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We investigate the disorder-driven phase transition from a fractional quantum Hall state to an Anderson
insulator using quantum entanglement methods. We find that the transition is signaled by a sharp increase
in the sensitivity of a suitably averaged entanglement entropy with respect to disorder—the magnitude of its
disorder derivative appears to diverge in the thermodynamic limit. We also study the level statistics of the
entanglement spectrum as a function of disorder. However, unlike the dramatic phase-transition signal in
the entanglement entropy derivative, we find a gradual reduction of level repulsion only deep in the
Anderson insulating phase.
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Introduction.—Following the advances in understand-
ing the fascinatingly complex phase diagram of two-
dimensional electron systems in a strong perpendicular
magnetic field in the fractional quantum Hall (FQH)
regime [1–12], there has been intense interest in phase
transitions in topological systems [13–17]. Disorder is a
ubiquitous ingredient that may affect, even drive such phase
transitions. In fact, it has been understood since the original
explanation of the integer QH effect [18] that disorder plays
an essential role in providing a finite domain for various QH
states. Its presence allows a detailed study of QH plateau
transitions in experiments [19–22], and in numerical studies
of noninteracting models [23–27].
By contrast, there have been relatively few numerical

studies of transitions fromFQHstates drivenbydisorder. The
breaking of spatial symmetries by random disorder makes
numerics evenmore challenging for thismany-body problem
with an exponentially large Hilbert space. One study [28,29]
over a decade ago examined the disorder-driven transition
from the f ¼ 1=3 filling FQH state to the insulator using the
ground-stateChern number as a diagnostic. Itwas shown that
with increased disorder, the gap characterizing the FQH state
collapsed, leading to an insulating phase at large disorder.
Further, the calculated disorder dependence of the gap agreed
with experiments.
In recent years, topological phases have been charac-

terized by the underlying patterns of quantum entanglement
[30–32]. Besides the vast theoretical literature, entangle-
ment has been the subject of recent experiments [33] and
related proposals [34]. Though many studies have been
done for clean FQH states using the concepts of entangle-
ment entropy and the entanglement spectrum (see
Refs. [35–51] and references therein), there is relatively
little corresponding effort [52,53] in the presence of
disorder. In this work, we fill this void by studying the

ground-state entanglement properties in a disordered f ¼
1=3 FQH system, as the disorder strength W is increased.
We find that the magnitude of the derivative of a suitably
defined entanglement entropy S with respect to W exhibits
a sharp peak at a characteristic value ofW ¼ Wc. The peak
increases with system size, and is consistent with a
divergence in the thermodynamic limit. We identify this
behavior as signaling the FQH-insulator phase transition.
Besides being a completely different diagnostic of the
phase transition, our method (which only uses periodic
boundary conditions) is significantly faster than calculating
Chern numbers [28,29], which requires integrating over
boundary conditions. We also analyze the entanglement
spectrum (ES), and find that its level statistics undergoes an
evolution which differs from that of highly excited states
studied very recently in the context of many-body locali-
zation [54–56]. In our case, the low-energy part of the ES
obeys Gaussian Unitary Ensemble (GUE) statistics at low
W, and changes to Poisson only at very large W.
When the entanglement entropy changes its scaling

behavior at a phase transition, e.g., from a volume law
to an area law, one can define an “order parameter” by
dividing by the volume. One thus obtains a zero order
parameter on one side of the transition, and finite on the
other, just like symmetry-breaking transitions. In our case,
however, the entanglement entropy follows an area law on
both sides [35,36,57], so this method does not work.
Instead, we analyze our data using finite-size scaling
(FSS) ideas (see, e.g., Ref. [58]), and do obtain a good
FSS collapse of the data [59]. However, the exponent ν that
we obtain for the diverging length scale violates the
expected inequality ν ≥ 2=d for d-dimensional disordered
systems [60–62], a violation also seen in recent studies of
many-body localization [63,64]. We provide possible
explanations of this result in our concluding remarks.
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Model.—We consider N interacting electrons in a two-
dimensional random potential on a square with periodic
boundary conditions (torus geometry). Landau levels are
formed in the presence of a perpendicular external mag-
netic field. We assume that the energy scales of both
interaction and disorder are small compared with the
Landau level spacing, so we can focus on the lowest
Landau level (LLL). The Hamiltonian of the system is
H ¼ PLLL½

