provided
any specific answer to the question of whether the DCL or the hDCL is optimal
for query mapping. We identify the exploitation degree of sub-cube derivability
as the critical parameter to be considered. Motivated by this fact, we introduce
an analytical framework that facilitates the computation of sub-cube derivabil-
ity probabilities in aggregation lattices. Besides providing the basis for a general
evaluation, the framework focuses on the specific domain of mOLAP [113].

The chapter is structured as follows: Section 7.1 gives the motivation of an-
alyzing optimal query mapping in mOLAP. In Section 7.2, we revise the funda-
mentals of query mapping. Section 7.3 explains why query mapping is critical in
mOLAP systems. In Section 7.4, we introduce an analytical framework for evalu-
ating the exploitation degree of sub-cube derivability in mOLAP systems. Finally,
Section 7.5 compares state of the art mOLAP schedulers with respect to query
mapping and provides experimental results.

7.1 Motivation

Data broadcast technology plays a fundamental role on wireless dissemination
systems, since it is a 1-to-n process, enabling enhanced scalability. Nevertheless,
early data broadcast systems were designed under the principle that the number of
handled data items is not too high, and that the data items occupy relatively small
size and do not possess any semantic connection with each other (e.g., web pages).
Content or characteristics of data items were practically ignored. In this context,
the dissemination of multidimensional cubes, which are order of magnitude bigger
than web pages, and between which semantic connections exist, has to be tackled
differently.
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84 7. Optimal Query Mapping

To cope with this problem, mOLAP dissemination systems employ query map-
ping to aggregation lattices in order to reduce the number of handled data items.
Moreover, they exploit sub-cube derivability to serve multiple requests with one
transmission and thus increase scalability. Since the number of different multi-
dimensional queries that can be issued by the mobile clients is unlimited, the
reduction of handled data items is achieved by mapping them to an aggregation
lattice, which is a graph representing different views of the data cube. Having
mapped queries to lattice nodes, two different queries corresponding to lattice
nodes between which a dependency exists, do not have to be served by two sepa-
rate transmissions, but from a single broadcast instead. All transmissions at the
physical layer of the wireless network are anyway broadcast.

There are two types of aggregation lattices, depending on the inclusion of
hierarchical levels of dimensions or not. The first discussed type is the DCL, which
consists of nodes that represent dimensions at their lowest level (fact table data)
ignoring hierarchies, leading to coarse-grained representations. The second type
is the hDCL, which includes hierarchies leading to fine-grained representations.

Previous work regarding query mapping does not provide a clear answer re-
garding which aggregation lattice is optimal in mobile DWs. The main reason is
that this problem strongly depends on the observed domain. For example, in [69],
hDCL mapping is used for cache management. In contrast, mOLAP dissemination
systems in [141, 139] operate on DCL query mapping.

7.2 Derivability in Aggregation Lattices

The characteristics of both aggregation lattices were in detail explained in Sec-
tion 2.4. Practically, while both lattices provide a cube (and its sub-cubes) rep-
resentation, the representation of hDCL is more detailed. Actually, the DCL is
a subset of its respective hDCL. Figure 7.1 depicts two aggregation lattices. Re-
moving the white nodes of the hDCL produces the respective DCL.

7.3 Query Mapping in mobile OLAP Architectures

mOLAP architectures serve multidimensional queries issued from mobile clients.
They are responsible for the scheduling of queries and the dissemination of results.
The entire concept of mOLAP systems is founded on providing offline function-
ality. This is crucial when considering that portable devices are not permanently
connected to a network. Therefore, clients are aware of the schema metadata, can
consequently locally store received data and perform local processing in order to
enable subsequent analysis.

