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Weak side of strong topological insulators
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Strong topological insulators may have nonzero weak indices. The nonzero weak indices allow for the existence
of topologically protected helical states along line defects of the lattice. If the lattice admits line defects that
connect opposite surfaces of a slab of such a “weak-and-strong” topological insulator, these states effectively
connect the surface states at opposite surfaces. Depending on the phases accumulated along the dislocation lines,
this connection results in a suppression of in-plane transport and the opening of a spectral gap or in an enhanced
density of states and an increased conductivity.
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Introduction. Band insulators come in topologically distinct
classes, where the topologically nontrivial classes have ex-
tended surface states, which are robust to small deformations
of the Hamiltonian [1–6]. The topological classification of
generic band insulators in three dimensions distinguishes
“strong” and “weak” topological indices [5,7]. A nonzero
value of the strong index signifies a “strong topological
insulator;” Surface states of strong insulators have a spectrum
with an odd number of Dirac cones, and they are robust to
disorder or other perturbations that break the lattice translation
symmetry. In a “weak topological insulator,” i.e., if the strong
invariant is trivial and the weak invariant is nontrivial, the
lattice translation symmetry is essential for the protection of
the surface states, although, as was pointed out in a seminal
article by Ringel et al. [8], the surface states of a weak
topological insulator show a remarkable robustness in the
presence of perturbations that preserve the lattice translation
symmetry on the average [9,10].

An important property of insulators with nontrivial weak
indices is that a line dislocation may have topologically
protected helical states, similar to the helical edge states of
a two-dimensional topological insulator [11,12]. The precise
conditions for the existence of such strongly protected states
depends on the Burgers vector b of the dislocation [12,13]. The
helical states along the dislocation line remain topologically
protected as long as the notion of a separate dislocation with
a well-defined Burgers vector remains valid. The presence of
nonzero weak and strong indices is not mutually exclusive, and
it is possible that a band insulator is at the same time a weak
topological insulator and a strong topological insulator. Such
a scenario is expected to be relevant, e.g., for BiSb compounds
or for the putative Kondo topological insulator SmB6 [14].
In principle, such a “weak-and-strong topological insulator”
combines an odd number of Dirac cones in the surface-state
spectrum with topologically protected helical states along
lattice defects.

Realistic topological insulators are often layered materials,
and flakes of such materials are usually investigated in a quasi-
two-dimensional slab geometry, in which the slab thickness is
large enough that surface states at the bottom and top surfaces
remain well separated. The presence of dislocation lines that
connect the top and bottom surfaces of a weak-and-strong
topological insulator, as shown schematically in Fig. 1(a), may,
however, provide a mechanism by which the two surfaces
are coupled nevertheless. As we show here, a finite density

of dislocation lines may lead to the opening of a gap in the
surface-state spectrum of a slab and to a strong suppression of
electron transport parallel to the surface, although the precise
scenario depends on the phase that electrons accumulate along
the dislocation line. The possibility of a coupling of surface
states at bottom and top surfaces via dislocation lines presents
a “weak side” of topological insulators with nontrivial strong
and weak indices; it does not exist for strong topological
insulators with trivial weak indices, for which dislocation lines
do not carry protected helical states. We now proceed with a
description of our results.

Description of dislocation line defect in terms of a π -flux
line. The weak indices νj = 0,1, j = 1,2,3, of a topological
insulator are defined with respect to a basis (G1,G2,G3)
of reciprocal lattice vectors. Together they uniquely define
a reciprocal lattice vector M = (1/2)(ν1G1 + ν2G2 + ν3G3)
[12]. As shown by Ran, Zhang, and Vishwanath, a lattice
dislocation binds an odd number of helical modes if and only
if its Burgers vector b satisfies [12]

eib·M = −1. (1)

In that case, there is an odd number of surface-state Dirac
cones within which electrons pick up a phase π upon going
around the position rd at which the dislocation line pierces the
surface. The low-energy Dirac Hamiltonian for such surface
states is accordingly

H = v(p + eA/c) · σ , (2)

where v is the surface-state velocity, p = (px,py), σ =
(σx,σy), and A(r) is the vector potential corresponding to a
flux line with flux hc/2e at position rd, a “π -flux [13].” Since
the total number of Dirac cones in the surface-state spectrum
is odd if the strong index ν0 = 1, the number of surface cones
described by a Dirac Hamiltonian without π -flux line is even
if b · M is an odd multiple of π [12]. For simplicity we focus
on the minimal model, in which there is a single surface state
with low-energy effective Hamiltonian (2) in the vicinity of a
dislocation line for which the condition (1) holds.

