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Chapter 4

Broadcast Systems

This and the following chapter provide an extensive presentation of work related
to FCLOS. FCLOS is a complete mOLAP architecture, involving several research
fields. Thus, the following paragraphs discuss related works to different compo-
nents of our system. While issues of distributed data warehousing and mOLAP
are presented in Chapter 5, this chapter describes the most important work on
data broadcast systems. Section 4.1 deals with general data broadcast systems,
i.e., systems which operate regardless of the data content. In Section 4.2, we
present systems which exclusively handle database data items, i.e., clients pose
database queries instead of data item requests. Finally, Section 4.3 explains why
the presented approaches are unsuitable for the mOLAP domain.

4.1 General Data Broadcast Systems

As described in Section 3.2.2, data broadcast can be managed in three modes: on-
demand, push and hybrid. This section presents a selection of generic data broad-
cast systems. State of the art mOLAP architectures, presented in Section 5.3,
borrow key ideas from systems presented in this section.

4.1.1 On-demand

Related work in the area of on-demand data broadcast has mainly concentrated
on the definition of efficient metrics, while maintaining a moderate complexity.
Additional issues to be considered are: data staging, transmission error robustness
and the presence of deadlines.

Metrics

[10] constitutes a pioneer approach, introducing not only new scheduling algo-
rithms, but metrics for on-demand broadcast as well. Its authors argue that in
heterogeneous settings, access time alone is not a fair measure of individual per-
formance given that the individual requests significantly differ from one another

31



32 4. Broadcast Systems

next in W-List — next in R-List
previn W-List — prev in R-List
PID ISArv R r
[ 1o Jlf 1 []]
%20 H} 1 ILH o Wi
50 2 ,
(o0 [[[ 40 ]
| 95 |[] 25 []]
| 98 [I] 80 []]
[ 99 [[[ 20 [[]

Service Queue

Figure 4.1: The R x W service-queue data structures (Source: [13])

in their service times. They adopt an alternative performance measure, namely
the stretch of a request, which for a request 7 is defined as:
AT;

stretch; = ST, (4.1)
where AT is the access time for a request and ST its service time, namely the time
request ¢ would need to complete if it were the only system job. The rationale for
this choice is that the stretch of a job translates more directly to user-perceived
performance. Intuitively, clients with larger jobs should be expected to wait in
the system longer than those with smaller requests (stretch metrics are also dis-
cussed in [26]). Beyond this, it is argued that a fair evaluation must divide the
jobs into different classes. The definition of the classes is however dependent on
the application domain. Furthermore, schedulers are classified according to pre-
emptions. Preemption refers to interrupting a broadcast to serve others requests
before resuming the remainder of the original broadcast. In this context, four
algorithms are presented: PLWF (Preemptive Longest Wait First), SRST (Short-
est Remaining Service Time), LTSF (Longest Total Stretch First) and the Base
algorithm.

In [13], the R x W metric is proposed, where R stands for the number of
requests for a specific data item and W for the waiting time of a request (1st
arrival). The objective of this simple algorithm is to provide a balanced treatment
of cold and hot items. This algorithm exhibits fair scalability and robustness
without increased complexity. Figure 4.1 shows an example of the scheduling
function. It maintains a structure containing a single entry for each page that
has outstanding requests. This structure is hashed on page identifiers (PID).
Obviously, in this example page f is scheduled for the next transmission because
its metric (R x W = 80 x 98 = 7840) has the maximum value.

R x W.a is an approximate version of R x W. Its objective is to reduce the
search overhead of R x W. The a parameter is tunable in percent and controls
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the desired level of approximation. The idea is to prune the search space, since
the chosen data item will most likely be one with high R-value or high W-value.

[81] introduces a heuristic under the name ATWT (Approximate Total Wait-
ing Time), which is an approximate version of the LWF (Longest Wait First)
algorithm [165]. Although ATWT exhibits reduced decision overhead compared
to LWF and R x W, it fails to provide any substantial performance optimization
in terms of access time.

Data Staging

[14] focuses on the data staging problem for on-demand broadcast systems. It
argues that the implicit assumption, that all items to be disseminated are readily
available at the server when they are scheduled to be broadcast, is not always valid.
Frequently, the items to be broadcast may reside in secondary, tertiary, or even
remote storage. The need to fetch data from such locations produces large variance
in service times, which can destroy the performance of the broadcast scheduling
heuristics. In this context, the authors argue that the decision on which available
data item to broadcast should be based on the overall available bandwidth rather
than the scheduling heuristics.

