
Part I

Background Technologies

7





Chapter 2

Multidimensional Databases

mOLAP research involves two different technologies: multidimensional databases
and data management in wireless, mobile networks. A thorough presentation of
these two areas is beyond the scope of this document. Instead of that, this chapter
focuses on their properties and characteristics, which are directly thesis relevant.

The chapter is structured as follows: Section 2.1 describes general concepts
of the multidimensional space. In Section 2.2, we present the fundamentals of
multidimensional models. Section 2.3 presents the data cube operator, while in
Section 2.4 and Section 2.5, we elaborate on the two fundamental types of aggre-
gation lattices and the derivation possibilities between their nodes, respectively.
Section 2.6 explains the process of query mapping. Finally, in Section 2.7, we un-
derline the distinctive characteristics of multidimensional, compared to relational,
querying.

2.1 Multidimensional Space

Data that can be conceptually viewed in a multidimensional space, where each di-
mension represents a data attribute, is referred to as multidimensional databases
(MDDBs). Naturally, there are many more definitions. In MDDBs, a data object
can be represented as a point in a multidimensional space. For many applications,
viewing data in this form is natural and intuitive. Although this might sound
weird, even tabular data, such as relations, can be thought of as multidimensional
(tables). For example, consider Table 2.1, which represents a three dimensional
sales relation with four attributes: sales (prodID, storeID, timeID, sales). Fig-
ure 2.1 delivers a multidimensional view of the relation.

There are several reasons for which a multidimensional view of data might be
preferable. The most important ones are:

1. Summarization: It is probably the most significant reason for viewing data
multidimensionally. In databases used for decision support, summary data
is used in order to extract meaningful information. Since the amount of data

9



10 2. Multidimensional Databases

Table 2.1: Fact table example

prodID storeID timeID sales
81 10 12 15789
78 13 8 13555
34 31 13 578
11 32 13 213
35 80 22 78956
23 88 4 87768
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Figure 2.1: Multidimensional view of Table 2.1

substantially grows over time, decision makers have to analyze aggregated
data.

2. Clusters: In multidimensional space, it is natural to view or even seek
clusters. By simply plotting the multidimensional space, such clusters can
be identified more easily. Even in the trivial example of Fig. 2.1, it is easy
to distinguish 3 minor clusters.

3. Hierarchies: A system may contain too many details for a single abstraction
level to be intellectually manageable. Thus, dimensions can have category
hierarchies associated with them. The capability of accessing information at
different levels of abstraction is of major significance. In this sense, summa-
rization can take place over any hierarchical level and not over the dimension.

The term MDDB refers to two kinds of databases: Statistical databases (SDBs)
and OLAP databases. They have completely different origins. SDBs have a socioe-
conomic application field, while OLAP a business application field. Apart from
the different emphasis given to the data usage and the research done (privacy in
SDBs, while efficiency and data analysis in OLAP), another distinction is that
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SDBs are usually derived from other base data, while OLAP databases typically
directly represent the base data.

Elaborating on the similarities and differences between statistical and OLAP
databases is beyond the scope of this document (a more thorough discussion can
be found in [146]). In the context of the thesis, it is imperative to underline the
fact that both of them handle multidimensional data sets and are concerned with
statistical summarizations over the dimensions of the data sets. Consequently,
although this work is primarily motivated and intended for OLAP databases, the
concepts and solutions introduced are applicable for SDBs as well.

2.2 Conceptual Multidimensional Models

In DWs, in contrast to other application domains, the way in which end users
view the information profoundly influences data representation, not only at the
physical and logical level, but at the conceptual level as well. Already during
the first stages of data warehousing evolution, it was realized that traditional
conceptual database models, such as the entity-relationship model, do not provide
a suitable description of the fundamental aspects of such applications. Thus, a
plethora of multidimensional data models has been proposed. Unfortunately, there
is still no consensus on formalism or terminology.

Our work does not assume a specific multidimensional model. Throughout
this document we assume a general multidimensional model that includes the two
widely recognized entities of any multidimensional schema: the fact table and
the dimension. The fact table is the subject of decision-oriented analysis. It
usually consists of the measurements, metrics or facts of a business process, and
is represented by means of a data cube. Dimensions correspond to a perspective
under which facts can be meaningfully grouped and analyzed. Thus, in retail
business for instance, a fact is ”sales” and possible dimensions are the location of
the sale, the type of product sold, and the time of the sale.