FCLOS, STOBS [139] and SBS [141] are mOLAP architectures, explicitly
designed for dissemination of multidimensional data in wireless networks. Despite
many differences in their scheduling approach, all of them build on subsumption.
In this way, multiple benefits are gained. The server answers requests faster, and
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Figure 7.1: Aggregation lattices (DCL on the left, hDCL on the right)

consequently clients experience improved access time as well. Moreover, energy
consumption and generated traffic are reduced.

mOLAP systems map incoming queries to the respective nodes of the lattice.
This is justified by the fact that the point-to-point communication model is in-
efficient in wireless networks, especially for OLAP applications. In other words,
serving each request individually, assuming that the client is not able to perform
local processing, not only exhibits poor performance in terms of access time, but
does not scale with the number of requests as well. Query mapping substantially
reduces the number of data items that the scheduler has to handle, which not
only simplifies, but also assists the operation of broadcast schedulers. Figure 7.2
highlights the question that naturally arises: which of the two lattices should be
used for the mapping of the queries? The DCL or the hDCL? How does this de-
cision influence the system’s behavior? An example of query mapping is given in
Section 2.6.

Both FCLOS and STOBS operate on DCL mapping. This results in a coarse-
grained query mapping. The absence of hierarchies practically imposes that the
clients have to locally aggregate fact table tuples in order to compose the hierar-
chical level aggregations.

Although previous work in this area mainly assumes coarse-grained querying,
it is worthwhile investigating the impact of fine-grained query mapping that can
be achieved when queries are mapped to hDCLs. In fine-grained querying scenar-
ios, transmitted structures include aggregated values according to the dimension
hierarchy levels. Such querying imposes that end users receive datasets that re-
quire less local processing. Moreover, data transfer in preferred granularities is
supported.

Table 7.1 summarizes the tradeoff that arises: On the one hand, using hDCL
query mapping, generated traffic for a given query is reduced (or is equal in worst
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Table 7.1: Query mapping tradeoff in mOLAP

Querying/Property DCL hDCL
Generated traffic for a given query - +

Client side processing - +
Number of data items + -

OLAP operations + -

case). Moreover, clients have to perform less local processing. On the other
hand though, sub-cube derivability is more straightforward in DCL. The DCL
consists of fewer nodes than its respective hDCL, so that the number of handled
data items is reduced. In addition to that, DCL mapping enables better offline
functionality and OLAP operations like roll-up or drill-down. Consider the query
of Section 2.6. A client having received the sub-cube PT can locally (offline)
answer any subsequent roll-up, drill-down or projection. A client having received
the sub-cube P1T1 instead, is not able to locally perform any drill-down. A drill-
down would inevitably have to invoke a new query to the server.
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7.4 An Analytical Model for Subsumption Probabili-
ties

7.4.1 Model

In the previous section, we considered a mOLAP system and described the trade-
offs imposed by selecting between coarse-grained and fine-grained query mapping
modes. We suggest that the exploitation of the derivation semantics is the key
factor influencing the query mapping mode selection. However, evaluating this ex-
ploitation degree is not a straightforward task. This section presents an analytical
model that facilitates this evaluation. This model provides the basis for comput-
ing relevant subsumption probabilities that mOLAP schedulers have to consider
when scheduling and disseminating requests.

mOLAP schedulers, regardless of their individual approach, are keen to exploit
subsumptions among the lattice’s nodes, but naturally, there are fundamental dif-
ferences in the way that this is pursued. Therefore, the usefulness of an evaluation
probability strongly depends on the scheduler itself. Considering that our objec-
tive is to evaluate the suitability of the two different query mapping modes, we do
not restrict our model to a specific scheduler. Nonetheless, we show in following
paragraphs which of the evaluation probabilities are directly applicable to STOBS
and to FCLOS.

Consider the architecture of Fig. 7.2, where mobile clients issue queries tar-
geting a given data cube. These queries are mapped by the scheduler to the
corresponding lattice node and subsequently inserted in the waiting queue. Natu-
rally, one node of the lattice might have been requested by more than one client.
Therefore, our model considers the queue as a multiset Q and thus |Q| is the size
of the queue. Table 7.2 provides a notation overview.

