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Dendritic calcium spikes are clearly detectable
at the cortical surface
Mototaka Suzuki1 & Matthew E. Larkum 1

Cortical surface recording techniques such as EEG and ECoG are widely used for measuring

brain activity. The prevailing assumption is that surface potentials primarily reflect synaptic

activity, although non-synaptic events may also contribute. Here we show that dendritic

calcium spikes occurring in pyramidal neurons (that we showed previously are cognitively

relevant) are clearly detectable in cortical surface potentials. To show this we developed an

optogenetic, non-synaptic approach to evoke dendritic calcium spikes in vivo. We found that

optogenetically evoked calcium spikes were easily detectable and had an unexpected

waveform near the cortical surface. Sensory-evoked dendritic calcium spikes were also clearly

detectable with amplitudes that matched the contribution of synaptic input. These results

reveal how dendritic calcium spikes appear at the cortical surface and their significant impact

on surface potentials, suggesting that long-standing surface recording data may contain

information about dendritic activity that is relevant to behavior and cognitive function.
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For nearly a century, brain surface recording techniques such
as electroencephalogram (EEG) and electrocorticogram
(ECoG) have been the most widely used technique for

recording brain activity1. The standard textbook explanation of
surface potentials is that they primarily reflect cooperative post-
synaptic activity2 because synaptic currents are assumed to be the
dominant electrical current source3–5 (but see ref. 6 as an example
of non-synaptic EEG component). However, other current
sources, such as the active properties of cortical pyramidal cell
dendrites could potentially contribute5, 7. For instance, voltage-
gated calcium (Ca2+) channels around the main bifurcation point
of apical dendrites (550–900 μm from the soma in rats8) give rise
to characteristic depolarizing plateau potentials (dendritic Ca2+

spikes)9. These dendritic Ca2+ spikes can be generated sponta-
neously or by sensory inputs10, last for 50 ms in anesthetized
animals8 and up to several seconds in awake behaving rats11, and
represent a large current source12. A recent study further
demonstrated the correlation between dendritic Ca2+ spikes and
animal behavior13. Despite their magnitude, functional sig-
nificance, and proximity to the cortical surface, it remains unclear
how dendritic spikes contribute to surface potentials, although it
has been observed that dendritic spikes can influence the local
field potential (LFP)7, 10, 14, 15. We sought to determine the extent
to which dendritic Ca2+ spikes contribute to the surface potentials
through combined use of multi-channel extracellular recordings,
optogenetics, pharmacology, and a “micro-periscope” that allows
layer-specific light delivery.

Results
Using a linear array of 16 electrodes (Michigan probe), we
recorded the extracellular local field potentials (LFPs) in the
hindlimb area of the primary somatosensory cortex in the anes-
thetized rats, while optogenetically stimulating layer 5 (L5) of the
cortex (Fig. 1a). Layer-specific light delivery was achieved with a
micro-periscope consisting of a 0.18 mm x 0.18 mm micro right-
angled prism, a custom-designed Grin lens, and a multi-mode
optical fiber (Fig. 1b and Supplementary Fig. 1). Microinjection of
adeno-associated virus conjugated with channelrhodopsin-2
(ChR2) and a CaMKIIα promoter to L5 was used to restrict
expression of ChR2 predominantly to L5 pyramidal neurons16.
The fluorescence image of the cortical slices taken from the
recorded rats showed the confined viral expression in L5 (Fig. 1c).

A novel method to evoke dendritic Ca2+ spikes in vivo. Ca2+

spikes can be evoked in L5 pyramidal neurons by depolarizing the
apical dendritic initiation zone17. Light pulses delivered to L2/3
caused a sink in these layers, however we chose not to use this
approach because it was difficult to separate the effect of the
ChR2 current from activation of voltage-sensitive postsynaptic
currents. We therefore chose a second method for evoking den-
dritic Ca2+ spikes based on the “critical frequency” approach that
uses high-frequency backpropagating action potentials (bAPs)
generated at the soma18, 19. This method has been shown to
activate the same dendritic Ca2+ channels as direct dendritic
depolarization in vitro20 and has been shown to be effective
in vivo21. By activating ChR2 in L5, we avoided the confounding
influence on the LFP that would otherwise have occurred by
direct activation of ChR2 in the dendrites (i.e., via light to L2/3).
In other words, we could remotely activate the L5 dendrites
without directly stimulating the apical dendrites either optically
or synaptically.

