Chapter 3

Mixed CPS Problem of a Nonhomogeneous Body with a Doubly-Periodic Set of Holes

3.1 Preliminaries and Kolosov Functions

The present investigation will be on the mixed CPS problem of a threedimensional nonhomogeneous elastic body with a doubly-periodic set of holes of arbitrary shape on the x_1 , x_2 transverse cross section (all holes being of course congruent on the x_1 , x_2 plane). We assume that each periodic parallelogram is composed by two different isotropic materials, with modulus of elasticity κ^{\pm} and Poisson ratio μ^{\pm} , respectively, both of which contain a number of holes, m total in number. It is assumed that the interface of the two materials will be a simple, closed, smooth and non-intersecting contour $\mathcal{L} \equiv L \pmod{2\omega_1, 2\omega_2}$, oriented clockwise as its positive direction, e.g. in the periodic fundamental parallelogram P_{00} , L is the interface of the two materials (see Figure 3.1), denoted by γ_j $(j=1,\dots,m)$, and $\gamma=\bigcup_{j=1}^m \gamma_j$ (i.e., by contours which do not intersect themselves and have no points in common), positive direction will be taken as indicated on Fig. 3.1. The inner region of γ_j $(j=1,\dots,m)$ will be denoted by S_0^j , the regions which is surrounded by L and Γ in P_{00} except S_0^j , and the inner region of L except S_0^j will be denoted by D and D', respectively. Denote $S=D\cup D'$, for convenience, the origin will be chosen inside D.

The investigation will be restricted to doubly-periodic stress distributions in the elastic body. The external stress $X_{1n}(t) + iX_{2n}(t)$, on the hole boundaries, must now of course be equal in congrugent points. The so-called mixed CPS problem means the external stress $X_{1n}(t)+iX_{2n}(t)$ applied to some boundaries γ_j $(j \in I)$, and displacements $u_j(t)+iv_j(t)=h_j(t)$ with cyclic increments h_k (k=1,2) for the remaining part of boundaries γ_j $(j \in I)$, (of course the aggregate of the sets of subscripts $I \cup I = \{1, 2, \dots, m\}$), and displacement w(t) on γ_{I} in x_3 direction with cyclic increments w_k (k=1,2), are given. The strain $e_3 = constant$. In addition, the displacement discontinuity for a passage through L is given by $g(t) = [u^+(t) + iv^+(t)] - [u^-(t) + iv^-(t)]$, $t \in L$, to find the state of elastic equilibrium.

For the double periodicity of the stress distribution and the equilibrium principle of forces, we have

$$\sum_{j \in I \cup I} (X_{1j} + iX_{2j}) = 0, \tag{3.1}$$

where

$$X_{1j} + iX_{2j} = \int_{\gamma_i} [X_{1n}(t) + iX_{2n}(t)]ds,$$

 $X_{1j} + iX_{2j}, j \in I$, being known because $X_{1n}(t) + iX_{2n}(t), t \in \gamma_j, j \in I$, are given, $X_{1j} + iX_{2j}, j \in I$, will be undetermined constants.

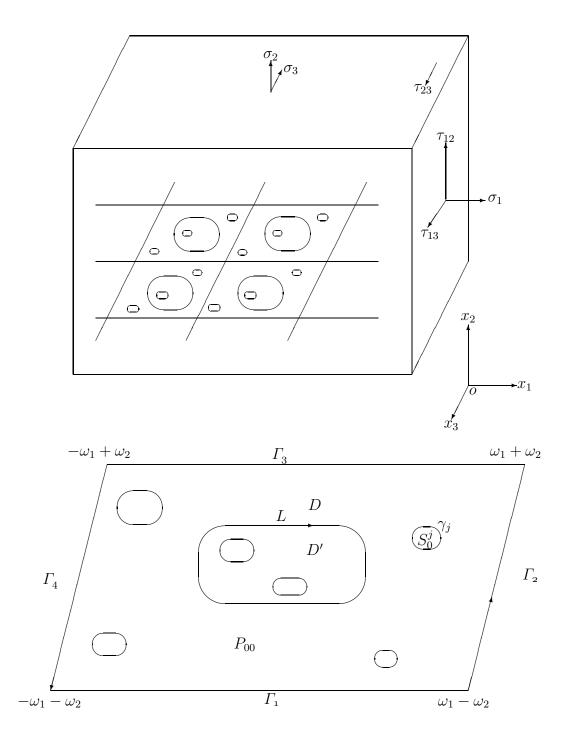


Figure 3.1: A nonhomogeneous body with a doubly-periodic set of holes

Denote

$$f(t) = i \int_{t_0}^t \left[X_{1n}(t) + i X_{2n}(t) \right] ds, t \in \gamma_I.$$
 (3.2)

In spite of the components of stress and displacement are single-valued functions, the complex stress functions $\phi(z)$ and $\psi(z)$ may, in this case, be found to be multi-valued. However, we can separate the multi-valued parts of $\phi(z)$ and $\psi(z)$ by constructing Kolosov functions

$$\phi(z) = -\frac{1}{2\pi(\kappa_z + 1)} \sum_{j=0}^{m-1} \left[(X_{1j} + iX_{2j}) \log \sigma(z - z_j) \right] + \phi_0(z), \tag{3.3}$$

$$\psi(z) = \frac{\kappa_z}{2\pi(\kappa_z + 1)} \sum_{j=0}^{m-1} \left[(X_{1j} + iX_{2j}) \log \sigma(z - z_j) \right] + \psi_0(z).$$
 (3.4)

where $\phi_0(z)$ and $\psi_0(z)$ are holomorphic functions and hence single-valued in S,

$$\kappa_z = \begin{cases} \kappa^+, & \text{if } z \in D, \\ \kappa^-, & \text{if } z \in D'. \end{cases}$$

Taking (3.1) into account, the aparted multi-valued parts, say, the first terms on the right-hand sides of (3.3) and (3.4) are doubly-periodic functions, hence, without loss generality, we can assume that the resultant vector of the tractions on γ_j $(j \in I)$ vanishes.

