Chapter 3

Mixed CPS Problem of a
Nonhomogeneous Body with a

Doubly-Periodic Set of Holes

3.1 Preliminaries and Kolosov Functions

The present investigation will be on the mixed CPS problem of a three-
dimensional nonhomogeneous elastic body with a doubly-periodic set of holes
of arbitrary shape on the w1, xo transverse cross section (all holes being of
course congruent on the x;, zy plane). We assume that each periodic par-
allelogram is composed by two different isotropic materials, with modulus
of elasticity x* and Poisson ratio pu*, respectively, both of which contain a
number of holes, m total in number. It is assumed that the interface of the
two materials will be a simple, closed, smooth and non-intersecting contour
L = L (mod 2wy, 2w,), oriented clockwise as its positive direction, e.g. in the

periodic fundamental parallelogram Py, L is the interface of the two mate-
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rials (see Figure 3.1), denoted by v; (j = 1,---,m), and v = ]61 v; (i-e., by
contours which do not intersect themselves and have no points in common),
positive direction will be taken as indicated on Fig. 3.1. The inner region of
v; (j =1,---,m) will be denoted by S?. the regions which is surrounded by L
and I" in Py except S, and the inner region of L except S} will be denoted by
D and D', respectively. Denote S = D|JD’, for convenience, the origin will

be chosen inside D.

The investigation will be restricted to doubly-periodic stress distributions
in the elastic body. The external stress Xy, (t) + iXs,(t), on the hole bound-
aries, must now of course be equal in congrugent points. The so-called mixed
CPS problem means the external stress X1,,(t)+iXa,(t) applied to some bound-
aries 7; (j € I), and displacements w;(t)+1iv;(t) = h;(t) with cyclic increments
hi (k = 1,2) for the remaining part of boundaries v; (j € I), (of course the
aggregate of the sets of subscripts TUT = {1,2,---,m}), and displacement
w(t) on 7y in x3 direction with cyclic increments wy, (k=1,2), are given. The
strain e3 = constant. In addition, the displacement discontinuity for a passage
through L is given by g(t) = [u™(¢) + ivT ()] — [u™ () +iv(t)],t € L, to find
the state of elastic equilibrium.

For the double periodicity of the stress distribution and the equilibrium
principle of forces, we have

D> (X, +1iXy;) =0, (3.1)
jerur

where

le + iXQj = / [Xln(t) + ZXQn(t)]dS,
v

J

Xy +1Xy;,5 € I, being known because X, (t) + i Xy, (t),t € 7v;,7 € I, are

given, Xy; +iXy;, j € I, will be undetermined constants.
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Figure 3.1: A nonhomogeneous body with a doubly-periodic set of holes
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Denote

f@:ﬁ/ﬁx4w+M%ummtew. (3.2)

to
In spite of the components of stress and displacement are single-valued
functions, the complex stress functions ¢(z) and (z) may, in this case, be
found to be multi-valued. However, we can separate the multi-valued parts of

¢(z) and ¥(z) by constructing Kolosov functions

o) = 5oy & (5 + X logo(c = )+ n(s). (33
V) = gy 3 O 4 X logo(c = )] + (). (3

where ¢(2) and ¥y(z) are holomorphic functions and hence single-valued in

S,
kt, if z€ D,
K, =
k-, ifzeD.
Taking (3.1) into account, the aparted multi-valued parts , say, the first
terms on the right-hand sides of (3.3) and (3.4) are doubly-periodic functions,

hence, without loss generality, we can assume that the resultant vector of the

tractions on 7, (j € I) vanishes.

3.2 Formulation of the Mixed CPS Problem

By the external stress conditions on the boundaries of the holes, from formu-

lae (1.19)-(1.20) and (3.2) we have

o(t) +t¢'(t) + (1) = f(t) + Ci(m,n) t €9 C U Qun. (3.5)

The external stresses applied to the two sides of £(m,n) must be in equilib-

rium, then, from formulae (1.19)-(1.20) we get

() + () + Ut () = (t) +t~ () + (1), t € LU Qumn.  (3.6)

44



By the displacement discontinuity conditions of the two sides of £L(m,n), from

formula (1.10) we get the boundary condition

ot ¢t (t) = BT [t () + ()] = o (t) = B [t (1) + ¢ (D)]
— (v = v )est +2¢(t),t € L Qmn. (3.7)