Practitioners usually model these notions using structures that refer to the ap-
plication’s practical implementation. Indeed, a widespread notation used in this
context is the star schema, in which facts and dimensions are simply relational
tables connected in a specific way. Such an example is given in Fig. 2.2. Clearly,
this low-level point of view barely captures the essential aspects of the application.
Conversely, in conceptual models these concepts would be represented in abstract
terms. This is fundamental for concentration on the basic, multidimensional as-
pects that can be employed in data analysis, as opposed to getting distracted by
the implementation details.

Conceptual models can be divided into three main categories:

• Cube models: Simple cube models [52, 58, 156] treat data in the form of
D-dimensional cubes. They all have a more or less explicit notion of fact,
measure and dimension. However, the hierarchy between the various levels
of aggregation in dimensions is not explicitly captured by the schema.
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Figure 2.2: Star schema

• Multidimensional models: Multidimensional models [11, 159, 76] explic-
itly capture the hierarchies in the dimensions, providing a better understand-
ing of the application and support for easy data cube manipulation. This
information may also be useful for query formulation and optimization.

• Statistical models: Statistical data models are usually based on the no-
tions of summary table (ST), summary attribute and category attribute.
Actually, there is a close correspondence between these notions and the con-
cepts used in multidimensional data models. Specifically, a ST essentially
corresponds to a data cube, a summary attribute to a measure, and a cat-
egory attribute to a dimension. As in multidimensional models, a category
attribute is always associated with a hierarchy of concepts. A number of
operators are usually introduced in order to manipulate, concatenate and
aggregate STs [130, 146].

2.3 Data Cube

Operators constitute an essential part of data models. A fundamental operator
of multidimensional data models is the data cube operator, [52, 53, 58, 115]. The
data cube is the union of all possible group-by operators applied on a fact table. In
statistics, this structure is known as multi-way table. A data cube stemming from
a schema with D dimensional attributes has 2D possible sub-cubes. Figure 2.3
depicts the data cube produced by the data of Table 2.1 and 2 sub-cubes derived
from this cube.

According to the theory proposed in [101]:

Definition Given for a type t and its domain dom(t):

1. A grouping Li is defined on a set of selection expressions σai,1 , ..., σai,ni
.

2. The grouping Li is finer than Lj if either ai,k → aj,l or (ai,k∧aj,l)↔ 0 for all
k(1 ≤ k ≤ ni) and l(1 ≤ l ≤ nj). The trivial grouping is denoted by ALL.
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Figure 2.3: Data cube

3. The grouping Li is a refinement of the grouping Lj � (Li � Lj) if each group
gi,k is subset of exactly one group gj,l. In this case, an anchoring function
ancLi,Lj and a relation descLi,Lj that is inverse to ancLi,Lj are defined for
each pair Li � Lj .

4. A hierarchically ordered dimensionD consists of a type and a set of groupings
({LD

1 , ..., L
D
n , ALL},�) that form a lattice.

5. Hierarchically ordered dimensions are well defined if all groupings form par-
titions (are pairwise disjoint and form a cover).

According to [100], only well-defined hierarchical dimensions are considered.
The time dimension is a typical example of a dimension. Used are types Seconds,
Minutes, Hours, Days, Weeks, Months, Y ears and the linear partial orders
Seconds � Minutes � Hours � Days � Months � Y ears, Days � Weeks,
Weeks � Months, Weeks � Y ears, where the function ancMinutes,Hours maps
minutes (e.g., 10:02 am) to the hour they are embedded (e.g., 11 am).

Definition A cube schema C = (D1, ..., Dm,M1, ...,Mk,ΣC) is given by:

1. A set of well defined dimensions {Di|1 ≤ i ≤ m} that form a key of C.

2. A set of fact attributes M1, ...,Mk, an associated set of aggregation functions
F , and a set of associated transformations t1, ..., tk ∈ T .

3. A set of integrity constraints Σc.

Definition A cube algebra is given by:

1. A cube schema C.

2. An algebra consisting of at least navigation, selection, projection and split
functions.
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Table 2.2: Declared hierarchies of a 3-dimensional data cube

Hierarchies
Product Store Time
ALL P0 ALL T0

↑ ↑ ALL S0 ↑ ↑
Category P1 ↑ ↑ Year T1

↑ ↑ StoreId S1 ↑ ↑
Code P2 Day T2
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Figure 2.4: DCL of a 3-dimensional data cube

2.4 Aggregation Lattices

This paragraph describes the notion of the aggregation lattice. Aggregation lattices
provide a visual representation of a data cube, its sub-cubes and the relationships
between them. There are two types of aggregation lattices, depending on the
inclusion of hierarchical levels of dimensions or not. Table 2.2 contains the declared
hierarchical levels of the multidimensional schema of Table 2.1.