3.2 Formulation of the Mixed CPS Problem

By the external stress conditions on the boundaries of the holes, from formulae (1.19)-(1.20) and (3.2) we have

$$\phi(t) + t\overline{\phi'(t)} + \overline{\psi(t)} = f(t) + C_j(m, n), t \in \gamma_j \subset \gamma_I \bigcup \Omega_{mn}.$$
 (3.5)

The external stresses applied to the two sides of $\mathcal{L}(m, n)$ must be in equilibrium, then, from formulae (1.19)-(1.20) we get

$$\phi^{+}(t) + t\overline{\phi'^{+}(t)} + \overline{\psi^{+}(t)} = \phi^{-}(t) + t\overline{\phi'^{-}(t)} + \overline{\psi^{-}(t)}, t \in L \bigcup \Omega_{mn}.$$
 (3.6)

By the displacement discontinuity conditions of the two sides of $\mathcal{L}(m, n)$, from formula (1.10) we get the boundary condition

$$\alpha^{+}\phi^{+}(t) - \beta^{+} \left[t \overline{\phi'^{+}(t)} + \overline{\psi^{+}(t)} \right] = \alpha^{-}\phi^{-}(t) - \beta^{-} \left[t \overline{\phi'^{-}(t)} + \overline{\psi^{-}(t)} \right]$$
$$- (\nu^{+} - \nu^{-})e_{3}t + 2g(t), t \in L \bigcup \Omega_{mn}.$$
(3.7)

By the displacement conditions on the boundaries of the holes, from formula (1.10) we obtain

$$\kappa_i \phi(t) - t \overline{\phi'(t)} - \overline{\psi(t)} = 2\mu_i \left(h_i(t) + \nu_i e_3 t \right), t \in \gamma_i \subset \gamma_{I\!\!I} \bigcup \Omega_{mn}, \tag{3.8}$$

$$\left[\kappa_z \phi(z) - z \overline{\phi'(z)} - \overline{\psi(z)}\right]_z^{z+2\omega_k} = 2\mu_z h_k, k = 1, 2, \tag{3.9}$$

and

$$F^{+}(t) + \overline{F^{+}(t)} = F^{-}(t) + \overline{F^{-}(t)}, t \in L \bigcup \Omega(mn), \tag{3.10}$$

$$\mu^{+}\left[F^{+}(t) - \overline{F^{+}(t)}\right] = \mu^{-}\left[F^{-}(t) - \overline{F^{-}(t)}\right], t \in L \bigcup \Omega_{mn}, \tag{3.11}$$

$$F(t) - \overline{F(t)} = iC_j^*(m, n), t \in \gamma_I \bigcup \Omega_{mn}, \tag{3.12}$$

$$F(t) + \overline{F(t)} = w(t), t \in \gamma_{\mathbb{I}} \bigcup \Omega_{mn}, \tag{3.13}$$

$$\left[F(z) + \overline{F(z)}\right]_{z}^{z+2\omega_{k}} = 2w_{k}, k = 1, 2, \tag{3.14}$$

where

$$\mu_z = \begin{cases} \mu^+, z \in D, \\ \mu^-, z \in D, \end{cases}$$

$$\kappa_k, \mu_k = \begin{cases} \kappa^+, \mu^+ & \text{when } \gamma_k \text{ is the boundary (part) of } D, \\ \kappa^-, \mu^- & \text{when } \gamma_k \text{ is the boundary (part) of } D', \end{cases}$$

$$\alpha^{\pm} = \frac{\kappa^{\pm}}{\mu^{\pm}}, \quad \beta^{\pm} = \frac{1}{\mu^{\pm}}, \quad \kappa^{\pm} = 3 - 4\nu^{\pm},$$

 μ^{\pm} are Lamé constants in D and D' and ν^{\pm} are Possion ratios in D and D', respectively.

3.3 Solution of the Mixed CPS Problem

In order to solve the boundary value problem (3.5)-(3.9), denoting $A_k = -(X_{1k} + iX_{2k})/2\pi$, $k \in \mathbb{I}$, we construct the general representation of the solution

$$\phi(z) = \frac{1}{2\pi i} \int_{L \bigcup \gamma} \omega(t) \left[\zeta(t - z) - \zeta(t) \right] dt + \sum_{j \in I} b_j \zeta(z - z_j)$$

$$+ \frac{1}{\kappa_z + 1} \sum_{k \in I} A_k \log \sigma(z - z_k) + A_z z, \tag{3.15}$$

$$\psi(z) = \frac{1}{2\pi i} \int_{\gamma_{I}} \left[\overline{\omega(t)} dt + \omega(t) d\overline{t} \right] \left[\zeta(t-z) - \zeta(t) \right]$$

$$-\frac{1}{2\pi i} \int_{L \cup \gamma} \omega(t) \left[\overline{t} \wp(t-z) - \rho_{1}(t-z) \right] dt$$