P
N
i<j Vðri − rjÞ þ

P
N
i¼1UðriÞ�, where PLLL is

the projector to the LLL, and VðrÞ and UðrÞ are the
interaction and the random potentials, respectively. We
consider Gaussian white noise disorder with strength W,
satisfying hUðrÞi ¼ 0 and hUðrÞUðr0Þi ¼ W2δðr − r0Þ. We
further suppose that electrons interact via Haldane’s pseu-
dopotential [65] VðrÞ ∝ ∇2δðrÞ [66].
We consider partially filled LLL at filling f ¼ N=

Nϕ ¼ 1=3, where Nϕ ¼ 3N is the number of orbitals in
the LLL. In clean samples with W ¼ 0, Haldane’s pseu-
dopotential guarantees that the ground states are exact
Laughlin states [67] protected by energy and mobility gaps
to excited levels. Increasing disorder gradually closes both
gaps [28,29], leading to a phase transition from the
topological phase. For W ¼ ∞, we recover the noninter-
acting limit, where extended single-particle states only exist
at the center of the LLL band [24]. Since all single-particle
states below the Fermi level at f ¼ 1=3 are localized, the
ground state is an Anderson insulator. In the following, we
monitor the ground-state entanglement properties as a
function of W [68].
Ground-state entanglement entropy.—The entanglement

in a bipartite system can be measured by the von Neumann
entropy of one subsystem. We make two cuts at orbital 0
and ⌈Nϕ=2⌋ − 1, respectively, where ⌈x⌋ is the integer part
of x. This procedure divides Nϕ LLL orbitals into sub-
systems A and B with boundary length L ¼ 2 ×

ffiffiffiffiffiffiffiffiffiffiffi
2πNϕ

p

(in units of the magnetic length lB), consisting of orbitals
0;…; ⌈Nϕ=2⌋ − 1 and ⌈Nϕ=2⌋;…; Nϕ − 1, respectively. In
clean samples, there are three exactly degenerate Laughlin
states. Disorder splits them. However, in the topological
phase, the degeneracy is recovered in the thermodynamic
limit [69]. Such a topological degeneracy motivates us to
consider a ground-state manifold containing the lowest
three eigenstates jΨi¼1;2;3i of the Hamiltonian at any W
for consistency, rather than a single eigenstate. Similar to
the situation of a single ground state, we define the ground-
state entanglement entropy in our case as SðρÞ ¼
−TrρA ln ρA, where ρA ¼ TrBρ is the reduced density
matrix of part A, and ρ is the density matrix describing
the ground-state manifold. There are several options to
choose ρ, for example, by using either SðρÞ with ρ ¼
1
3

P
3
i¼1 jΨiihΨij or S ¼ 1

3

P
3
i¼1 SðjΨiiÞ. Both of them

include the contributions of all jΨii’s, thus minimizing
the finite-size effect. Moreover, they give similar results
[70], so we adopt the first one in what follows.

At each W, we implement different disorder configura-
tions and compute the sample-averaged entanglement
entropy hSðρÞi. The evolution of hSðρÞi as a function of
W is shown in Fig. 1(a) for various system sizes. For a fixed
system size, hSðρÞi decreases withW. However, it increases
with the system size at a fixed W. hSðρÞi, although likely
suffering from finite-size effects for our small sizes, agrees
with an area law variation hSðρÞi ¼ αL − β [30–32] at all
W’s [Fig. 1(b)]. The extracted entanglement density α starts
to drop at W ≈ 0.4, providing a rough estimate for the
collapse of the Laughlin phase.
A more precise location of the phase transition can be