By the displacement conditions on the boundaries of the holes, from for-

mula (1.10) we obtain

Ri(t) =t/ (t) — (t) = 245 (hy(t) + vjest) .t € 4 CyrlJ Qonns  (3.8)

[rke(2) — 20 (2) — 0()]) . = 2k = 1,2, (3.9)
and

FYt)+ Frt)=F (t)+ F~(t),t € L|JQ(mn), (3.10)
pt [P = Fr@)] = p [F- () = F-(0)] .t € LU Qnn, (3.11)
F(t) — F(t) =iC;(m,n),t € v |J Qmn, (3.12)
Ft)+ Ft) = w(t),t € vr|JQmn, (3.13)
[F(2) +FG)| " = 2wk =12, (3.14)

where

ptzeD,
My =
po,z €D/

kT, u™ when 7y is the boundary (part) of D,
Ky lke =
K™, u~ when 7y is the boundary (part) of D',

KT 1
+ _ + + _ +
ot =—, T =—7, k =3-4v,
1
+

put are Lamé constants in D and D’ and v* are Possion ratios in D and D/,

=

respectively.



3.3 Solution of the Mixed CPS Problem

In order to solve the boundary value problem (3.5)-(3.9), denoting A, =
—(Xyx + iXo) /27, k € I, we construct the general representation of the

solution
6(2) = Qim /LUVw(t) (€t — =) — )] dt + Y bC(= — )
+mz+1,§[14klog o(z—z) + Az, (3.15)
0) = 5 [ [0t + w (O] (- 2) - ()
—§;AU7wwﬁmr~a—m@—znw

_QL {T)dt_ (£)d] [¢(t = 2) = C(0)]

27”/% C(t—2) — C(H)] dt

&
ﬁ%/#mKWw)Cwﬁ
-3%/5@wfdﬁ+§@K@—m+m@—%ﬂ
Hﬁ : %Aklog oz — 21)
2m/H C(t —2) — C(t)] dt + B.z, (3.16)

where b;, A* BT are undetermined constants,

b; = i/ [w(t)dt —w(Ddt] ,j e 1, (3.17)

21

At Bt ze D,
AzaBz =
A-,B~, ze D,

(3.18)

/ Qi Lo o
P1 (Z) = %; { (Z _ an)g -2z (an)g B (an)g } .



p1(z) is a meromophic function with the properities [13], [14]
p1(z + 2wg) — p1(2) = 2wgp(2) + 2rg, k= 1,2. (3.19)

©(2) is the Weierstrass elliptic  function [5]

@(Z):éjL%/{(z—;lmn)? _Qi }

mn

which has properties

p(z) = =¢'(2),

r1 and ry are known constants satisfying

T
ToW1 — MWy = 771w_2 — 7’]2&)_1 = —5(52 (320)

It is easy to verify that the function ¢(z) and the expression z¢/(z) 4+ ()
obtained from (3.15) and (3.16) will both be indeed doubly quasi-periodic.

Substituting (3.15) and (3.16) into (3.9) we get a system of equations of

unknown constants A, and B,, the determinant of which is

wi —wi 1
b = —iS #0.

wy —W2
Hence we can obtain A., B, uniquely as

k.R,+ R,

2_ )
k:—1

A, = (3.21)

,U/Z(wlhg — WQh1> 1 K,Zb(a)g — wl)
218 445

R,T
T A )
T B

B, =

(b —a)mdy

.22
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R = 2i9 1iS
KT (@+b)mdy
+m %Ak Zk + O022p) + g9
a= Z%/%T)dth ! / w(t)dt
/ £)di — —/ H( (3.23)
- %L[ (4)d7 — (D)l —E/wa(t)dt. (3.24)

Letting z — to € L, on account of (3.21) and (3.22), and substituting (3.15)
and (3.16) into (3.6) by the Plemelj formulae we get

Im [ F*(t)dt ot — o
H(ty) = /l4s [( —~ 1)(ﬁ+_1)]to+F*(to), (3.25)
where
F*(to) = 2(H+ —_ Kﬁ) Z {Re [Ak; 10g O'(t() - Zk)] + tOAkC(tO - Zk)} .