A single pulse of light (10–30 ms) delivered to L5 reliably
caused a current sink in L5 in all cases (Fig. 1d) but also, in 67.8
± 23.7 (mean± SD, n= 17 animals) % of trials with maximum
light amplitudes, we observed an additional sink in the upper and

middle layers at distances corresponding to the typical location of
dendritic Ca2+ spikes8 ~ 20 ms after the offset of the light
stimulation18. Interestingly, the current sink in L2/3 was reliably
accompanied by a current source in L1 (Fig. 1d, f and
Supplementary Fig. 2). The late sink in L2/3 was sometimes
“simple”, and sometimes “complex” in form (Fig. 1e, right) and
had variable amplitudes (0.48± 0.05 mV, n= 17 rats). In the
remaining cases, there was no discernable late sink at all (Fig. 1e,
bottom left). Current source density (CSD) analysis of the evoked
potentials revealed that the second sink was initiated at 613± 27
μm below the pia and propagated in both directions, upward and
downward (Fig. 1f). The sink was also highly dependent on
stimulus strength with a sharp increase occurring at higher light
amplitudes (p< 0.001, one-way ANOVA with post hoc multiple
comparison, n= 17 animals, Fig. 1g and Supplementary Fig. 3).

The sink in L2/3 therefore bore all the hallmarks of a dendritic
Ca2+ spike including location, timing and a sharp dependence on
the strength of somatic activation. To investigate this possibility,
we performed a number of tests. First, we repeated the
optogenetic stimulation experiments combined with a second
micro-periscope for recording Ca2+ fluorescence in L2/3 (Fig. 1h,
left). For these experiments, a Ca2+ indicator (Cal-590 AM) with
a long excitation wavelength (550 nm) to avoid direct activation
of ChR2 was injected to L5. The light through this micro-
periscope was shone tonically throughout the experiment so that
any residual effect was not time locked to the ChR2 stimulation in
L5. Here, optogenetic activation of L5 caused an all-or-none
fluorescence transient in L2/3 (at higher stimulus strengths)
similar to the current sink seen earlier (Fig. 1h, right). Here the
term all-or-none is used to describe the fact that the late sink,
while it varied in amplitude and duration, was entirely absent in a
significant number of cases resulting in a bimodal amplitude
distribution (Supplementary Fig. 4). This is consistent with the
late sink correlating with a thresholded event such as a dendritic
Ca2+ spike. This Ca2+ transient was dendritic because the
indicator, applied in L5, could only have reached L2/3 by
diffusing along the apical dendrites of L5 cells22, 23 which
suggested that the current sink seen earlier also corresponded to
dendritic Ca2+ currents. However, to rule out contribution from
other postsynaptic elements such as disynaptic firing of cells in
L2/3 we injected 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX,
100 μM) into L2/3 and L5. In these experiments, there was no
change in the amplitude of the current sink in L2/3 (both p>
0.05, Wilcoxon signed rank test, Fig. 1i and Supplementary
Fig. 3). We also measured multi-unit activity (MUA) in both L2/3
and L5 (Fig. 1j), which did not show any significant increase of
MUA before the onset of the late sink compared with the
prestimulus period (all p> 0.05, Student’s paired t-test, n= 5
animals). We therefore conclude that the late current sink in L2/3
was produced by currents in the dendrites of L5 pyramidal
neurons.

Previous studies have shown that dendritic Ca2+ spikes are
effectively blocked by the GABAB receptor agonist baclofen24, 25

due to down-regulation of Cav1 (L-type) channels12. Here, we
found that the dendritic current sinks significantly decreased by
local injection of 50 μM baclofen to L2/3 (from 0.39± 0.05 to
0.09± 0.01 mV, n= 5, p< 0.05, Wilcoxon signed rank test)
(Fig. 1k and Supplementary Fig. 5). Local injection of 3 μM
TTX into L5 which would be expected to block APs in the L5
pyramidal neurons also significantly decreased the dendritic
current sinks (from 0.43± 0.06 to 0.11± 0.02 mV, n= 3, p< 0.05,
Wilcoxon signed rank test; Fig. 1l and Supplementary Fig. 6). The
late dendritic current sink was clearly not due to bAPs in the
dendrites, because they would be expected to take only 1.5 ms to
propagate 1 mm back along the dendrites in vivo at 0.67 m/s14.
Taken together, we conclude that the current sink observed in the
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middle to upper layers was due to dendritic Ca2+ spikes in L5
pyramidal neurons.