obtained from the derivative of the entanglement entropy
with respect to the disorder strength, i.e., dSðρÞ=dW.
To compute the sample-averaged derivative hdSðρÞ=dWi,
we average the derivative for each disorder configuration,
approximated by dSðρÞ=dW ¼ ½SðρÞjWþΔW − SðρÞjW �=
ΔW [71]. Figure 2(a) shows hdSðρÞ=dWi as a function
of W for various system sizes. All curves exhibit a
pronounced minimum at Wc ≈ 0.6, which gets deeper
and sharper with increasing system size. A double loga-
rithmic plot of its magnitude h ¼ jminhdSðρÞ=dWij versus
N [Fig. 2(b)] shows that h ∝ N1.35, consistent with a
divergence in the thermodynamic limit. We consider this
divergence to be a convincing signature of a phase
transition between two phases with different entanglement
properties.
Since the entanglement entropy obeys an area law in

both phases, for a continuous phase transition, we may
expect a scaling behavior for large size N of the form

(a)

(b) (c)

FIG. 1. (a) hSðρÞi versus W for N ¼ 4–9 electrons. (b) hSðρÞi
versus the cut length L for N ¼ 4–9 electrons at W ¼ 0, 0.6, 3,
and ∞. The dotted line is obtained by the linear fitting
hSðρÞi ¼ αL − β. (c) The entanglement density α versus W.
We averaged 20000 samples for N ¼ 4–7, 5000 samples for
N ¼ 8, and 800 samples for N ¼ 9 electrons. In (a) and (c), we
also give the data at W ¼ ∞.

PRL 117, 206801 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

11 NOVEMBER 2016

206801-2



SðρÞ ∝ N
1
2f½N1=ð2νÞðW −WcÞ�, implying dSðρÞ=dW ∝

N
1
2
þ1=ð2νÞf0½N1=ð2νÞðW −WcÞ�. Thus, Fig. 2(b) implies that

ν ≈ 0.6. In fact, we find that besides the smallest size
N ¼ 4, all the curves in Fig. 2(a) collapse onto a single
scaled plot [Fig. 2(a), inset] for ν ≈ 0.6.
The information of ground-state entanglement can

also be extracted from minimally entangled states (MES)
in the ground-state manifold. For all superpositions jΨi¼
sinθ1sinθ2jΨ1iþsinθ1cosθ2eiϕ1 jΨ2iþcosθ1eiϕ2 jΨ3i with
θ1, θ2 ∈ ½0; π=2� and ϕ1, ϕ2 ∈ ½0; 2πÞ, the local minima of
SðjΨiÞ in the parameter space spanned by (θ1, θ2, ϕ1, ϕ2)
correspond to the MES. In the presence of topological
degeneracy between jΨii’s, MES are essential for the
extraction of the topological entropy [72,73] and modular
matrices [73–75]. We numerically search all minimally
entangled states jΨi

mini; i ¼ 1;…;M in each sample [76],
and compute their average entanglement entropy Smin ¼
ð1=MÞPM

i¼1 SðjΨi
miniÞ. In Fig. 3, we show the sample-

averaged entropy hSmini as a function of W. At small
disorder, hSmini is almost a constant, indicating that the
ground-state topological properties are the same as those of
Laughlin states in clean samples. hSmini starts to drop at
W ≈ 0.6, signifying a phase transition. Strikingly, the critical
W obtained from the minimally entangled states is the same
as that suggested by the singular behavior of hdSðρÞ=dWi.
Ground-state entanglement spectrum (ES).—The spec-

trum of the reduced density matrix ρA usually contains more
information than the entanglement entropy, which is a single
number obtained from the whole spectrum. Therefore, we
now consider the ground-state ES fξig—the spectrum of
− ln ρA. Since the number of electrons NA in part A is still
conserved in the presence of disorder, we focus on the ES
with NA ¼ ⌈N=2⌋, which has the largest rank.
In clean torus samples, the ES levels, when plotted

versus their momenta, match the combination of two edge
modes of pertinent FQH states [39,77]. Disorder breaks
the translational symmetry; therefore, we expect that