The data staging problem is the topic of [157] too. Taking into account how
broadcast scheduling, disk scheduling and cache management affect the overall per-
formance, four algorithms are proposed: ADoRe, FLUSH, OWeiST and Rx W/S,
classified under two categories: those that combine separate, off-the-shelve broad-
cast and disk scheduling algorithms, and those that combine the information avail-
able at the broadcast queue and at the disk queue, producing a single scheduling
criterion. The REW metric is obviously based on the R x W metric, adding the
S clause, which represents the disk service time. Thus, the selection of the data
item to be broadcast prioritizes items with high R x W values (as the R x W
algorithm suggests) and low disk access times (as a consequence of the S clause).
This metric is used by STOBS, a mOLAP architecture presented in 5.3.2.

Transmission Errors - Deadlines

[154] presents the LDCF algorithm, which considers not only access time as per-
formance measure, but request failure as well. The intuition behind this is that the
permission of endless waiting incurs problems. On the one hand, when the server
does not receive the access requests because of transmission errors, mobile users
wait for responses in vain. On the other hand, responding to obsolete requests
also leads to inefficiency because the mobile user might have dropped its interest.

The same issue, also known as the deadline problem, is targeted by MAI
(Multiple Integration Algorithm) [33]. In [59], on-demand scheduling is considered
as a problem related to fair queuing [147]. The proposed algorithm takes into
account transmission errors. Their solution is extended in order to be applicable
to more than one broadcast channels.
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The problem of deadlines posed by clients is also known as the problem of
time or temporal constraints. Good scheduling algorithm for real-time on-demand
broadcast can guarantee as many requests as possible to meet their deadlines with
limited bandwidth. RDDS [168] and the preemptive PRDS [93] are two very
similar approaches towards scheduling of real-time requests. The main prioritizing
function used is: R

Pi=
Di X Sz
where R; is the number of pending feasible requests for data object ¢, D; and S;

are the effective deadline and size of 7, respectively. The authors argue that taking
deadline into consideration improves real-time performance.

(4.2)

4.1.2 Push-based

Broadcast Disks [5] is a pioneer approach in the area of pure push-based broadcast
systems. The authors suggest that the design of such systems should consider
the broadcast program and the cache management together. The architecture
assumes multiple disks spinning at different speeds on a single broadcast channel
and addresses two issues: The construction of a broadcast program that satisfies
the clients’ needs and the cache management given the broadcast program.

[7] identifies that the demand-driven access of Broadcast Disks, does not fully
exploit the dissemination-based nature of the broadcast, which is particularly con-
ducive to client prefetching. With a Broadcast Disk pages continually flow past
the clients so that, in contrast to traditional environments, prefetching can be per-
formed without placing additional load on shared resources. The authors propose
a simple prefetch heuristic called P7, which balances the cache residency time of a
data item with its bandwidth allocation. The same authors deal with the issue of
updates in the broadcast data [9]. They identify a fundamental tradeoff between
data currency and performance. In this context, they propose a method to ensure
enhanced performance and robustness, even in cases in which updates have to be
broadcast immediately.

Naturally, there are many more proposals. The following paragraphs present
further related work in the area push-based systems. It is beyond the scope of
this document to thoroughly review every approach. Instead we refer to the most
representative approaches, categorized according to their specific focus.

Optimization of the Broadcast Schedule

The optimization of the broadcast schedule has attracted the most attention in
this area. [158] proposes a bucketing scheme that facilitates the tradeoff between
time complexity and performance of the scheduling algorithm. Moreover, an al-
gorithm for broadcast scheduling in the presence of errors is proposed. When
different clients are capable of listening on different number of broadcast channels,
the schedules on different broadcast channels are designed so as to minimize the
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access time for all clients. The clients listening to multiple channels experience
proportionately lower delays.

[153] considers the broadcast schedule as a deterministic dynamic optimiza-
tion problem, the solution of which provides the optimal broadcast schedule. By
obtaining the properties of the optimal solution, a suboptimal dynamic policy is
proposed. The policy has low complexity, is adaptive to changing access statistics
and generalizable to multiple broadcast channels.

Typically, it is assumed that the access cost is proportional to the waiting
time. [21] examines the best broadcast schedules for access costs that are arbitrary
polynomials in the waiting time. These may serve as reasonable representations of
reality in many cases, where the patience of a client is not necessarily proportional
to its waiting time. The authors present an asymptotically optimal algorithm for
a fractional model, where the bandwidth may be divided to allow for fractional
concurrent broadcast.

Finally, Cascaded Webcasting [82] tackles the issue of creating hierarchical
Webcasting programs, by exploiting the given skewness in web access probabilities.