A Ca2+ spike-evoked passive current source in L1. The
appearance of a passive current source in the superficial layers
correlating with the Ca2+ spike sink in L2/3 was an unexpected

finding. Several studies have observed that Ca2+ spikes originate
in the apical trunk dendrite and rarely propagate to the most
distal tuft branches8, 10, 13, 26, 27. Furthermore, the distal tuft
branches have a high density of the non-selective cation channel
(Ih)19, 28–30 that is spontaneously open, and previous in vitro
studies showed that Ih interacts with dendritic Ca2+ spikes31–33.
This spontaneous leak current may account for the pronounced
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source of passive current. We tested this possibility by local
application of Ih blocker ZD7288 (500 μM) on the cortical surface
(Fig. 2a). After ZD7288 application the second sink was elongated
upward and the source was significantly reduced in both size and
duration (all p< 0.05, Wilcoxon signed rank test, Fig. 2b, c),
suggesting that Ih enhanced the passive current under control
conditions. By similar reasoning, we hypothesized that the source
near the cortical surface produced by currents in the distal tuft
dendrite should also lead to positively deflected potentials at the
cortical surface. Using a 4 by 4 surface electrode array (Fig. 3a),
we detected surface positive potentials that were 20–30 ms
delayed after the onset of the dendritic Ca2+ spikes measured at
600 μm deep below the pia (Fig. 3b). In all animals (n= 4) the
evoked surface potentials were clearly detected at multiple elec-
trodes that were 500 μm apart. The surface potentials were also
baclofen-sensitive (from 0.39± 0.13 to 0.01± 0.03 mV, n= 4, p<
0.05, Wilcoxon signed rank test, Fig. 3c) and clearly detectable
even in the awake freely moving animals (n= 3) with similar
characteristics (Fig. 4a–c, all p> 0.05, Wilcoxon rank sum test).
We conclude that apical dendritic Ca2+ spikes are detectable as
positive potentials at the cortical surface in both anesthetized and
awake brain.

Sensory-evoked dendritic Ca2+ spikes. Having determined the
impact of dendritic Ca2+ spikes on surface potentials in the
absence of synaptic input to the dendrite (i.e. evoked by opto-
genetic stimulation of L5), we turned our attention to the effect of
sensory-evoked Ca2+ spikes on surface potentials. We recorded
LFPs, surface potentials, and Ca2+ fluorescence in the same cor-
tical area—the hindlimb area of the primary somatosensory
cortex—while electrically stimulating the contralateral hindlimb
(Fig. 5a). Simultaneous recording of LFPs and Ca2+ fluorescence
revealed two distinct patterns of activity in response to hindlimb
stimulation (Fig. 5b). The first kind of response showed a current
sink across L2/3 and L5 approximately 10 ms after the stimulus
onset, which corresponded to excitatory postsynaptic potentials
(EPSPs) as shown in previous studies34–36. The first current sink
was correlated with a small Ca2+ transient observed with the
dendritic micro-periscope (Fig. 5e, left). The second type of
response arrived ~ 50–60 ms after the stimulus and showed a
second current sink in the middle and uppers layers with a similar
amplitude and timing to the late Ca2+ spike-evoked sink pro-
duced by optogenetic stimulation of L5 (Fig. 5b, right). Moreover,
the sensory-evoked late sink was accompanied by a large increase
in dendritic Ca2+ signal (Fig. 5c, e) also similar in amplitude and