ground-state properties will be revealed by the statistics
of the ES [78]. We compute the distribution PðsÞ of the
normalized level spacing sn=hsni, where sn ¼ ξn − ξn−1
with ξn sorted in ascending order, as a diagnostic of ES
level statistics. To allow for variation between different
parts of the ES, we examine level statistics in different
windows of ξ in the density of states (DOS) DðξÞ. Results
from three individual ground states are quite similar [70],
so we consider DðξÞ and PðsÞ averaged over three ground
states below. This gives us more statistics in the evaluation.
With increasing W, ES levels with large ξ suffer from
machine precision issues [70]. Consequently, we limit our
discussion to those with ξ ≤ 40, which are reliable.
With increasing W, we observe the development of

localization in the ES. Localization first appears among
low ES levels, then expands to higher −ξ levels at largerW.
In Fig. 4, we show the ES level statistics in three windows
[79] for N ¼ 9 electrons at various disorder strengths. At
W ¼ 0.4, we find strong level repulsion governed by GUE
in all three windows; thus, the level spacing of the entire ES
follows GUE [Fig. 4(a)]. The same ES level statistics is
found atW ¼ 0.6 [Fig. 4(b)] andW ¼ 1 [Fig. 4(c)]. Only at
significantly higher W ¼ 10 is there a significant change
in the level statistics—while PðsÞ in the two higher −ξ
windows still obeys GUE, the level repulsion in ξ ∈ ð0; 10�
is weaker, where GUE is replaced by a semi-Poisson
distribution [Fig. 4(d)]. At W ¼ 100, the spacing of the
low ES levels becomes almost Poissonian without level
repulsion, as for a localized system. Simultaneously, the
level statistics in the middle window has evolved to semi-
Poisson, while GUE is still preserved in the third window
[Fig. 4(e)]. Finally, in the noninteracting limit withW ¼ ∞,
we observe the Poisson distribution for all ES levels
below ξ ¼ 40 [Fig. 4(f)]. It should be emphasized that
this evolution of the ES takes place at significantly higher
values of W than the ground-state phase transition at
W ≈ 0.6 indicated by the entanglement entropy derivative.
We also track the number of reliable ES levels below

ξ ¼ 40 to get more insights about the ES evolution. We find
that more and more ES levels move to the ξ > 40 region
with increasing disorder [80]. At W ¼ ∞, only a small

(a) (b)

FIG. 2. (a) hdSðρÞ=dWi versus W for N ¼ 4–9 electrons,
replotted in terms of scaled variables hdSðρÞ=dWi=N1

2
þ1=ð2νÞ

and N1=ð2νÞðW −WcÞ in the inset with Wc ¼ 0.6 and
1=ν ¼ 1.7. (b) The depth of the minimum h versus N on a
double logarithmic scale. The dashed line corresponds to
h ∝ N1.35. We averaged 20000 samples for N ¼ 4–7, 5000
samples for N ¼ 8, and 800 samples for N ¼ 9 electrons.

FIG. 3. hSmini versus W for N ¼ 4–8 electrons. We averaged
2000 samples for N ¼ 4–7 and 1000 samples for N ¼ 8
electrons. The data at W ¼ ∞ are also given.
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fraction of ES levels (18% for N ¼ 9 and 8% for N ¼ 10
electrons) forms one peak below ξ ¼ 40 [Fig. 4(f)], where
the Poisson distribution dominates the level statistics. The
majority of ES levels have moved to the ξ > 40 region,
which we cannot track due to the machine precision
problem. Since ES levels in the rightmost part of the
DOS always display GUE [Figs. 4(a)–4(e)], we might
expect that the level statistics in the ξ > 40 region at
W ¼ ∞ also follows GUE. Since hDðξÞi is almost zero at
ξ ¼ 40, this would imply that there is an entanglement gap
separating the Poisson part and GUE part for W ¼ ∞.
Summarizing the analysis above, we can obtain the