$$-\frac{1}{2\pi i} \int_{L} \left[\overline{\omega(t)} dt - \omega(t) d\overline{t} \right] \left[\zeta(t-z) - \zeta(t) \right]$$

$$-\sum_{k \in \mathbb{I}} \frac{\kappa_{k}}{2\pi i} \int_{\gamma_{k}} \overline{\omega(t)} \left[\zeta(t-z) - \zeta(t) \right] dt$$

$$+\frac{1}{2\pi i} \int_{\gamma_{\mathbb{I}}} \omega(t) \left[\zeta(t-z) - \zeta(t) \right] d\overline{t}$$

$$-\frac{1}{2\pi i} \int_{L} \overline{\omega(t)} \zeta(t-z) dt + \sum_{j \in \mathbb{I}} b_{j} \left[\zeta(z-z_{j}) + \rho_{1}(z-z_{j}) \right]$$

$$-\frac{\kappa_{z}}{\kappa_{z}+1} \sum_{k \in \mathbb{I}} A_{k} \log \sigma(z-z_{k})$$

$$+\frac{1}{2\pi i} \int_{L} \overline{H(t)} \left[\zeta(t-z) - \zeta(t) \right] dt + B_{z}z, \tag{3.16}$$

where b_j, A^{\pm}, B^{\pm} are undetermined constants,

$$b_{j} = \frac{1}{2\pi i} \int_{\gamma_{j}} \left[\omega(t) d\overline{t} - \overline{\omega(t)} dt \right], j \in I,$$
 (3.17)

$$A_{z}, B_{z} = \begin{cases} A^{+}, B^{+}, & z \in D, \\ A^{-}, B^{-}, & z \in D', \end{cases}$$

$$\rho_{1}(z) = \sum_{mn} \left\{ \frac{\overline{\Omega_{mn}}}{(z - \Omega_{mn})^{2}} - 2z \frac{\overline{\Omega_{mn}}}{(\Omega_{mn})^{3}} - \frac{\overline{\Omega_{mn}}}{(\Omega_{mn})^{2}} \right\}.$$
(3.18)

 $\rho_1(z)$ is a meromophic function with the properities [13], [14]

$$\rho_1(z + 2\omega_k) - \rho_1(z) = 2\overline{\omega_k}\wp(z) + 2r_k, k = 1, 2. \tag{3.19}$$

 $\wp(z)$ is the Weierstrass elliptic \wp function [5]

$$\wp(z) = \frac{1}{z^2} + \sum_{m,n} {}' \left\{ \frac{1}{(z - \Omega_{mn})^2} - \frac{1}{\Omega_{mn}^2} \right\},$$

which has properties

$$\wp(z) = \wp(-z),$$

$$\wp(z) = -\zeta'(z),$$

 r_1 and r_2 are known constants satisfying

$$r_2\omega_1 - r_1\omega_2 = \eta_1\overline{\omega_2} - \eta_2\overline{\omega_1} = -\frac{\pi i}{2}\delta_2. \tag{3.20}$$

It is easy to verify that the function $\phi(z)$ and the expression $z\overline{\phi'(z)} + \overline{\psi(z)}$ obtained from (3.15) and (3.16) will both be indeed doubly quasi-periodic.

Substituting (3.15) and (3.16) into (3.9) we get a system of equations of unknown constants A_z and B_z , the determinant of which is

$$\left|\begin{array}{cc} \omega_1 & -\overline{\omega_1} \\ \omega_2 & -\overline{\omega_2} \end{array}\right| = -\frac{1}{2}iS \neq 0.$$

Hence we can obtain A_z , B_z uniquely as

$$A_z = \frac{\kappa_z R_z + \overline{R_z}}{\kappa_z^2 - 1},\tag{3.21}$$

$$B_{z} = \frac{\mu_{z}(\omega_{1}h_{2} - \omega_{2}h_{1})}{2iS} + \frac{\kappa_{z}b(\omega_{2} - \omega_{1})}{4iS} + \frac{\kappa_{z}\pi}{4(\kappa_{z} + 1)S} \sum_{k \in \mathbb{Z}} A_{k}(z_{k} + \overline{z_{k}}\delta_{2}) + \frac{(\overline{b} - \overline{a})\pi\overline{\delta_{2}}}{8S},$$
(3.22)

$$\begin{split} R_z &= \frac{\mu_z(\overline{\omega_1}h_2 - \overline{\omega_2}h_1)}{2iS} + \frac{\kappa_z b(\overline{\omega_2} - \overline{\omega_1})}{4iS} \\ &\quad + \frac{\kappa_z \pi}{4(\kappa_z + 1)S} \sum_{k \in \overline{I}} A_k(\overline{z_k} + \delta_2 z_k) + \frac{(\overline{a} + \overline{b})\pi \overline{\delta_2}}{8S}, \end{split}$$

$$a = \sum_{k \in \mathbb{I}} \frac{\kappa_k}{\pi i} \int_{\gamma_k} \overline{\omega(t)} dt + \frac{1}{\pi i} \int_{\gamma_{\mathbb{I}}} \omega(t) d\overline{t} - \frac{2}{\pi i} \int_{\gamma_{\mathbb{I}}} \omega(t) d\overline{t} - \frac{1}{\pi i} \int_{L} \overline{H(t)} dt,$$
(3.23)

$$b = \frac{1}{\pi i} \int_{\gamma_I} \left[\omega(t) d\overline{t} - \overline{\omega(t)} dt \right] - \frac{1}{\pi i} \int_{L \bigcup \gamma} \omega(t) dt.$$
 (3.24)