Fig. 1 Optogenetically evoked dendritic Ca2+ spikes in the local field potential. a Schematic diagram of the experiment. b A photomicrograph of the micro-
periscope system with collimated light in the air (top) and in the cortical tissue (bottom). c A cortical slice showing the virally transfected region co-
expressing Channelrhodopsin 2 (H134R) and eYFP. Scale bar represents 500 μm. d Optogenetically evoked potentials at 16 cortical depths with the highest
light intensity (12 mW/mm2), averaged over 100 traces in one animal. Shaded area indicates the late sink. Blue bar indicates the timing of L5 light
stimulation. e Principal component analysis of 100 waveforms (top left) recorded at 600 μm below the pia (indicated by the arrow head in d) revealed three
types of waveforms: those without discernable late spikes (bottom left); those with broad spikes (top right); those with huge-amplitude, sharp spikes
(bottom right). f Current source density (CSD) analysis of the evoked potentials averaged over 100 measurements (left) and the expanded view between
300 and 900 μm below the pia showing that the late sink initiated at 600 μm below the pia and propagated both upward and downward. g The late sink
depends on light intensity (one-way ANOVA, p< 0.001, n= 17 animals). Post hoc multiple comparison test indicates that the amplitude upon highest light
intensity significantly differed from others (all p< 0.001). h Schematic diagram of Ca2+ fluorescence imaging experiments (left). The sharp increase in Ca2+

fluorescence measured in L2/3 coincided with the Ca2+ spikes measured with Michigan probe at 600 μm below the pia (right). Black and gray traces are the
average of 10 representative measurements with and without discernable Ca2+ spikes respectively. The light intensity for L5 stimulation was highest (12
mW/mm2). i The late sink was unaffected by local application of the synaptic blocker CNQX (100 μM) in L2/3 and L5 (both p> 0.05, Wilcoxon signed
rank test, n= 6). j Multi-unit activity (MUA) in L2/3 and L5 after optogenetic stimulation of L5 (averaged over n= 5 animals), at the highest light intensity
(12 mW/mm2). Shaded area indicates the period when the late sink was evoked. Blue bar indicates the timing of L5 light stimulation. k The late sink
significantly decreased by local application of 50 μM Baclofen in L2/3 (p< 0.05, Wilcoxon signed rank test, n= 5). l The late sink also significantly
decreased by local application of 3 μM TTX in L5 (p< 0.05, Wilcoxon signed-rank test, n= 3)
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duration to the optogenetically evoked dendritic Ca2+ transient. A
principal component analysis of the LFP waveform (Fig. 5d)
revealed that the second type of response could be further par-
titioned into simple or complex waveforms, with the complex
waveforms accompanying larger dendritic Ca2+ transients
(Fig. 5e, middle & right). Consistent with optogenetically evoked
dendritic Ca2+ spikes, the second current sink was initiated at
538± 57 μm below the pia, propagated in two directions (Fig. 5f,
right), and generated a passive current source in the superficial
layers (Fig. 5f, middle). Moreover, in all animals (n= 8) this
second current sink was abolished by local injection of baclofen in
L2/3 (from 0.50± 0.12 to 0.00± 0.05 mV, p< 0.05, Wilcoxon
signed rank test, Fig. 5g) while the first current sink did not

significantly change (from 0.73± 0.12 to 0.43± 0.07 mV, p>
0.05, Wilcoxon signed rank test, Supplementary Fig. 7). Lastly,
the surface positive potentials passively generated by the second
current sink were clearly detectable with the surface electrode
array (Fig. 6a, b). Many of these surface potentials were as large as
those generated by the first current sink which was presumably
due to synaptic input (Fig. 6b, c), although the average amplitude
of the second current sink was smaller than the first (first: 0.71±
0.01 vs second: 0.59± 0.02 mV, n= 6 rats, p< 0.001, Wilcoxon
rank sum test). Moreover, the second surface spike was sig-
nificantly wider than the first (p< 0.05, Wilcoxon signed rank
test, n= 6 animals, Fig. 6d, left) and importantly, optogenetically
evoked surface potentials had a similar width (p> 0.05, Wilcoxon
rank sum test, Fig. 6d, left). The peak latency of the second spike
was also similar to that of the optogenetically evoked surface
potential (p> 0.05, Wilcoxon rank sum test, Fig. 6d, right). Two-
photon Ca2+ imaging of individual dendrites of L5 pyramidal
cells (Fig. 7a–c) and simultaneous recording of surface potentials
further revealed the strong correlation between the amplitude of
the second surface potential and the peak fluorescence change (r
= 0.7693, p< 0.01, n= 38 dendrites from 4 animals, Fig. 7d, e).
To examine the predictive power of our characterization, we
developed a simple classifier using half of the paired measure-
ments of two-photon dendritic Ca2+ fluorescence and simulta-
neously recorded surface potentials (the “training” data); then we
tested the classifier with the remaining half (the “validation” data,
Fig. 7f, see Methods section for more details). Simply taking the
average surface potential 50–60 ms after stimulus onset and set-
ting a lower threshold θ1 that corresponds to the upper limit of
fluorescence noise (mean M0 + one standard deviation SD0 when
surface potentials are zero), the classifier predicts that the surface
potentials correspond to Ca2+ spikes with 73.9% (34/46) accuracy
(light gray area in Fig. 7f). With a higher threshold θ3 that cor-
responds to M0 + 3SD0, the classifier predicts Ca2+ spikes with
100% (10/10) accuracy (dark gray area in Fig. 7f). Taken together,
we conclude that sensory stimulation evokes EPSPs that can be
detected ~ 10 ms after the stimulation followed in some cases by
dendritic Ca2+ spikes in L5 pyramidal neurons that have a
comparable impact at the cortical surface in the form of positive
potentials arriving ~ 50–60 ms after stimulation.