(k— = 1)(kt —1) <
(3.26)

Letting z — tg € 7, on account of (3.21), (3.22) and (3.25), and substi-
tuting (3.15) and (3.16) into (3.5) by the Plemelj formulae after miscellaneous

calculating we get a second kind Fredholm integral equation
1 ot —to)o(t) 1
i)+ 5 [ wlt)d [log Lo |y o [ (et =)= ol
+— / [log\ 0 )\] +2m/H C(t—to) — C(1)] dt
2m /% t—to) C(t )} dt

/LU’Y w(t)d {Cl(t—to)—(t—to) [C(t—to)—g(t)”

kel[
1

27?2

)+ gt L, O

kel[
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1

+ > A [log o(to — zx) — Kjlogo(ty — zk)}
i
-+ Z bj {QRGC(ISO — Zj) + pl(to — Zj) — top(to — Zj)}
jel
+2(R€Aj)t0 + FJE = f(to) + Cj, ty € Y C1- (327)

Letting z — to € vy and substituting (3.15) and (3.15) into (3.8) we have

the following second kind Fredholm integral equation

Ry (to) + 5 A (b [log %]

+Z{ / )[G( — to) = () de + e [

Tk

oAt) [CE=to) — ) i}

+2Lm. /WW(t)d llog Lﬂ] — L/Lw(t)d [1ogy‘7(%;°)y]

o(t —to)o(t)
t

1 - -
o Jog, PG~ o) — (0~ 0O~ )
ki +1
bt L, “O €~ 10) = O]+ Msfe(r). 1)
= Ns(to), to € 75 C Vr, (3.28)
where
Mslw(t), to] = k5 > bi(to — 2x) + + 1 > AC(to — 2x)
kel .7 kell
—to ]Ez;b]@(to — Zj) 32_: 1 s lOg ’O’(to — Zk)‘
+(r;jA; + Aj)to + Bjto — 2; /L va(t)g(t)dt,

Ny(to) = 205 (hy (1) + vyest) = 5 [ H(t) [ to) — 0]

Here we have defined the function (j(z) = p1(2), (1(0) =0

Letting z — to € L, substituting (3.15) and (3.16) into (3.7) and taking

kT BT = o into account, we obtain the following singular integral equation
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(™ +a™ + 8"+ 87 )w(to)
at —a~ + 47 - 47 _
/ 0 [T - ) a

i

BJF — ﬁi O'(t — to)
+ — /LU’YI w(t)d [log T 1

Bt — B~ -
* i /Luyw(t)d kl(t —to) — (t —to)C(t — to)}

R {z s | wit) [CE=1o) = CO] dF [ wit) (=) ~C(1) dt}
w(t)

s
—Mg|w(t ,to] = Nﬁ(to),to €L, (329)

where

Mot 1] = 2 | ), 200G

T
5 B T
+2 (fi_—l—l — /~i++1>t0%Ak<(to_2k)
) b ¢ [ (to — 2 to—p(to—zj)} = p1(to — )

jel

at a”
+4< ) > Agloglo(to — z)]

kt+1 k41 el
20" —a7)Y biC(to— z;) — 2(8"BY = 7B )iy
jel
+2 (a+A+ —a AT — BYAT + B7A )

N (to) = 4g to t— to dt—f-(ﬂJr ﬂi)H(to)—F(l/Jr—l/i)e;gto.

For the uniquenss of the solution, let [40], [49]

C; = —/ W(t)ds,Cy = 0,t € 5 C 1. (3.30)
Vi
Thus, (3.27)-(3.29) as a whole constitute a normal type singular integral equa-

tion with doubly-periodic kernel on LJ~.
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In order to solve the boundary value problems (3.10) - (3.14), we use the
modified Sherman transform in this case,

1

" 2mi

F(2) /L I = )t + B (3.31)

Substituting (3.31) into (3.14) we can get ReE and I'mE uniquely as func-
tionals of A(t).