To elucidate the relation between the surface states and
the helical states propagating along the dislocation line, it is
instructive to analyze the eigenstates of the Hamiltonian (2) at
energy ε = �vk using polar coordinates (r,θ ). We choose the
π -flux line—the location where the dislocation line pierces the
surface—as the origin. This is a problem that previously was
considered in the context of graphene [15,16]. With the choice

2469-9950/2016/93(16)/161105(4) 161105-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.161105


RAPID COMMUNICATIONS

SBIERSKI, SCHNEIDER, AND BROUWER PHYSICAL REVIEW B 93, 161105(R) (2016)

FIG. 1. (a) Topological insulator slab of size L × W , with top
and bottom surfaces connected via randomly placed dislocation lines
with mean distance d . Ideal contacts are attached to the left and right,
for top and bottom surfaces separately. (b) Zero-angular-momentum
(m = 0) radial waves for nonzero wave number k at the surface of
the topological insulator are transmitted perfectly into and out of the
one-dimensional helical states along the dislocation line.

A = (�/2er)eθ , where eθ is the unit vector for the azimuthal
angle, the Hamiltonian (2) is invariant under rotations, so that
we can look for eigenstates of the total angular momentum
jz = lz + (�/2)σz. These have the form

ψm(r) =
(

ei(m−1)θφm+(r)
eimθφm−(r)

)
, (3)

where m is an integer and the radial wave functions φm±(r)
satisfy (

∂r ± m ± 1/2

r

)
φm∓(r) = ikφm±(r). (4)

For generic m there is a single regular solution of Eq. (4), which
describes the scattering of radial waves off the flux line. An
exception is the case m = 0, for which there are two linearly
independent solutions

φ0±(r) = αout
eikr

√
r

± αin
e−ikr

√
r

, (5)

for which the amplitudes αout and αin of outgoing and
incoming radial waves can be freely chosen. Since time-
reversal symmetry rules out backscattering for the m = 0
states and for the helical states propagating along the defect
line [17], the incoming m = 0 mode must be fully transmitted
into the outgoing defect state, and the incoming defect state
is fully transmitted into the outgoing m = 0 mode, as shown
schematically in Fig. 1(b).

Surface states in the presence of dislocation lines. We now
consider transport properties and density of states of surface
states for a slab geometry with multiple dislocation lines,
piercing the top and bottom surfaces at random positions, see
Fig. 1(a). We choose coordinates such that the bottom and
top surfaces are parallel to the xy plane, with transport taking
place in the x direction. For simplicity we take the dislocation
lines to pierce bottom and top surfaces at the same in-plane
position rd = (xd,yd), an assumption that is appropriate for a
low-energy, long-wavelength description of a thin slab. The
in-plane dimensions of the slab are L × W , and we assume
that the slab thickness is sufficient large, so that surface states
at the bottom and top surfaces do not overlap in the absence of
lattice dislocations. We take periodic boundary conditions in
the y direction, choosing the aspect ratio W/L large enough

that the results of our calculation do not depend on this choice
of boundary conditions.

We calculate the density of states and the transport
properties of the surface states using a scattering approach. The
scattering matrix Sσ,σ ′ links the amplitudes of incoming and
outgoing waves in an “ideal” part of the two surfaces, to the left
and right of a section with a finite density of dislocation lines.
The indices σ,σ ′ = +1, −1 for the top and bottom surface,
respectively. Dislocation lines connect the top and bottom
surfaces, so that in general Sσ,σ ′ is not block diagonal. We
denote the amplitudes of incoming and outgoing waves to the
left (right) of the section by vectors ain

Lσn and aout
Lσn (ain

Rσn and
aout

Rσn), respectively, where the index n refers to the transverse
momentum qn = 2πn/W . With this notation, the scattering
matrix Sσ,σ ′ relates outgoing and incoming waves as(

aout
Lσ

aout
Rσ

)
=

∑
σ ′=±

Sσ,σ ′

(
ain

Lσ ′

ain
Rσ ′

)
. (6)

Each component Sσ,σ ′ can be decomposed into transmission
and reflection blocks in the standard way,

Sσ,σ ′ =
(

rσ,σ ′ t ′σ,σ ′

tσ,σ ′ r ′
σ,σ ′

)
. (7)