following picture of the ES evolution. The entire ES
follows GUE at small disorder [Figs. 4(a)–4(c)]. With
the increase of W, localization is first activated among low
ES levels, then propagates towards the higher −ξ region,
characterized by the evolution of level statistics from
GUE to semi-Poisson, then to Poisson distribution
[Figs. 4(d)–4(f)]. However, ES levels with GUE still exist,
which are located at higher and higher ξ with the expansion
of the DOS [Figs. 4(d), 4(e)]. Finally, in the noninteracting

limit, the Poisson part forms a wide and small peak in the
DOS [Fig. 4(f)], where only a small fraction of ES levels
are located. The majority of ES levels belong to the GUE
part with quite high ξ and is separated from the Poisson
part by an entanglement gap. We notice that another two-
component structure was also observed in the ES of highly
excited energy eigenstates, but with different level statistics
[54,55], reflecting the different evolution of the ground
state and highly excited states with disorder.
Discussion.—In summary, through extensive exact-

diagonalization studies of quantum entanglement proper-
ties of the f ¼ 1=3 FQH system with N ¼ 4–9 electrons on
a torus geometry as a function of disorder, we find that the
system undergoes a transition from the topological
Laughlin state to a (topologically trivial) Anderson insu-
lating state. The phase transition is signaled by a sharp peak
(at a characteristic disorder Wc ≈ 0.6) in the magnitude of
the disorder derivative of the entanglement entropy,
dS=dW, which appears to diverge in the thermodynamic
limit (much as thermal transitions are often characterized
by a singularity of the specific heat, which is proportional
to the temperature derivative of the thermal entropy). From
the scaling of the magnitude of the peak with size, as well
as the entire dS=dW curve as a function of disorder in the
vicinity of the transition, we obtain ν ≈ 0.6, which is very
different from the exponent ν ≈ 2.4–2.6 characterizing
plateau transitions [19–27]. Further, it violates the conven-
tionally accepted bound [60] for nontopological transitions
of disordered systems in two dimensions, which the result
for integer quantum Hall transitions of noninteracting
electrons does obey. A possible explanation for this
anomalous result could be corrections to finite-size scaling,
due to subleading terms in the entanglement entropy.
However, in that case, the good finite-size scaling of the
data will have to be accepted as being fortuitous. Violation
of the bound was also found in recent numerical studies of
many-body localization in one dimension [63,64].
Whatever the resolution of this scaling, the location of
the transition appears to be quite robust. We find similar
results for transitions of Coulomb interacting electrons
from other FQH states to the insulator, to be reported in a
subsequent publication [81]. Our results provide motivation
for experimental studies of the length exponent character-
izing the transition to the insulating state from various FQH
states. A study of the universality of the diagonal conduc-
tivity at such a transition [82] was motivated by theoretical
[83] and numerical [84] studies. In contrast to the entan-
glement entropy, the evolution of the level spacing of the
entanglement spectrum is found to occur at much larger
disorder, over an order of magnitude larger than the critical
disorder, showing evidence of level repulsion in the
entanglement spectrum until deep in the Anderson insulat-
ing phase.
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Haldane, D. A. Huse, Rahul Nandkishore, Nicolas

(a) (b)

(c) (d)

(e) (f)

FIG. 4. PðsÞ and the sample-averaged DOS hDðξÞi of the
ground-state ES below ξ ¼ 40 for N ¼ 9 electrons at
(a) W ¼ 0.4, (b) W ¼ 0.6, (c) W ¼ 1, (d) W ¼ 10,
(e) W ¼ 100, and (f) W ¼ ∞. At each W, we choose three
windows to compute PðsÞ, plotted versus s in the insets. The blue
crosses correspond to numerical data, while the red lines give the
theoretical prediction for the GUE, semi-Poisson (S.P.), and the
Poisson distribution, for which PðsÞ ¼ ð32=π2Þs2e−ð4=πÞs2 ,
PðsÞ ¼ 4se−2s, and PðsÞ ¼ e−s, respectively. Data from 800
realizations of disorder.
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