Substituting (3.31) into (3.10), it is obvious that (3.10) will be automati-
cally satisfied.
Letting z — to € L and substituting (3.31) into (3.11) we get

O'(t — to)

O'(t - to)

,LL*
Afto)+ 55 |, A [log

1 — 2" iRe(Ety) =0, (3.32)
where p* is given by (1.90).
Letting z — tg € ; C 7 and substituting (3.31) into (3.12) we have

O'(t — to)
O'(t - to)

Letting at last z — ¢y € v; C 7y and substituting (3.31) into (3.13) we

Alty) + —— /LUV A(t)d [log ] — 2iRe(Ety) — C; =0.  (3.33)

271

obtain

1

2ri

/L ), A0 loglo(t = to)l] = 2iRe(to) = =il (1), (3.34)

Equations (3.32)-(3.34) combine into a second kind Fredholm integral equa-

tion.

3.4 Unique Solvability of the Mixed
CPS Problem

At first, we prove the unique solvablity of equations (3.27)-(3.29). To do this,

we must show that the homogeneous equation has no non-trival solutions, say,

o1



when f(t) = 0, h(t) = 0, e5 = 0, after C; = C} is taken, then wy(t) = 0
everywhere on LU~ (and hence CY = 0 necessarily).

Let ¢o(2), vo(2), b}, A, BY, ag, by, Ho(t) and C (for uniqueness e.g.
C} = 0) be the corresponding values of ¢(z), ¥(z), b;, A,, B, a, b, H(t) and
C; determined by equations (3.15)-(3.17), (3.21)-(3.25), and equation (3.30)
for w(t) = wo(t). It is easy to verify that they satisfy the corresponding
boundary conditions (3.5)-(3.9), which form the mixed fundamental problem

under homogeneous conditions (and CY = 0). By the uniqueness theorem [49],

[40], we have

¢0(2) = Cz, ¢0(Z) = R;Cy, (335)
Due to C} = 0, then
C)=0,j=2,---,m, (3.36)
and
(kT + 1)t = (k" +1)c. (3.37)

Now, as ¢o(z) is a single-valued function, it follows from (3.15) that we
have

A)=0,ke . (3.38)

Hence, we find Hy(t) = 0 from (3.25). Thus

cs 1 /LU7 wo(t) [C(t — 2) — C()] dt + D b)((z — z;) + A2z, (3.39)

21 el

eee = 5o [ [t + wo(®t] [t~ 2) = C(0)

m
1

2mi

_% /L [wo(t)dt — wo(t)dT] [C(t — 2) — C(1)]

/LU#’O“) [To(t — 2) — pa(t — 2)] dt
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=Y 5o | @@l —2) = (o)
o | nlt) 6l = 2) = c(o)
Z V) [C(z — 2) + pr(z — 2;)] + B2z (3.40)

Because the right-hand sides of equations (3.39) and (3.40) are doubly
quasi-periodic, the cyclic increments of the two sides of (3.39) and (3.40) must

be equal, respectively. Then, we get
AY=0,BY=0,a9=0,by = 0. (3.41)
By using the Plemelj formulae on L from (3.39), one obtains for C{ = 0
wo(t)=ct —c,te L. (3.42)

Substituting (3.42) back into (3.39) and (3.40) after integrating by parts,

we arrive at the equalities

o = 5 [ w®) (e~ 2) ~ )] de

271 Jy
+

o[- — @)+ Tz ), (3.49)
. / @t [t =) = ) - 57 [ wnlEC(O
_¢ = [ ¢) dt+i/w (t — z)dt
27?2 271 0P1
—C;f [ ket =)~ ¢
/ o) [C(t— 2) — ()] dt. (3.44)
el 2m i
The functions
a(z) = e — Cg;f /L C(t = 2) — C()] dt, (3.45)
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X2(2) = KT + 2m / ¢(t)
C+_C‘LK@—zr—amdu (3.40)

2mi
are holomophic in Sy.
Putting 2 = 0 (0 € D C Sy) and paying attention to the origin being
located outside the region bounded by L, it follows from (3.45) and (3.46) by
Cauchy theorem that

x1(2) = ¢, xa(2) = kTet + ¢, (3.47)

where

270 / () (3.48)

We introduce the functions

@@zia/h@+zww—m—ﬁpw—@—wmﬁ

21 Jy il

0,z € S(),
- | (3.49)
—igu(2),2 € $},j € IUT,

U, (z) = L [m [wo(t) — Twy(t) + Zb?{(t—zj) +e— c*] [C(t—z) —C(t)]dt

jel

—é}@ﬁ@mmww—wwt

her 2mi
1 < .
57 | B0+ €(C(E = 2) = )t + Q(2)
. 0, zZ e So, (3 50)
—itp.(2), 2 € §,j € TUI, '
where
1 _
e=—5— /W two(t)p(t)dt — kT et
1 _
e* = 5 /w two(t)p(t)dt — ktet