Our strategy will be to first calculate the scattering matrix
S̃ for a “short” slab of length δL with only a pair of dislocation
lines, and then calculate the scattering matrix S of a slab of
full length L by concatenating scattering matrices of individual
slices [18], see Fig. 2 (top). We place a pair of dislocation lines
at rd,1 = (xd,yd,1) and rd,2 = (xd,yd,2), with 0 < xd < δL and
0 < yd,1 < yd,2 < W randomly chosen. Since the aspect ratio
W/L � 1, the pairwise placement of dislocation in a slab
(compared to placement of single dislocation lines) does not
affect the in-plane conductivity or the density of states. It
does, however, allow us to choose a gauge such that the vector
potential A(r) is nonzero for x = xd only,

A(r) = h

2e
δ(x − xd)ex ×

{
1 if yd,1 < y < yd,2,

0 else. (8)

An important further parameter in the calculation is the phase
shift eiθd(rd) that electrons accumulate along the dislocation

FIG. 2. Schematic picture of a top view (a) and side view (b)
of the topological insulator slab. The calculational scheme involves
the computation of the scattering matrix S̃ for a slab of width δL,
followed by the concatenation of scattering matrices of individual
slabs to obtain the scattering matrix S of the full structure.
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line. For our calculations we found it advantageous to
generalize the above procedure to slabs with an even number
2n of dislocation lines.

The calculation of the scattering matrix S̃ for a slab with a
single pair of dislocation lines turned out to be an interesting
problem in its own right. Although the scattering problem for a
single dislocation line is easily solved in polar coordinates, see
Eq. (4), we could not find a practical way to extract a scattering
matrix for the geometry of Fig. 1(a) from this solution. Instead,
we compute S̃ from a solution of the Dirac equation for a
regularized (i.e., smeared out) π flux. (Without regularization
the scattering problem with a π -flux line cannot be solved
numerically.) The details of this calculation are given in the
Supplemental Material [19].

Results. By concatenation of scattering matrices for slices
of length δL, each with an even number 2n of dislocation lines,
we can construct the full scattering matrix S for a slab of length
L with randomly placed dislocation line pairs at concentration
1/d2 = Nd/WL, with Nd the total number of dislocation lines,
see Fig. 2(a). The Landauer formula expresses the in-plane
conductance G‖ and the cross conductance G⊥ in terms of the
transmission and reflection blocks of the scattering matrix S,

G‖ = e2

h

∑
σ,σ ′=±1

tr tσ,σ ′ t
†
σ,σ ′ , G⊥ = e2

h
tr S+−S

†
+−. (9)

For the calculation of the density of states, we consider a
periodic array of slabs of length L. In this case the spectrum
of Bloch states can be obtained from the condition that

Sκx
(ε) ≡

(
0 e−iκxL

eiκxL 0

)
S(ε) (10)

has a unit eigenvalue, where �κx is the crystal momentum.

FIG. 3. Zero-energy in-plane conductivity σ‖ (a) and cross con-
ductance G⊥ (b) for a slab of weak-and-strong topological insulator
with a concentration 1/d2 of randomly placed dislocation lines. The
different curves refer to different choices for the phases θd(rd), as
shown in the figure. The dashed line in (a) denotes the clean-limit
in-plane conductivity σ‖,0 = 2e2/πh. Data points denote an average
over 500 disorder realizations, statistical error bars are typically
smaller than the markers.

Results of the transport calculations are shown in Fig. 3
for an average over 500 random realizations of the dislocation
lines. The energy ε is set to zero throughout the calculation,
to maximize the effect of the dislocation lines. The sample
length L is measured in units of the mean distance d between
dislocation lines, which is the only fundamental length scale
in the system at zero energy. The trivial W dependence of G‖
is eliminated by considering the in-plane conductivity σ‖ =
G‖L/W . For L/d → 0 we recover the clean-limit conductiv-
ity σ‖,0 = 2e2/πh of a pair of decoupled topological-insulator
surfaces [20,21]. Anticipating a proportionality G⊥ ∝ W/d,
in Fig. 3(b) we show G⊥d/W as a function of L/d. Unlike the
longitudinal conductivity σ‖, the cross conductance vanishes
in the clean limit L/d → 0.

We observe that the in-plane conductivity has a strong
dependence on the phase that electrons pick up while traveling
along the dislocation lines. In particular, if all phases are equal,
θd(rd) = θd for all rd, σ‖ is strongly suppressed for L � d

except for θd = ±π/2, for which we find that σ‖ is independent
of L/d within numerical accuracy [22] Figure 3 shows the
representative cases θd = 0, 0.7π , and π/2, and we also
present the case 0 � θd(rd)<2π uniformly distributed, which
shows a slight increase of σ‖ with L/d. The θd dependence of
the cross conductance is not as strong; θd mainly determines
the value at which G⊥ saturates for large L/d. An exception
is θd = π/2, for which we could not observe a saturation for
the system sizes we could achieve.