We employ the following probabilities, which can be used by any scheduler,
when trying to exploit dependencies:

1. P (ea � eb): the probability that a selected element ea ∈ Q is an ancestor of
another selected element eb ∈ Q.

2. P (ea � Q): the probability that a selected element ea ∈ Q is an ancestor of
every element in Q.

3. P (∃ e : e � Q): the probability that there exists one element, which is an
ancestor of every element in Q.

4. P (ea � q ⊆ Q): the probability that a selected element ea ∈ Q is an ancestor
of exactly |q| (|q| − 1 + itself) elements of Q.

5. P (ea � q+ ⊆ Q): the probability that a selected element ea ∈ Q is an
ancestor of at least |q| (|q| − 1 + itself) elements of Q.

6. P (∃ e : e � q ⊆ Q): the probability that there exists at least one element,
which is ancestor of exactly |q| (|q| − 1 + itself) elements of Q.
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Table 7.2: Notation of the analytical framework

Notation Definition

S Set that contains every lattice node

Q Multiset that contains every queue element

q ∈Q A subset of Q

D Number of dimensions
nj A lattice node (n ∈ S)

ni
j The ith bit of the binary representation of nj where 0 ≤ i ≤ D−1

na �nb na is an ancestor of nb

nj �MS
nj is an ancestor of every element of the multiset MS (ancestor
of |MS| elements)

ej An element of the queue (e ∈ Q)
grd Number of hierarchical attributes of dimension d
Dn Set of all dimensions existing in node n

lev(n, d)
The hierarchical level of node n at dimension d (lev(n, d) ∈
(0, grd])

Pd The probability that dimension d exists in node n

Pd,l
Given that dimension d exists in node n, the probability that
the hierarchical level l is selected

pn
The probability that a node n is selected from a multiset Q of
lattice nodes

P (ea � eb) for example provides a general evaluation of sub-cube derivability
and is not directly related to mOLAP. P (ea � q+ ⊆ Q) is intended for any
mOLAP scheduler that checks subsumptions after having determined the element
to be transmitted, as in the case of STOBS. P (∃ e : e � q ⊆ Q) on the contrary
targets schedulers that consider every element as candidate for transmission and
decide according to its subsumption, as in the case of FCLOS.

A fundamental objective of this work is to be applicable regardless of the query
distribution. Assuming a specific distribution would severely restrict the applica-
bility of our approach. Nevertheless, the discussed probabilities are obviously de-
pendent on the query distribution. We overcome this by allowing the server to col-
lect simple statistics about the incoming queries. Particularly, the server measures
the probability Pd that a dimension d exists in an incoming query. For example,
using the data cube of Fig. 2.4 the probability PProduct that dimension Product ap-
pears in an incoming query can be computed as PProduct = pPST +pPS +pPT +pP .



7.4 An Analytical Model for Subsumption Probabilities 89

Additionally, since every dimension has hierarchical levels, for every dimension d,
the probability Pd,l that the hierarchical attribute l is requested, is also computed
by the server. In this way, our model can be applied to any possible query dis-
tribution. Naturally, in order to be able to react to fluctuations in the incoming
workload, the server will have to keep statistics updated. A simple update formula
for the probability p̂ is:

k-th observation:
p̂k =

nk

n

(k+1)-th observation:

p̂k+1 =
nk+1

n+ 1
=
nk + xnew

n+ 1
=
nk

n
· n

n+ 1
+
xnew

n+ 1
= λp̂k + (1− λ)xnew

where n is the number of events, nk is the number of occurrences in the k-th
observation and xnew the possibility that a new event is an occurrence.

In this context, our model considers the probabilities Pd independent. Al-
though this might not be the case for some workloads, it is practically of minor
importance for the purpose of the intended comparison. The proposed analyti-
cal framework does not directly provide information about expected access time
or energy consumption. It delivers a comparative evaluation of the two query
mappings.

It should be clear that if we consider every node of the lattice:
∑
n∈S

pn = 1, and

that for every dimension d :
grd∑
l=0

Pd,l = 1.