Optimization of the Broadcast Disk Array

A system of multiple broadcast channels can be viewed as a broadcast disk array.
The broadcast disks in an array can be categorized according to their speed, where
the speed of a broadcast disk corresponds to the expected delay for the data items
in that broadcast disk. In this context, more recent works explicitly concentrate
on algorithms that allocate data items to the broadcast disk array according to
their access frequencies. [65] focuses on the generation of broadcast programs
for multiple channels by using heuristics. A more convincing approach appears
in [120]. The authors transform the problem of generating hierarchical broadcast
programs into the one of constructing a channel allocation tree with variant-fanout.
By exploiting the feature of tree generation with variant-fanout, they develop a
heuristic algorithm called VFK to minimize the expected delay of data items in
the broadcast program.

Dependent Data

Most broadcast systems operate under the premise that each user requests only
one data item at a time, and that the requests for all data items are independent.
That is, for an arbitrary user, the access probability that the user requests a
data item in the ith request is predetermined and is independent of what has
been previously requested. However, in many real applications, some data items
are semantically related, and consequently, there exists dependencies among the
requests of these data items.

[91] argues that the problems of deciding the content of the broadcast channel
based on clients’ requests, and scheduling multiple (dependent) data items to be
broadcast are NP-complete. Therefore, different heuristics to these problems are
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proposed. In [67], the authors derive the theoretical properties for the average
access time in multiple channel environments, which help them develop a genetic
algorithm to generate broadcast programs.

Cache Management

Cache management issues have also been extensively addressed in the past years.
With caching, clients need only to wait for broadcast if the desired item is not
in the cache. However, it has been shown that traditional caching techniques in
broadcast environments are inadequate. [6] proposes a cost-based page replace-
ment heuristic, as well as a cost-based page prefetching heuristic, which helps
the cache manager to decide what pages, i.e., data items, should be evicted out of
cache and what pages should be prefetched into cache when space is available. The
idea is that not only pages likely to be requested in the future, as usually thought,
but also pages that are not broadcast very often should be kept in cache because
the cost of acquisition for those pages is pretty high once cache misses. [167]
deals with nonuniform broadcast systems, in which hot data is broadcast more
frequently than cold data and proposes a cooperative cache management scheme.
The proposal of [32], based on a novel prefetch-access ratio concept, can dynam-
ically optimize performance or power based on the available resources and the
performance requirements. GD-LU [143] is a further approach that enhances dy-
namic data availability while maintaining consistency. The proposed utility-based
caching mechanism considers several characteristics of mobile distributed systems,
such as connection-disconnection, mobility handoff, data update and user request
patterns. The main objective is energy efficiency.

Evaluation

Finally, [77] argues that in addition to mean response time, the variance of re-
sponse time should also be taken into account by the broadcast scheduler. A
single transmission of a data item satisfies all pending requests for that item. The
response time of a request depends on the broadcast time of the desired data item,
which is scheduled by the server according to the overall demands for various data
items. Therefore, the response time may vary in a large range. In this context,
the authors address the issue of variance optimization in regard to response time.
Naturally, this issue is also indirectly addressed by the stretch metric, described
in Section 4.1.1.

4.1.3 Hybrid

As already mentioned in Section 3.2.2, hybrid data dissemination is a combination
of on-demand and push-based approaches ([15] provides a fair comparison between
on-demand and push-based systems). Typical design issues in hybrid systems are
channel allocation (number of push and on-demand channels), data classification
(cold or hot) and item scheduling (both on on-demand and push channel). In this



4.1 General Data Broadcast Systems 37

Table 4.1: Evaluation symbols

Value Symbol
Excellent, very, low ++
Good, low, high +
N/a, medium, no 0
Poor, high, some -
Very poor, very high, many --

context, several approaches trying to minimize the client’s access time have been
proposed. The authors of [41] investigate two broadcast strategies (constant or
variable broadcast size). Requested data items are broadcast in batches, using the
indexing techniques of [74]. [8] exclusively deals with the bandwidth allocation
problem given a static broadcast schedule. The system proposed in [151] adapts
the broadcast content to match the hot-spot of the database. This spot can be
accurately obtained by monitoring the broadcast misses and therefore no other
implicit knowledge on the actual usage of the broadcast data is necessary. In [56],
this hot-spot is analytically derived. In [25] and subsequently in [24], the authors
recognize that the problems of channel allocation, data classification and item
scheduling are rather interconnected and treat them together.