Discussion
The contribution of the present study is threefold. Firstly we
developed a novel optogenetic method to evoke dendritic Ca2+

spikes in vivo (Fig. 1a). This method enabled us to measure the
contribution of dendritic Ca2+ spikes uncontaminated with
synaptic inputs. Previous studies that reported the correlation
between Ca2+ events and extracellular potentials10, 37, 38 did not
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single case (top) and for all rats (bottom; p< 0.05, Wilcoxon signed-rank test, n= 8)
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separate these events; therefore it was unclear to which extent
intrinsic dendritic Ca2+ currents contributed to the evoked
potential. Secondly using the new method we found that dendritic
Ca2+ spikes generate a passive current source in L1 (Fig. 1f) and
therefore evoke a positive potential at the cortical surface with an
inverted polarity relative to the expected dendritic sink at the site
of generation of the dendritic spike (Fig. 3b). To our knowledge,
these findings have not been reported in the literature. Lastly we
quantified the relative contribution of dendritic Ca2+ spikes to the
surface potential and showed that their contribution is on average
equal to the contribution of synchronous, stimulus-evoked
synaptic inputs (Fig. 6b, c).

Several types of current could in principle contribute to the late
sensory-evoked sink including dendritic Ca2+ spikes, EPSPs
generated by feedback input to the upper layers39–41, bAPs or
NMDA spikes in the distal tuft26. Our data suggest that the late
dendritic sink is due primarily or perhaps entirely to dendritic
Ca2+ spikes. There were four observations that lead to this con-
clusion: firstly, the late sink in the upper layers was all-or-none in
character. Second, the late sink was not due to synaptic input.
Third, the late sink strongly correlated with dendritic Ca2+.
Fourth, the late sink was abolished by baclofen. We have pre-
viously shown that baclofen abolishes dendritic Ca2+ spikes but
does not block EPSPs or bAPs12, 24. We also previously found
that local application of baclofen to L2/3 does not change the
subthreshold input to L5 pyramidal neurons25 suggesting that
network effects due to baclofen are negligible. Moreover, in the
experiments using sensory stimuli in this study, the baclofen had
no effect on the first sink while abolishing the late sink suggesting
that the first sink was due to synaptic inputs that were unaffected

by baclofen whereas the second sink was due to a non-synaptic
process.

Both EPSPs and single or low-frequency bAPs have a com-
parably small effect on intracellular Ca2+ in the distal apical
dendrite22. It is generally considered that the contribution of
synaptic input to surface potentials is heavily dependent on the
synchronicity of the synaptic inputs42. With a triggered sensory
stimulation, the first signal is likely to arise from a barrage of
synchronous synaptic inputs generated by the stimulus. However,
the second signal ~ 200 ms after sensory stimulation has been
shown to be the result of feedback40 that is more likely to be due
to synaptic input that is less synchronous41. In our extracellular
recordings, the late sink had a distinctly all-or-none character
(unlike the late signal recorded intracellularly40) implying that the
late synaptic input is more or less invisible in the LFP unless it
reaches threshold for a postsynaptic event like a dendritic Ca2+

spike. On the other hand, the fact that the late sink we observed,
when visible, had the same amplitude as the first sink, implies that
the Ca2+ spike produces extracellular signals of similar magnitude
to very synchronous synaptic inputs.