7.4.2 Ancestor Probabilities in DCL

A quick way to find out whether a node nb can be subsumpted by na is to apply
the binary AND operator on their binary representations (bitmaps):

• If (na
bin AND nb

bin) = nb
bin then na � nb

• If (na
bin AND nb

bin) 6= nb
bin then na 6� nb

In Fig. 2.4 for example, it is (nPS
bin AND nS

bin) = (110 AND 010) = 010 =
nS

bin, which confirms that sub-cube S can be subsumpted by sub-cube PS.
The DCL graph is separated into distinct levels according to the dimension-

ality of the nodes. We enumerate the levels of the DCL as follows: Nodes with
dimensionality l appear in the lth level of the graph. For example the root node
with dimensionality D appears at the Dth level. Of course l ∈ {0, 1, ..., D}. Ev-
ery level of the DCL consists of

(
D
l

)
nodes. The number of nodes in the DCL is∑l=D

l=0

(
D
l

)
= 2D. A node na belonging to the lth level of the graph has (2l − 1)

successors.
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Proposition 7.4.2.1. The probability that a selected element ea ∈ Q is an ances-
tor of another selected element eb ∈ Q is :

P (ea � eb) =
D−1∏
d=0

(
P 2

d − Pd + 1
)

Proof. We isolate one bit i of the bitmap (which represents one dimension):
P (eia � eib) = P (eia = 0) · P (eib = 0) + P (eia = 1) · P (eib = 0 ∨ eib = 1) =
(1− Pi) · (1− Pi) + Pi · 1 = P 2

i − Pi + 1
For the subsumption property to be valid this must be valid for every dimen-

sion:

P (ea � eb) = P ((e0a � e0b) ∧ · · · ∧ (eD−1
a � eD−1

b )) =
D−1∏
d=0

(
P 2

d − Pd + 1
)

Proposition 7.4.2.2. The probability that a selected element ea ∈ Q is an ances-
tor of every element in Q is:

P (ea � Q) =
∑
n∈S

pnψ
|Q|−1 where ψ =

∏
d6∈Dn

(1− Pd)

Proof. For the remaining (|Q| − 1) elements of Q, it suffices that dimensions d 6∈
Dea also do not exist in these elements. This is represented by ψ. Thus:

P (ea � Q) = P ((ea � e0) ∧ · · · ∧ (ea � e|Q|−1)) =
∑
n∈S

pnψ
|Q|−1

Proposition 7.4.2.3. The probability that there exists one element, which is an
ancestor of every element in Q is:

P (∃ e : e � Q) =
|Q|∑
k=1

{
(−1)k+1

(
|Q|
k

) ∑
n∈S

pk
nψ

|Q|−k

}

Proof.

P (∃ e : e � Q) = P (e0 � Q ∨ · · · ∨ e|Q|−1 � Q)

=
(
|Q|
1

)
· P (ea � Q)−

(
|Q|
2

)
· P (ea � Q ∧ eb � Q) + · · · ±(

|Q|
k

)
P (e0 � Q ∧ · · · ∧ ek−1 � Q)
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Proposition 7.4.2.4. The probability that a selected element ea ∈ Q is an ances-
tor of exactly |q| (|q| − 1 + itself) elements of Q is:

P (ea � q ⊆ Q) =
(
|Q| − 1
j − 1

)
·
∑
n∈S

(
pnψ

j−1(1− ψ)|Q|−j
)

Proof. |q| elements of Q must be chosen from the 2l successors and the rest (|Q|−
|q|) from the (2D−2l) non-successors. There are

(|Q|−1
|q|−1

)
combinations of places in

the queue where the (|q|−1) successors can be. For (|q|−1) elements, we demand
that every dimension d 6∈ Dn does not exist in the examined node. For the rest
(|Q| − |q|) non-successors, we demand that at least one dimension d 6∈ Dn does
exist in the examined node.