Letting $z \to t_0 \in L$, on account of (3.21) and (3.22), and substituting (3.15) and (3.16) into (3.6) by the Plemelj formulae we get

$$H(t_0) = \frac{Im \int_l F^*(t) d\overline{t}}{4S} \left[\frac{\kappa^+ - \kappa^-}{(\kappa^- - 1)(\kappa^+ - 1)} \right] t_0 + F^*(t_0), \tag{3.25}$$

where

$$F^*(t_0) = \frac{2(\kappa^+ - \kappa^-)}{(\kappa^- - 1)(\kappa^+ - 1)} \sum_{k \in \mathbb{I}} \left\{ Re \left[A_k \log \sigma(t_0 - z_k) \right] + t_0 \overline{A_k \zeta(t_0 - z_k)} \right\}.$$
(3.26)

Letting $z \to t_0 \in \gamma_I$, on account of (3.21), (3.22) and (3.25), and substituting (3.15) and (3.16) into (3.5) by the Plemelj formulae after miscellaneous calculating we get a second kind Fredholm integral equation

$$\omega(t_{0}) + \frac{1}{2\pi i} \int_{\gamma_{I}} \omega(t) d\left[\log \frac{\sigma(t-t_{0})\overline{\sigma(t)}}{\overline{\sigma(t-t_{0})}\sigma(t)}\right] + \frac{1}{2\pi i} \int_{\gamma_{I}} \omega(t) \left[\zeta(t-t_{0}) - \zeta(t)\right] dt$$

$$+ \frac{1}{\pi i} \int_{L} \omega(t) d\left[\log \left|\frac{\sigma(t-t_{0})}{\sigma(t)}\right|\right] + \frac{1}{2\pi i} \int_{L} H(t) \left[\overline{\zeta(t-t_{0})} - \overline{\zeta(t)}\right] d\overline{t}$$

$$+ \sum_{k \in I\!\!I} \frac{\kappa_{k}}{2\pi i} \int_{\gamma_{k}} \omega(t) \left[\overline{\zeta(t-t_{0})} - \overline{\zeta(t)}\right] d\overline{t}$$

$$+ \frac{1}{2\pi i} \int_{L \bigcup \gamma} \overline{\omega(t)} d\left\{\zeta_{1}(t-t_{0}) - (t-t_{0}) \left[\overline{\zeta(t-t_{0})} - \overline{\zeta(t)}\right]\right\}$$

$$+ \frac{t_{0}}{\kappa_{j}+1} \sum_{k \in I\!\!I} \overline{A_{k}\zeta(t_{0}-z_{k})} + \frac{1}{2\pi i} \int_{L \bigcup \gamma} \overline{\omega(t)\zeta(t)} dt$$

$$+\frac{1}{\kappa_{j}+1} \sum_{k \in \mathbb{I}} A_{k} \left[\log \sigma(t_{0}-z_{k}) - \kappa_{j} \log \overline{\sigma(t_{0}-z_{k})} \right]$$

$$+ \sum_{j \in I} b_{j} \left[2Re \overline{\zeta(t_{0}-z_{j})} + \overline{\rho_{1}(t_{0}-z_{j})} - t_{0} \overline{\wp(t_{0}-z_{j})} \right]$$

$$+2(ReA_{j})t_{0} + \overline{B_{j}}\overline{t_{0}} = f(t_{0}) + C_{j}, t_{0} \in \gamma_{j} \subset \gamma_{I}.$$

$$(3.27)$$

Letting $z \to t_0 \in \gamma_{\mathbb{I}}$ and substituting (3.15) and (3.15) into (3.8) we have the following second kind Fredholm integral equation

$$\kappa_{j}\omega(t_{0}) + \frac{\kappa_{j}}{2\pi i} \int_{\gamma_{j}} \omega(t) d\left[\log \frac{\sigma(t-t_{0})\overline{\sigma(t)}}{\overline{\sigma(t-t_{0})}\sigma(t)}\right]
+ \sum_{\substack{k \neq j \\ k \in \mathbb{I}}} \left\{ \kappa_{j} \int_{\gamma_{k}} \omega(t) \left[\zeta(t-t_{0}) - \zeta(t) \right] dt + \kappa_{k} \int_{\gamma_{k}} \omega(t) \left[\overline{\zeta(t-t_{0})} - \overline{\zeta(t)} \right] d\overline{t} \right\}
+ \frac{1}{2\pi i} \int_{\gamma_{I}} \omega(t) d\left[\log \frac{\sigma(t-t_{0})\overline{\sigma(t)}}{\overline{\sigma(t-t_{0})}\sigma(t)}\right] - \frac{1}{\pi i} \int_{L} \omega(t) d\left[\log \left| \frac{\sigma(t-t_{0})}{\sigma(t)} \right| \right]
- \frac{1}{2\pi i} \int_{L \bigcup \gamma} \overline{\omega(t)} d\left\{ \zeta_{1}(t-t_{0}) - (t-t_{0})\overline{\zeta(t-t_{0})} \right\}
+ \frac{\kappa_{j}+1}{2\pi i} \int_{L \bigcup \gamma_{I}} \omega(t) \left[\zeta(t-t_{0}) - \zeta(t) \right] dt + M_{5}[\omega(t), t_{0}]
= N_{5}(t_{0}), t_{0} \in \gamma_{j} \subset \gamma_{\mathbb{I}},$$
(3.28)