Data Cube Lattice

A data cube stemming from a schema with D dimensional attributes has 2D

possible sub-cubes. Given multidimensional data, the Data Cube Lattice (DCL)
is the lattice of the set of all possible grouping queries that can be defined on the
foreign keys of the fact table [22]. It is a directed, acyclic graph, which depicts
the relationships between all 2D sub-cubes. Assume the 3-dimensional schema
of Table 2.1. Figure 2.4 shows the corresponding DCL. Each of every possible
sub-cube is represented in the lattice by one node.
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DCL nodes can be labeled by a sequence of bits (bitmap), as depicted in
Fig. 2.4. The number of necessary bits is equal to the dimensionality of the cube.
Each bit represents one dimension. If the dimension exists in the node, then the
bit is set to 1, otherwise it is set to 0.

Note that the hierarchical levels of each dimension are completely ignored in
DCLs.

Hierarchical Data Cube Lattice

Hierarchies on aggregation lattices were introduced in [60, 148]. A hierarchical
Data Cube Lattice (hDCL) is a directed, acyclic graph, which depicts the rela-
tionships between all

∏D
n=1(gri + 1) sub-cubes, given a D-dimensional cube and

the number of grouping attributes gri of each dimension.
Note that this definition considers a limited set of grouping attributes. It

considers only the dimension’s key attribute and the non key attributes that are
functionally dependent on it (practically an attribute hierarchy). If the set of
grouping attributes includes attributes not functionally dependent on the key at-
tribute as well, then the produced lattice is called MD-lattice (Multidimensional
lattice), as defined in [22]. MD-lattices are not considered in this thesis, since the
number of their nodes is so high, that the fundamental objective behind query
mapping of reducing the handled data items cannot be fulfilled. Furthermore, the
hierarchies are strict (not weak [98]), namely each object at a lower level belongs
to only one value at a higher level.

It is important to underline that the only key difference between DCL and
hDCL is the degree of detail. Figure 2.5 contains the hDCL that corresponds to the
schema of Table 2.2. Essentially, the DCL is a subset of the respective hDCL (gray
nodes of Fig. 2.5). There are (grP +1)×(grS+1)×(grT +1)=3×2×3=18 possible
views or sub-cubes. Similarly to the bit notation of the DCL, we notate hDCL
nodes with a sequence of digits. Each digit represents the dimension and the
hierarchical level. If the dimension does not exist in the node, then the digit is
set to 0, otherwise it is set to the number of hierarchical level. For example, the
sub-cube P2S1 in Fig. 2.5 is marked with 210. The first digit is 2, and indicates
the second hierarchical level of dimension Product, the second digit is 1 indicating
the first hierarchical level of dimension Store, and the last digit is 0, indicating
that dimension Time has been projected.

2.5 Derivability - Subsumption

Consider two queries: q1 and q2. q1 is dependent on q2 (q2 � q1) when q1 can be
answered by using the result of q2. This property is known as query dependency.
The reuse of queries in MDDBs is mainly related to the data cube operator [53, 58].
[60] notes that some of the group-by queries in the data cube query can be answered
using the results of other. In MDDBs, there are two types of query dependencies:
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Figure 2.5: hDCL of a 3-dimensional data cube

• Dimension dependency is caused by the interaction of the different di-
mensions with one another (e.g., P1 dependent on P2S1).

• Attribute dependency is caused within a dimension by attribute hierar-
chies (e.g., P1S1 dependent on P2S1).

Data cubes are created from group-by queries, for which dependencies exist.
Consequently, dependencies also exist between the produced sub-cubes. The nodes
of an aggregation lattice represent different views of the data cube, whereas its
arcs represent derivability of sub-cubes.

Derivability is not a new research area. [134] back in 1981 introduced it in
the context of statistical databases, by checking derivability of summary data un-
der different classifications. In the following years, derivability became extremely
important, both in relational and multidimensional databases, in the context of
materialized views [57, 12, 16, 86, 79]. When using materialized views in MDDBs,
it is critical to find the set of materialization that maximizes the performance in
answering a given set of representative queries. The tradeoff consists of choosing
a set of materialization able to speed up query response time, while minimizing
the overhead to keep materialization updated.