Proposition 7.4.2.5. The probability that a selected element ea ∈ Q is an ances-
tor of at least |q| (|q| − 1 + itself) elements of Q is:

P (ea � q+ ⊆ Q) =
|Q|∑

j=|q|

{(
|Q| − 1
j − 1

)
·
∑
n∈S

(
pnψ

j−1(1− ψ)|Q|−j
)}

Proof. P (ea � q+ ⊆ Q) =
|Q|∑

j=|q|

P (ea � j ⊆ Q)

Proposition 7.4.2.6. The probability that there exists at least one element, which
is ancestor of exactly |q| (|q| − 1 + itself) elements of Q is:

P (∃ e : e � q ⊆ Q) = 1− (1− P (ea � q ⊆ Q))|Q|

Proof. P (∃ e : e � q ⊆ Q) = 1− P (∃ e : e � q ⊆ Q) = 1− P (ea � q ⊆ Q)|Q| =
1− (1− P (ea � q ⊆ Q))|Q|

7.4.3 Ancestor Probabilities in hDCL

In this section, we compute the same probabilities as in Section 2.4, but for a
multiset Q of hDCL elements.

Proposition 7.4.3.1. The probability that a selected element ea ∈ Q is an ances-
tor of another selected element eb ∈ Q :

P (ea � eb) =
∑
n∈S

pn

∏
d∈Dn

Pd

grd∑
l=lev(n,d)

Pd,l + (1− Pd)

 · ∏
d6∈Dn

(1 − Pd)

Proof. Analogously to the proof of Proposition 7.4.2.1 we isolate one digit i of
the representation. For the subsumption property to be valid for one specific
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dimension, we demand that in the examined element either this dimensions appear
but in a higher, less detailed level or that it does not exist at all.

P (eia � eib) = P (eia ≥ eib|eia ≥ 1) + P (eib = 0|eia = 0)

For the subsumption property to be applied for the element this must be valid for
every dimension. We differentiate between dimensions d ∈ Dea and dimensions
d 6∈ Dea :

P (ea � eb) =
∏
d∈ea

PdP ((lev(d, ea) ≥ lev(d, eb > 0)) ∨ d 6∈ Deb
)·

·
∏
d6∈ea

(1− Pd)P (d 6∈ Deb
) = · · ·

Proposition 7.4.3.2. The probability that a selected element ea ∈ Q is an ances-
tor of every element in Q is:

P (ea � Q) =
∑
n∈S

pnω
|Q|−1 where

ω =
∏

d∈Dn

Pd

grd∑
l=lev(n,d)

Pd,l + (1− Pd)

 ∏
d6∈Dn

(1− Pd)

This can be proven using Proposition 7.4.3.1 for the remaining (|Q| − 1) ele-
ments of Q.

Proposition 7.4.3.3. The probability that there exists one element, which is an
ancestor of every element in Q is:

P (∃ e : e � Q) =
|Q|∑
k=1

{
(−1)k+1

(
|Q|
k

) ∑
n∈S

pk
nω

|Q|−k

}

The proof is analogous to the proof of Proposition 7.4.2.3.

Proposition 7.4.3.4. The probability that a selected element ea ∈ Q is an ances-
tor of exactly |q| (|q| − 1 + itself) elements of Q is:

P (ea � q ⊆ Q) =
(
|Q| − 1
j − 1

)
·
∑
n∈S

pnω
j−1(1− ω)|Q|−j

The proof is analogous to the proof of Proposition 7.4.2.4.
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Proposition 7.4.3.5. The probability that a selected element ea ∈ Q is an ances-
tor of at least |q| (|q| − 1 + itself) elements of Q is:

P (ea � q+ ⊆ Q) =
|Q|∑

j=|q|

{(
|Q| − 1
j − 1

)
·
∑
n∈S

pnω
j−1(1− ω)|Q|−j

}

Proof. P (ea � q+ ⊆ Q) =
|Q|∑

j=|q|

P (ea � j ⊆ Q)

Proposition 7.4.3.6. The probability that there exists at least one element, which
is ancestor of exactly |q| (|q| − 1 + itself) elements of Q is:

P (∃ e : e � q ⊆ Q) = 1− (1− P (ea � q ⊆ Q))|Q|

The proof is analogous to the proof of Proposition 7.4.2.6.