Results for the density of states are shown in Fig. 4, again for
four representative choices of the phase shifts θd(rd). For fixed
θd(rd) = 0 we observe one or two gaps placed asymmetrically
around ε = 0. For generic fixed θ (rd) = θd (such as the case
θd = 0.7π shown in the figure) we observe an asymmetric gap
around ε = 0. For θd(rd) = π/2 a symmetric gap is restored,
but with one midgap state at ε = 0 per dislocation line. Finally,
for random 0 � θd(rd)<2π the gap is closed and the density
of states near ε = 0 is essentially constant. The gap sizes and
the occurrence of states at energy ε = 0 can be heuristically

FIG. 4. Density of states dN/dE of a sample with dislocation
line density 1/d2. The four curves represent the four representative
scenarios for the choice of the phase shifts θd(rd), as explained in the
text. The vertical dashed lines correspond to energies calculated from
Eq. (11). The thin black lines denote the ideal surface-state density
of states without dislocation lines. The arrow represents a Dirac delta
function at zero energy. Data points denote an average over five
disorder realizations and 80 values of the crystal momentum κx .
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explained by inspecting the phase matching condition for
periodic trajectories traveling between the two surfaces at two
neighboring dislocation lines at positions rd and r′

d. Including
the Berry phase π for two-dimensional Dirac particles, this
phase matching condition reads

2ε

�v
|rd,i − rd,j | + θd(rd) + θd(r′

d) + π = 0 (mod 2π ). (11)

Setting |rd − r′
d| = W/2n, which is the largest typical distance

between neighboring dislocation lines with 2n = 6 disloca-
tions in a slice gives a good estimate of the numerically
obtained gap sizes, see Fig. 4. The absence of states around
ε = 0 indicates that pairing of more distant dislocation lines
does not occur.

Conclusion. We have investigated the effects of dislocation
line zero modes coupling top and bottom surfaces of a
strong-and-weak topological insulator slab. Our numerical
calculations based on a scattering approach reveal a rich
phenomenology for transport properties and density of states
depending on the phase shifts θd(rd) that electrons accumulate
along the dislocation lines. For a thin, homogenous slab, a
constant phase shift θd for all dislocation lines can be expected
to be a good approximation. Except for the special cases
θd = ±π/2, this results in a spectral gap around zero energy
and a corresponding strong suppression of in-plane transport.
For a thick slab, where dislocation lines are not necessarily
straight, it is conceivable that the phase shifts θd(rd) are

uniformly distributed. In this case, the in-plane conductivity
and the density of states at the nodal energy are enhanced by
the presence of dislocation lines. In this work, we neglected the
wavefunction overlap for neighboring dislocation line modes.
Recently, such hybridization effects were studied in Ref. [23].

In principle, the dislocation-line-mediated coupling be-
tween the top- and bottom surfaces can be described by an
effective Hamiltonian involving two Dirac cones coupled by
a matrix-valued “potential.” Such an effective model was
considered by Mong et al. in the context of the transport
through a single surface of a weak topological insulator with
two (coupled) Dirac cones [9]. The same description can also
be applied to the system studied here, although the two Dirac
cones now refer to different surfaces. Our analysis shows that
the disorder type in such a model depends strongly on the
phases accumulated along the dislocation lines: While a mass
term is responsible for the opening of a spectral gap (as for
θd(rd) = θd constant, θd �= ±π/2), a constant scalar potential
creates the asymmetry around ε = 0 (which we observe for
generic 0 � |θd|<π/2), and zero-average disorder terms lead
to the “flattening” of the density-of-states singularity at zero
energy. Establishing a more rigorous understanding of our
results in terms of a Hamiltonian theory would be a formidable
task for future work.
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90, 241403 (2014).

[14] Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013).
[15] J. Heinl, M. Schneider, and P. W. Brouwer, Phys. Rev. B 87,

245426 (2013).

[16] M. Schneider and P. W. Brouwer, Phys. Rev. B 89, 205437
(2014).

[17] For the gauge chosen here, time-reversal amounts to the
operation ψ → iσyψ

∗, followed by a gauge transformation
ψ → eiθψ . This corresponds to the change m → −m, so that
time-reversal symmetry forbids backscattering for the m = 0
mode only.

[18] J. H. Bardarson, J. Tworzydlo, P. W. Brouwer, and C. W. J.
Beenakker, Phys. Rev. Lett. 99, 106801 (2007).