where

$$M_{5}[\omega(t), t_{0}] = \kappa_{j} \sum_{k \in I} b_{k} \zeta(t_{0} - z_{k}) + \frac{t_{0}}{\kappa_{j} + 1} \sum_{k \in I\!\!I} \overline{A_{k} \zeta(t_{0} - z_{k})}$$
$$-t_{0} \sum_{j \in I} b_{j} \overline{\wp(t_{0} - z_{j})} + \frac{2\kappa_{j}}{\kappa_{j} + 1} \sum_{k \in I\!\!I} A_{k} \log |\sigma(t_{0} - z_{k})|$$
$$+(\kappa_{j} A_{j} + \overline{A_{j}}) t_{0} + \overline{B_{j} t_{0}} - \frac{1}{2\pi i} \int_{L \bigcup \gamma} \overline{\omega(t) \zeta(t)} dt,$$

$$N_5(t_0) = 2\mu_j \left(h_j(t) + \nu_j e_3 t \right) - \frac{1}{2\pi i} \int_L H(t) \left[\overline{\zeta(t - t_0)} - \overline{\zeta(t)} \right] d\overline{t}.$$

Here we have defined the function $\zeta_1'(z) = \rho_1(z), \ \zeta_1(0) = 0.$

Letting $z \to t_0 \in L$, substituting (3.15) and (3.16) into (3.7) and taking $\kappa^{\pm}\beta^{\pm} = \alpha^{\pm}$ into account, we obtain the following singular integral equation

$$(\alpha^{+} + \alpha^{-} + \beta^{+} + \beta^{-})\omega(t_{0})$$

$$+ \frac{\alpha^{+} - \alpha^{-} + \beta^{-} - \beta^{+}}{\pi i} \int_{L \bigcup \gamma} \omega(t) \left[\overline{\zeta(t - t_{0})} - \overline{\zeta(t)} \right] d\overline{t}$$

$$+ \frac{\beta^{+} - \beta^{-}}{\pi i} \int_{L \bigcup \gamma_{I}} \omega(t) d \left[\log \frac{\sigma(t - t_{0})}{\sigma(t - t_{0})} \right]$$

$$+ \frac{\beta^{+} - \beta^{-}}{\pi i} \int_{L \bigcup \gamma} \overline{\omega(t)} d \left[\overline{\zeta_{1}(t - t_{0})} - (t - t_{0}) \overline{\zeta(t - t_{0})} \right]$$

$$- \frac{\beta^{-} - \beta^{+}}{\pi i} \left\{ \sum_{k \in \mathbb{I}} \kappa_{k} \int_{\gamma_{k}} \omega(t) \left[\overline{\zeta(t - t_{0})} - \overline{\zeta(t)} \right] d\overline{t} - \int_{\gamma_{\mathbb{I}}} \omega(t) \left[\zeta(t - t_{0}) - \zeta(t) \right] dt \right\}$$

$$- M_{6}[\omega(t), t_{0}] = N_{6}(t_{0}), t_{0} \in L, \tag{3.29}$$

where

$$\begin{split} M_{6}[\omega(t),t_{0}] &= \frac{\beta^{+} - \beta^{-}}{\pi i} \int_{L \bigcup \gamma} \overline{\omega(t)\zeta(t)} \\ &+ 2 \left(\frac{\beta^{-}}{\kappa^{-} + 1} - \frac{\beta^{+}}{\kappa^{+} + 1} \right) t_{0} \sum_{k \in \mathbb{Z}} \overline{A_{k}\zeta(t_{0} - z_{k})} \\ &- (\beta^{+} - \beta^{-}) \sum_{j \in I} b_{j} \left[\overline{\zeta(t_{0} - z_{j})} t_{0} - \overline{\wp(t_{0} - z_{j})} \right] - \overline{\rho_{1}(t_{0} - z_{j})} \\ &+ 4 \left(\frac{\alpha^{+}}{\kappa^{+} + 1} - \frac{\alpha^{-}}{\kappa^{-} + 1} \right) \sum_{k \in \mathbb{Z}} A_{k} \log |\sigma(t_{0} - z_{k})| \\ &+ 2(\alpha^{+} - \alpha^{-}) \sum_{j \in I} b_{j} \zeta(t_{0} - z_{j}) - 2(\beta^{+} B^{+} - \beta^{-} B^{-}) \overline{t_{0}} \\ &+ 2 \left(\alpha^{+} A^{+} - \alpha^{-} A^{-} - \beta^{+} \overline{A^{+}} + \beta^{-} \overline{A^{-}} \right) t_{0}, \\ N_{6}(t_{0}) &= 4g(t_{0}) - \frac{\beta^{+} - \beta^{-}}{\pi i} \int_{L} H(t) \overline{\zeta(t - t_{0})} d\overline{t} + (\beta^{+} - \beta^{-}) H(t_{0}) + (\nu^{+} - \nu^{-}) e_{3} t_{0}. \end{split}$$

For the uniquenss of the solution, let [40], [49]

$$C_j = -\int_{\gamma_j} \omega(t)ds, C_1 = 0, t \in \gamma_j \subset \gamma_I.$$
 (3.30)

Thus, (3.27)-(3.29) as a whole constitute a normal type singular integral equation with doubly-periodic kernel on $L \cup \gamma$.

In order to solve the boundary value problems (3.10) - (3.14), we use the modified Sherman transform in this case,

$$F(z) = \frac{1}{2\pi i} \int_{L \bigcup \gamma} i\Delta(t) \zeta(t - z) dt + Ez.$$
 (3.31)

Substituting (3.31) into (3.14) we can get ReE and ImE uniquely as functionals of $\Delta(t)$.