7.5 Experimental Evaluation

This section provides a twofold analysis. State of the art mOLAP systems are
evaluated with respect to query mapping. Moreover, we show how the analytical
model described in Section 7.4 facilitates the analysis and confirms the experimen-
tal results.

As already explained in Chapter 6, FCLOS operates on DCL query mapping.
However, due to the fact that query mapping is undertaken by the server and not
by the clients, different query mappings can be seamlessly integrated without any
architectural modification. The scheduling component of FCLOS works in exactly
the same way with hDCL mapping.

The simulation environment is exactly the same used in Section 6.6.1. For the
purpose of this chapter, we implemented the extensions of FCLOS and STOBS,
FCLOShDCL and STOBShDCL, respectively, which map queries to the respective
hDCL.

7.5.1 Exploitation of Subsumption

Before presenting our experimental results, we explain how our analytical model
can be used to facilitate the evaluation. We restrict our analysis to three discussed
probabilities. The rest of them provide similar observations.

First, we use Propositions 7.4.2.1, 7.4.3.1 to compute the subsumption prob-
ability of two randomly selected elements residing in the scheduler’s queue. The
probabilities Pd for each dimension are computed from the server’s statistics, as
described in Section 7.4.1. If no statistics are available, the server has to wait
until sufficient statistics about the workload have been collected. The results ap-
pear in Table 7.3. DCL mapping makes subsumption exploitation almost twice as
probable.
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Table 7.3: Subsumption probability P (ea � eb)

DCL mapping hDCL mapping
Subsumption probability 21.08% 12.77%

This result indicates that DCL mapping might be optimal, but our analytical
model enables a much more thorough analysis. We consider a waiting queue
consisting of |Q| elements. Based on our experimental results we have observed
that for a realistic scenario |Q| ∈ [20, 40]. We therefore use |Q|=30. We compute
the probabilities P (ea � q+ ⊆ Q) and P (∃ e : e � q ⊆ Q) as defined in Section 7.4.

Figure 7.3 depicts the results of a simple usage of Propositions 7.4.2.5, 7.4.2.6,
7.4.3.5, 7.4.3.6. It is arguably one of the most insightful charts concerning sub-
sumption exploitation by mOLAP systems. This chart has a twofold meaning. On
the one hand, as far as query mapping is concerned, we observe the superiority of
DCL mapping, for both depicted probabilities. When |q| becomes relatively high,
as expected, the probability tends to become 0 for both approaches (this can also
be derived from Propositions 7.4.2.2, 7.4.3.2). When |q| is smaller though, which
represents a more realistic situation, DCL mapping outperforms its competitor.

On the other hand, Fig. 7.3 indirectly reveals the superiority of FCLOS com-
pared to STOBS, this time analytically. This can be observed by isolating the
chart series with circular markers representing P (ea � q+ ⊆ Q) and the chart
series with square markers representing P (∃ e : e � q ⊆ Q). As already men-
tioned, P (ea � q+ ⊆ Q) is a useful probability for STOBS, which checks deriva-
tions only after the element to be transmitted has been selected. In contrast,
P (∃ e : e � q ⊆ Q) is a useful probability for FCLOS. The reason for that is that
FCLOS considers every element as an ancestor candidate.

Obviously, the superiority of FCLOS is even higher, if instead of P (ea � q+ ⊆
Q), the probability P (ea � q ⊆ Q) is computed.

7.5.2 Evaluating mOLAP Dissemination Systems

From an application perspective, query access time is the most important measure
for performance evaluation. Figure 7.4 demonstrates that mobile users profit from
DCL mapping, regardless of the scheduling approach. More specifically, hDCL
mapping doubles the query access time. Note that the times observed include the
necessary time for local processing of data, whenever this is necessary. The results
for energy consumption are quite similar.

