Chapter 5

Distributed Multidimensional
Data

The previous chapter presented related work in the area of data broadcast. Sec-
tion 4.3 explained why existing systems are ill-suited for the mOLAP domain.
This chapter deals with distributed and mobile data warehousing. History has
shown that mobile systems began their evolution based on distributed systems. In
this sense, we present related work in distributed data warehousing in Section 5.1
and in the broader area of mobile data warehousing in Section 5.2. Section 5.3
begins by defining criteria, based on which mOLAP systems can be evaluated.
After that, it presents three direct competitors of FCLOS, and finally evaluates
them according to those criteria.

5.1 Distributed Data Warehousing

Beyond the classical paradigm of fully centralized data warehousing, many com-
panies nowadays decide to build smaller, flexible data marts dedicated to specific
business areas. In order to use cross-functional analysis, there are two options.
The first one is to create again a centralized DW for only cross-functional sum-
mary data. The other one is to integrate the data marts into a common conceptual
schema and therefore create a distributed DW. Issues relevant to web warehousing
are clearly beyond the scope of this thesis. [64, 29] provide a good insight in that
area.

5.1.1 Distributed Storage and OLAP

This section briefly presents the most representative approaches in the area of
distributed data warehousing. CUBESTAR [17] is a distributed OLAP system,
which focuses on optimization issues concerning aggregation management. It em-
ploys dynamic and partial aggregation in order to improve query performance.
The proposed algorithms decide which aggregate combinations yield the highest
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benefit and thus are the best to be materialized.

Another distributed OLAP system is DWS-AQA [27]. Its goal is to use the
processing and disk capacity normally available in large workstation networks to
implement a DW with reduced infrastructure cost. As DWs typically share com-
puters also being used for other purposes, most of the times only a fraction of the
computers will be able to execute the partial queries in time. The approximated
answers estimated from partial results have a very small error for most of the
plausible scenarios.

The authors of [105] assume that the DW is distributed over a network, and
that not all OLAP tasks are supported at all network locations. This implies that
only some fragments have to be locally available. A heuristic cost optimization ap-
proach is suggested for setting up local DW fragments. The underlying cost model
integrates query and maintenance costs. The model shares many characteristics
with respective relational database models.

DSQoS [18] deals with the issue of quality of service, in the context of the
accuracy/speedup tradeoff. For a given query pattern, it determines the required
summary size to guarantee the accuracy targets, and then dynamically selects a set
of summaries, distributed in various nodes, which can ensure the QoS constraints.

The system proposed in [19] presents sampling-based techniques for approx-
imate answering of ad-hoc aggregation queries in Peer to Peer (P2P) databases.
Given an aggregation query and a desired error bound at a sink peer, it minimizes
the cost of an approximate answer that satisfies the error bound.

[45] focuses on data integration in distributed OLAP. The execution of queries
that need extraction of information from more than one schema is facilitated with
appropriate metadata mappings and query rewriting. [49] deals with aggregate
computations in distributed environments, without specifically focusing on OLAP
applications. The developed framework focuses on scalability issues.

More recently, distributed data warehousing applications have been examined
in grid environments [163, 90]. It is shown how a grid computing infrastructure
can be used to store and manage computational expensive data aggregations and
to answer OLAP queries in a fully distributed manner.

5.1.2 Caching

Caching of multidimensional data has attracted a lot of attention. PeerOLAP
[80] is a distributed caching system for OLAP results. In typical client-server
architectures, isolated remote clients access DWs and maintain previous results in
their local caches. By sharing the contents of the individual caches, PeerOLAP
constructs a large virtual cache that can benefit all peers. The system is fully
distributed and highly scalable as there is no centralized administration point and
no central catalog.

In [44], the authors perform a regular decomposition of the multidimensional
space into chunks, which constitute the smallest piece of cached information. When
a query is asked, the system computes the set of chunks required to answer it, and
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splits it into two subsets based on whether they are cached or not. To answer
the query, the system will request the missing chunks from the DW. Only chunks
at the same aggregation level as the query are considered, i.e., no aggregation is
performed on the cached results; this option, however, is exploited in an extension
of their work [43].

Watchman [135] is a semantic cache manager, which caches the results of the
query together with the query string. Subsequent queries can be answered by
the cached data, if there is an exact match on their query strings. The authors
present admission and replacement algorithms that explicitly consider retrieved
set sizes and execution cost of the associated queries in order to minimize the
query response time.

Dynamat [85] is another OLAP cache manager, which stores fragments instead
of arbitrarily shaped query results. Fragments are aggregate query results in a
finer granularity than views, since they may include equality selections on some
dimensions. They may be further aggregated to answer more general queries, but
the data from multiple fragments cannot be combined.