NMDA spikes are another form of postsynaptic dendritic
spikes. However, they are normally confined to individual tuft
branches26, 43, 44 whereas the late sink we recorded spread from
depths that correspond to the location of the Ca2+ spike initiation
zone in L5 pyramidal neurons8. Although the data suggest that
the late extracellular sink is primarily due to dendritic Ca2+ spikes
which represent a high conductance across a large area of
membrane, it is still possible that the initiation of these spikes
requires some combination of EPSPs, bAPs and/or NMDA
spikes18, 21, 26, 41 that are each likely to have a smaller impact on
the extracellular potential.
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The conventional view is that the surface positive potential
primarily reflects a current source passively generated by a cur-
rent sink corresponding to EPSPs in pyramidal neurons arriving
in L2/3 (Fig. 8, left)4. Our study demonstrates that dendritic Ca2+

spikes in L5 pyramidal neurons can also evoke surface positive
potentials that are as large as those evoked by EPSPs (Fig. 8,
right). The corollary of this finding is that surface potentials
evoked by dendritic Ca2+ spikes are an indication that activity has
been recruited specifically in these cells. Furthermore, the Ca2+

spike is tightly linked to burst firing in these neurons8, 19. This is
of central importance for understanding brain activity because L5
pyramidal neurons constitute the major output cells of the cer-
ebral cortex. Because dendritic Ca2+ spikes are more easily evoked
in the awake compared to the anesthetized brain11, a significant
number of surface positive potentials in the awake brain recorded

with conventional EEG are likely to represent dendritic Ca2+

spikes--that is, the output of a given cortical area. It should be
noted that the surface potentials we characterized here were
evoked by optogenetic or sensory stimuli. In principle, surface
potentials could also be used to detect spontaneously occurring
dendritic Ca2+ spikes (i.e., without sensory stimulation). In this
case, the predictive power of this approach would be improved by
first characterizing the surface potential resulting from evoked
potentials.

In summary, we have developed a new method for optogen-
etically evoking dendritic Ca2+ spikes while recording LFPs,
surface potentials, and Ca2+ fluorescence. We showed that these
optogenetically evoked dendritic Ca2+ spikes can be detected at
the cortical surface as positive potentials and that sensory-evoked
potentials can also exhibit the same characteristics. We conclude
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that L5 pyramidal neurons are not simple passive dipoles but
exhibit a more complex, dynamically changing laminar profile of
current sinks and sources due to dendritic Ca2+ spikes. These
results have strong implications for the interpretation of surface
potentials that till now have not taken dendritic Ca2+ spikes into
consideration.

Methods
All experiments and procedures were approved and conducted in accordance with
the guidelines given by the veterinary office of Landesamt für Gesundheit und
Soziales Berlin.

Virus injection. Female Wistar rats (P21–23) were initially anesthetized with
isoflurane (~ 2% in O2, vol/vol, Abbott) before ketamine/xylazine anesthesia (75/
10 mg per kg of body weight, respectively) was administered intraperitoneally and
lidocaine (1%, wt/vol, Braun) was injected around the surgical site. Body tem-
perature was maintained at ~ 36 °C by a heating pad and the depth of anesthesia
was monitored throughout virus injection. Once anesthetized, the head was sta-
bilized in a stereotaxic instrument (SR-5R, Narishige, Tokyo). The skull was
exposed by a skin incision and a small hole (~ 0.5 × 0.5 mm2) was made above the
hindlimb area of the primary somatosensory cortex (1.5 mm posterior to bregma
and 2.2 mm from midline). AAV1.CamKIIa.hChR2(H134R)-eYFP.WPRE.hGH
(Addgene 26969 P) or AAV1.CamKII.GCaMP6f.WPRE.SV40 purchased from the
University of Pennsylvania Viral Vector Core was backloaded into a micropipette
(Drummond) and was slowly injected (at 20 nl per min, total amount 40–50 nl) to
L5. The pipette remained there for another 5 min after injection. The skin was
sutured after retracting the pipette.