Figure 7.5 depicts a measure that translates more directly to the information
provided by the analytical framework. It shows the percentage of the waiting
queries that are served per broadcast, a metric directly related to the results of
Fig. 7.3. Particularly for FCLOS, the difference is immense. With DCL mapping,
a broadcast serves half of the waiting queries, whereas with hDCL mapping only



7.5 Experimental Evaluation 95

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of successors

Su
bs

um
pt

io
n 

pr
ob

ab
ili

ty
PDCL(∃ e : e≥ q⊆ Q)
PhDCL(∃ e : e≥ q⊆ Q)

PDCL(ea≥ q+
⊆ Q)

PhDCL(ea≥ q+
⊆ Q)

Figure 7.3: Subsumption probabilities P (ea � q+ ⊆ Q) and P (∃ e : e � q ⊆ Q)

25% of them. The difference is significantly smaller in the case of STOBS. This is
justified by the fact that STOBS, as already explained, is not based on subsump-
tion, it just uses subsumption whenever it is possible. In other words, STOBS
adopts a less aggressive subsumption approach than FCLOS, which is confirmed
by this chart.

As far as generated traffic is concerned, it is rational to expect more trans-
mitted bytes per broadcast with DCL mapping, since DCL nodes always contain
fact table data that frequently is a superset of what the client had requested. Fig-
ure 7.6, depicting the amount of transmitted bytes per broadcast, confirms this
expectation. DCL mapping provokes transmission of bigger sub-cubes, since DCL
nodes contain extra information. Practically this means that every transmission
lasts longer.

Figure 7.7 on the contrary, depicts the generated traffic per issued query, where
a completely different behavior can be observed. hDCL mapping appears to cause
a huge overhead to the network, especially in the case of STOBS. DCL mapping
does indeed invoke transmissions of more data per broadcast cycle, but manages
to serve queries with fewer broadcasts, as indicated by Figure 7.5. With DCL
mapping there is always a higher probability that the element to be transmitted is
an ancestor of other queue elements. One transmission serves more requests, thus
reducing the number of necessary broadcast cycles for a given amount of requests.

Concluding the experimental evaluation, it is imperative to underline that the
information provided by the proposed framework should be used comparatively.
The analytical framework is not capable of predicting the behavior of FCLOS,
STOBS or whichever mOLAP architecture, simply because it was not designed
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Figure 7.4: Mean query access time
(Tall)
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Figure 7.5: Percentage of queue ele-
ments served per broadcast
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Figure 7.6: Mean per broadcast gener-
ated traffic (Trb)
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Figure 7.7: Mean per query generated
traffic (Trq)

for that purpose. Its objective is to provide insight about the exploitation of
subsumption probabilities, which is a fundamental, but by no means the only,
factor influencing mOLAP performance.

7.6 Summary

This chapter deals with the issue of mapping multidimensional queries to ag-
gregation lattices. mOLAP systems employ query mapping in order to reduce
the number of handled data items and to exploit sub-cube derivability. Previous
related work in mOLAP systems has not provided any specific answer to the ques-
tion of whether the DCL or the hDCL is optimal for query mapping. We identify
the exploitation degree of sub-cube derivability as the critical parameter to be
considered. Motivated by this fact, we introduce an analytical framework that
facilitates the computation of sub-cube derivability probabilities in both lattices.
This framework, besides providing the basis for a general evaluation, focuses on
the specific domain of mOLAP dissemination systems.
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The analytical framework revealed that for a real dataset, sub-cube derivability
is optimally exploited in the case of DCL. Experimental results for state of the
art mOLAP systems confirm that both server and mobile clients benefit from
DCL mapping. Although with DCL mapping, bigger in size datasets are per
broadcast transmitted, in comparison with respective hDCL mapping, the optimal
exploitation of sub-cube derivability results in more clients being served by each
transmission, thus reducing the number of necessary broadcasts. The server profits
from the reduction of the generated traffic, while mobile clients experience reduced
access time and energy consumption.
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