[19] See Supplemental Material http://link.aps.org/supplemental/
10.1103/PhysRevB.93.161105 for the derivation of the scatter-
ing matrix as well as for details of the transport and density of
states calculation.

[20] M. I. Katsnelson, Eur. Phys. J. B 51, 157 (2006).
[21] J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J.

Beenakker, Phys. Rev. Lett. 96, 246802 (2006).
[22] In the case θd = π/2, we observe that the scattering matrix at

zero energy ceases to be unitary for L/d � 2, which is the reason
for the relatively small upper bound on the system sizes shown
in Fig. 3. This can be understood from the perspective of bound
state formation, once the number of bound states Nd is of the
same order as the number of modes considered in the scattering
matrix, Neff .

[23] R.-J. Slager, V. Juricic, V. Lahtinen, and J. Zaanen,
arXiv:1509.07705v2 (2015).

161105-4

http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1103/PhysRevB.86.045102
http://dx.doi.org/10.1103/PhysRevB.86.045102
http://dx.doi.org/10.1103/PhysRevB.86.045102
http://dx.doi.org/10.1103/PhysRevB.86.045102
http://dx.doi.org/10.1103/PhysRevLett.108.076804
http://dx.doi.org/10.1103/PhysRevLett.108.076804
http://dx.doi.org/10.1103/PhysRevLett.108.076804
http://dx.doi.org/10.1103/PhysRevLett.108.076804
http://dx.doi.org/10.1103/PhysRevB.89.155424
http://dx.doi.org/10.1103/PhysRevB.89.155424
http://dx.doi.org/10.1103/PhysRevB.89.155424
http://dx.doi.org/10.1103/PhysRevB.89.155424
http://dx.doi.org/10.1103/PhysRevB.82.115120
http://dx.doi.org/10.1103/PhysRevB.82.115120
http://dx.doi.org/10.1103/PhysRevB.82.115120
http://dx.doi.org/10.1103/PhysRevB.82.115120
http://dx.doi.org/10.1038/nphys1220
http://dx.doi.org/10.1038/nphys1220
http://dx.doi.org/10.1038/nphys1220
http://dx.doi.org/10.1038/nphys1220
http://dx.doi.org/10.1103/PhysRevB.84.035443
http://dx.doi.org/10.1103/PhysRevB.84.035443
http://dx.doi.org/10.1103/PhysRevB.84.035443
http://dx.doi.org/10.1103/PhysRevB.84.035443
http://dx.doi.org/10.1103/PhysRevB.90.241403
http://dx.doi.org/10.1103/PhysRevB.90.241403
http://dx.doi.org/10.1103/PhysRevB.90.241403
http://dx.doi.org/10.1103/PhysRevB.90.241403
http://dx.doi.org/10.7566/JPSJ.82.102001
http://dx.doi.org/10.7566/JPSJ.82.102001
http://dx.doi.org/10.7566/JPSJ.82.102001
http://dx.doi.org/10.7566/JPSJ.82.102001
http://dx.doi.org/10.1103/PhysRevB.87.245426
http://dx.doi.org/10.1103/PhysRevB.87.245426
http://dx.doi.org/10.1103/PhysRevB.87.245426
http://dx.doi.org/10.1103/PhysRevB.87.245426
http://dx.doi.org/10.1103/PhysRevB.89.205437
http://dx.doi.org/10.1103/PhysRevB.89.205437
http://dx.doi.org/10.1103/PhysRevB.89.205437
http://dx.doi.org/10.1103/PhysRevB.89.205437
http://dx.doi.org/10.1103/PhysRevLett.99.106801
http://dx.doi.org/10.1103/PhysRevLett.99.106801
http://dx.doi.org/10.1103/PhysRevLett.99.106801
http://dx.doi.org/10.1103/PhysRevLett.99.106801
http://link.aps.org/supplemental/10.1103/PhysRevB.93.161105
http://dx.doi.org/10.1140/epjb/e2006-00203-1
http://dx.doi.org/10.1140/epjb/e2006-00203-1
http://dx.doi.org/10.1140/epjb/e2006-00203-1
http://dx.doi.org/10.1140/epjb/e2006-00203-1
http://dx.doi.org/10.1103/PhysRevLett.96.246802
http://dx.doi.org/10.1103/PhysRevLett.96.246802
http://dx.doi.org/10.1103/PhysRevLett.96.246802
http://dx.doi.org/10.1103/PhysRevLett.96.246802
http://arxiv.org/abs/arXiv:1509.07705v2