5.2 Mobile Data Warehousing

The research community has rather sporadically dealt with the area of mobile
data warehousing. [150] copes with disconnections in hierarchical DWs, discussing
a variety of architectures for mobile views, from proxy based to non-proxy based
systems. The concept of a mobile source is introduced. Architectural alternatives
ranging from the use of proxies for mobile systems to architectures where every
source and the DW can be mobile are discussed.

In [69], an intelligent cache mechanism for mobile data warehousing is pro-
posed. In order to prefetch appropriate data in the cache, the system employs a
query mechanism with cache management and a prediction model. The prediction
model uses data mining techniques to determine the query pattern from a record
of previous queries.

Hand-OLAP [39] is a system specifically designed for providing OLAP func-
tionality to users of mobile devices. This proposal focuses mainly on the draw-
backs of mobile devices, with emphasis in the small storage space and the frequent
disconnections. To cope with this issue, this approach focuses on a solution for
storing locally, in the mobile device, a compressed and highly summarized view
of the data that can be more efficiently transmitted from the OLAP server than
the original ones. However, in spite of identifying fundamental mOLAP issues,
Hand-OLAP fails to provide a really applicable solution. The main problem is
that the compression comes at the cost of approximation. A further drawback is
that the technique applies for 2-dimensional views only.

Advanced OLAP visualization techniques, targeting devices with small screens
is the focus in [109]. The authors introduce CPM, a presentational model for
OLAP screens. The fundamental idea is to separate the logical part of a data cube



46 5. Distributed Multidimensional Data

computation from the presentational part of the client tool. CPM is mapped on
the Table Lens, which is an advanced visualization technique from the HCI area,
particularly tailored for cross-tab reports. CubeView, using CPM and Table Lens,
is a pilot academic platform enabling OLAP visualization both for desktops and
mobile devices.

5.3 Mobile OLAP Architectures

This section presents three systems that are directly comparable with FCLOS,
and can be regarded as state of the art in the mOLAP domain. The evaluation of
FCLOS in the following chapters is performed against these three systems. Before
presenting these systems, we describe the criteria, based on which, Section 5.3.5
compares them.

It is important to underline that the entire concept of mOLAP systems is
founded on providing offline functionality. This is crucial when considering that
portable devices are not permanently connected to a network. Therefore, clients
are aware of the schema metadata, can consequently locally store received data and
perform local processing in order to enable subsequent analysis. Naturally, if offline
functionality is not a requirement, mobile clients can act as web clients, letting
the server perform any necessary computations and just receive the (visualized)
results. In the later case, complex mOLAP architectures are not necessary.

5.3.1 Criteria

We choose the following quality criteria, based on which existing mOLAP archi-
tectures can be evaluated:

Performance

In the mOLAP domain, typical performance hard metrics are query access time,
energy consumption overhead for the mobile client, and generated traffic by the
server. Usually, these metrics are related to each other, although some tradeoff
may arise.

Offline Functionality

This is a critical criterion, since the entire concept of mOLAP is founded on it.
It refers to the mobile client’s functionality in case of network disconnections. In
other words, it refers to the analysis capabilities of client relying exclusively on its
local data.

Scalability

This measures the extent to which an architecture can handle growing number
of incoming requests. This might be the effect of growing client population or of
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increasing request rate.

Self Adaptiveness

Wireless broadcast is usually designed under specific workload assumptions. How-
ever, workloads are not static. This criterion evaluates the degree in which an
architecture can adapt itself to workload changes.

Load Balancing

This refers not only to the degree in which the computational load is distributed
across server and clients, but to the available ways to achieve that as well.

Complexity

This measures the computational complexity on server and clients. The server’s
complexity is mainly related to the employed scheduling algorithms. The client’s
complexity is related to the necessary local processing.

Fairness

This criterion is related to the stretch metric, as described in Section 3.2.2. The
stretch of a job translates more directly to user-perceived performance. Intuitively,
clients with larger jobs should be expected to wait in the system longer than those
with smaller requests.

Maintenance Overhead

This encompasses the overhead of reconfiguring the architecture and its parameters
either under different network and data settings or in order to optimize specific
scenarios.

Application Generality
It represents the genericity of the architecture. In our context, it indicates if the
architecture can be used in application domains other than mOLAP.

Extendability /Modularity

This criterion represents the ability to replace or extend specific modules of the
architecture without influencing its entire concept.
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Figure 5.1: STOBS OLAP System (Source: [140])

5.3.2 STOBS

In [140] and subsequently in [139], the authors present an on-demand scheduling
algorithm for mOLAP called Summary Tables On-Demand Broadcast Scheduler
(STOBS). Assuming a traditional OLAP server basic functionality, the authors
argue that an on-demand broadcast architecture as shown in Fig. 5.1 is the most
suitable for supporting mOLAP query processing.