1
27?2

Q) = 5z | wolon(t = 2)dt + iz = =),

Jjel

Then

wo(t) + 3 BC(t — 2,) — ¢t € v T,
- rer (3.51)

_ wo(t) — twp(t) + gj VL(t — 2,) +e—c, (3.5

—kpwo(t) — twi(t) — e*,t € v C 1.

Eliminating wy(t) from (3.51) and (3.52), we obtain

¢()+t¢,( * —Zzbo{ t_ZT C(t_zr)_tp(t_zr)}

rel
+i(e—c +c*),t €y Cr, (3.53)

K (t) — toL(t) — P (t) = i(e* + rpct — ), t € v C p. (3.54)

Multiplying both sides of (3.53) by dt and integrating over 7;,j € I, we

arrive at the equalities

L |6.()dt — . (t)dE| = szS/ (Gt = =)t + C(t — 2)dF|

J rel i
—27Tb2,t € Cor.

Since the b which are determined by (3.17) are real constants, hence
W =0,r€l. (3.55)
Therefore

0u(t) + 1, (1) + u(t) = i(e — &+ c) t €9 C . (3.56)
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This is exactly the boundary value problem of the first fundamental prob-

lem in the absence of external forces. Applying the uniqueness theorem for

the first fundamental problem [49], [40], we get
Du(2) = i€z + ¢j, Uu(2) = —d;,j € 1.

Then, from (3.51) and (3.55), it follows immediately that

wo(t) = ¢ — et +icj, t €, C 1.

Substituting (3.57) into (3.17), on account of (3.55) we have
€,=0,5€l.
From (3.56) we obtain
¢;j—dj=i(c"+e—c).

Further, using successively (3.51)-(3.52), (3.55)-(3.59) we find

¢j=d;j=0,jel; c"+e—c"=0.

It follows from equations (3.30), (3.36) and (3.37) that

Referring to formulae (3.57)-(3.61) we arrive at the equality
wo(t) = 0,t € v; Cr.
From (3.61) and (3.42) we have
wo(t) =0,t € L.
Similarly, taking (3.54) into consideration, we can calculate that
wo(t) = 0,1 € v; C .
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(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)



With the above, we have proved
wo(t) =0,t € LJ~. (3.65)

In order to prove the unique solvability of the second kind Fredholm equa-
tions (3.32)-(3.34), consider the homogeneous equation, obtained from the ho-

mogeneous condition w(t) = 0.

Let Ag(t) be any solution of the homogeneous equation and Fy(z) the

corresponding expression for the function F'(z), analogously to [20], we have

Fy(z) = c; (3.66)

z)

where
T,z € 8y,

T,z € Sg,j elyul,
and ¢** are complex constants.

From (3.10) and (3.11) we obtain
Re(c*t) = Re(c™), (3.67)
ptIm(c*) = p~Im(c*). (3.68)

It follows from (3.13) and (3.67) that
Re(c*t) = Re(¢*) =0, (3.69)

whence, by (3.66) and (3.31) we find
Ao(t) =0,t € 7. (3.70)

Referring to formulae (3.31), and (3.66) (3.70) we arrive at the equality

Im(ct) = QLM [ o0t — 2)dt + By (3.71)
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By the Plemelj formulae, we get
iAo(t) = i[Im(c*™) — Im(c™)],t € L. (3.72)

On account of the double quasi-periodicity of the two sides of (3.71), we

have

L /Lmo(t)g(t)dt —0, By =0. (3.73)

271

Putting z = 0 in (3.71) and taking (3.73) into consideration, we obtain

1
Im(c) = — / iDo(H)C()dt = 0. (3.74)
2mi JL
From (3.68) we get
Im(c*™) = 0. (3.75)
It follows from (3.72) that
Ao(t) =0,t € L. (3.76)

Finally, referring to (3.70) and (3.76) we find

Ao(t) = 0,t € L. (3.77)
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