TC-AHB [48] is a hybrid broadcast model for dynamic and time-critical com-
munication environments. Compared to previous approaches, the notion of dead-
lines is included. GDS [70] is a hybrid system, which correctly identifies that
the handled data items have an arbitrary size. Thus, broadcast schedules con-
sidering fixed data item size cannot perform optimally, since their optimization
policy founds on unrealistic assumptions. The proposed solution is based on two
analytical models, modeling both the on-demand and the broadcast channel.

4.1.4 Evaluation of Data Broadcast Modes

Having presented the three broadcast modes, we summarize our discussion by
comparing them in Table 4.2 according to specific criteria. The criteria are weighed
using the symbols of Table 4.1:

Performance is clearly dependent on the application domain and the client pop-
ulation. Push-based systems exhibit almost unlimited scalability, while as already
mentioned on-demand systems are suitable to relatively small client population.
However, push-based systems do not receive explicit client requests, and therefore
remain unaware of changes in the population or the load. Primarily hybrid and
secondarily on-demand systems, introduce increased server and client complexity.
Nonetheless, this enables enhanced application generality. Push-based systems
typically operate in a specific application domain.
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Table 4.2: Evaluation of data broadcast modes

On-demand | Push-based | Hybrid
Performance 0 0 0
Scalability - - ++ +
Self adaptiveness ++ - +
Server complexity - + -
Client complexity - 4 B
Application generality +4+ - - +

4.2 Database Broadcast Systems

The previous section discussed general data broadcast systems, namely systems
that do not consider the content or semantic dependencies between broadcast
data items. However, as already described in Section 3.3, in the case of database
data items, namely when clients issue queries and not data item requests, efficient
data broadcast becomes more complex. The maintenance of the ACID properties
becomes a major issue. [107] summarizes the most important issues in mobile
transaction management. The following paragraphs describe several proposed
solutions.

Consistency and Concurrency

[124] addresses the problem of ensuring consistency and concurrency of client
read-only transactions in the presence of updates in push-based broadcast. Its
authors propose four scalable techniques. Scalability is achieved as a consequence
of the fact that query processing is performed locally. The selection between these
techniques depends on the expected behavior in terms of concurrency (percentage
of accepted transactions), processing overhead, size, latency, currency (database
state seen by the clients) and disconnection tolerance.

BCC-TI [94, 95] is a concurrency control protocol adapted from the optimistic
concurrency control with forward validation protocol. The protocol, which is push-
based, offers autonomy between the mobile clients and the server such that mobile
clients can read consistent data off the air without contacting the server. To reduce
the number of unnecessary transaction restarts, so that the timeliness of mobile
transactions can be enhanced, the protocol is based on timestamp ordering. By
exploiting the semantics of read-only transactions, the timestamp ordering tech-
nique profits from the separate processing and flexible adjustment of serialization
order.

[119] considers on-demand query processing in mobile environments, which
involves join processing among different sites including static servers and mobile
computers. Based on the semijoin operator, the authors propose query processing
methods for both join and query processing. According to the asymmetric features
of mobile computing systems, three different join methods are proposed, as well
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Figure 4.2: Chunking model of a relation (Source: [92])

as specific criteria to identify profitable semijoins. For multijoin query processing
three query processing schemes are also proposed.

[127], also in on-demand architectures, examines requests for multi-items. This
term refers to requests that need more than one data item to be served. The main
focus is on keeping transaction consistency, while minimizing access time.

In [137], the family of MVCC protocols for hybrid broadcast is proposed.
MVCC deals with mobile read-only transactions. To achieve consistency and
currency guarantees, its authors define four isolation levels (ILs), explicitly suited
for the specific domain.

Realizing that serializability as the correctness criterion may be expensive,
and more importantly perhaps even unnecessary in such environments, various
protocols [96, 124, 125, 138] attempt less demanding correctness requirements.
However, the exact semantic and temporal coherency properties associated with
them are not always clear. [126] provides adequate clarity by developing a general
theory of temporal and semantic coherency.

In [144], the problem of updates is examined under the name multiversion
data broadcast. The authors identify two basic multiversion organizations, namely
Vertical and Horizontal broadcasts, and propose an efficient compression scheme
applicable to both. They also examine the applicability of these schemes in the
context of both single disk and multiple disk broadcasts.

Chunking

[92] presents a data broadcast scheme based on chunking. Chunks are a regular
decomposition of the multidimensional space [44]. Figure 4.2 depicts the chunking
of a relation R along two dimensions on domains D; and Djy. Accordingly, the
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authors propose the decomposition of every query into appropriate chunks and
propose an indexing scheme to support it. To evaluate a query, mobile clients
listen to the broadcast semantic descriptor and identify qualified broadcast chunks.
Due to the fact that a qualified chunk might not cover all tuples required by the
query, the client may have to look for the remaining tuples from other chunks.