STOBS is an approach explicitly dealing with dissemination of multidimen-
sional information, where scheduling decisions take into consideration additional
parameters such as energy consumption. It exploits derivation among OLAP STs
and tries to maximize the aggregated data sharing between mobile users. An op-
timizer is used to control the tradeoff between experienced access time and energy
consumption overhead.

STOBS consists of two components. The first component is the prioritizing

function based on the popular queue metric , as described in Section 4.1.1,

where R is the number of requests for a specific sub-cube, W is a factor computed
by the time a request has already waited in the queue, and S is the size of the
sub-cube.

The idea is quite straightforward. Initially, the Rx W/S metric is computed
for each element of the queue and then the sub-cube j* with the maximum metric
value is selected for transmission:

R; x W;
Vi € Queue Kj:%,
J

<%

J* = arg mazx(Kj;) (5.1)

The second component controls the degree of flexibility when trying to derive
subsumptions. This is done by the a-optimizer. BCL is the group or cluster of
requests that are going to be served by the broadcast. Dj« and D; stand for the
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Figure 5.2: STOBS: Flexibility in DCL (Source: [140])

dimensionality of sub-cubes j and i, respectively.

Vi€ Queue:i#v, if j*>=iand Dj+ —D; <a add i to BCL
where 0 <a <D

When a = 0 there is no flexibility in using STs and the client access is restricted
w o

. Ata=D,itis
the case of extreme flexibility in which a client can use any subsuming matching
table.

Assume that the search lattice nodes shown in Fig. 5.2 are the tables for which
there exists at least one request. Also, assume that QX is a request to the 4-
dimensional table T%:(dy, da, d3, d4) that is selected to be broadcast next. All
shaded tables can be derived from TX. These are (d1), (d2), (d3), (ds), (d1, d2),
(di1, d3), (di, dg2, d3) and (d1, do2, dg). However, if we assume that a = 2, then
clients’ requests for tables (di, d2), (d1, d3), (di, d2, d3) and (di, da, d4) will be
satisfied by 7% and hence the requests for these tables will be discarded, whereas
the requests for tables (d1), (d2), (d3) and (d4) will remain in the queue.

STOBS arguably exhibits a superior performance than a point-to-point archi-
tecture. The scalability of the system is also satisfactory, since increasing work-
loads incur a relatively low loss of performance. However, there is a tradeoff
between the optimization of access time and energy consumption. Although this
tradeoff can be controlled by the a-optimizer, this inevitably causes an additional
maintenance overhead. The server’s computational complexity is relatively low be-
cause the scheduling algorithm just needs to compute the value for the employed
metric. Then, after having decided the element to be transmitted, the discovery
of subsumptions needs just a single scan over the queue.

R x
to exact match. In this case, STOBS-0 is equivalent to

The a-optimizer provides a fairly satisfying flexibility. Despite that, the algo-
rithm heavily relies on a metric that does not at all take into account the nature
of the transmitted data, which is an OLAP ST. In addition to that, the two com-
ponents (prioritizing and optimizing) are completely independent. The clustering
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of requests succeeds, only after the sub-cube to be transmitted has been already
selected. As a result, clustering is rather loose. This is a consequence of the fact
that smaller in size sub-cubes have generally increased priority. When smaller
sub-cubes are selected from the first component to be transmitted, the possibility
of creating bigger clusters in the second diminishes.

The scheduling policy of STOBS has further consequences. Since subsump-
tions are considered in a second optimizing step, a lot of optimization space has
already been wasted by the prioritizing function, before subsumptions can be ex-
amined. Thus, received datasets are not optimal for offline usage. Finally, the
resulting system is not extendable. STOBS transmits STs. A selection of another
physical structure will directly and unpredictably influence the scheduling deci-

RxW
sions, since the used metric (T) includes the size of the data items, which

depends on the physical structure.

A fundamental problem of STOBS is that it targets a very limited set of
queries. As explained in Section 2.6, selections or clauses might not necessarily be
posed on the values of the fact table but possibly on values or attributes of the
dimension tables. STOBS broadcasts only fact tables and consequently fails to
address this issue.

5.3.3 SBS

The Subsumption-Based Scheduler (SBS) [141] is an approach very similar to

RxW
STOBS. SBS consists of two similar components. Instead of —g the prior-

itizing function is based on the LTSF algorithm, described in Section 4.1.1. In
LTSF, the data item that has the largest total current stretch, i.e., the sum of the
current stretches of all R pending requests for the item j, is chosen for broadcast.
Particularly, the current stretch of a pending request is the ratio of the time the
request has been in the system thus far to its service time.