Micro-periscope and optical stimulation. As shown in Supplementary Fig. 1, a
0.18 × 0.18 mm2 micro right-angled prism (Edmund Optics), a 100 μm core multi-
mode optical fiber (NA 0.22, Edmund Optics), a custom-designed Grin lens (NA
0.2, outer diameter 0.25 mm), were assembled in-house using a UV curable
adhesive (Noland). The other end of the optical fiber was coupled with a blue LED
(peak wavelength 470 nm, Cree). The fiber was held and positioned by a stereotaxic
micromanipulator (SM-15R, Narishige).

Optical stimulation of L5 through the micro-periscope was controlled by
Power1401 and Spike 2 software (CED) and synchronized with the neural
recording system via TTL signals. The duration of optical stimulation started at 10
ms and, if necessary, increased up to 30 ms to maximize the probability that
dendritic Ca2+ spikes occurred. The resulting probability with the highest light
intensity (12 mW/mm2) ranged from ~ 30 to ~ 100%.

Extracellular recordings. Animals were initially anesthetized by isoflurane (~ 2%
in O2, vol/vol, Abbott) before urethane anesthesia (0.05 mg per kg of body weight)
in anesthetized experiments or ketamine/xylazine anesthesia (75/10 mg per kg of
body weight, respectively) in awake experiments was administered intraper-
itoneally and lidocaine (1%, wt/vol, Braun) was injected around the surgical site.
Body temperature was maintained at ~ 36 °C by a heating pad and the depth of
anesthesia was monitored throughout experiment. Once anesthetized, the head was

stabilized in the stereotaxic instrument and the skull was exposed by a skin inci-
sion. A ~ 1.5 × 1.5 mm2 craniotomy was made above the hindlimb area of the
primary somatosensory cortex and the dura matter was removed. The exact
location of the hindlimb area was mapped using the intrinsic optical imaging45 or
flavoprotein autofluorescence imaging technique46. The area was kept moist with
rat ringer for the entire experiment (135 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 1
mM MgCl2, 5 mM HEPES). In LFP recordings a linear array of 16 electrodes
(NeuroNexus, A1 × 16-3 mm-100-177-A16 or A1 × 16-5 mm-100-177-A16) was
perpendicularly inserted into the area such that the uppermost electrode was
positioned at 100 μm below the pia. In surface potential recordings a 4 by 4 surface
electrode array (NeuroNexus, E16-500-5-200-H16) was placed above the cortical
area. In awake experiments the craniotomy was covered by silicone (Kwik-Cast,
WPI), and the micro-periscope and the surface electrode were fixed to the skull
with dental cement. After recovery the animal was placed in a rectangular arena
(60 cm × 40 cm) and was free to move thereafter. Electrical activity was bandpass-
filtered at 1–9 KHz, digitized at 10 K Hz, amplified by ERP-27 system and Cheetah
software (Neuralynx). LFPs were obtained by low-pass filtering the activity with the
cutoff frequency of 300 Hz. Multi-unit activity was measured with a single tungsten
electrode (~ 0.5 MOhm) and extracted through a bandpass filter (300–3 KHz).

Principal component analysis (PCA) of LFP waveforms. Inspired by the com-
monly used PCA-based spike sorting technique47, LFP waveforms from 30 to 60
ms after stimulus onset were mapped in two dimensional space using the first and
second principal components. Each dot in Figs. 1e, 4d represents a single wave-
form. Clusters were selected to visualize distinct features of waveform; unselected
waveforms, e.g., ones between ‘ + ‘ and ‘o’ symbols show a mixed feature of the two
types.

Ca2+ fluorescence imaging with a micro-periscope. As shown in Supplementary
Fig. 1, the imaging setup consisted of a micro-periscope, an LED (peak wavelength
535 nm, Cree), an excitation filter (555/20 bandpass, AHF), an emission filter (605/
55 bandpass, AHF), a dichroic mirror (cutoff wavelength: 565 nm, AHF), a 80 × 80
pixel high-speed CCD camera with frame rate of 125 Hz (Redshirt Imaging), a
10 × infinity corrected objective (58–372, Edmund Optics), and a tube lens (Optem,
RL091301-1). The calcium indicator Cal-590 AM (AAT Bioquest) was backloaded
into a micropipette (Drummond) and slowly injected (at 20 nl per min, total 40–50
nl) to L5 (~ 1200 μm below the pia) of the hindlimb area 1.5–2 h before imaging
experiments. The pipette remained there for at least 5 min after injection. The
injection pipette was angled such that spillover dye, if any, would not be loaded in
neurons in upper layers of the hindlimb area. ΔF/F was calculated as (F–F0)/F0,
where F is the fluorescence intensity at any time point and F0 is the average
intensity over the prestimulus period for 100 ms. The eYFP fluorescence upon
excitation was measured before loading the calcium indicator and was subtracted
from ΔF/F.