A sub-cube can be derived by another sub-cube, if there is a path in the
aggregation lattice that connects the corresponding nodes. This is known as sub-
sumption. The term additivity is also used for this notion [63]. This derivation
is feasible for distributive SQL aggregation functions such as sum, min, max or
count, but is neither allowed for algebraic functions such as average or covariance
nor for holistic functions like median [99, 100, 101]. Aggregating over a time di-
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Table 2.3: Derivability for aggregate functions

Function Class Subsumption
sum distributive yes
min distributive yes
max distributive yes
count distributive yes
avg algebraic no (yes if count table at hand)

covariance algebraic no
median holistic no
rank holistic no

mension is allowed if the fact (measure) is of type flow. Table 2.3 summarizes
subsumption feasibility for the most common aggregate functions.

The ancestor and descendant operators, as defined in [22, 160], also reveal
query dependencies. The result of the ancestor operator ⊕ on two queries is
the smallest query containing all necessary information to answer both queries,
whereas the descendant operator 	 computes the greatest query among the set of
attributes characterizing the queries that can be computed by the two queries. In
this document though, we do not use the term ancestor as an operator, but as a
property to representing sub-cube derivability. In this context, a lattice node na

is an ancestor of a lattice node nb, if there is a downward path from na to nb in
the lattice.

hDCL arcs represent dimension and/or attribute dependencies, whereas DCL
arcs represent exclusively dimension dependencies.

2.6 Query Mapping to Aggregation Lattices

Query mapping is the process of mapping a query to its corresponding node in
the aggregation lattice. It shall be shown that query mapping is a fundamental
component in mOLAP systems. We provide an example of how a query would be
mapped in the two discussed lattices. Assume the following query targeting the
schema of Table 2.2 and one measure attribute. Without loss of generality, we use
Multidimensional Expressions (MDX) as the query language.

SELECT

{ [Product].[Category].[Drinks] } ON COLUMNS,

{ [Time].[Year].AllMembers } ON ROWS

FROM [SalesCube]

This query is mapped to node PT of the DCL, since only dimensions Product
and Time are involved. Concerning the hDCL, the query is mapped to node P1T1,
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since the member Drinks belongs to the hierarchical level Product.Category (P1),
and all members of the hierarchical level Time.Year must be retrieved (T1).

It is important to underline though that query mapping is not always so
straightforward. Selections or clauses might not target the attributes of the fact
table only, but the attributes of the dimension tables as well. In this case, the
query cannot be answered by the respective lattice sub-cube only, and thus addi-
tional dimension table data are necessary.

2.7 Querying Multidimensional Data

In the same way that multidimensional modeling is based on the metaphor of the
data cube and on the concepts of facts, measures and dimensions, the techniques
to retrieve such data are based on the idea of determining the cube of interest and
navigating through it. Multidimensional querying is profoundly different than
relational querying. The presence of aggregations is one of the most significant
distinctive features of OLAP systems with respect to conventional transactional
systems. We restrict our discussion to the characteristics of multidimensional
querying that are more thesis relevant:

• Subsumption: The answer to a multidimensional query is a sub-cube. Ac-
cording to the subsumption, multiple queries that refer to sub-cubes for
which subsumption can be applied, can be answered using the ancestor sub-
cube only.

• Variant sizes: Each sub-cube occupies a different (physical) size. The
size is dependent not only on the cube’s dimensionality and the cardinality
of its dimensions, but on its physical storage implementation as well. For
example, a typical DW might contain a dimension SEX with cardinality 2
(male, female) and a dimension Product with cardinality 10K. Moreover, the
average dataset produced by a multidimensional range query is on average
much bigger in size than the one produced by a relational query.

• Skewness: Data cubes typically contain hot areas because some sub-cubes
are more often requested. Due to the fact that queries refer to dimensions
and some dimensions are more popular, data cube areas representing these
dimensions are more likely to be queried.

• End user behavior: End users typically navigate through the query results,
performing typical OLAP operations such as rolling-up, drilling-down, dicing
and slicing. In this sense, one sub-cube can be used to answer more than
one multidimensional query.

Naturally, the aforementioned properties of multidimensional queries directly in-
fluence the design of mOLAP architectures.
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2.8 Summary

This chapter gives a brief overview of multidimensional databases. Beyond the
presentation of general concepts, our discussion concentrates on the data cube, its
operators, aggregation lattices, subsumption between aggregation lattice nodes, as
well as on query mapping. There are two types of aggregation lattices, depending
on the inclusion of hierarchical levels of dimensions or not.

As to be seen in the following chapters, point to point communication for
mOLAP exhibits poor performance. Therefore, mOLAP architectures use query
mapping to the corresponding lattice nodes in order to reduce the number of
handled data items and exploit subsumptions between them. In mOLAP systems,
when mapping queries to lattice nodes, two queries corresponding to different
lattice nodes for which a dependency exists, do not have to be served by two
separate transmissions, but from a single broadcast instead.
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