Despite its strong points, the system should only be considered for relatively
small client population because beyond being an on-demand system, it requires ad-
ditional interaction between server and client than most of the systems. Moreover,
there is a complexity overhead for its complicated indexing scheme. Unfortunately,
the authors do not provide extensive performance evaluation (especially compared
to previous approaches) in order to fully appreciate the merit of the work.

4.3 Mobile OLAP Suitability

Having presented the most important previous approaches, it is important to note
that our proposed solution, FCLOS, is neither a pure on-demand nor a push-based
nor a hybrid architecture. FCLOS reacts to explicit client queries and does not
employ any fixed broadcast program. In this sense, it could be classified as an
on-demand architecture. However, the subsumption based handling of incoming
queries and the extensive usage of broadcast resembles a push-based architecture.
Efficient and robust mOLAP cannot be provided by general data broadcast
systems presented in Section 4, regardless of the mode for the following reasons:

o Data semantics: Content or characteristics of data items are not considered.
On the contrary though, multidimensional data cubes are semantically con-
nected to each other.

e Thin/Fat clients: Due to the underlying assumption of thin clients, trans-
mitted data is processed for direct end usage. As mobile devices become
increasingly powerful, a lot of space for load balancing is open. Client lo-
cal processing, not only improves the performance of the entire system, but
enables offline functionality as well.

e OLAP end user behavior: OLAP end users typically navigate through the
requested data cubes, performing typical OLAP operations such as roll-ups
or drill-downs. This has to be considered in the design of the dissemination
system in order to avoid unnecessary transmissions.

o Offline functionality: The offline aspect is completely absent, again due to
the assumption of a thin client population. However, the entire concept of
mOLAP systems is founded on providing offline functionality. This is crucial
when considering that mobile devices are not permanently connected to a
network.

Beyond the above observations, different broadcast modes exhibit additional
shortcomings. On-demand systems are notoriously not scalable, since they fail
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to keep up with growing client population and consequently growing number of
incoming requests. Although they can efficiently serve a limited number of end
users, they are definitely inappropriate as this number increases.

Scalability is addressed by push-based data broadcast. Nevertheless, conven-
tional push-based broadcast is also unsuitable to mOLAP for the following reasons:

e Data population: The number of handled data items in mOLAP is not lim-
ited, which is a common assumption of existing push-based systems. Data
items in mOLAP are query answers. As the number of possible queries is
practically infinite, a typical broadcast schedule cannot be employed.

e Data item size: Data items do not occupy relatively small size (e.g., web
pages), which is also a common assumption of existing push-based systems.
Multidimensional data cubes are items order of magnitude bigger than web

pages.

Moreover, not only in mOLAP but generally, push-based systems unnecessarily
consume bandwidth when the number of incoming requests is relatively low.

Hybrid dissemination systems suffer more or less from the aforementioned ob-
servations. Although they are theoretically self adaptive, by dynamically assigning
hot data items to push channels and cold data items to pull channels, in practice
this incurs increased complexity and maintenance overhead.

mOLAP could borrow some ideas by database broadcast systems presented
in Section 4.2, since these systems do consider data content. Nevertheless, the
existing solutions focus on issues that are practically of minor importance for

mOLAP:

o Updates-Consistency: In database broadcast systems, the dependencies be-
tween broadcast systems are considered with the objective to ensure data
consistency, particularly in the presence of updates. In mOLAP, data is
not so dynamic and the control overhead to ensure updated data cannot be
justified.

e Dependencies between data items: The dependencies between data items in
mOLAP is based on subsumption, which means that from one data object
(sub-cube), other data objects (sub-cubes) can be computed. In database
broadcast systems, data dependencies are considered in the sense that mul-
tiple broadcast data items may together form the query answer.

4.4 Summary

Limited wireless bandwidth has been mainly addressed by data broadcast. Data
broadcast is a 1-to-n process, enabling enhanced scalability. The capacity of data
transfer from the server to the mobile client (downstream communication) is sig-
nificantly larger than that of the mobile client to the server (upstream commu-
nication). Data broadcast can be managed in three modes: on-demand, push
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and hybrid. The choice of the broadcast mode is dependent on the application
scenario.

General broadcast systems do not consider the semantics of broadcast data.
Therefore, if used for mOLAP, they would ignore the semantic connection between
sub-cubes, according to the subsumption. Database broadcast systems, dealing
with queries and not data item requests, do consider content. However, the main
issues of such systems, such as the maintenance of the ACID properties, are of
little or no importance for the mOLAP domain.
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