Substituting (3.31) into (3.10), it is obvious that (3.10) will be automatically satisfied.

Letting $z \to t_0 \in L$ and substituting (3.31) into (3.11) we get

$$\Delta(t_0) + \frac{\mu^*}{2\pi i} \int_{L \bigcup \gamma} \Delta(t) d \left[\log \frac{\sigma(t - t_0)}{\overline{\sigma(t - t_0)}} \right] - 2\mu^* i Re(Et_0) = 0, \tag{3.32}$$

where μ^* is given by (1.90).

Letting $z \to t_0 \in \gamma_j \subset \gamma_I$ and substituting (3.31) into (3.12) we have

$$\Delta(t_0) + \frac{1}{2\pi i} \int_{L \bigcup \gamma} \Delta(t) d \left[\log \frac{\sigma(t - t_0)}{\sigma(t - t_0)} \right] - 2iRe(Et_0) - C_j^* = 0.$$
 (3.33)

Letting at last $z \to t_0 \in \gamma_j \subset \gamma_{I\!\!I}$ and substituting (3.31) into (3.13) we obtain

$$\frac{1}{2\pi i} \int_{L \bigcup \gamma} \Delta(t) d \left[\log |\sigma(t - t_0)| \right] - 2iRe(Et_0) = -iW(t_0). \tag{3.34}$$

Equations (3.32)-(3.34) combine into a second kind Fredholm integral equation.

3.4 Unique Solvability of the Mixed CPS Problem

At first, we prove the unique solvablity of equations (3.27)-(3.29). To do this, we must show that the homogeneous equation has no non-trival solutions, say,

when $f(t) \equiv 0$, $h(t) \equiv 0$, $e_3 = 0$, after $C_j = C_j^0$ is taken, then $\omega_0(t) \equiv 0$ everywhere on $L \bigcup \gamma$ (and hence $C_j^0 = 0$ necessarily).

Let $\phi_0(z)$, $\psi_0(z)$, b_j^0 , A_z^0 , B_z^0 , a_0 , b_0 , $H_0(t)$ and C_j^0 (for uniqueness e.g. $C_1^0 = 0$) be the corresponding values of $\phi(z)$, $\psi(z)$, b_j , A_z , B_z , a, b, H(t) and C_j determined by equations (3.15)-(3.17), (3.21)-(3.25), and equation (3.30) for $\omega(t) = \omega_0(t)$. It is easy to verify that they satisfy the corresponding boundary conditions (3.5)-(3.9), which form the mixed fundamental problem under homogeneous conditions (and $C_1^0 = 0$). By the uniqueness theorem [49], [40], we have

$$\phi_0(z) = c_z, \quad \psi_0(z) = \kappa_z c_z,$$
 (3.35)

Due to $C_1^0 = 0$, then

$$C_j^0 = 0, j = 2, \cdots, m,$$
 (3.36)

and

$$(\kappa^{+} + 1)c^{+} = (\kappa^{-} + 1)c^{-}. \tag{3.37}$$

Now, as $\phi_0(z)$ is a single-valued function, it follows from (3.15) that we have

$$A_k^0 = 0, k \in II. (3.38)$$

Hence, we find $H_0(t) = 0$ from (3.25). Thus

$$c_z = \frac{1}{2\pi i} \int_{L \bigcup \gamma} \omega_0(t) \left[\zeta(t-z) - \zeta(t) \right] dt + \sum_{j \in I} b_j^0 \zeta(z-z_j) + A_z^0 z, \qquad (3.39)$$

$$\kappa_z c_z = \frac{1}{2\pi i} \int_{\gamma_I} \left[\overline{\omega_0(t)} dt + \omega_0(t) d\overline{t} \right] \left[\zeta(t-z) - \zeta(t) \right]$$
$$-\frac{1}{2\pi i} \int_{L \bigcup \gamma} \omega_0(t) \left[\overline{t} \wp(t-z) - \rho_1(t-z) \right] dt$$
$$-\frac{1}{2\pi i} \int_{L} \left[\overline{\omega_0(t)} dt - \omega_0(t) d\overline{t} \right] \left[\zeta(t-z) - \zeta(t) \right]$$

$$-\sum_{k\in\mathbb{I}} \frac{\kappa_k}{2\pi i} \int_{\gamma_k} \overline{\omega_0(t)} \left[\zeta(t-z) - \zeta(t) \right] dt$$

$$+ \frac{1}{2\pi i} \int_{\gamma_{\mathbb{I}}} \omega_0(t) \left[\zeta(t-z) - \zeta(t) \right] d\overline{t}$$

$$+ \sum_{j\in\mathbb{I}} b_j^0 \left[\zeta(z-z_j) + \rho_1(z-z_j) \right] + B_z^0 z. \tag{3.40}$$

Because the right-hand sides of equations (3.39) and (3.40) are doubly quasi-periodic, the cyclic increments of the two sides of (3.39) and (3.40) must be equal, respectively. Then, we get

$$A_z^0 = 0, B_z^0 = 0, a_0 = 0, b_0 = 0.$$
 (3.41)