R

> Wy

Vi € Queue Kj= T:}S’T’ J* = arg maz(K;)
J

In addition to that, the a-optimizer is defined in a different way, considering the
sub-cubes’ size and not the dimensionality.

|55+ | = 1Sil

Vi € Queue i # 55, if 575 =iand 5]
j*

<a add i to BCL
where a € [0,1]

When a = 0 there is no flexibility in using STs and the client access is restricted
to exact match. In this case, SBS-0 is equivalent to LTSF. At a = 1, it is the case
of extreme flexibility in which a client can use any subsuming matching table.
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Figure 5.3: SBS: Flexibility in DCL (Source: [141])

As an example, consider the partial search lattice shown in Fig. 5.3, in which
nodes are STs and the number between braces is the table cardinality in units of
size. Assume that the search lattice nodes shown are the tables for which there
exist at least one request and a = 0.9. Also, assume that the 3-dimension table
TX (dy, do, d3) is selected for broadcast. Then, clients’ requests for tables (dy, d2)
and (dy, d3) will be satisfied by 7. While clients who requested tables (d1), (d2)
and (d3) will have to wait for the next broadcast cycles.

It should be clear by now that SBS is a very similar approach to STOBS. This
is also confirmed by our experimental evaluation presented in following chapters.
Hence, it exhibits the same advantages and disadvantages as analyzed in the pre-
vious section. Although the usage of the LTSF algorithm for the prioritizing func-
tion results in an increased user-perceived fairness, the overall performance hardly
improves. On the contrary, the definition of the a-optimizer does no longer depend
on the schema metadata, which is independent of the physical structure. Thus, the
integration of other physical structures will have even more unpredictable effects,
than in STOBS.

5.3.4 DV-ES

DV-ES [142] is an extension of the SBS architecture. While the scheduling process
remains almost intact (apart from a negligible modification of the a-optimizer),
the difference lies in the transmitted physical structure. SBS transmits STs, which
are the simplest data cube physical structure. STs are unindexed relations which
consist of all the tuples of a corresponding fact table. DV-ES exploits the Dwarf
technology [149]. Dwarf is a highly compressed structure for computing, storing
and querying data cubes. The intuition is to transmit the structure which occu-
pies less space in order to reduce generated traffic. Due to the fact that depending
on the sub-cube, the corresponding Dwarf or ST might occupy less space, DV-ES
employs a hybrid selection. Chapter 8 discusses this approach and issues of finding
the appropriate physical structure for transmission in much more detail. In the
context of this chapter, note that DV-ES hybrid scheduling function incurs a com-
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Table 5.1: Evaluation of mOLAP architectures

Point2Point | STOBS | SBS | DV-ES
Performance - - 0 0 0
Offline functionality - - 0 0 0
Scalability -- 0 0 0
Self adaptiveness - - - - -
Load balancing - - 0 0 0
Complexity ++ - - - - -
Fairness + - + +
Maintenance overhead ++ - - - o
Application generality ++ - - - o
Extendability /Modularity -- - - -

plexity and maintenance overhead, without providing any substantial performance
improvement.

5.3.5 Evaluation of mOLAP Architectures

Having presented the state of the art of mOLAP architectures, we can now com-
pare them according to the criteria defined in Section 5.3.1. The criteria are
weighed using the symbols of Table 4.1. The results are shown in Table 5.1

Point to point architectures exhibit unlimited application generality, so that
any application can be supported without domain specific considerations. More-
over, complexity and maintenance overhead are kept at a minimum. However,
these systems fail to provide acceptable performance or scalability. STOBS and
SBS are, as already underlined, almost identical approaches. They exhibit fair
performance and scalability, without adding too much complexity. DV-ES fails to
provide any substantial improvement against its ancestor SBS, despite the addi-
tional complexity.

5.4 Summary

In the research area of mOLAP, it was soon realized that point to point archi-
tectures are unable to provide acceptable performance or scalability. Therefore,
existing mOLAP architectures employ broadcast to confront these issues. How-
ever, the usage of general broadcast systems for mOLAP is not straightforward,
since such systems ignore data semantics and OLAP end user behavior, while
assuming thin clients and not considering offline functionality. Moreover, multidi-
mensional data cubes are items order of magnitude bigger than the ones typically
assumed.

Existing mOLAP systems are mere extensions of general, on-demand broadcast
systems, adding a flavor of subsumption. Despite the considerable performance
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optimization compared to point to point architectures (although a tradeoff between
the optimization of access time and energy consumption exists), they still remain
on-demand architectures, which are notoriously not scalable. While they can
efficiently serve a limited number of end users, they are definitely unsuitable as
this number increases. In addition to that, subsumption exploitation is designed
as an extra component that operates after the determination of the transmission
schedule. Since sub-cube semantics are not involved in the scheduling process, the
subsumption exploitation is loose and clearly sub-optimal.
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