Two-photon Ca2+ imaging and simultaneous surface recordings. Ca2+ fluor-
escence was measured using a custom-built two-photon microscope with B-scope
(Thorlabs, Verginia), a water immersion objective (Olympus XLUMPlanFl, 0.95
NA) and a titanium sapphire laser (880 to 920 nm, 140-fs pulse width, Coherent
Chameleon). Animals were either transfected with AAV1.CamKII.GCaMP6f.
WPRE.SV40 or injected with Cal-520 AM (AAT Bioquest) in L5 as described in the
previous sections. A craniotomy (diameter ~ 3 mm) was made under Urethane-
anesthesia over the hindlimb area of the primary somatosensory cortex and the
dura matter was removed. To simultaneously record surface potential, a glass
electrode (0.5–1 MOhm) was placed under the cover glass (diameter 3 mm) such
that the tip was at the location where the maximum sensory response was observed
in the intrinsic or flavoprotein autofluorescence imaging. The cover glass and the
recording pipette were glued to the skull. Ca2+ fluorescence was measured at a
frequency of 100.30 Hz (142 × 512 pixels) by a GaAsP photomultiplier tube
(Hamamatsu Photonics, Japan). ΔF/F was calculated as (F-F0)/F0, where F is the
fluorescence intensity at any time point and F0 is the average intensity over the
prestimulus three data points (duration 29.91 ms).

Designing a simple classifier. Correlated (r> 0.8) paired measurements of two-
photon dendritic ΔF/F and surface potential averaged over 50–60 ms were halved
into the training and the validation data (90 measurements for each). Fluorescence
noise was defined as M0 + SD0 where M0 and SD0 are, respectively, the mean and
the standard deviation of the fluorescence change when surface potentials were
zero. A lower threshold θ1 was derived from the intersection of the horizontal line
(M0 + SD0) with the line fitted to the training data. A higher threshold θ3 was
derived from the intersection of the line (M0 + 3SD0) with the fitted line. The
performance of the classifier was measured using the validation data set.

Drug application and sensory stimulation. All drugs used in this study were
prepared on the day of experiment, backloaded to a micropipette (Drummond)
and slowly injected (at 20 nl per min, total 40–50 nl) to their target cortical layer.
The pipette was angled to avoid damaging the dendrites under study.
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Fig. 8 Diagram of the possible cellular mechanisms underlying surface
positive potentials. The conventional view of surface positive potentials is
that they are generated primarily by synaptic inputs from other cortical and
subcortical regions to L2/3 pyramidal neurons through L4 (left)51, 52. We
found that dendritic Ca2+ spikes of L5 pyramidal neurons (that lead to burst
firing of these cells) could also generate the surface positive potentials
(right)
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Sensory stimulation was provided by a single short electrical pulse (1 ms, 100 V)
given to the contralateral hindpaw through a pair of conductive adhesive strips
(Skintact).

Data analysis and statistical methods. Analyses were conducted using Matlab
(Mathworks). In optogenetic experiments current source density (CSD) analysis
was performed on the average of all 100 evoked potentials at 16 cortical depths. In
sensory stimulation experiments 100 measurements were divided into two groups,
with or without the late sink; the late sink was considered present if the peak
exceeded 3 × s.d. of the prestimulus activity. Instead of the original CSD method48,
inverse CSD method49, 50 was used due to its significant advantages. Principal
component analysis was performed on all LFP waveforms recorded at 600 μm
below the pia and only the first and second principal components were used for
cluster analysis.

Unless otherwise stated all values are indicated as mean ± s.e.m. and
significance was determined by two-tailed, paired t tests or Wilcoxon tests at a
significance level of 0.05. Each statistical test was chosen based on the data
distribution using histograms. No statistical method was used to predetermine
sample sizes, but our sample sizes are similar to those generally employed in the
field. The variance was generally similar between groups under comparison. No
blinding/randomization was performed.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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