By using the Plemelj formulae on L from (3.39), one obtains for $C_1^0=0$

$$\omega_0(t) = c^+ - c^-, t \in L. \tag{3.42}$$

Substituting (3.42) back into (3.39) and (3.40) after integrating by parts, we arrive at the equalities

$$c_{z} = \frac{1}{2\pi i} \int_{\gamma} \omega_{0}(t) \left[\zeta(t-z) - \zeta(t) \right] dt + \frac{c^{+} - c^{-}}{2\pi i} \int_{L} \left[\zeta(t-z) - \zeta(t) \right] dt + \sum_{j \in I} b_{j}^{0} \zeta(z-z_{j}),$$
(3.43)

$$\kappa_{z}\overline{c_{z}} = \frac{1}{2\pi i} \int_{\gamma_{I}} \overline{\omega_{0}(t)} dt \left[\zeta(t-z) - \zeta(t) \right] - \frac{1}{2\pi i} \int_{\gamma} \omega_{0}(t) \zeta(t) d\overline{t}
- \frac{c^{+} - c^{-}}{2\pi i} \int_{L} \zeta(t) d\overline{t} + \frac{1}{2\pi i} \int_{\gamma} \omega_{0} \rho_{1}(t-z) dt
- \frac{\overline{c^{+} - c^{-}}}{2\pi i} \int_{L} \left[\zeta(t-z) - \zeta(t) \right]
- \sum_{k \in \mathbb{I}} \frac{\kappa_{k}}{2\pi i} \int_{\gamma_{k}} \overline{\omega_{0}(t)} \left[\zeta(t-z) - \zeta(t) \right] dt.$$
(3.44)

The functions

$$\chi_1(z) = c_z - \frac{c^+ - c^-}{2\pi i} \int_L \left[\zeta(t - z) - \zeta(t) \right] dt, \tag{3.45}$$

$$\chi_2(z) = \kappa_z \overline{c_z} + \frac{c^+ - c^-}{2\pi i} \int_L \zeta(t) d\overline{t}$$
$$-\frac{\overline{c^+} - \overline{c^-}}{2\pi i} \int_L \left[\zeta(t - z) - \zeta(t) \right] dt, \tag{3.46}$$

are holomophic in S_0 .

Putting z=0 ($0 \in D \subset S_0$) and paying attention to the origin being located outside the region bounded by L, it follows from (3.45) and (3.46) by Cauchy theorem that

$$\chi_1(z) = c^+, \quad \chi_2(z) = \kappa^+ \overline{c^+} + c^*,$$
 (3.47)

where

$$c^* = \frac{c^+ - c^-}{2\pi i} \int_L \zeta(t) d\bar{t}.$$
 (3.48)

We introduce the functions

$$\Phi_*(z) = \frac{1}{2\pi i} \int_{\gamma} \left[\omega_0(t) + \sum_{j \in I} b_j^0 \zeta(t - z_j) - c^+ \right] \left[\zeta(t - z) - \zeta(t) \right] dt$$

$$= \begin{cases} 0, z \in S_0, \\ -i\phi_*(z), z \in S_0^j, j \in I \cup I\!\!I, \end{cases} \tag{3.49}$$

$$\Psi_{*}(z) = \frac{1}{2\pi i} \int_{\gamma_{I\!\!I}} \left[\omega_{0}(t) - \overline{t}\omega'_{0}(t) + \sum_{j \in I} b_{j}^{0} \zeta(t - z_{j}) + e - c^{*} \right] \left[\zeta(t - z) - \zeta(t) \right] dt
- \sum_{k \in I\!\!I} \frac{\kappa_{k}}{2\pi i} \int_{\gamma_{k}} \overline{\omega_{0}(t)} \left[\zeta(t - z) - \zeta(t) \right] dt
- \frac{1}{2\pi i} \int_{\gamma_{I\!\!I}} \left[\overline{t}\omega'_{0}(t) + e^{*} \right] \left[\zeta(t - z) - \zeta(t) \right] dt + Q(z)
= \begin{cases} 0, z \in S_{0}, \\ -i\psi_{*}(z), z \in S_{0}^{j}, j \in I \cup I\!\!I, \end{cases}$$
(3.50)

where

$$\begin{split} e &= -\frac{1}{2\pi i} \int_{\gamma_I} \overline{t} \omega_0(t) \wp(t) dt - \kappa^+ \overline{c^+}, \\ e^* &= \frac{1}{2\pi i} \int_{\gamma_\pi} \overline{t} \omega_0(t) \wp(t) dt - \kappa^+ \overline{c^+}, \end{split}$$

$$Q(z) = \frac{1}{2\pi i} \int_{\gamma} \omega_0(t) \rho_1(t-z) dt + \sum_{j \in I} b_j^0 \rho_1(z-z_j).$$

Then

$$\Phi_*^-(t) = \frac{1}{i} \phi_*(t)$$

$$= \begin{cases}
\omega_0(t) + \sum_{r \in I} b_r^0 \zeta(t - z_r) - c^+, t \in \gamma_j \subset \gamma_I, \\
\omega_0(t) - c^+, t \in \gamma_j \subset \gamma_I,
\end{cases}$$
(3.51)

$$\Psi_{*}^{-}(t) = \frac{1}{i} \psi_{*}(t)$$

$$= \begin{cases}
\overline{\omega_{0}(t)} - \overline{t} \omega_{0}'(t) + \sum_{r \in I} b_{r}^{0} \zeta(t - z_{r}) + e - c^{*}, \\
-\kappa_{k} \overline{\omega_{0}(t)} - \overline{t} \omega_{0}'(t) - e^{*}, t \in \gamma_{j} \subset \gamma_{I}.
\end{cases}$$
(3.52)

