Chapter 2

Second Fundamental CPS

Problem of a Nonhomogeneous
Body with a Doubly-Periodic
Set of Cracks

2.1 Formulation, Solution of the Second

Fundamental CPS Problem

The model of the elastic body of the second fundamental CPS problem is
the same as Figure 1.1, the notations are the same as in Chapter 1. Denote
g7 (1) = uji(T) +iv; (1) as the displacements on the positive and negative sides
of the point 7 on the crack v; (j =0,1,---,m — 1), respectively. Assume that
gi (1) are sufficiently smooth on v; (j =0,1,---,m — 1) and [49],

Uj(&j) = uj_(aj)7 uj_(bj) = uj_(bj) (j =0,1,---,m— 1)7
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g7 (a;) = g5 (a;), gF(b;) = g; (b)).

By Lemma 1.1.1 we know the components of the displacement are doubly

quasi-periodic due to the doubly-periodic stress distributions.

Now, consider the second fundamental CPS problem, where the displace-
ments g7 (t) = uj (t) +iv; (t), t € ; (j = 0,1,---,m — 1) and their cyclic
increments g (k = 1,2), and displacement w(t),t € 7, with its cyclic incre-
ments wy, (k = 1,2), are given. The displacement discontinuity g(t) = [u™(¢) +
vt (t)]—[u~ (t)+iv~(t)] on L is likewise given. The strain e3 = constant. In this
case, the external stress resultant principal vectors Xy,+Xs; (j =0,1,---,m—
1) are undetermined constants. Certainly, they must satisfy (1.28), to deter-

mine the elastic equilibrium.

Considering the displacement conditions, from formula (1.10), we have the

boundary conditions on 7; and their congruent for the elastic system (/)

Kj¢i(T) - T¢li(7) - ¢i(7) = 2/'Lj {gj:(T) + Vj€37—} , T € Vi .] = 07 17 e, — 1.
(2.1)
The external stresses applied to the two sides of £(m,n) must be in equilib-

rium, then, from formulae (1.19)-(1.20) we have

¢T(t) + 1t (t) + Yt (t) = ¢~ (t) +t¢'~(t) + ¥ (t),t € L. (2.2)

Moreover, by the displacement discontinuity conditions of the two sides of

L(m,n), from formula (1.10) we have the boundary condition

at@r(t) = BTt () + T (H)] = a7 (t) — B[t (1) + (1))
—(wt — v )est +2g(t),t € L. (2.3)
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To ensure the double quasi-periodicity of the displacement, we have

—} z+2wyg

F20(2) = 20'(2) = (2)] " = 2pagp, k= 1,2. (2.4)

Similarly, for the elastic system () we have

FE(r)+ FE(r) =w(t),7€7; (j=0,1,---,m — 1), (2.5)
Frt)+ Fr(t)=F (t)+ F-(t),t € L, (2.6)

it [FH) - FFD = [F() - F- (0] e L, (2.7)
[F(2) +F@)] " = 2wk = 1.2, (2.8)

where

:u+7 if i C S(;r’ K'+7 if Vi C S(J)ra

My = ) y Ry = )

po, ity C Sy, k=, ify; CSy.

In order to solve the boundary value problem (2.1)-(2.4), the general rep-

resentation of the solution will be constructed as follows,

o) =5 [ ), e0C(E = )

1 m—1

Tt ;) Aj[logo(z — a;)o(z — bj) — Hj(2)]
+A.z+ Cj, (2.9)
ve) == X o2 [ St -
e 17:0147 log (= — aj)o(z = by) = Hy(2)]
—QLM. /Lw(t)C(t — z)dt — zim /Luwmw/(t)qt — 2)dt
o |~ 2t — 5 [ [0 — B0 ot - 2
+D(2)¢(z) — D(2)¢'(0) + Bz, (2.10)
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where H(t) is an undetermined function, C; and

Xij +iXo;

Aj:_ An 7j:0717"'7m_17

are undetermined constants,
hE(t) = 2595 (1), t € ;.

Substituting (2.9) and (2.10) into (2.2) and (2.4) we get

H(to) = Q(to) — (Kf(_ﬁ;)z,jﬂ Re {fh /Q dt} to, (2.11)
At /igi—_p_lz—“ . zﬁiReﬁ{l llff(t)df]’ (2.12)
BE=p; — /IH(t)dt, (2.13)
where
Qty) = =)l {mlAj log oty — a,)a(ty — b)) - Hj(to)]}
W+ D +1) | &

(vF =)t | /
D+ OA <l —a;) + b =) - Hj(toﬂ}

(pf—pf P —pf) .
- - 0,

kT —1 k™ —1

1 [_ﬁiél/LUw (t)dt + mzzz /dt+/ t)dt + m(t)w’(t)df}

R _
v (wlhg—Wth) 1 / _
_ )
i 2iS 2 Juy, B EE
0
©=Ris




B 1
= 7Ris

Substituting H(t), A, and B, from equations (2.11), (2.12) and (2.13)

into formulae (2.9) and (2.10), the boundary conditions (2.2) and (2.4) will be

automatically satisfied.

Letting z — to € L and substituting equation (2.9) and (2.10) into equa-
tion (2.3), by employing the modified Plemelj formulae and taking x* 3% = o
into account, we get the integral equation
t a4+ 3 — Bt

¥/

(oé+ +a” + BT+ 7 )wl(to) +
ﬁ / llog —_ ttoo)) ]

+Tﬁ | w®a{im(t) = m(t) S — 1)}

/L W) C(E— to)dl

— Mylw(t), to] = Na(to), (2.14)
where
Myfw(t), tg] = W% m_ol ; L A o)
+4 <Kfi = /f: 1) log o (to — a;)o(to — b;) + H;(to)|
+2 <n+ﬂ1 - Kﬂ; 1) gA—j [g(to —a;) + C(to — b;) — H;(to)} ,
Na(to) = 4g(to) A [0 (t) — h™ ()] ST~ to)dE + (v* — v esto.