Eliminating $\omega_0(t)$ from (3.51) and (3.52), we obtain

$$\phi_*(t) + t\overline{\phi_*'(t)} + \overline{\psi_*(t)} = i \sum_{r \in I} b_r^0 \left[\overline{\zeta(t - z_r)} - \zeta(t - z_r) - t \overline{\wp(t - z_r)} \right] + i(\overline{e} - \overline{c^*} + c^+), t \in \gamma_j \subset \gamma_I,$$
(3.53)

$$\kappa_k \phi_*(t) - t \overline{\phi_*'(t)} - \overline{\psi_*(t)} = i(\overline{e^*} + \kappa_k c^+ - \overline{c^*}), t \in \gamma_j \subset \gamma_{I\!\!I}. \tag{3.54}$$

Multiplying both sides of (3.53) by dt and integrating over $\gamma_j, j \in I$, we arrive at the equalities

$$\int_{\gamma_j} \left[\overline{\phi_*(t)} dt - \phi_*(t) d\overline{t} \right] = i \sum_{r \in I} b_r^0 \int_{\gamma_j} \left[\overline{\zeta(t - z_r)} dt + \zeta(t - z_r) d\overline{t} \right]$$
$$-2\pi b_r^0, t \in \gamma_j \subset \gamma_I.$$

Since the b_r^0 which are determined by (3.17) are real constants, hence

$$b_r^0 = 0, r \in I. (3.55)$$

Therefore

$$\phi_*(t) + t\overline{\phi_*'(t)} + \overline{\psi_*(t)} = i(\overline{e} - \overline{c^*} + c^+), t \in \gamma_j \subset \gamma_I.$$
 (3.56)

This is exactly the boundary value problem of the first fundamental problem in the absence of external forces. Applying the uniqueness theorem for the first fundamental problem [49], [40], we get

$$\phi_*(z) = i\epsilon_j z + c_j, \ \psi_*(z) = -\overline{d_j}, j \in I.$$

Then, from (3.51) and (3.55), it follows immediately that

$$\omega_0(t) = c^+ - \epsilon_i t + i c_i, t \in \gamma_i \subset \gamma_I. \tag{3.57}$$

Substituting (3.57) into (3.17), on account of (3.55) we have

$$\epsilon_j = 0, j \in I. \tag{3.58}$$

From (3.56) we obtain

$$c_i - d_i = i(c^+ + \overline{e} - \overline{c^*}). \tag{3.59}$$

Further, using successively (3.51)-(3.52), (3.55)-(3.59) we find

$$c_i = d_i = 0, j \in I; c^+ + \overline{e} - \overline{c^*} = 0.$$
 (3.60)

It follows from equations (3.30), (3.36) and (3.37) that

$$c^+ = c^- = 0. (3.61)$$

Referring to formulae (3.57)-(3.61) we arrive at the equality

$$\omega_0(t) = 0, t \in \gamma_j \subset \gamma_I. \tag{3.62}$$

From (3.61) and (3.42) we have

$$\omega_0(t) = 0, t \in L. \tag{3.63}$$

Similarly, taking (3.54) into consideration, we can calculate that

$$\omega_0(t) = 0, t \in \gamma_j \subset \gamma_{I\!\!I}. \tag{3.64}$$

With the above, we have proved

$$\omega_0(t) \equiv 0, t \in L \bigcup \gamma. \tag{3.65}$$

In order to prove the unique solvability of the second kind Fredholm equations (3.32)-(3.34), consider the homogeneous equation, obtained from the homogeneous condition w(t) = 0.

Let $\Delta_0(t)$ be any solution of the homogeneous equation and $F_0(z)$ the corresponding expression for the function F(z), analogously to [20], we have

$$F_0(z) = c_z^*, (3.66)$$

where

$$c_z^* = \begin{cases} c^{*+}, z \in S_0, \\ c^{*-}, z \in S_0^j, j \in I \cup I\!\!I, \end{cases}$$

and $c^{*\pm}$ are complex constants.

From (3.10) and (3.11) we obtain

$$Re(c^{*+}) = Re(c^{*-}),$$
 (3.67)

$$\mu^{+}Im(c^{*+}) = \mu^{-}Im(c^{*-}). \tag{3.68}$$

It follows from (3.13) and (3.67) that

$$Re(c^{*+}) = Re(c^{*-}) = 0,$$
 (3.69)

whence, by (3.66) and (3.31) we find

$$\Delta_0(t) = 0, t \in \gamma. \tag{3.70}$$

Referring to formulae (3.31), and (3.66) (3.70) we arrive at the equality

$$Im(c_z^*) = \frac{1}{2\pi i} \int_L i\Delta_0(t)\zeta(t-z)dt + E_0 z.$$
 (3.71)

By the Plemelj formulae, we get

$$i\Delta_0(t) = i[Im(c^{*-}) - Im(c^{*+})], t \in L.$$
 (3.72)

On account of the double quasi-periodicity of the two sides of (3.71), we have

$$\frac{1}{2\pi i} \int_{L} i\Delta_0(t)\zeta(t)dt = 0, \ E_0 = 0.$$
 (3.73)

Putting z = 0 in (3.71) and taking (3.73) into consideration, we obtain

$$Im(c^{*+}) = \frac{1}{2\pi i} \int_{L} i\Delta_0(t)\zeta(t)dt = 0.$$
 (3.74)

From (3.68) we get

$$Im(c^{*-}) = 0.$$
 (3.75)

It follows from (3.72) that

$$\Delta_0(t) = 0, t \in L. \tag{3.76}$$

Finally, referring to (3.70) and (3.76) we find

$$\Delta_0(t) \equiv 0, t \in L \bigcup \gamma. \tag{3.77}$$