Letting z — to € v and substituting (2.9) and (2.10) into (2.1), we have

jollo) + 2— / o) rog T2

i e ——

+M4[ (t), o] = Na(to), (2.15)
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where a prime at the summation sign indicates that the summation is carried

out over all k # j,k=0,1,---,m — 1, and

Malw(t), to] = 27” ]/ C(t —to dt—/Lw(t)g(t—to)dz]
+ori {50 {imlt) - m(t0) ST 1)}
2:"5 mz A,loglo(t — a,)olty — by) + H.(t)
o) N~ [Co — ) + Gl — by) — (i)
Ni(to) = —%jm. [ [0 =1 0] ST

+2—/<oj {h*( 0) + h’(to)} + vjesto.

Equations (2.14) and (2.15) as a whole constitute a singular integral equa-
tion of normal type along L{Jvy. We would find its solution in class hs,,, i.e.,
on account of (1.28), Xy = —mz_l Xyj, Xoo = — mil Xy;, there are exactly 2m
undetermined real constants: )](:1]1, Xo (=1,- j:,;n — 1), ReC and ImC.

In order to solve the boundary value problems (2.5)-(2.8), we construct

the solution in the form

1
271

F(z) = /LUV IAG)C(E — 2)dt + Bz, (2.16)

where A(t) is an unknown real function, E is an undetermined complex con-

stant.
Substituting (2.16) into (2.8) we get a system of equations for ReF and
ImE

2Re (w1) ReE + 2Im (wy) ImE = 2 {wy — n Re [0*(t)]},
(2.17)
2Re (wg) ReE + 2Im (ws) IMmE = 2 {wy — neRe [0*(t)]},
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the determinant of which is

Re (wy) Im(wq)
Re (wy) Im (ws)

— —S 0.

Hence, we can obtain ReF, I'mFE uniquely.

ImE = % {4Re (wg) wy; — Re (w1) wy — wIm [(d9 + 1) A*(2)]},
| (2.18)
ReE = S {4Re (wq) w1 — Re (wq) wy — wiRe [(d2 + 1) A*(¢)]} .

Letting z — to € L and substituting (2.16) into (2.6), it is easy to see (2.6)

will be identically satisfied.

Substituting (2.16) into (2.7) and (2.5) by the Plemelj formulae we get

respectively
7 o(t —to) ,
Alty) + — A(t)d |log ———=| — 2u"iRe(Ety) = 0, 2.19
W)+ 25 [, A0 [ga(t_to)] iRe(Bto) 219
1
o iA(t)dlog|o(t —to)| + 2Re(Ety) = w(to). (2.20)
m JL

Equations (2.19) and (2.20) as a whole constitute a second kind Fredholm

integral equation along LJ~.

2.2 Unique Solvability of the Second
Fundamental CPS Problem

Now, we shall prove equations (2.14) and (2.15) to be uniquely solvable in
hom. Analogously to Section 1.5, we should prove, wy(t) = 0,t € LU~ (hence
X?j = ng =0, ReC = ImC = 0,5 =0,1,---,m — 1) under homogeneous
conditions of the second fundamental problem, that means g;-—L(t) =0,t €7,

g(t) =0,t € L, and e3 = 0.
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Let ¢°(2), ¥%(2), H(t), A2, B? be the corresponding values of ¢(z), 1(z),
H(t), A,, B, determined by (2.9)-(2.13) for w(t) = wy(t). By the unique-
ness theorem [49], [40] of the second fundamental problem under homogeneous

conditions, we have

¢°(2) = c., Y(2) = Raca (2.21)

Substituting (2.21) into (2.3) we obtain
(kT +1)c" = (k" +1)c. (2.22)

Due to ¢Y(z) will be a single-valued function in this case, from (2.9)

and (2.10) we arrive at the equalities

A) = X7 +iX3, =0, (2.23)

1
27

/L ), ol = =)t + A%, (2.24)

o0 2mi Jy

1 1 .,
55/, wo(t)C(t — z)dt — 5 LU'ym(t)WO(t)g(t — z)dt
+%/LH0(t)C(t —2)dt + B (2.25)

Comparing the quasi-periodic cyclic increments of the two sides of equa-

tions (2.24) and (2.25), respectively, we obtain

1
— t)dt =0 2.26
37 o, o0t =0, (2:26)
A =B =0, (2.27)
m—1
ﬁ/ u)() dt——/wo
) 2mi Sy
J
1 _ _
— / ’tdt——/HOtdt:O. 2.8
ot Joy, OO o [0 (2.28)
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Substituting (2.26)-(2.28) into (2.24) and (2.25) by the Plemelj formulae
we get

wo(t)=ct —c,te L, (2.29)
wo(t) =0,t €. (2.30)

Substituting (2.29) into (2.24), and let z = 0 € S, by the Cauchy theorem

we obtain
ct=0
Then, from (2.22) we find
c =0.
Hence, it follows from (2.29) that
wo(t) =0, € L. (2.31)

Referring to (2.30) and (2.31) we have proved

wo(t) =0,t € L J~. (2.32)

Using the method of Section 1.5, one may also prove the unique solvability

of the equations (2.19) and (2.20).

Thus, the second fundamental CPS problem is solved uniquely.
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